

Java
Technology

Home
Page

A-Z Index

Java Developer Connection(SM)
Online Training

Downloads, APIs,
Documentation
Java Developer

Connection
Tutorials, Tech Articles,

Training
Online Support

Community Discussion

News & Events from
Everywhere

Products from
Everywhere

How Java Technology
is Used Worldwide

Print Button

Training Index

Essentials of the JavaTMProgramming
Language: A Hands-On Guide, Part 1

by Monica Pawlan

[CONTENTS] [NEXT>>]

If you are new to programming in the JavaTM language, have some
experience with other languages, and are familiar with things like
displaying text or graphics or performing simple calculations, this
tutorial could be for you. It walks through how to use the Java® 2
Platform software to create and run three common types of
programs written for the Java platform—applications, applets, and
servlets.

You will learn how applications, applets, and servlets are similar
and different, how to build a basic user interface that handles
simple end user input, how to read data from and write data to files
and databases, and how to send and receive data over the
network. This tutorial is not comprehensive, but instead takes you
on a straight and uncomplicated path through the more common
programming features available in the Java platform.

If you have no programming experience at all, you might still find
this tutorial useful; but you also might want to take an introductory
programming course or read Teach Yourself Java 2 Online in Web
Time before you proceed.

Contents

Lesson 1: Compiling and Running a Simple Program

A Word About the Java Platform●

Setting Up Your Computer●

Writing a Program●

Compiling the Program●

Interpreting and Running the Program●

Common Compiler and Interpreter Problems●

Code Comments●

API Documentation●

More Information●

Lesson 2: Building Applications

Essentials of the Java(TM) Programming Language, Part 1

file:///T|/General/Documentation/Java/Basic Java 1/index.html (1 of 4) [24.07.2000 12:29:59]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
file:///developer/index.html
file:///developer/onlineTraining/
http://java.sun.com/products/
file:///developer/index.html
file:///developer/infodocs/index.shtml
file:///developer/support/index.html
file:///developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
file:///servlet/PrintPageServlet
file:///developer/onlineTraining/index.html
http://www1.fatbrain.com/asp/bookinfo/bookinfo.asp?theisbn=0672316684
http://www1.fatbrain.com/asp/bookinfo/bookinfo.asp?theisbn=0672316684

Application Structure and Elements●

Fields and Methods●

Constructors●

To Summarize●

More Information●

Lesson 3: Building Applets

Application to Applet●

Run the Applet●

Applet Structure and Elements●

Packages●

More Information●

Lesson 4: Building a User Interface

Swing APIs●

Import Statements●

Class Declaration●

Global Variables●

Constructor●

Action Listening●

Event Handling●

Main Method●

Applets Revisited●

More Information●

Lesson 5: Writing Servlets

About the Example●

HTML Form●

Servlet Backend●

More Information●

Lesson 6: File Access and Permissions

File Access by Applications●

Exception Handling●

File Access by Applets●

Granting Applets Permission●

Restricting Applications●

File Access by Servlets●

Appending●

More Information●

Lesson 7: Database Access and Permissions

Database Setup●

Essentials of the Java(TM) Programming Language, Part 1

file:///T|/General/Documentation/Java/Basic Java 1/index.html (2 of 4) [24.07.2000 12:29:59]

Create Database Table●

Database Access by Applications

Establishing a Database Connection❍

Final and Private Variables❍

Writing and Reading Data❍

●

Database Access by Applets

JDBC Driver❍

JDBC-ODBC Bridge with ODBC Driver❍

●

Database Access by Servlets●

More Information●

Lesson 8: Remote Method Invocation

About the Example

Program Behavior❍

File Summary❍

Compile the Example❍

Start the RMI Registry❍

Run the RemoteServer Server Object❍

Run the RMIClient1 Program❍

Run the RMIClient2 Program❍

●

RemoteSend Class●

Send Interface●

RMIClient1 Class●

RMIClient2 Class●

More Information●

In Closing

Reader Feedback

Tell us what you think of this training book.

[Duke]

 Very worth reading Worth reading Not worth
reading

If you have other comments or ideas for future training
books, please type them here:

[TOP]

Essentials of the Java(TM) Programming Language, Part 1

file:///T|/General/Documentation/Java/Basic Java 1/index.html (3 of 4) [24.07.2000 12:29:59]

Print Button
 [This page was updated: 6-Apr-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Sun
Microsystems,

Inc.Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Essentials of the Java(TM) Programming Language, Part 1

file:///T|/General/Documentation/Java/Basic Java 1/index.html (4 of 4) [24.07.2000 12:29:59]

file:///servlet/PrintPageServlet
http://java.sun.com/products/
file:///developer/index.html
file:///developer/infodocs/index.shtml
file:///developer/support/index.html
file:///developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://java.sun.com/applets/
http://java.sun.com/docs/books/tutorial/
http://java.sun.com/jobs/
http://java.sun.com/nav/business/
http://java.sun.com/javastore/
http://java.sun.com/casestudies/
file:///siteinfo/faq.html
file:///feedback/index.html
http://www.dynamicdiagrams.net/mapa/cgi-bin/help.tcl?db=javasoft&dest=http://java.sun.com/
http://java.sun.com/a-z/index.html
http://www.att.com/business_traveler/attdirecttollfree/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

Java
Technology

Home
Page

A-Z Index

Java Developer Connection(SM)
Online Training

Downloads, APIs,
Documentation
Java Developer

Connection
Tutorials, Tech Articles,

Training
Online Support

Community Discussion

News & Events from
Everywhere

Products from
Everywhere

How Java Technology
is Used Worldwide

Print Button

Training Index

JavaTM Programming Language Basics,
Part 1

Lesson 1: Compiling and Running
A Simple Program

[<<BACK] [CONTENTS] [NEXT>>]

The computer age is here to stay. Households and businesses all
over the world use computers in one way or another because
computers help individuals and businesses perform a wide range of
tasks with speed, accuracy, and efficiency. Computers can perform
all kinds of tasks ranging from running an animated 3D graphics
application with background sound to calculating the number of
vacation days you have coming to handling the payroll for a
Fortune 500 company.

When you want a computer to perform tasks, you write a program.
A program is a sequence of instructions that define tasks for the
computer to execute. This lesson explains how to write, compile,
and run a simple program written in the JavaTM language (Java
program) that tells your computer to print a one-line string of text
on the console.

But before you can write and compile programs, you need to
understand what the Java platform is, and set your computer up to
run the programs.

A Word About the Java Platform●

Setting Up Your Computer●

Writing a Program●

Compiling the Program●

Interpreting and Running the Program●

Common Compiler and Interpreter Problems●

Code Comments●

API Documentation●

More Information●

A Word About the Java Platform

The Java platform consists of the Java application programming
interfaces (APIs) and the Java1 virtual machine (JVM).

Java APIs are libraries of compiled code that

Java(TM) Language Basics, Part 1, Lesson 1: Compiling & Running a Simple Program

file:///T|/General/Documentation/Java/Basic Java 1/compile.html (1 of 5) [24.07.2000 12:30:05]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
file:///developer/index.html
file:///developer/onlineTraining/
http://java.sun.com/products/
file:///developer/index.html
file:///developer/infodocs/index.shtml
file:///developer/support/index.html
file:///developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
file:///servlet/PrintPageServlet
file:///developer/onlineTraining/index.html

you can use in your programs. They let you
add ready-made and customizable
functionality to save you programming time.

The simple program in this lesson uses a Java
API to print a line of text to the console. The
console printing capability is provided in the
API ready for you to use; you supply the text

to be printed.

Java programs are run (or interpreted) by another program called
the Java VM. If you are familiar with Visual Basic or another
interpreted language, this concept is probably familiar to you.
Rather than running directly on the native operating system, the
program is interpreted by the Java VM for the native operating
system. This means that any computer system with the Java VM
installed can run Java programs regardless of the computer
system on which the applications were originally developed.

For example, a Java program developed on a Personal Computer
(PC) with the Windows NT operating system should run equally
well without modification on a Sun Ultra workstation with the
Solaris operating system, and vice versa.

Setting Up Your Computer

Before you can write and run the simple Java program in this
lesson, you need to install the Java platform on your computer
system.

The Java platform is available free of charge from the
java.sun.com web site. You can choose between the Java® 2
Platform software for Windows 95/98/NT or for Solaris. The
download page contains the information you need to install and
configure the Java platform for writing and running Java programs.

Note: Make sure you have the Java platform installed
and configured for your system before you try to write
and run the simple program presented next.

Writing a Program

The easiest way to write a simple program is with a text editor.
So, using the text editor of your choice, create a text file with the
following text, and be sure to name the text file
ExampleProgram.java. Java programs are case sensitive, so if you
type the code in yourself, pay particular attention to the
capitalization.

//A Very Simple Example
class ExampleProgram {
 public static void main(String[] args){
 System.out.println("I'm a Simple Program");
 }
}

Java(TM) Language Basics, Part 1, Lesson 1: Compiling & Running a Simple Program

file:///T|/General/Documentation/Java/Basic Java 1/compile.html (2 of 5) [24.07.2000 12:30:05]

http://java.sun.com/products/jdk/1.2/

Here is the ExampleProgram.java source code file if you do not
want to type the program text in yourself.

Compiling the Program

A program has to be converted to a form the Java VM can
understand so any computer with a Java VM can interpret and run
the program. Compiling a Java program means taking the
programmer-readable text in your program file (also called source
code) and converting it to bytecodes, which are
platform-independent instructions for the Java VM.

The Java compiler is invoked at the command line on Unix and
DOS shell operating systems as follows:

 javac ExampleProgram.java

Note: Part of the configuration process for setting up
the Java platform is setting the class path. The class
path can be set using either the -classpath option with the
javac compiler command and java interpreter command,
or by setting the CLASSPATH environment variable. You
need to set the class path to point to the directory where
the ExampleProgram class is so the compiler and
interpreter commands can find it. See Java 2 SDK Tools
for more information.

Interpreting and Running the Program

Once your program successfully compiles into Java bytecodes, you
can interpret and run applications on any Java VM, or interpret and
run applets in any Web browser with a Java VM built in such as
Netscape or Internet Explorer. Interpreting and running a Java
program means invoking the Java VM byte code interpreter, which
converts the Java byte codes to platform-dependent machine
codes so your computer can understand and run the program.

The Java interpreter is invoked at the command line on Unix and
DOS shell operating systems as follows:

 java ExampleProgram

At the command line, you should see:

 I'm a Simple Program

Here is how the entire sequence looks in a terminal window:

Java(TM) Language Basics, Part 1, Lesson 1: Compiling & Running a Simple Program

file:///T|/General/Documentation/Java/Basic Java 1/compile.html (3 of 5) [24.07.2000 12:30:05]

http://java.sun.com/products/jdk/1.2/docs/tooldocs/tools.html

Common Compiler and Interpreter Problems

If you have trouble compiling or running the simple example in
this lesson, refer to the Common Compiler and Interpreter
Problems lesson in The Java Tutorial for troubleshooting help.

