© 2012 Marty Hall

Invoking Native
Applications from Java

Originals of Slides and Source Code for Examples:
http://courses.coreservlets.com/Course-Materials/java.html

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

© 2012 Marty Hall

mowre

SERVLETS and

JAVASERVFR PAGES

cove

SERVLETS and
JAVASERVER PAGES

B

For live Java EE training, please see training courses

at http://courses.coreserviets.com/.
JSF 2, PrimeFaces, Servlets, JSP, Ajax (with jQuery), GWT,
Android development, Java 6 and 7 programming,
SOAP-based and RESTful Web Services, Spring, Hibernate/JPA,
XML, Hadoop, and customized combinations of topics.

Taught by the author of Core Serviets and JSP, More
Servlets and JSP, and this tutorial. Available at public
venues, or customized versions can be held on-site at your
organization. Contact hall@coreservlets.com for details.

Agenda

* Integration options
* Invoking native programs
 Calling native functions

Linking to Programs in Other
Languages

* Invoke the program at the OS level

— Use ProcessBuilder to invoke a random program, pass in
arguments via the standard input, and read results via the
standard output

* Pros: easy to set up, can call arbitrary programs
* Cons: limited argument passing, slow: big startup
overhead
« Use sockets

— Use regular sockets to exchange data
* Pros: fast if on same machine, can split in future
» Cons: work to set up on both ends, need to parse data

 Use native methods

— Use JNI to link C and Java code
* Pros: fast: suitable for fine-grained interactions
» Cons: lots of work to set up, requires C, C++, or assembly

Invoking Native Programs

1. Create a ProcessBuilder
— ProcessBuilder builder =
new ProcessBuilder("program", "argument");

— Note that environment variables such as PATH are not
automatically set, so you should use full path to
program

2. Start the process
— builder.start();

Options
— Wait for process to terminate
* Process p = builder.start();
* int returnCode = p.waitFor();

— Examine return code later
* int returnCode = p.exitCode();

Example: Starting Internet Explorer

* Full path to Internet Explorer:

— C:\Program Files\Internet Explorer\iexplore.exe
* Must use \\ to get \ in Java strings
* The .exe extension can be omitted on Windows

* Internet Explorer accepts command line
arguments

— The initial URL to be displayed
* Overrides homepage

Example: Code

public class InvokeIE ({
public static void main(String[] args) {
String url = "http://www.google.com/";
if (args.length > 0) {
url args[0];

}
try {
ProcessBuilder builder =
new ProcessBuilder (
"C:\\Program Files\\Internet Explorer\\iexplore",
url) ;
builder.start() ;
} catch (Exception e) {
System.out.println(e) ;

—~

Example: Results

DOS> java InvokelIE http://www.jhuapl.edu/

2 JHUAPL - Microsoft Internet Explorer

Fle Edt view Favortes Tods Help

- HREG Le | s

fdibess [€) http . fhuapl.eduf

APL

About APL

earcn ||
The Johns Hopkins University saren | |@

APPLIED PHYSICS LABORATORY.
Enplojment il CurWark

18 National Se curity Throush Science and Technology

Home

Education

News Center Technology Transfer

Contact Us Visitor Guide/Directions

Applied Physics Laboratory
11100 Johns Hopkins Road
Laurel, Maryland 20723

In the News Press Releases

Another Success for Ballistic
Missile Defense:

Coming $oon: The
Sun in 3-D
Twin APL-BUit Solar
Frohes Shipped to
NASA Goddard for Pre-
» - */taunch Tests
. = + Read more

Major Discovery
Shows New Moons
Around Plute
Pluto may have not
one, but three moons
+ Read more

APL Contributions
Integral Part of
Missile Defense

| Test
Today's successil
Aegis Ballistic Missile
Defense (BMD) intercent
testwas due, in pari, to
the critical engineering
and technical direction

Howto getto APL

Washington
(240} 226-5000
Baitimors
provided by APL (443 778-5000
+ Read more

APL Provides Unique View of
Successful Intercept Test

The missile defense community got a
unique, tiose-up view ofthe Nov. 17 Aegis
Ballistic Missile Defenge (BMD) intercept test
thanks to APL-developed sensors placed
onhoard the target missile

+ Read more

Read more about APL's Air and Missile
Defense Work

APL Helping
Develop Deep
Space Navigation
Network

Engineers are apphying more than 40 years
ofspace expertise to determine whether X
ray signals from celestial sources can be
used for deep space satellite navigation

+ Readmore

T

APL Colloquium

Conference Facility Map
{Kossiakoff Center)

& Internet

Reading Results from Native
Programs

1. Create a ProcessBuilder

— ProcessBuilder builder =
new ProcessBuilder("program", "argument");

2. Start the process (referencing Process)
— Process p = builder.start();
3. Attach a Reader (to input, not output!)

— BufferedReader reader =
new BufferedReader (new InputStreamReader
(p.getlnputStream()));

4. Read results

— Call reader.readLine() until result is null
5. Close the stream

— reader.close();

Example: Invoking the Unix "Is™
Command

import java.io.*;

public class InvokelS {
public static void main(String[] args) {

String flags = "-al";

if (args.length > 0) {
flags = args[0];

}

try {
ProcessBuilder builder =

new ProcessBuilder("/usr/bin/1ls", flags);

Process process = builder.start();

Example: Invoking the Unix "Is"
Command (Continued)

BufferedReader reader =
new BufferedReader
(new InputStreamReader
(process.getInputStream())) ;
String line;
while((line = reader.readLine()) != null) {
System.out.printf ("Output: %s%n", line);

reader.close () ;
int status = process.exitValue()
if (status '= 0) {
System.out.printf ("Error: process exited with %d.%n",
status) ;

}
} catch(Exception e) {
System.out.println(e) ;

—

Example: Invoking the Unix "Is™
Command (Indented Results)

Unix> java InvokelLS
Output: total 12

Output: drwxr-xr-x 2 hall instruct
512 Nov 26 10:00 .

