
© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Invoking Native
Applications from Java

Originals of Slides and Source Code for Examples:
http://courses.coreservlets.com/Course-Materials/java.html

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

For live Java EE training, please see training courses
at http://courses.coreservlets.com/.

JSF 2, PrimeFaces, Servlets, JSP, Ajax (with jQuery), GWT,
Android development, Java 6 and 7 programming,

SOAP-based and RESTful Web Services, Spring, Hibernate/JPA,
XML, Hadoop, and customized combinations of topics.

Taught by the author of Core Servlets and JSP, More
Servlets and JSP, and this tutorial. Available at public

venues, or customized versions can be held on-site at your
organization. Contact hall@coreservlets.com for details.

Agenda

• Integration options
• Invoking native programs
• Calling native functions

Linking to Programs in Other
Languages

• Invoke the program at the OS level
– Use ProcessBuilder to invoke a random program, pass in

arguments via the standard input, and read results via the
standard output

• Pros: easy to set up, can call arbitrary programs
• Cons: limited argument passing, slow: big startup

overhead
• Use sockets

– Use regular sockets to exchange data
• Pros: fast if on same machine, can split in future
• Cons: work to set up on both ends, need to parse data

• Use native methods
– Use JNI to link C and Java code

• Pros: fast: suitable for fine-grained interactions
• Cons: lots of work to set up, requires C, C++, or assembly

Invoking Native Programs

1. Create a ProcessBuilder
– ProcessBuilder builder =

new ProcessBuilder("program", "argument");
– Note that environment variables such as PATH are not

automatically set, so you should use full path to
program

2. Start the process
– builder.start();

Options
– Wait for process to terminate

• Process p = builder.start();
• int returnCode = p.waitFor();

– Examine return code later
• int returnCode = p.exitCode();

Example: Starting Internet Explorer

• Full path to Internet Explorer:
– C:\Program Files\Internet Explorer\iexplore.exe

• Must use \\ to get \ in Java strings
• The .exe extension can be omitted on Windows

• Internet Explorer accepts command line
arguments
– The initial URL to be displayed

• Overrides homepage

Example: Code

public class InvokeIE {
public static void main(String[] args) {
String url = "http://www.google.com/";
if (args.length > 0) {
url = args[0];

}
try {
ProcessBuilder builder =
new ProcessBuilder(
"C:\\Program Files\\Internet Explorer\\iexplore",
url);

builder.start();
} catch(Exception e) {
System.out.println(e);

}
}

}

Example: Results

DOS> java InvokeIE http://www.jhuapl.edu/

Reading Results from Native
Programs

1. Create a ProcessBuilder
– ProcessBuilder builder =

new ProcessBuilder("program", "argument");
2. Start the process (referencing Process)

– Process p = builder.start();
3. Attach a Reader (to input, not output!)

– BufferedReader reader =
new BufferedReader (new InputStreamReader

(p.getInputStream()));
4. Read results

– Call reader.readLine() until result is null
5. Close the stream

– reader.close();

Example: Invoking the Unix "ls"
Command

import java.io.*;

public class InvokeLS {
public static void main(String[] args) {
String flags = "-al";
if (args.length > 0) {
flags = args[0];

}
try {
ProcessBuilder builder =
new ProcessBuilder("/usr/bin/ls", flags);

Process process = builder.start();

Example: Invoking the Unix "ls"
Command (Continued)

BufferedReader reader =
new BufferedReader
(new InputStreamReader
(process.getInputStream()));

String line;
while((line = reader.readLine()) != null) {
System.out.printf("Output: %s%n", line);

}
reader.close();
int status = process.exitValue();
if (status != 0) {
System.out.printf("Error: process exited with %d.%n",

status);
}

} catch(Exception e) {
System.out.println(e);

}
}

}

Example: Invoking the Unix "ls"
Command (Indented Results)
Unix> java InvokeLS
Output: total 12
Output: drwxr-xr-x 2 hall instruct