Code Comments

Code comments are placed in source files to describe what is
happening in the code to someone who might be reading the file,
to comment-out lines of code to isolate the source of a problem for
debugging purposes, or to generate API documentation. To these
ends, the Java language supports three kinds of comments: double
slashes, C-style, and doc comments.

Double Slashes

Double slashes (//) are used in the C++ programming language,
and tell the compiler to treat everything from the slashes to the
end of the line as text.

//A Very Simple Example
class ExampleProgram {
 public static void main(String[] args){
 System.out.println("I'm a Simple Program");
 }
}

C-Style Comments

Instead of double slashes, you can use C-style comments (/* */) to
enclose one or more lines of code to be treated as text.

/* These are
C-style comments
*/
class ExampleProgram {
 public static void main(String[] args){
 System.out.println("I'm a Simple Program");
 }
}

Doc Comments

To generate documentation for your program, use the doc
comments (/** */) to enclose lines of text for the javadoc tool to
find. The javadoc tool locates the doc comments embedded in
source files and uses those comments to generate API
documentation.

/** This class displays a text string at
* the console.
*/
class ExampleProgram {

Java(TM) Language Basics, Part 1, Lesson 1: Compiling & Running a Simple Program

file:///T|/General/Documentation/Java/Basic Java 1/compile.html (4 of 5) [24.07.2000 12:30:05]

http://java.sun.com/docs/books/tutorial/getStarted/problems/index.html
http://java.sun.com/docs/books/tutorial/getStarted/problems/index.html
http://java.sun.com/docs/books/tutorial/trailmap.html

 public static void main(String[] args){
 System.out.println("I'm a Simple Program");
 }
}

With one simple class, there is no reason to generate API
documentation. API documentation makes sense when you have
an application made up of a number of complex classes that need
documentation. The tool generates HTML files (Web pages) that
describe the class structures and contain the text enclosed by doc
comments. The javadoc Home Page has more information on the
javadoc command and its output.

API Documentation

The Java platform installation includes API Documentation, which
describes the APIs available for you to use in your programs. The
files are stored in a doc directory beneath the directory where you
installed the platform. For example, if the platform is installed in
/usr/local/java/jdk1.2, the API Documentation is in
/usr/local/java/jdk1.2/doc/api.

More Information

See Java 2 SDK Tools for more information on setting the class
path and using the javac, and java commands.

See Common Compiler and Interpreter Problems lesson in The
Java Tutorial for troubleshooting help.

The javadoc Home Page has more information on the javadoc

command and its output.

You can also view the API Documentation for the Java 2 Platform
on the java.sun.com site.

1 As used on this web site, the terms "Java virtual machine" or
"JVM" mean a virtual machine for the Java platform.

[TOP]

Print Button
 [This page was updated: 31-Mar-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Sun
Microsystems,

Inc.Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Java(TM) Language Basics, Part 1, Lesson 1: Compiling & Running a Simple Program

file:///T|/General/Documentation/Java/Basic Java 1/compile.html (5 of 5) [24.07.2000 12:30:05]

http://java.sun.com/products/jdk/javadoc/index.html
http://java.sun.com/products/jdk/1.2/docs/tooldocs/tools.html
http://java.sun.com/docs/books/tutorial/getStarted/problems/index.html
http://java.sun.com/docs/books/tutorial/trailmap.html
http://java.sun.com/docs/books/tutorial/trailmap.html
http://java.sun.com/products/jdk/javadoc/index.html
http://java.sun.com/products/jdk/1.2/docs/api/index.html
file:///servlet/PrintPageServlet
http://java.sun.com/products/
file:///developer/index.html
file:///developer/infodocs/index.shtml
file:///developer/support/index.html
file:///developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://java.sun.com/applets/
http://java.sun.com/docs/books/tutorial/
http://java.sun.com/jobs/
http://java.sun.com/nav/business/
http://java.sun.com/javastore/
http://java.sun.com/casestudies/
file:///siteinfo/faq.html
file:///feedback/index.html
http://www.dynamicdiagrams.net/mapa/cgi-bin/help.tcl?db=javasoft&dest=http://java.sun.com/
http://java.sun.com/a-z/index.html
http://www.att.com/business_traveler/attdirecttollfree/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

Java
Technology

Home
Page

A-Z Index

Java Developer Connection(SM)
Online Training

Downloads, APIs,
Documentation
Java Developer

Connection
Tutorials, Tech Articles,

Training
Online Support

Community Discussion

News & Events from
Everywhere

Products from
Everywhere

How Java Technology
is Used Worldwide

Print Button

Training Index

JavaTM Programming Language Basics,
Part 1

Lesson 2: Building Applications

[<<BACK] [CONTENTS] [NEXT>>]

All programs written in the JavaTM language (Java programs) are
built from classes. Because all classes have the same structure and
share common elements, all Java programs are very similar.

This lesson describes the structure and elements of a simple
application created from one class. The next lesson covers the
same material for applets.

Application Structure and Elements●

Fields and Methods●

Constructors●

More Information●

Application Structure and Elements

An application is created from classes.
A class is similar to a RECORD in the
Pascal language or a struct in the C
language in that it stores related data
in fields, where the fields can be
different types. So you could, for
example, store a text string in one
field, an integer in another field, and a
floating point in a third field. The
difference between a class and a

RECORD or struct is that a class also defines the methods to work on
the data.

For example, a very simple class might store a string of text and
define one method to set the string and another method to get the
string and print it to the console. Methods that work on the data
are called accessor methods.

Every application needs one class with
a main method. This class is the entry
point for the program, and is the class
name passed to the java interpreter
command to run the application.

Java(TM) Language Basics, Part 1, Lesson 2: Building Applications

file:///T|/General/Documentation/Java/Basic Java 1/prog.html (1 of 6) [24.07.2000 12:30:09]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
file:///developer/index.html
file:///developer/onlineTraining/
http://java.sun.com/products/
file:///developer/index.html
file:///developer/infodocs/index.shtml
file:///developer/support/index.html
file:///developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
file:///servlet/PrintPageServlet
file:///developer/onlineTraining/index.html

The code in the main method executes
first when the program starts, and is
the control point from which the
controller class accessor methods are
called to work on the data.

Here, again, is the example program
from Lesson 1. It has no fields or

accessor methods, but because it is the only class in the program,
it has a main method.

 class ExampleProgram {
 public static void main(String[] args){
 System.out.println("I'm a Simple Program");
 }
 }

The public static void keywords mean the Java1 virtual machine (JVM)
interpreter can call the program's main method to start the program
(public) without creating an instance of the class (static), and the
program does not return data to the Java VM interpreter (void)
when it ends.

An instance of a class is an
executable copy of the class While
the class describes the data and
behavior, you need a class
instance to acquire and work on
data. The diagram at the left
shows three instances of the
ExampleProgram class by the names:
FirstInstance, SecondInstance and
ThirdInstance.

The main method is static to give the Java VM interpreter a way to
start the class without creating an instance of the control class
first. Instances of the control class are created in the main method
after the program starts.

The main method for the simple example does not create an
instance of the ExampleProgram class because none is needed. The
ExampleProgram class has no other methods or fields, so no class
instance is needed to access them from the main method. The Java
platform lets you execute a class without creating an instance of
that class as long as its static methods do not call any non-static
methods or fields.

The ExampleProgram class just calls println, which is a static method in
the System class. The java.lang.System class, among other things,
provides functionality to send text to the terminal window where
the program was started. It has all static fields and methods.

The static fields and methods of a class can be called by another
program without creating an instance of the class. So, just as the
Java VM interpreter command could call the static main method in
the ExampleProgram class without creating an instance of the

Java(TM) Language Basics, Part 1, Lesson 2: Building Applications

file:///T|/General/Documentation/Java/Basic Java 1/prog.html (2 of 6) [24.07.2000 12:30:09]

ExampleProgram class, the ExampleProgram class can call the static println
method in the System class, without creating an instance of the
System class.

However, a program must create an instance of a class to access
its non-static fields and methods. Accessing static and non-static
fields and methods is discussed further with several examples in
the next section.

Fields and Methods

The LessonTwoA.java program alters the simple example to store
the text string in a static field called text. The text field is static so
its data can be accessed directly without creating an instance of the
LessonTwoA class.

class LessonTwoA {
 static String text = "I'm a Simple Program";
 public static void main(String[] args){
 System.out.println(text);
 }
}

The LessonTwoB.java and LessonTwoC.java programs add a getText

method to the program to retrieve and print the text.

The LessonTwoB.java program accesses the non-static text field
with the non-static getText method. Non-static methods and fields
are called instance methods and fields. This approach requires that
an instance of the LessonTwoB class be created in the main method.
To keep things interesting, this example includes a static text field
and a non-static instance method (getStaticText) to retrieve it.

Note: The field and method return values are all type
String.

class LessonTwoB {

 String text = "I'm a Simple Program";
 static String text2 = "I'm static text";

 String getText(){
 return text;
 }

 String getStaticText(){
 return text2;
 }

 public static void main(String[] args){
 LessonTwoB progInstance = new LessonTwoB();
 String retrievedText = progInstance.getText();
 String retrievedStaticText =
 progInstance.getStaticText();

Java(TM) Language Basics, Part 1, Lesson 2: Building Applications

file:///T|/General/Documentation/Java/Basic Java 1/prog.html (3 of 6) [24.07.2000 12:30:09]

 System.out.println(retrievedText);
 System.out.println(retrievedStaticText);
 }
}

The LessonTwoC.java program accesses the static text field with the
static getText method. Static methods and fields are called class
methods and fields. This approach allows the program to call the
static getText method directly without creating an instance of the
LessonTwoC class.

class LessonTwoC {

 static String text = "I'm a Simple Program";

//Accessor method
 static String getText(){
 return text;
 }

 public static void main(String[] args){
 String retrievedText = getText();
 System.out.println(retrievedText);
 }
}

So, class methods can operate only on class fields, and instance
methods can operate on class and instance fields.

You might wonder what the difference means. In short, there is
only one copy of the data stored or set in a class field but each
instance has its own copy of the data stored or set in an instance
field.

The figure above shows three class instances with one static field
and one instance field. At runtime, there is one copy of the value
for static Field A and each instance points to the one copy. When
setFieldA(50) is called on the first instance, the value of the one
copy changes from 36 to 50 and all three instances point to the
new value. But, when setFieldB(25) is called on the first instance,
the value for Field B changes from 0 to 25 for the first instance
only because each instance has its own copy of Field B.