Output: drwxr-xr-x 6 hall instruct
2048 Nov 26 09:38 ..

Output: -rw-r--r-- 1 hall instruct

1257 Nov 26 10:00 InvokelS.class

Output: -rw-r--r-- 1 hall instruct

846 Nov 26 10:00 InvokelS. java

Calling Native Methods

You can call C functions from Java
— CH++ functions must be declared "extern C"

— You cannot directly call FORTRAN, but C can easily (?) act as
intermediary
* See http://www.csharp.com/javacfort.html

You can call Java functions from C
Much more work
— Very tedious and low-level programming on both C and Java sides
Much more powerful
— Can pass real data types (not just strings)
— Doesn't start a new OS process for each call
More details

— General: http://java.sun.com/docs/books/tutorial/nativel.1/

— MATLAB:
http://www.mathworks.com/access/helpdesk/help/techdoc/
matlab external/f44062.html

Using Native Methods

1. Create Java class with native method
— Method stub with declaration native
— Load shared library via System.loadLibrary
2. Compile the Java code
— Use javac normally
3. Create a header file for the Java class
— Use "javah -jni ClassName"
4. Write a C program with designated function
— Must include ClassName.h and jni.h
5. Compile C program into shared library

— Include path must incorporate javahome/include and
Jjavahome/include/operatingsystem

6. Run the Java program
— Use java normally

Creating Java Class

* Must use native declaration

* Must load shared library before invoking
native method

public class HelloWorld {
static {
System. loadLibrary ("hello") ;
}

public native void displayHelloWorld() ;

public static void main(String[] args) ({
new HelloWorld() .displayHelloWorld() ;
}
}

Creating a Header File

> javac HelloWorld.java
> javah -jni HelloWorld
— Result: HelloWorld.h
/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class HelloWorld */

#ifndef Included HelloWorld
#define Included HelloWorld
#ifdef cplusplus

extern "C" {

#endif

JNIEXPORT void INICALL Java HelloWorld displayHelloWorld
(JNIEnv *, jobject);

Creating C Program

#include <jni.h>
#include "HelloWorld.h"
#include <stdio.h>

JNIEXPORT void JNICALL
Java HelloWorld displayHelloWorld
(INIEnv *env, jobject obj)
{
printf ("Hello world!'\n");
return;

Compiling C Program Into Shared
Library

 Must include the .h files for JNI
— General
— OS-specific

Solaris> gcc
-I/usr/javal.5/include
-I/usr/javal.5/include/solaris
HelloWorldImp.c
-o libhello.so

Invoking Java Program

Solaris> java HelloWorld
Hello world!

Mapping Java Types to C Types
(Primitives)

Java Type Native Type Size in Bits
boolean jboolean 8, unsigned
byte jbyte 8
char jchar 16, unsigned
short jshort 16
int jint 32
long jlong 64
float jfloat 32
double jdouble 64
void void

Mapping Java Objects to C

 All calls are call by reference
* All Objects are jobject in C
- A few predefined jobject subtypes

— Jstring

— jintArray, jshortArray, jlongArray
— jfloatArray, jdoubleArray

— jcharArray

— jbyteArray

— jbooleanArray

— jobjectArray

Calling Java Methods from C

« Call the function GetObjectClass
- Call GetMethodID
- Call CallVoidMethod

JNIEXPORT void JNICALL
Java Callbacks nativeMethod (IJNIEnv *env, jobject obj,
jint depth) {
jclass cls = (*env)->GetObjectClass (env, obj);
jmethodID mid = (*env)->GetMethodID (env, cls,

"callback", "(I)V");
if (mid == 0) { return; }
printf ("In C, depth = %d, about to enter Java\n",
depth) ;

(*env) ->CallVoidMethod (env, obj, mid, depth);
printf ("In C, depth = %d, back from Java\n", depth);

Summary

* Invoking operating-system programs is
straightforward

— Use ProcessBuilder.start() to start program, optionally
with command-line arguments

— You can read standard output
+ Attach BufferedReader to input stream
* You can use sockets to communicate
— See earlier lectures
— Very fast if both programs are on same machine
* JNI provides tightest integration and
highest-performance result
— Very low-level and tedious. Hard to maintain.

© 2012 Marty Hall

Questions?

JSF 2, PrimeFaces, Java 7, Ajax, jQuery, Hadoop, RESTful Web Services, Android, Spring, Hibernate, Servlets, JSP, GWT, and other Java EE training.

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