512 Nov 26 10:00 .
Output: drwxr-xr-x 6 hall instruct

2048 Nov 26 09:38 ..
Output: -rw-r--r-- 1 hall instruct

1257 Nov 26 10:00 InvokeLS.class
Output: -rw-r--r-- 1 hall instruct

846 Nov 26 10:00 InvokeLS.java

Calling Native Methods

• You can call C functions from Java
– C++ functions must be declared "extern C"
– You cannot directly call FORTRAN, but C can easily (?) act as

intermediary
• See http://www.csharp.com/javacfort.html

• You can call Java functions from C
• Much more work

– Very tedious and low-level programming on both C and Java sides
• Much more powerful

– Can pass real data types (not just strings)
– Doesn't start a new OS process for each call

• More details
– General: http://java.sun.com/docs/books/tutorial/native1.1/
– MATLAB:

http://www.mathworks.com/access/helpdesk/help/techdoc/
matlab_external/f44062.html

Using Native Methods

1. Create Java class with native method
– Method stub with declaration native
– Load shared library via System.loadLibrary

2. Compile the Java code
– Use javac normally

3. Create a header file for the Java class
– Use "javah -jni ClassName"

4. Write a C program with designated function
– Must include ClassName.h and jni.h

5. Compile C program into shared library
– Include path must incorporate javahome/include and
javahome/include/operatingsystem

6. Run the Java program
– Use java normally

Creating Java Class

• Must use native declaration
• Must load shared library before invoking

native method

public class HelloWorld {
static {

System.loadLibrary("hello");
}

public native void displayHelloWorld();

public static void main(String[] args) {
new HelloWorld().displayHelloWorld();

}
}

Creating a Header File

> javac HelloWorld.java
> javah -jni HelloWorld

– Result: HelloWorld.h
/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class HelloWorld */

#ifndef _Included_HelloWorld
#define _Included_HelloWorld
#ifdef __cplusplus
extern "C" {
#endif
...
JNIEXPORT void JNICALL Java_HelloWorld_displayHelloWorld
(JNIEnv *, jobject);

...

Creating C Program

#include <jni.h>
#include "HelloWorld.h"
#include <stdio.h>

JNIEXPORT void JNICALL
Java_HelloWorld_displayHelloWorld

(JNIEnv *env, jobject obj)
{

printf("Hello world!\n");
return;

}

Compiling C Program Into Shared
Library

• Must include the .h files for JNI
– General
– OS-specific

Solaris> gcc
-I/usr/java1.5/include
-I/usr/java1.5/include/solaris
HelloWorldImp.c
-o libhello.so

Invoking Java Program

Solaris> java HelloWorld
Hello world!

Mapping Java Types to C Types
(Primitives)

Java Type Native Type Size in Bits

boolean jboolean 8, unsigned

byte jbyte 8

char jchar 16, unsigned

short jshort 16

int jint 32

long jlong 64

float jfloat 32

double jdouble 64

void void

Mapping Java Objects to C

• All calls are call by reference
• All Objects are jobject in C
• A few predefined jobject subtypes

– jstring
– jintArray, jshortArray, jlongArray
– jfloatArray, jdoubleArray
– jcharArray
– jbyteArray
– jbooleanArray
– jobjectArray

Calling Java Methods from C

• Call the function GetObjectClass
• Call GetMethodID
• Call CallVoidMethod

JNIEXPORT void JNICALL
Java_Callbacks_nativeMethod(JNIEnv *env, jobject obj,

jint depth) {
jclass cls = (*env)->GetObjectClass(env, obj);
jmethodID mid = (*env)->GetMethodID(env, cls,

"callback", "(I)V");
if (mid == 0) { return; }
printf("In C, depth = %d, about to enter Java\n",

depth);
(*env)->CallVoidMethod(env, obj, mid, depth);
printf("In C, depth = %d, back from Java\n", depth);

}

Summary

• Invoking operating-system programs is
straightforward
– Use ProcessBuilder.start() to start program, optionally

with command-line arguments
– You can read standard output

• Attach BufferedReader to input stream

• You can use sockets to communicate
– See earlier lectures
– Very fast if both programs are on same machine

• JNI provides tightest integration and
highest-performance result
– Very low-level and tedious. Hard to maintain.

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Questions?
JSF 2, PrimeFaces, Java 7, Ajax, jQuery, Hadoop, RESTful Web Services, Android, Spring, Hibernate, Servlets, JSP, GWT, and other Java EE training.