See Understanding Instance and Class Members lesson in The Java
tutorial for a thorough discussion of this topic.

Java(TM) Language Basics, Part 1, Lesson 2: Building Applications

file:///T|/General/Documentation/Java/Basic Java 1/prog.html (4 of 6) [24.07.2000 12:30:09]

http://java.sun.com/docs/books/tutorial/java/javaOO/classvars.html
http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/docs/books/tutorial/index.html

Constructors

Classes have a special method called a constructor that is called
when a class instance is created. The class constructor always has
the same name as the class and no return type. The LessonTwoD
program converts the LessonTwoB program to use a constructor to
initialize the text string.

Note: If you do not write your own constructor, the
compiler adds an empty constructor, which calls the
no-arguments constructor of its parent class. The empty
constructor is called the default constructor. The default
constructor initializes all non-initialized fields and
variables to zero.

class LessonTwoD {

 String text;

//Constructor
 LessonTwoD(){
 text = "I'm a Simple Program";
 }

//Accessor method
 String getText(){
 return text;
 }

 public static void main(String[] args){
 LessonTwoD progInst = new LessonTwoD();
 String retrievedText = progInst.getText();
 System.out.println(retrievedText);
 }
}

To Summarize

A simple program that prints a short text string to the console
would probably do everything in the main method and do away with
the constructor, text field, and getText method. But, this lesson used
a very simple program to show you the structure and elements in a
basic Java program.

More Information

See Understanding Instance and Class Members lesson in The Java
tutorial for a thorough discussion of this topic.

1 As used on this web site, the terms "Java virtual machine" or
"JVM" mean a virtual machine for the Java platform.

[TOP]

Java(TM) Language Basics, Part 1, Lesson 2: Building Applications

file:///T|/General/Documentation/Java/Basic Java 1/prog.html (5 of 6) [24.07.2000 12:30:09]

http://java.sun.com/docs/books/tutorial/java/javaOO/classvars.html
http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/docs/books/tutorial/index.html

Print Button
 [This page was updated: 31-Mar-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Sun
Microsystems,

Inc.Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Java(TM) Language Basics, Part 1, Lesson 2: Building Applications

file:///T|/General/Documentation/Java/Basic Java 1/prog.html (6 of 6) [24.07.2000 12:30:09]

file:///servlet/PrintPageServlet
http://java.sun.com/products/
file:///developer/index.html
file:///developer/infodocs/index.shtml
file:///developer/support/index.html
file:///developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://java.sun.com/applets/
http://java.sun.com/docs/books/tutorial/
http://java.sun.com/jobs/
http://java.sun.com/nav/business/
http://java.sun.com/javastore/
http://java.sun.com/casestudies/
file:///siteinfo/faq.html
file:///feedback/index.html
http://www.dynamicdiagrams.net/mapa/cgi-bin/help.tcl?db=javasoft&dest=http://java.sun.com/
http://java.sun.com/a-z/index.html
http://www.att.com/business_traveler/attdirecttollfree/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

Java
Technology

Home
Page

A-Z Index

Java Developer Connection(SM)
Online Training

Downloads, APIs,
Documentation
Java Developer

Connection
Tutorials, Tech Articles,

Training
Online Support

Community Discussion

News & Events from
Everywhere

Products from
Everywhere

How Java Technology
is Used Worldwide

Print Button

Training Index

JavaTM Programming Language Basics,
Part 1

Lesson 3: Building Applets

[<<BACK] [CONTENTS] [NEXT>>]

Like applications, applets are created from classes. However,
applets do not have a main method as an entry point, but instead,
have several methods to control specific aspects of applet
execution.

This lesson converts an application from Lesson 2 to an applet and
describes the structure and elements of an applet.

Application to Applet●

Run the Applet●

Applet Structure and Elements●

Packages●

More Information●

Application to Applet

The following code is the applet equivalent to the LessonTwoB

application from Lesson 2. The figure below shows how the running
applet looks. The structure and elements of the applet code are
discussed after the section on how to run the applet just below.

import java.applet.Applet;
import java.awt.Graphics;
import java.awt.Color;

Java(TM) Language Basics, Part 1, Lesson 3: Building Applets

file:///T|/General/Documentation/Java/Basic Java 1/applet.html (1 of 5) [24.07.2000 12:30:12]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
file:///developer/index.html
file:///developer/onlineTraining/
http://java.sun.com/products/
file:///developer/index.html
file:///developer/infodocs/index.shtml
file:///developer/support/index.html
file:///developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
file:///servlet/PrintPageServlet
file:///developer/onlineTraining/index.html

public class SimpleApplet extends Applet{

 String text = "I'm a simple applet";

 public void init() {
 text = "I'm a simple applet";
 setBackground(Color.cyan);
 }
 public void start() {
 System.out.println("starting...");
 }
 public void stop() {
 System.out.println("stopping...");
 }
 public void destroy() {
 System.out.println("preparing to unload...");
 }
 public void paint(Graphics g){
 System.out.println("Paint");
 g.setColor(Color.blue);
 g.drawRect(0, 0,
 getSize().width -1,
 getSize().height -1);
 g.setColor(Color.red);
 g.drawString(text, 15, 25);
 }
}

The SimpleApplet class is declared public so the program that runs the
applet (a browser or appletviewer), which is not local to the program
can access it.

Run the Applet

To see the applet in action, you need an HTML file with the Applet
tag as follows:

<HTML>
<BODY>
<APPLET CODE=SimpleApplet.class WIDTH=200 HEIGHT=100>
</APPLET>
</BODY>
</HTML>

The easiest way to run the applet is with appletviewer shown below
where simpleApplet.html is a file that contains the above HTML code:

 appletviewer simpleApplet.html

Note: To run an applet written with JavaTM 2 APIs in a
browser, the browser must be enabled for the Java 2
Platform. If your browser is not enabled for the Java 2
Platform, you have to use appletviewer to run the applet
or install Java Plug-in. Java Plug-in lets you run applets
on web pages under the 1.2 version of the Java VM
instead of the web browser's default Java VM.

Java(TM) Language Basics, Part 1, Lesson 3: Building Applets

file:///T|/General/Documentation/Java/Basic Java 1/applet.html (2 of 5) [24.07.2000 12:30:12]

http://java.sun.com/products/plugin/index.html

Applet Structure and Elements

The Java API Applet class provides what you need to design the
appearance and manage the behavior of an applet. This class
provides a graphical user interface (GUI) component called a Panel
and a number of methods. To create an applet, you extend (or
subclass) the Applet class and implement the appearance and
behavior you want.

The applet's appearance is created by drawing onto the Panel or by
attaching other GUI components such as push buttons, scrollbars,
or text areas to the Panel. The applet's behavior is defined by
implementing the methods.

Extending a Class

Most classes of any complexity extend other classes.
To extend another class means to write a new class
that can use the fields and methods defined in the
class being extended. The class being extended is the
parent class, and the class doing the extending is the
child class. Another way to say this is the child class
inherits the fields and methods of its parent or chain
of parents. Child classes either call or override
inherited methods. This is called single inheritance.

The SimpleApplet class extends Applet class, which
extends the Panel class, which extends the Container
class. The Container class extends Object, which is the
parent of all Java API classes.

The Applet class provides the init, start, stop, destroy, and
paint methods you saw in the example applet. The

SimpleApplet class overrides these methods to do what the
SimpleApplet class needs them to do. The Applet class provides no
functionality for these methods.

However, the Applet class does provide functionality for the
setBackground method,which is called in the init method. The call to
setBackground is an example of calling a method inherited from a
parent class in contrast to overriding a method inherited from a
parent class.

You might wonder why the Java language provides methods
without implementations. It is to provide conventions for everyone
to use for consistency across Java APIs. If everyone wrote their
own method to start an applet, for example, but gave it a different
name such as begin or go, the applet code would not be
interoperable with other programs and browsers, or portable across
multiple platforms. For example, Netscape and Internet Explorer
know how to look for the init and start methods.

Behavior

An applet is controlled by the software that runs it. Usually, the

Java(TM) Language Basics, Part 1, Lesson 3: Building Applets

file:///T|/General/Documentation/Java/Basic Java 1/applet.html (3 of 5) [24.07.2000 12:30:12]

underlying software is a browser, but it can also be appletviewer as
you saw in the example. The underlying software controls the
applet by calling the methods the applet inherits from the Applet
class.

The init Method: The init method is called when the applet is first
created and loaded by the underlying software. This method
performs one-time operations the applet needs for its operation
such as creating the user interface or setting the font. In the
example, the init method initializes the text string and sets the
background color.

The start Method: The start method is called when the applet is
visited such as when the end user goes to a web page with an
applet on it. The example prints a string to the console to tell you
the applet is starting. In a more complex applet, the start method
would do things required at the start of the applet such as begin
animation or play sounds.

After the start method executes, the event thread calls the paint
method to draw to the applet's Panel. A thread is a single sequential
flow of control within the applet, and every applet can run in
multiple threads. Applet drawing methods are always called from a
dedicated drawing and event-handling thread.

The stop and destroy Methods: The stop method stops the applet
when the applet is no longer on the screen such as when the end
user goes to another web page. The example prints a string to the
console to tell you the applet is stopping. In a more complex
applet, this method should do things like stop animation or sounds.

The destroy method is called when the browser exits. Your applet
should implement this method to do final cleanup such as stop live
threads.

Appearance

The Panel provided in the Applet class inherits a paint method from its
parent Container class. To draw something onto the Applet's Panel,
you implement the paint method to do the drawing.

The Graphics object passed to the paint method defines a graphics
context for drawing on the Panel. The Graphics object has methods
for graphical operations such as setting drawing colors, and
drawing graphics, images, and text.

The paint method for the SimpleApplet draws the I'm a simple applet
string in red inside a blue rectangle.

 public void paint(Graphics g){
 System.out.println("Paint");
//Set drawing color to blue
 g.setColor(Color.blue);
//Specify the x, y, width and height for a rectangle
 g.drawRect(0, 0,
 getSize().width -1,
 getSize().height -1);

Java(TM) Language Basics, Part 1, Lesson 3: Building Applets

file:///T|/General/Documentation/Java/Basic Java 1/applet.html (4 of 5) [24.07.2000 12:30:12]

//Set drawing color to red
 g.setColor(Color.red);
//Draw the text string at the (15, 25) x-y location
 g.drawString(text, 15, 25);
 }

Packages

The applet code also has three import statements at the top.
Applications of any size and all applets use import statements to
access ready-made Java API classes in packages. This is true
whether the Java API classes come in the Java platform download,
from a third-party, or are classes you write yourself and store in a
directory separate from the program. At compile time, a program
uses import statements to locate and reference compiled Java API
classes stored in packages elsewhere on the local or networked
system. A compiled class in one package can have the same name
as a compiled class in another package. The package name
differentiates the two classes.

