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Agenda

• Integration options
• Invoking native programs
• Calling native functions

Linking to Programs in Other 
Languages

• Invoke the program at the OS level
– Use ProcessBuilder to invoke a random program, pass in 

arguments via the standard input, and read results via the 
standard output

• Pros: easy to set up, can call arbitrary programs
• Cons: limited argument passing, slow: big startup 

overhead
• Use sockets

– Use regular sockets to exchange data
• Pros: fast if on same machine, can split in future
• Cons: work to set up on both ends, need to parse data

• Use native methods
– Use JNI to link C and Java code

• Pros: fast: suitable for fine-grained interactions
• Cons: lots of work to set up, requires C, C++, or assembly



Invoking Native Programs

1. Create a ProcessBuilder
– ProcessBuilder builder = 

new ProcessBuilder("program", "argument");
– Note that environment variables such as PATH are not

automatically set, so you should use full path to 
program

2. Start the process
– builder.start();

Options
– Wait for process to terminate

• Process p = builder.start();
• int returnCode = p.waitFor();

– Examine return code later
• int returnCode = p.exitCode();

Example: Starting Internet Explorer

• Full path to Internet Explorer:
– C:\Program Files\Internet Explorer\iexplore.exe

• Must use \\ to get \ in Java strings
• The .exe extension can be omitted on Windows

• Internet Explorer accepts command line 
arguments
– The initial URL to be displayed

• Overrides homepage



Example: Code

public class InvokeIE {
public static void main(String[] args) {
String url = "http://www.google.com/";
if (args.length > 0) {
url = args[0];

}
try {
ProcessBuilder builder =
new ProcessBuilder(
"C:\\Program Files\\Internet Explorer\\iexplore",
url);

builder.start();
} catch(Exception e) {
System.out.println(e);

}
}

}

Example: Results

DOS> java InvokeIE http://www.jhuapl.edu/



Reading Results from Native 
Programs

1. Create a ProcessBuilder
– ProcessBuilder builder = 

new ProcessBuilder("program", "argument");
2. Start the process (referencing Process)

– Process p = builder.start();
3. Attach a Reader (to input, not output!)

– BufferedReader reader = 
new BufferedReader (new InputStreamReader

(p.getInputStream()));
4. Read results

– Call reader.readLine() until result is null
5. Close the stream

– reader.close();

Example: Invoking the Unix "ls" 
Command

import java.io.*;

public class InvokeLS {
public static void main(String[] args) {
String flags = "-al";
if (args.length > 0) {
flags = args[0];

}
try {
ProcessBuilder builder =
new ProcessBuilder("/usr/bin/ls", flags);

Process process = builder.start();



Example: Invoking the Unix "ls" 
Command (Continued)

BufferedReader reader =
new BufferedReader
(new InputStreamReader
(process.getInputStream()));

String line;
while((line = reader.readLine()) != null) {
System.out.printf("Output: %s%n", line);

}
reader.close();
int status = process.exitValue();
if (status != 0) {
System.out.printf("Error: process exited with %d.%n",

status);
}

} catch(Exception e) {
System.out.println(e);

}
}

}

Example: Invoking the Unix "ls" 
Command (Indented Results)
Unix> java InvokeLS
Output: total 12
Output: drwxr-xr-x   2 hall     instruct     

512 Nov 26 10:00 .
Output: drwxr-xr-x   6 hall     instruct    

2048 Nov 26 09:38 ..
Output: -rw-r--r-- 1 hall     instruct    

1257 Nov 26 10:00 InvokeLS.class
Output: -rw-r--r-- 1 hall     instruct    

846 Nov 26 10:00 InvokeLS.java



Calling Native Methods

• You can call C functions from Java
– C++ functions must be declared "extern C"
– You cannot directly call FORTRAN, but C can easily (?) act as 

intermediary
• See http://www.csharp.com/javacfort.html

• You can call Java functions from C
• Much more work

– Very tedious and low-level programming on both C and Java sides
• Much more powerful

– Can pass real data types (not just strings)
– Doesn't start a new OS process for each call

• More details
– General: http://java.sun.com/docs/books/tutorial/native1.1/
– MATLAB:

http://www.mathworks.com/access/helpdesk/help/techdoc/
matlab_external/f44062.html

Using Native Methods

1. Create Java class with native method
– Method stub with declaration native
– Load shared library via System.loadLibrary

2. Compile the Java code
– Use javac normally

3. Create a header file for the Java class
– Use "javah -jni ClassName"

4. Write a C program with designated function
– Must include ClassName.h and jni.h

5. Compile C program into shared library
– Include path must incorporate javahome/include and 
javahome/include/operatingsystem

6. Run the Java program
– Use java normally



Creating Java Class

• Must use native declaration
• Must load shared library before invoking 

native method

public class HelloWorld {
static {

System.loadLibrary("hello");
}

public native void displayHelloWorld();

public static void main(String[] args) {
new HelloWorld().displayHelloWorld();

}
}

Creating a Header File

> javac HelloWorld.java
> javah -jni HelloWorld

– Result: HelloWorld.h
/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class HelloWorld */

#ifndef _Included_HelloWorld
#define _Included_HelloWorld
#ifdef __cplusplus
extern "C" {
#endif
...
JNIEXPORT void JNICALL Java_HelloWorld_displayHelloWorld
(JNIEnv *, jobject);

...



Creating C Program

#include <jni.h>
#include "HelloWorld.h"
#include <stdio.h>

JNIEXPORT void JNICALL
Java_HelloWorld_displayHelloWorld

(JNIEnv *env, jobject obj)
{

printf("Hello world!\n");
return;

}

Compiling C Program Into Shared 
Library

• Must include the .h files for JNI
– General
– OS-specific

Solaris> gcc 
-I/usr/java1.5/include 
-I/usr/java1.5/include/solaris  
HelloWorldImp.c 
-o libhello.so



Invoking Java Program

Solaris> java HelloWorld
Hello world!

Mapping Java Types to C Types 
(Primitives)

Java Type Native Type Size in Bits

boolean jboolean 8, unsigned

byte jbyte 8

char jchar 16, unsigned

short jshort 16

int jint 32

long jlong 64

float jfloat 32

double jdouble 64

void void



Mapping Java Objects to C

• All calls are call by reference
• All Objects are jobject in C
• A few predefined jobject subtypes

– jstring
– jintArray, jshortArray, jlongArray
– jfloatArray, jdoubleArray
– jcharArray
– jbyteArray
– jbooleanArray
– jobjectArray

Calling Java Methods from C

• Call the function GetObjectClass 
• Call GetMethodID
• Call CallVoidMethod

JNIEXPORT void JNICALL 
Java_Callbacks_nativeMethod(JNIEnv *env, jobject obj, 

jint depth) { 
jclass cls = (*env)->GetObjectClass(env, obj); 
jmethodID mid = (*env)->GetMethodID(env, cls, 

"callback", "(I)V"); 
if (mid == 0) { return; } 
printf("In C, depth = %d, about to enter Java\n", 

depth); 
(*env)->CallVoidMethod(env, obj, mid, depth); 
printf("In C, depth = %d, back from Java\n", depth); 

}



Summary

• Invoking operating-system programs is 
straightforward
– Use ProcessBuilder.start() to start program, optionally 

with command-line arguments
– You can read standard output

• Attach BufferedReader to input stream

• You can use sockets to communicate
– See earlier lectures
– Very fast if both programs are on same machine

• JNI provides tightest integration and 
highest-performance result
– Very low-level and tedious. Hard to maintain.
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