The examples in Lessons 1 and 2 did not need a package
declaration to call the System.out.println Java API class because the
System class is in the java.lang package that is included by default.
You never need an import java.lang.* statement to use the compiled
classes in that package.

More Information

You can find more information on applets in the Writing Applets
trail in The Java Tutorial.

[TOP]

Print Button
 [This page was updated: 31-Mar-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Sun
Microsystems,

Inc.Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Java(TM) Language Basics, Part 1, Lesson 3: Building Applets

file:///T|/General/Documentation/Java/Basic Java 1/applet.html (5 of 5) [24.07.2000 12:30:12]

http://java.sun.com/docs/books/tutorial/applet/
http://java.sun.com/docs/books/tutorial/
file:///servlet/PrintPageServlet
http://java.sun.com/products/
file:///developer/index.html
file:///developer/infodocs/index.shtml
file:///developer/support/index.html
file:///developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://java.sun.com/applets/
http://java.sun.com/docs/books/tutorial/
http://java.sun.com/jobs/
http://java.sun.com/nav/business/
http://java.sun.com/javastore/
http://java.sun.com/casestudies/
file:///siteinfo/faq.html
file:///feedback/index.html
http://www.dynamicdiagrams.net/mapa/cgi-bin/help.tcl?db=javasoft&dest=http://java.sun.com/
http://java.sun.com/a-z/index.html
http://www.att.com/business_traveler/attdirecttollfree/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

Java
Technology

Home
Page

A-Z Index

Java Developer Connection(SM)
Online Training

Downloads, APIs,
Documentation
Java Developer

Connection
Tutorials, Tech Articles,

Training
Online Support

Community Discussion

News & Events from
Everywhere

Products from
Everywhere

How Java Technology
is Used Worldwide

Print Button

Training Index

JavaTM Programming Language Basics,
Part 1

Lesson 4: Building A User Interface

[<<BACK] [CONTENTS] [NEXT>>]

In the last lesson you saw how the Applet class provides a Panel
component so you can design the applet's user interface. This
lesson expands the basic application from Lessons 1 and 2 to give
it a user interface using the JavaTM Foundation Classes (JFC)
Project Swing APIs that handle user events.

Project Swing APIs●

Import Statements●

Class Declaration●

Instance Variables●

Constructor●

Action Listening●

Event Handling●

Main Method●

Applets Revisited●

More Information●

Project Swing APIs
In contrast to the applet in Lesson 3
where the user interface is attached to
a panel object nested in a top-level
browser, the Project Swing application
in this lesson attaches its user interface
to a panel object nested in a top-level
frame object. A frame object is a
top-level window that provides a title,
banner, and methods to manage the

appearance and behavior of the window.

The Project Swing code that follows builds this simple application.
The window on the left appears when you start the application, and
the window on the right appears when you click the button. Click
again and you are back to the original window on the left.

Java(TM) Language Basics, Part 1, Lesson 4: Building A User Interface

file:///T|/General/Documentation/Java/Basic Java 1/front.html (1 of 7) [24.07.2000 12:30:16]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
file:///developer/index.html
file:///developer/onlineTraining/
http://java.sun.com/products/
file:///developer/index.html
file:///developer/infodocs/index.shtml
file:///developer/support/index.html
file:///developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
file:///servlet/PrintPageServlet
file:///developer/onlineTraining/index.html

When Application Starts When Button Clicked

Import Statements

Here is the SwingUI.java code. At the top, you have four lines of
import statements. The lines indicate exactly which JavaTM API
classes the program uses. You could replace four of these lines with
this one line: import java.awt.*;, to import the entire awt package, but
doing that increases compilation overhead than importing exactly
the classes you need and no others.

import java.awt.Color;
import java.awt.BorderLayout;
import java.awt.event.*;
import javax.swing.*;

Class Declaration

The class declaration comes next and indicates the top-level frame
for the application's user interface is a JFrame that implements the
ActionListener interface.

class SwingUI extends JFrame
 implements ActionListener{

The JFrame class extends the Frame class that is part of the Abstract
Window Toolkit (AWT) APIs. Project Swing extends the AWT with a
full set of GUI components and services, pluggable look and feel
capabilities, and assistive technology support. For a more detailed
introduction to Project Swing, see the Swing Connection, and
Fundamentals of Swing, Part 1.

The Java APIs provide classes and interfaces for you to use. An
interface defines a set of methods, but does not implement them.
The rest of the SwingUI class declaration indicates that this class will
implement the ActionListener interface. This means the SwingUI class
must implement all methods defined in the ActionListener interface.
Fortunately, there is only one, actionPerformed, which is discussed
below.

Instance Variables

These next lines declare the Project Swing component classes the
SwingUI class uses. These are instance variables that can be
accessed by any method in the instantiated class. In this example,
they are built in the SwingUI constructor and accessed in the
actionPerformed method implementation. The private boolean instance

Java(TM) Language Basics, Part 1, Lesson 4: Building A User Interface

file:///T|/General/Documentation/Java/Basic Java 1/front.html (2 of 7) [24.07.2000 12:30:16]

http://java.sun.com/products/jfc/tsc/index.html
file:///developer/onlineTraining/GUI/Swing1/index.html

variable is visible only to the SwingUI class and is used in the
actionPerformedmethod to find out whether or not the button has
been clicked.

 JLabel text, clicked;
 JButton button, clickButton;
 JPanel panel;
 private boolean _clickMeMode = true;

Constructor

The constructor (shown below) creates the user interface
components and JPanel object, adds the components to the JPanel
object, adds the panel to the frame, and makes the JButton
components event listeners. The JFrame object is created in the main
method when the program starts.

 SwingUI(){
 text = new JLabel("I'm a Simple Program");
 clicked = new JLabel("Button Clicked");

 button = new JButton("Click Me");
//Add button as an event listener
 button.addActionListener(this);

 clickButton = new JButton("Click Again");
//Add button as an event listener
 clickButton.addActionListener(this);

//Create panel
 panel = new JPanel();
//Specify layout manager and background color
 panel.setLayout(new BorderLayout(1,1));
 panel.setBackground(Color.white);
//Add label and button to panel
 getContentPane().add(panel);
 panel.add(BorderLayout.CENTER, text);
 panel.add(BorderLayout.SOUTH, button);
 }

When the JPanel object is created,
the layout manager and
background color are specified.
The layout manager in use
determines how user interface
components are arranged on the
display area.

The code uses the BorderLayout
layout manager, which arranges
user interface components in the
five areas shown at left. To add a

component, specify the area (north, south, east, west, or center).

Java(TM) Language Basics, Part 1, Lesson 4: Building A User Interface

file:///T|/General/Documentation/Java/Basic Java 1/front.html (3 of 7) [24.07.2000 12:30:16]

//Create panel
 panel = new JPanel();
//Specify layout manager and background color
 panel.setLayout(new BorderLayout(1,1));
 panel.setBackground(Color.white);
//Add label and button to panel
 getContentPane().add(panel);
 panel.add(BorderLayout.CENTER, text);
 panel.add(BorderLayout.SOUTH, button);
 }

To find out about some of the other available layout managers and
how to use them, see the JDC article Exploring the AWT Layout
Managers.

The call to the getContentPane method of the JFrame class is for
adding the Panel to the JFrame. Components are not added directly
to a JFrame, but to its content pane. Because the layout manager
controls the layout of components, it is set on the content pane
where the components reside. A content pane provides
functionality that allows different types of components to work
together in Project Swing.

Action Listening

In addition to implementing the ActionListener interface, you have to
add the event listener to the JButton components. An action
listener is the SwingUI object because it implements the
ActionListener interface. In this example, when the end user clicks
the button, the underlying Java platform services pass the action
(or event) to the actionPerformed method. In your code, you
implement the actionPerformed method to take the appropriate
action based on which button is clicked..

The component classes have the appropriate add methods to add
action listeners to them. In the code the JButton class has an
addActionListener method. The parameter passed to
addActionListener is this, which means the SwingUI action listener
is added to the button so button-generated actions are passed to
the actionPerformed method in the SwingUI object.

 button = new JButton("Click Me");
//Add button as an event listener
 button.addActionListener(this);

Event Handling

The actionPerformed method is passed an event object that
represents the action event that occurred. Next, it uses an if
statement to find out which component had the event, and takes
action according to its findings.

 public void actionPerformed(ActionEvent event){
 Object source = event.getSource();
 if (_clickMeMode) {

Java(TM) Language Basics, Part 1, Lesson 4: Building A User Interface

file:///T|/General/Documentation/Java/Basic Java 1/front.html (4 of 7) [24.07.2000 12:30:16]

file:///developer/technicalArticles/GUI/AWTLayoutMgr/index.html
file:///developer/technicalArticles/GUI/AWTLayoutMgr/index.html

 text.setText("Button Clicked");
 button.setText("Click Again");
 _clickMeMode = false;
 } else {
 text.setText("I'm a Simple Program");
 button.setText("Click Me");
 _clickMeMode = true;
 }
 }

You can find information on event handling for the different
components in The Java Tutorial section on Event Handling.

Main Method

The main method creates the top-level frame, sets the title, and
includes code that lets the end user close the window using the
frame menu.

public static void main(String[] args){
//Create top-level frame
 SwingUI frame = new SwingUI();
 frame.setTitle("Example");
//This code lets you close the window
 WindowListener l = new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
 };
 frame.addWindowListener(l);
//This code lets you see the frame
 frame.pack();
 frame.setVisible(true);
 }
}

The code for closing the window shows an easy way to add event
handling functionality to a program. If the event listener interface
you need provides more functionality than the program actually
uses, use an adapter class. The Java APIs provide adapter classes
for all listener interfaces with more than one method. This way,
you can use the adapter class instead of the listener interface and
implement only the methods you need. In the example, the
WindowListener interface has 7 methods and this program needs
only the windowClosing method so it makes sense to use the
WindowAdapter class instead.

This code extends the WindowAdapter class and overrides the
windowClosing method. The new keyword creates an anonymous
instance of the extended inner class. It is anonymous because you
are not assigning a name to the class and you cannot create
another instance of the class without executing the code again. It is
an inner class because the extended class definition is nested
within the SwingUI class.

This approach takes only a few lines of code, while implementing

Java(TM) Language Basics, Part 1, Lesson 4: Building A User Interface

file:///T|/General/Documentation/Java/Basic Java 1/front.html (5 of 7) [24.07.2000 12:30:16]

http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/docs/books/tutorial/ui/swingOverview/event.html

the WindowListener interface would require 6 empty method
implementations. Be sure to add the WindowAdapter object to the
frame object so the frame object will listen for window events.

 WindowListener l = new WindowAdapter() {
 //The instantiation of object l is extended to
 //include this code:
 public void windowClosing(WindowEvent e){
 System.exit(0);
 }
 };
 frame.addWindowListener(l);

Applets Revisited

Using what you learned in Lesson 3: Building Applets and this
lesson, convert the example for this lesson into an applet. Give it a
try before looking at the solution.

In short, the differences between the applet and application
versions are the following:

The applet class is declared public so appletviewer can access it.●

The applet class descends from Applet and the application class
descends from JFrame.

●

The applet version has no main method.●

The application constructor is replaced in the applet by start
and init methods.

●

GUI components are added directly to the Applet; whereas, in
the case of an application, GUI components are added to the
content pane of its JFrame object.

●

More Information

For more information on Project Swing, see the Swing Connection,
and Fundamentals of Swing, Part 1.

Also see The JFC Project Swing Tutorial: A Guide to Constructing
GUIs.

To find out about some of the other available layout managers and

Java(TM) Language Basics, Part 1, Lesson 4: Building A User Interface

file:///T|/General/Documentation/Java/Basic Java 1/front.html (6 of 7) [24.07.2000 12:30:16]

http://java.sun.com/products/jfc/tsc/index.html
file:///developer/onlineTraining/GUI/Swing1/index.html
http://java.sun.com/docs/books/tutorial/uiswing/
http://java.sun.com/docs/books/tutorial/uiswing/

how to use them, see the JDC article Exploring the AWT Layout
Managers.

[TOP]

Print Button
 [This page was updated: 31-Mar-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Sun
Microsystems,

Inc.Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Java(TM) Language Basics, Part 1, Lesson 4: Building A User Interface

file:///T|/General/Documentation/Java/Basic Java 1/front.html (7 of 7) [24.07.2000 12:30:16]

file:///developer/technicalArticles/GUI/AWTLayoutMgr/index.html
file:///developer/technicalArticles/GUI/AWTLayoutMgr/index.html
file:///servlet/PrintPageServlet
http://java.sun.com/products/
file:///developer/index.html
file:///developer/infodocs/index.shtml
file:///developer/support/index.html
file:///developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://java.sun.com/applets/
http://java.sun.com/docs/books/tutorial/
http://java.sun.com/jobs/
http://java.sun.com/nav/business/
http://java.sun.com/javastore/
http://java.sun.com/casestudies/
file:///siteinfo/faq.html
file:///feedback/index.html
http://www.dynamicdiagrams.net/mapa/cgi-bin/help.tcl?db=javasoft&dest=http://java.sun.com/
http://java.sun.com/a-z/index.html
http://www.att.com/business_traveler/attdirecttollfree/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

Java
Technology

Home
Page

A-Z Index

Java Developer Connection(SM)
Online Training

Downloads, APIs,
Documentation
Java Developer

Connection
Tutorials, Tech Articles,

Training
Online Support

Community Discussion

News & Events from
Everywhere

Products from
Everywhere

How Java Technology
is Used Worldwide

Print Button

Training Index

JavaTM Programming Language Basics,
Part 1

Lesson 5: Writing Servlets

[<<BACK] [CONTENTS] [NEXT>>]

A servlet is an extension to a server that enhances the server's
functionality. The most common use for a servlet is to extend a
web server by providing dynamic web content. Web servers display
documents written in HyperText Markup Language (HTML) and
respond to user requests using the HyperText Transfer Protocol
(HTTP). HTTP is the protocol for moving hypertext files across the
internet. HTML documents contain text that has been marked up
for interpretation by an HTML browser such as Netscape.

Servlets are easy to write. All you need is the Java® 2 Platform
software, and JavaServerTM Web Development Kit (JWSDK). You
can download a free copy of the JWSDK.

This lesson shows you how to create a very simple form that
invokes a basic servlet to process end user data entered on the
form.

About the Example●

HTML Form●

Servlet Backend●

More Information●

About the Example

A browser accepts end user input through an HTML form. The
simple form used in this lesson has one text input field for the end
user to enter text and a Submit button. When the end user clicks
the Submit button, the simple servlet is invoked to process the end
user input.

In this example, the simple servlet returns an HTML page that
displays the text entered by the end user.

Java(TM) Language Basics, Part1, Lesson 5: Writing Servlets

file:///T|/General/Documentation/Java/Basic Java 1/servlet.html (1 of 5) [24.07.2000 12:30:20]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
file:///developer/index.html
file:///developer/onlineTraining/
http://java.sun.com/products/
file:///developer/index.html
file:///developer/infodocs/index.shtml
file:///developer/support/index.html
file:///developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
file:///servlet/PrintPageServlet
file:///developer/onlineTraining/index.html
http://java.sun.com/products/servlet/index.html

HTML Form

The HTML form is embedded in this HTML file. The diagram shows
how the HTML page looks when it is opened in a browser.

The HTML file and form
are similar to the simple
application and applet
examples in Lesson 4 so
you can compare the code
and learn how servlets,
applets, and applications
handle end user inputs.

When the user clicks the
Click Me button, the servlet
gets the entered text, and
returns an HTML page

with the text.

The HTML page returned to the browser by the ExampServlet.java
servlet is shown below. The servlet code to retrieve the user's input
and generate the HTML page follows with a discussion.

Note: To run the example, you have to put the servlet
and HTML files in the correct directories for the Web
server you are using. For example, with Java WebServer
1.1.1, you place the servlet in the
~/JavaWebServer1.1.1/servlets and the HTML file in the
~/JavaWebServer1.1.1/public_html directory.

Servlet Backend

ExampServlet.java builds an HTML page to return to the end user.
This means the servlet code does not use any Project Swing or
Abstract Window Toolkit (AWT) components or have event handling
code. For this simple servlet, you only need to import these
packages:

java.io for system input and output. The HttpServlet class uses●

Java(TM) Language Basics, Part1, Lesson 5: Writing Servlets

file:///T|/General/Documentation/Java/Basic Java 1/servlet.html (2 of 5) [24.07.2000 12:30:20]

the IOException class in this package to signal that an input or
output exception of some kind has occurred.
javax.servlet, which contains generic (protocol-independent)
servlet classes. The HttpServlet class uses the ServletException
class in this package to indicate a servlet problem.

●

javax.servlet.http, which contains HTTP servlet classes. The
HttpServlet class is in this package.

●

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ExampServlet extends HttpServlet {
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 out.println("<title>Example</title>" +
 "<body bgcolor=FFFFFF>");

 out.println("<h2>Button Clicked</h2>");

 String DATA = request.getParameter("DATA");

 if(DATA != null){
 out.println(DATA);
 } else {
 out.println("No text entered.");
 }

 out.println("<P>Return to
 Form");
 out.close();
 }
}

Class and Method Declarations

All servlet classes extend the HttpServlet abstract class. HttpServlet
simplifies writing HTTP servlets by providing a framework for
handling the HTTP protocol. Because HttpServlet is abstract, your
servlet class must extend it and override at least one of its
methods. An abstract class is a class that contains unimplemented
methods and cannot be instantiated itself.

public class ExampServlet extends HttpServlet {
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {

Java(TM) Language Basics, Part1, Lesson 5: Writing Servlets

file:///T|/General/Documentation/Java/Basic Java 1/servlet.html (3 of 5) [24.07.2000 12:30:20]

The ExampServlet class is declared public so the web server that runs
the servlet, which is not local to the servlet, can access it.

The ExampServlet class defines a doPost method with the same name,
return type, and parameter list as the doPost method in the
HttpServlet class. By doing this, the ExampServlet class overrides and
implements the doPost method in the HttpServlet class.

The doPost method performs the HTTP POST operation, which is the
type of operation specified in the HTML form used for this example.
The other possibility is the HTTP GET operation, in which case you
would implement the doGet method instead.

In short, POST requests are for sending any amount of data directly
over the connection without changing the URL, and GET requests
are for getting limited amounts of information appended to the
URL. POST requests cannot be bookmarked or emailed and do not
change the Uniform Resource Locators (URL) of the response. GET
requests can be bookmarked and emailed and add information to
the URL of the response.

The parameter list for the doPost method takes a request and a
response object. The browser sends a request to the servlet and the
servlet sends a response back to the browser.

The doPost method implementation accesses information in the
request object to find out who made the request, what form the
request data is in, and which HTTP headers were sent, and uses
the response object to create an HTML page in response to the
browser's request. The doPost method throws an IOException if there
is an input or output problem when it handles the request, and a
ServletException if the request could not be handled. These
exceptions are handled in the HttpServlet class.

Method Implementation

The first part of the doPost method uses the response object to create
an HTML page. It first sets the response content type to be
text/html, then gets a PrintWriter object for formatted text output.

response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 out.println("<title>Example</title>" +
 "<body bgcolor=#FFFFFF>");

 out.println("<h2>Button Clicked</h2>");

The next line uses the request object to get the data from the text
field on the form and store it in the DATA variable. The getparameter
method gets the named parameter, returns null if the parameter
was not set, and an empty string if the parameter was sent without
a value.

 String DATA = request.getParameter("DATA");

The next part of the doPost method gets the data out of the DATA

Java(TM) Language Basics, Part1, Lesson 5: Writing Servlets

file:///T|/General/Documentation/Java/Basic Java 1/servlet.html (4 of 5) [24.07.2000 12:30:20]

parameter and passes it to the response object to add to the HTML
response page.

 if(DATA != null){
 out.println(DATA);
 } else {
 out.println("No text entered.");
 }

The last part of the doPost method creates a link to take the end
user from the HTML response page back to the original form, and
closes the response.

 out.println("<P>Return to
 Form");
 out.close();
 }

Note: To learn how to use the other methods available in
the HttpServlet, HttpServletRequest, and HttpServletResponse
classes, see The Java Tutorial trail on Servlets.

More Information

You can find more information on servlets in the Servlets trail in
The Java Tutorial.

[TOP]

Print Button
 [This page was updated: 31-Mar-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Sun
Microsystems,

Inc.Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Java(TM) Language Basics, Part1, Lesson 5: Writing Servlets

file:///T|/General/Documentation/Java/Basic Java 1/servlet.html (5 of 5) [24.07.2000 12:30:20]

http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/docs/books/tutorial/servlets/index.html
http://java.sun.com/docs/books/tutorial/servlets/index.html
http://java.sun.com/docs/books/tutorial
file:///servlet/PrintPageServlet
http://java.sun.com/products/
file:///developer/index.html
file:///developer/infodocs/index.shtml
file:///developer/support/index.html
file:///developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://java.sun.com/applets/
http://java.sun.com/docs/books/tutorial/
http://java.sun.com/jobs/
http://java.sun.com/nav/business/
http://java.sun.com/javastore/
http://java.sun.com/casestudies/
file:///siteinfo/faq.html
file:///feedback/index.html
http://www.dynamicdiagrams.net/mapa/cgi-bin/help.tcl?db=javasoft&dest=http://java.sun.com/
http://java.sun.com/a-z/index.html
http://www.att.com/business_traveler/attdirecttollfree/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

Java
Technology

Home
Page

A-Z Index

Java Developer Connection(SM)
Online Training

Downloads, APIs,
Documentation
Java Developer

Connection
Tutorials, Tech Articles,

Training
Online Support

Community Discussion

News & Events from
Everywhere

Products from
Everywhere

How Java Technology
is Used Worldwide

Print Button

Training Index

JavaTM Programming Language Basics,
Part 1

Lesson 6: File Access and Permissions

[<<BACK] [CONTENTS] [NEXT>>]

So far, you have learned how to retrieve and handle a short text
string entered from the keyboard into a simple graphical user
interface (GUI). But programs also retrieve, handle, and store data
in files and databases.

This lesson expands the examples from previous lessons to perform
basic file access using the application programming interfaces
(APIs) in the java.io package. It also shows you how to grant
applets permission to access specific files, and how to restrict an
application so it has access to specific files only.

File Access by Applications●

System Properties●

File.separatorChar●

Exception Handling●

File Access by Applets●

Granting Applets Permission●

Restricting Applications●

File Access by Servlets●

Appending●

More Informattion●

File Access by Applications

The Java® 2 Platform software provides a rich range of classes for
reading character or byte data into a program, and writing
character or byte data out to an external file, storage device, or
program. The source or destination might be on the local computer
system where the program is running or anywhere on the network.

This section shows you how to read data from and write data to a
file on the local computer system. See The JavaTM Tutorial trail on
Reading and Writing for information on transferring data between
programs, between a program and memory, and performing
operations such as buffering or character encoding on data as it is
read or written.

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions

file:///T|/General/Documentation/Java/Basic Java 1/data.html (1 of 12) [24.07.2000 12:30:27]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
file:///developer/index.html
file:///developer/onlineTraining/
http://java.sun.com/products/
file:///developer/index.html
file:///developer/infodocs/index.shtml
file:///developer/support/index.html
file:///developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
file:///servlet/PrintPageServlet
file:///developer/onlineTraining/index.html
http://java.sun.com/docs/books/tutorial
http://java.sun.com/docs/books/tutorial/essential/io/index.html

Reading: A program opens an input stream on the file and
reads the data in serially (in the order it was written to the
file).

●

Writing: A program opens an output stream on the file and
writes the data out serially.

●

This first example converts the SwingUI.java example from Lesson
4 to accept user input through a text field. The window on the left
appears when you start the FileIO application, and the window on
the right appears when you click the button. When you click the
button, whatever is entered into the text field is saved to a file.
After that, another file is opened and read and its text is displayed
in the window on the right. Click again and you are back to the
original window with a blank text field ready for more input.

When Application Starts When Button Clicked

The conversion from the SwingUI.java program for Lesson 4 to the
FileIO.java program for this lesson primarily involves the constructor

and the actionPerformed method as described here.

Constructor and Instance Variable Changes

A JTextfield instance variable is added to the class so the constructor
can instantiate the object and the actionPerformed method can access
the text the end user types into it.

The constructor instantiates the JTextField with a value of 20. This
value tells the Java platform the number of columns to use to
calculate the preferred width of the field. Lower values result in a
narrower display, and likewise, higher values result in a wider
display.

The text label is added to the North section of the BorderLayout so the
JTextField can be added to the Center section.

Note: You can learn more about component sizing in The
Java Tutorial sections on Solving Common Layout
Problems and Layout Management.

//Instance variable for text field
JTextField textField;

FileIO(){
 text = new JLabel("Text to save to file:");
 clicked = new
 JLabel("Text retrieved from file:");

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions

file:///T|/General/Documentation/Java/Basic Java 1/data.html (2 of 12) [24.07.2000 12:30:27]

http://java.sun.com/docs/books/tutorial
http://java.sun.com/docs/books/tutorial
http://java.sun.com/docs/books/tutorial/ui/swingLayout/problems.html
http://java.sun.com/docs/books/tutorial/ui/swingLayout/problems.html
http://java.sun.com/docs/books/tutorial/ui/swingOverview/layout.html

 button = new JButton("Click Me");
 button.addActionListener(this);

 clickButton = new JButton("Click Again");
 clickButton.addActionListener(this);

//Text field instantiation
 textField = new JTextField(20);

 panel = new JPanel();
 panel.setLayout(new BorderLayout());
 panel.setBackground(Color.white);
 getContentPane().add(panel);

//Adjustments to layout to add text field
 panel.add("North", text);
 panel.add("Center", textField);
 panel.add("South", button);
}

Method Changes

The actionPerformed method uses the FileInputStream and
FileOutputStream classes to read data from and write data to a file.
These classes handle data in byte streams, as opposed to character
streams, which are shown in the applet example. A more detailed
explanation of the changes to the method implementation follows
the code.

public void actionPerformed(
 ActionEvent event){
 Object source = event.getSource();
 if(source == button){
//Variable to display text read from file
 String s = null;
 if(_clickMeMode){
 try{
//Code to write to file
 String text = textField.getText();
 byte b[] = text.getBytes();

 String outputFileName =
 System.getProperty("user.home",
 File.separatorChar + "home" +
 File.separatorChar + "monicap") +
 File.separatorChar + "text.txt";
 File outputFile = new File(outputFileName);
 FileOutputStream out = new
 FileOutputStream(outputFile);
 out.write(b);
 out.close();

//Code to read from file
 String inputFileName =

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions

file:///T|/General/Documentation/Java/Basic Java 1/data.html (3 of 12) [24.07.2000 12:30:27]

 System.getProperty("user.home",
 File.separatorChar + "home" +
 File.separatorChar + "monicap") +
 File.separatorChar + "text.txt";
 File inputFile = new File(inputFileName);
 FileInputStream in = new
 FileInputStream(inputFile);

 byte bt[] = new
 byte[(int)inputFile.length()];
 in.read(bt);
 s = new String(bt);
 in.close();
 }catch(java.io.IOException e){
 System.out.println("Cannot access text.txt");
 }
//Clear text field
 textField.setText("");
//Display text read from file
 text.setText("Text retrieved from file:");
 textField.setText(s);
 button.setText("Click Again");
 _clickMeMode = false;
 } else {
//Save text to file
 text.setText("Text to save to file:");
 textField.setText("");
 button.setText("Click Me");
 _clickMeMode = true;
 }
 }
}

To write the end user text to a file, the text is retrieved from the
textField and converted to a byte array.

 String text = textField.getText();
 byte b[] = text.getBytes();

Next, a File object is created for the file to be written to and used to
create a FileOutputStream object.

 String outputFileName =
 System.getProperty("user.home",
 File.separatorChar + "home" +
 File.separatorChar + "monicap") +
 File.separatorChar + "text.txt";
 File outputFile = new File(outputFileName);
 FileOutputStream out = new
 FileOutputStream(outputFile);

Finally, the FileOutputStream object writes the byte array to the File
object and closes the output stream when the operation completes.

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions

file:///T|/General/Documentation/Java/Basic Java 1/data.html (4 of 12) [24.07.2000 12:30:27]

 out.write(b);
 out.close();

The code to open a file for reading is similar. To read text from a
file, a File object is created and used to create a FileInputStream
object.

 String inputFileName =
 System.getProperty("user.home",
 File.separatorChar + "home" +
 File.separatorChar + "monicap") +
 File.separatorChar + "text.txt";
 File inputFile = new File(inputFileName);
 FileInputStream out = new
 FileInputStream(inputFile);

Next, a byte array is created the same size as the file into which the
file contents are read.

 byte bt[] = new byte[(int)inputFile.length()];
 in.read(bt);

Finally, the byte array is used to construct a String object, which is
used to create the text for the label component. The FileInputStream
is closed when the operation completes.

 String s = new String(bt);
 label.setText(s);
 in.close();

System Properties

The above code used a call to System.getProperty to create the
pathname to the file in the user's home directory. The System class
maintains a set of properties that define attributes of the current
working environment. When the Java platform starts, system
properties are initialized with information about the runtime
environment including the current user, Java platform version, and
the character used to separate components of a file name
(File.separatorChar).

The call to System.getProperty uses the keyword user.home to get the
user's home directory and supplies the default value
File.separatorChar + "home" + File.separatorChar + "monicap") in case no
value is found for this key.

File.separatorChar

The above code used the java.io.File.separatorChar variable to
construct the directory pathname. This variable is initialized to
contain the file separator value stored in the file.separator system
property and gives you a way to construct platform-independent
pathnames.

For example, the pathname /home/monicap/text.txt for Unix and
\home\monicap\text.txt for Windows are both represented as
File.separatorChar + "home" + File.separatorChar + "monicap" +

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions

file:///T|/General/Documentation/Java/Basic Java 1/data.html (5 of 12) [24.07.2000 12:30:27]

File.separatorChar + "text.txt" in a platform-independent construction.

Exception Handling

An exception is a class that descends from either java.lang.Exception
or java.lang.RuntimeException that defines mild error conditions your
program might encounter. Rather than letting the program
terminate, you can write code to handle exceptions and continue
program execution.

The file input and output code in the
actionPerformed method is enclosed in a try
and catch block to handle the
java.lang.IOException that might be thrown
by code within the block.

java.lang.IOException is what is called a
checked exception. The Java platform
requires that a method catch or specify
all checked exceptions that can be
thrown within the scope of a method.

Checked exceptions descend from
java.lang.Throwable. If a checked exception
is not either caught or specified, the
compiler throws an error.

In the example, the try and catch block catches and handles the
java.io.IOException checked exception. If a method does not catch a
checked exception, the method must specify that it can throw the
exception because an exception that can be thrown by a method is
really part of the method's public interface. Callers of the method
must know about the exceptions that a method can throw so they
can take appropriate actions.

However, the actionPerformed method already has a public interface
definition that cannot be changed to specify the java.io.IOException,
so in this case, the only thing to do is catch and handle the
checked exception. Methods you define yourself can either specify
exceptions or catch and handle them, while methods you override
must catch and handle checked exceptions. Here is an example of
a user-defined method that specifies an exception so callers of this
method can catch and handle it:

 public int aComputationMethod(int number1,
 int number2)
 throws IllegalValueException{
 //Body of method
 }

Note: You can find more information on this topic in The
Java Tutorial trail on Handling Errors with Exceptions.

When you catch exceptions in your code, you should handle them
in a way that is friendly to your end users. The exception and error
classes have a toString method to print system error text and a

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions

file:///T|/General/Documentation/Java/Basic Java 1/data.html (6 of 12) [24.07.2000 12:30:27]

http://java.sun.com/docs/books/tutorial/
http://java.sun.com/docs/books/tutorial/
http://java.sun.com/docs/books/tutorial/essential/exceptions

printStackTrace method to print a stack trace, which can be very
useful for debugging your application during development. But, it is
probably better to deploy the program with a more user-friendly
approach to handling errors.

You can provide your own application-specific error text to print to
the command line, or display a dialog box with application-specific
error text. Using application-specific error text that you provide will
also make it much easier to internationalize the application later on
because you will have access to the text.

For the example programs in this lesson, the error message for the
file input and output is handled with application-specific error text
that prints at the command line as follows:

//Do this during development
 }catch(java.io.IOException e){
 System.out.println(e.toString());
 System.out.println(e.printStackTrace());
 }

//But deploy it like this
 }catch(java.io.IOException e){
 System.out.println("Cannot access text.txt");
 }

If you want to make your code even more user friendly, you could
separate the write and read operations and provide two try and
catch blocks. The error text for the read operation could be Cannot
read text.txt, and the error text for the write operation could be
Cannot write text.txt.

As an exercise, change the code to handle the read and write
operations separately. Give it a try before peeking at the solution.

File Access by Applets

The file access code for the FileIOAppl.java code is equivalent to
the FileIO.java application, but shows how to use the APIs for
handling data in character streams instead of byte streams. You
can use either approach in applets or applications. In this lesson,
the choice to handle data in bytes streams in the application and in
character streams in the applet is purely random. In real-life
programs, you would base the decision on your specific application
requirements.

The changes to instance variables and the constructor are identical to
the application code, and the changes to the actionPerformed method
are nearly identical with these two exceptions:

Writing: When the textField text is retrieved, it is passed
directly to the out.write call.

●

Reading: A character array is created to store the data read
in from the input stream.

●

public void actionPerformed(ActionEvent event){

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions

file:///T|/General/Documentation/Java/Basic Java 1/data.html (7 of 12) [24.07.2000 12:30:27]

 Object source = event.getSource();
 if(source == button){
//Variable to display text read from file
 String s = null;
 if(_clickMeMode){
 try{
//Code to write to file
 String text = textField.getText();
 String outputFileName =
 System.getProperty("user.home",
 File.separatorChar + "home" +
 File.separatorChar + "monicap") +
 File.separatorChar + "text.txt";
 File outputFile = new File(outputFileName);
 FileWriter out = new
 FileWriter(outputFile);
 out.write(text);
 out.close();
//Code to read from file
 String inputFileName =
 System.getProperty("user.home",
 File.separatorChar + "home" +
 File.separatorChar + "monicap") +
 File.separatorChar + "text.txt";
 File inputFile = new File(inputFileName);
 FileReader in = new FileReader(inputFile);
 char c[] = new
 char[(char)inputFile.length()];
 in.read(c);
 s = new String(c);
 in.close();
 }catch(java.io.IOException e){
 System.out.println("Cannot access text.txt");
 }
//Clear text field
 textField.setText("");
//Display text read from file
 text.setText("Text retrieved from file:");
 textField.setText(s);
 button.setText("Click Again");
 _clickMeMode = false;
 } else {
//Save text to file
 text.setText("Text to save to file:");
 textField.setText("");
 button.setText("Click Me");
 _clickMeMode = true;
 }
 }
}

Granting Applets Permission

If you tried to run the applet example, you undoubtedly saw errors

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions

file:///T|/General/Documentation/Java/Basic Java 1/data.html (8 of 12) [24.07.2000 12:30:27]

when you clicked the Click Me button. This is because the Java 2
Platform security does not permit an applet to write to and read
from files without explicit permission.

An applet has no access to local system resources unless it is
specifically granted the access. So for the FileUIAppl program to read
from text.txt and write to text.txt, the applet has to be given the
appropriate read or write access permission for each file.

Access permission is granted with a policy file, and appletviewer is
launched with the policy file to be used for the applet being viewed.

Creating a Policy File

Policy tool is a Java 2 Platform security tool for creating policy files.
The Java Tutorial trail on Controlling Applets explains how to use
Policy Tool in good detail. Here is the policy file you need to run the
applet. You can use Policy tool to create it or copy the text below
into an ASCII file.

grant {
 permission java.util.PropertyPermission
 "user.home", "read";
 permission java.io.FilePermission
 "${user.home}/text.txt", "read,write";
};

Running an Applet with a Policy File

Assuming the policy file is named polfile and is in the same directory
with an HTML file named fileIO.html that contains the HTML to run
the FileIOAppl applet, you would run the application in appletviewer
like this:

appletviewer -J-Djava.security.policy=polfile fileIO.html

Note: If your browser is enabled for the Java 2 Platform
or if you have Java Plug-in installed, you can run the
applet from the browser if you put the policy file in your
local home directory.

Here is the fileIO.html file for running the FileIOAppl applet:

<HTML>
<BODY>

<APPLET CODE=FileIOAppl.class WIDTH=200 HEIGHT=100>
</APPLET>

</BODY>
</HTML>

Restricting Applications

You can use the default security manager and a policy file to

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions

file:///T|/General/Documentation/Java/Basic Java 1/data.html (9 of 12) [24.07.2000 12:30:27]

http://java.sun.com/docs/books/tutorial/
http://java.sun.com/docs/books/tutorial/security1.2/tour1/step2.html
http://java.sun.com/products/plugin/index.html

restrict the application's access as follows.

java -Djava.security.manager
 -Djava.security.policy=apppolfile FileIO

Because the application runs within the security manager, which
disallows all access, the policy file needs two additional
permissions. One so the security manager can access the event
queue and load the user interface components, and another so the
application does not display the banner warning that its window
was created by another program (the security manager).

grant {
 permission java.awt.AWTPermission
 "accessEventQueue";
 permission java.awt.AWTPermission
 "showWindowWithoutWarningBanner";

 permission java.util.PropertyPermission
 "user.home", "read";
 permission java.io.FilePermission
 "${user.home}/text.txt", "read,write";
};

File Access by Servlets

Although servlets are invoked from a browser, they are under the
security policy in force for the web server under which they run.
When file input and output code is added to ExampServlet.java from
Lesson 5, FileIOServlet for this lesson executes without restriction
under Java WebServerTM 1.1.1.

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions

file:///T|/General/Documentation/Java/Basic Java 1/data.html (10 of 12) [24.07.2000 12:30:27]

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class FileIOServlet extends HttpServlet {

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<title>Example<title>" +
 "<body bgcolor=FFFFFF>");

 out.println("<h2>Button Clicked</h2>");

 String DATA = request.getParameter("DATA");

 if(DATA != null){
 out.println("Text from
 form:");
 out.println(DATA);
 } else {
 out.println("No text entered.");
 }

 try{
//Code to write to file
 String outputFileName=
 System.getProperty("user.home",
 File.separatorChar + "home" +
 File.separatorChar + "monicap") +
 File.separatorChar + "text.txt";
 File outputFile = new File(outputFileName);
 FileWriter fout = new FileWriter(outputFile);
 fout.write(DATA);
 fout.close();

//Code to read from file
 String inputFileName =
 System.getProperty("user.home",
 File.separatorChar + "home" +
 File.separatorChar + "monicap") +
 File.separatorChar + "text.txt";
 File inputFile = new File(inputFileName);
 FileReader fin = new
 FileReader(inputFile);
 char c[] = new
 char[(char)inputFile.length()];
 int i;
 i = fin.read(c);
 String s = new String(c);
 out.println("<P>

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions

file:///T|/General/Documentation/Java/Basic Java 1/data.html (11 of 12) [24.07.2000 12:30:27]

 Text from file:");
 out.println(s);
 fin.close();
 }catch(java.io.IOException e){
 System.out.println("Cannot access text.txt");
 }

 out.println("<P>Return to
 Form");
 out.close();
 }
}

Appending

So far the examples have shown you how to read in and write out
streams of data in their entirety. But often, you want to append
data to an existing file or read in only certain amounts. Using the
RandomAccessFile class, alter the FileIO.java class to append to
the file.

Give it a try before taking a peek at the Solution.

More Information

For more infomation on file input and output, see the Reading and
Writing trail in The Java Tutorial.

You can learn more about component sizing in The Java Tutorial
sections on Solving Common Layout Problems and Layout
Management.

[TOP]

Print Button
 [This page was updated: 31-Mar-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Sun
Microsystems,

Inc.Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions

file:///T|/General/Documentation/Java/Basic Java 1/data.html (12 of 12) [24.07.2000 12:30:28]

http://java.sun.com/products/jdk/1.2/docs/api/java/io/RandomAccessFile.html
http://java.sun.com/docs/books/tutorial/essential/io/index.html
http://java.sun.com/docs/books/tutorial/essential/io/index.html
http://java.sun.com/docs/books/tutorial
http://java.sun.com/docs/books/tutorial
http://java.sun.com/docs/books/tutorial/ui/swingLayout/problems.html
http://java.sun.com/docs/books/tutorial/ui/swingOverview/layout.html
http://java.sun.com/docs/books/tutorial/ui/swingOverview/layout.html
file:///servlet/PrintPageServlet
http://java.sun.com/products/
file:///developer/index.html
file:///developer/infodocs/index.shtml
file:///developer/support/index.html
file:///developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://java.sun.com/applets/
http://java.sun.com/docs/books/tutorial/
http://java.sun.com/jobs/
http://java.sun.com/nav/business/
http://java.sun.com/javastore/
http://java.sun.com/casestudies/
file:///siteinfo/faq.html
file:///feedback/index.html
http://www.dynamicdiagrams.net/mapa/cgi-bin/help.tcl?db=javasoft&dest=http://java.sun.com/
http://java.sun.com/a-z/index.html
http://www.att.com/business_traveler/attdirecttollfree/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

Java
Technology

Home
Page

A-Z Index

Java Developer Connection(SM)
Online Training

Downloads, APIs,
Documentation
Java Developer

Connection
Tutorials, Tech Articles,

Training
Online Support

Community Discussion

News & Events from
Everywhere

Products from
Everywhere

How Java Technology
is Used Worldwide

Print Button

Training Index

JavaTM Programming Language Basics,
Part 1

Lesson 7: Database Access and Permissions

[<<BACK] [CONTENTS] [NEXT>>]

This lesson converts the application, applet, and servlet examples
from Lesson 6 to write to and read from a database using JDBCTM.
JDBC is the JavaTM database connectivity application programming
interface (API) available in the Java® 2 Platform software.

The code for this lesson is very similar to the code you saw in
Lesson 6, but additional steps (beyond converting the file access
code to database access code) include setting up the environment,
creating a database table, and connecting to the database.
Creating a database table is a database administration task that is
not part of your program code. However, establishing a database
connection and the resulting database access are.

As in Lesson 6, the applet needs appropriate permissions to
connect to the database. Which permissions it needs varies with
the type of driver used to make the database connection.

Database Setup●

Create Database Table●

Database Access by Applications

Establishing a Connection❍

Final and Private Variables❍

Writing and Reading Data❍

●

Database Access by Applets

JDBC Driver❍

JDBC-ODBC Bridge with ODBC Driver❍

●

Database Access by Servlets●

More Information●

Database Setup

You need access to a database if you want to run the examples in
this lesson. You can install a database on your machine or perhaps
you have access to a database at work. Either way, you need a
database driver and any relevant environment settings so your
program can load the driver and locate the database. The program

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissions

file:///T|/General/Documentation/Java/Basic Java 1/dba.html (1 of 12) [24.07.2000 12:30:34]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
file:///developer/index.html
file:///developer/onlineTraining/
http://java.sun.com/products/
file:///developer/index.html
file:///developer/infodocs/index.shtml
file:///developer/support/index.html
file:///developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
file:///servlet/PrintPageServlet
file:///developer/onlineTraining/index.html

will also need database login information in the form of a user
name and password.

A database driver is software that lets a program establish a
connection with a database. If you do not have the right driver for
the database to which you want to connect, your program will be
unable to establish the connection.

Drivers either come with the database or are available from the
Web. If you install your own database, consult the documentation
for the driver for information on installation and any other
environment settings you need for your platform. If you are using a
database at work, consult your database administrator for this
information.

To show you two ways to do it, the application example uses the
jdbc driver, the applet examples use the jdbc and jdbc.odbc drivers,
and the servlet example uses the jdbc.odbc driver. All examples
connect to an OracleOCI7.3.4 database.

Connections to other databases will involve similar steps and code.
Be sure to consult your documentation or system administrator if
you need help connecting to the database.

Create Database Table

Once you have access to a database, create a table in it for the
examples in this lesson. You need a table with one text field for
storing character data.

TABLE DBA (
 TEXT varchar2(100),
 primary key (TEXT)
)

Database Access by Applications

This example converts the FileIO program from Lesson 6 to write
data to and read data from a database. The top window below
appears when you start the Dba application, and the window
beneath it appears when you click the Click Me button.

When you click the Click Me button, whatever is entered into the
text field is saved to the database. After that, the data is retrieved
from the database and displayed in the window shown on the
bottom. If you write data to the table more than once, everything
written is read and displayed in the window shown on the bottom,
so you might have to enlarge the window to see the entire list of
table items.

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissions

file:///T|/General/Documentation/Java/Basic Java 1/dba.html (2 of 12) [24.07.2000 12:30:34]

When Application Starts

After Writing Orange and Apple to Database

The database access application needs code to establish the
database connection and do the database read and write
operations.

Establishing a Database Connection

The JDBC DriverManager class can handle multiple database drivers,
and initiates all database communication. To load the driver and
connect to the database, the application needs a Connection object
and Strings that represent the _driver and _url.

The _url string is in the form of a Uniform Resource Locator (URL).
It consists of the URL, Oracle subprotcol, and Oracle data source in
the form jdbc:oracle:thin, the database login username, the password,
plus machine, port, and protocol information.

private Connection c;

final static private String _driver =
 "oracle.jdbc.driver.OracleDriver";

final static private String _url =
 "jdbc:oracle:thin:username/password@(description=(
 address_list=(address=(protocol=tcp)
 (host=developer)(port=1521)))
 (source_route=yes)(connect_data=(sid=jdcsid)))";

The actionPerformed method calls the Class.forName(_driver) method to
load the driver, and the DriverManager.getConnection method to
establish the connection. The Exception Handling section in Lesson
6 describes try and catch blocks. The only thing different here is that
this block uses two catch statements because two different errors

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissions

file:///T|/General/Documentation/Java/Basic Java 1/dba.html (3 of 12) [24.07.2000 12:30:34]

are possible.

The call to Class.forName(_driver); throws
java.lang.ClassNotFoundException, and the call to c =
DriverManager.getConnection(_url); throws java.sql.SQLException. In the
case of either error, the application tells the user what is wrong
and exits because the program cannot operate in any meaningful
way without a database driver or connection.

public void actionPerformed(ActionEvent event){
 try{
//Load the driver
 Class.forName(_driver);
//Establish database connection
 c = DriverManager.getConnection(_url);
 }catch (java.lang.ClassNotFoundException e){
 System.out.println("Cannot find driver class");
 System.exit(1);
 }catch (java.sql.SQLException e){
 System.out.println("Cannot get connection");
 System.exit(1);
 }

Final and Private Variables

The member variables used to establish the database connection
above are declared private, and two of those variables are also
declared final.

final: A final variable contains a constant value that can never
change once it is initialized. In the example, the user name, and
password are final variables because you would not want to allow
an instance of this or any other class to change this information.

private: A private variable can only be used (accessed) by the class
in which it is declared. No other class can read or change private
variables. In the example, the database driver, user name, and
password variables are private to prevent an outside class from
accessing them and jeopardizing the database connection, or
compromising the secret user name and password information. You
can find more information on this in the Objects and Classs lesson
in The Java Tutorial

Writing and Reading Data

In the write operation, a Statement object is created from the
Connection. The Statement object has methods for executing SQL
queries and updates. Next, a String object that contains the SQL
update for the write operation is constructed and passed to the
executeUpdate method of the Statement object.

Object source = event.getSource();
if(source == button){
 JTextArea displayText = new JTextArea();

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissions

file:///T|/General/Documentation/Java/Basic Java 1/dba.html (4 of 12) [24.07.2000 12:30:35]

http://java.sun.com/docs/books/tutorial/java/javaOO/index.html
http://java.sun.com/docs/books/tutorial

 try{
//Code to write to database
 String theText = textField.getText();
 Statement stmt = c.createStatement();
 String updateString = "INSERT INTO dba VALUES
 ('" + theText + "')";
 int count = stmt.executeUpdate(updateString);

SQL commands are String objects, and therefore, follow the rules of
String construction where the string is enclosed in double quotes ("
") and variable data is appended with a plus (+). The variable
theText has single and double quotes to tell the database the SQL
string has variable rather than literal data.

In the read operation, a ResultSet object is created from the
executeQuery method of the Statement object. The ResultSet contains
the data returned by the query. To retrieve the data returned, the
code iterates through the ResultSet, retrieves the data, and appends
the data to the text area, displayText.

//Code to read from database
 ResultSet results = stmt.executeQuery(
 "SELECT TEXT FROM dba ");
 while(results.next()){
 String s = results.getString("TEXT");
 displayText.append(s + "\n");
 }
 stmt.close();
 } catch(java.sql.SQLException e){
 System.out.println(e.toString());
 }
//Display text read from database
 panel.removeAll();
 panel.add("North", clicked);
 panel.add("Center", displayText);
 panel.add("South", clickButton);
 panel.validate();
 panel.repaint();
}

Database Access by Applets

The applet version of the example is like the application code
described above except for the standard differences between
applications and applets described in the Structure and Elements
section of Lesson 3.

However, if you run the applet without a policy file, you get a stack
trace indicating permission errors. The Granting Applets Permission
section in Lesson 6 introduced you to policy files and how to launch
an applet with the permission it needs. The Lesson 6 applet
example provided the policy file and told you how to launch the
applet with it. This lesson shows you how to read the stack trace to
determine the permissions you need in a policy file.

To keep things interesting, this lesson has two versions of the

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissions

file:///T|/General/Documentation/Java/Basic Java 1/dba.html (5 of 12) [24.07.2000 12:30:35]

database access applet: one uses the JDBC driver, and the other
uses the the JDBC-ODBC bridge with an Open DataBase
Connectivity (ODBC) driver.

Both applets do the same operations to the same database table
using different drivers. Each applet has its own policy file with
different permission lists and has different requirements for
locating the database driver

JDBC Driver

The JDBC driver is used from a program written exclusively in the
Java language (Java program). It converts JDBC calls directly into
the protocol used by the DBMS. This type of driver is available from
the DBMS vendor and is usually packaged with the DBMS software.

Starting the Applet: To successfully run, the DbaAppl.java applet
needs an available database driver and a policy file. This section
walks through the steps to get everything set up. Here is the
DbaAppl.html file for running the DbaAppl applet:

<HTML>
<BODY>

<APPLET CODE=DbaAppl.class
 WIDTH=200
 HEIGHT=100>
</APPLET>

</BODY>
</HTML>

And here is how to start the applet with appletviewer:

 appletviewer DbaAppl.html

Locating the Database Driver: Assuming the driver is not
available to the DriverManager for some reason, the following error
generates when you click the Click Me button.

 cannot find driver

This error means the DriverManager looked for the JDBC driver in
the directory where the applet HTML and class files are and could
not find it. To correct this error, copy the driver to the directory
where the applet files are, and if the driver is bundled in a zip file,
unzip the zip file so the applet can access the driver.

Once you have the driver in place, launch the applet again.

 appletviewer DbaAppl.html

Reading a Stack Trace: Assuming the driver is locally available to
the applet, if the DbaAppl.java applet is launched without a policy
file, the following stack trace is generated when the end user clicks
the Click Me button.

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissions

file:///T|/General/Documentation/Java/Basic Java 1/dba.html (6 of 12) [24.07.2000 12:30:35]

java.security.AccessControlException: access denied
(java.net.SocketPermission developer resolve)

The first line in the above stack trace tells you access is denied.
This means this stack trace was generated because the applet tried
to access a system resource without the proper permission. The
second line means to correct this condition you need a
SocketPermission that gives the applet access to the machine
(developer) where the database is located.

You can use Policy tool to create the policy file you need, or you
can create it with an ASCII editor. Here is the policy file with the
permission indicated by the stack trace:

grant {
 permission java.net.SocketPermission "developer",
 "resolve";
 "accessClassInPackage.sun.jdbc.odbc";
};

Run the applet again, this time with a policy file named DbaApplPol
that has the above permission in it:

appletviewer -J-Djava.security.policy=DbaApplPol
 DbaAppl.html

You get a stack trace again, but this time it is a different error
condition.

 java.security.AccessControlException: access denied
 (java.net.SocketPermission
 129.144.176.176:1521 connect,resolve)

Now you need a SocketPermission that allows access to the Internet
Protocol (IP) address and port on the developer machine where the
database is located.

Here is the DbaApplPol policy file with the permission indicated by
the stack trace added to it:

grant {
 permission java.net.SocketPermission "developer",
 "resolve";
 permission java.net.SocketPermission
 "129.144.176.176:1521", "connect,resolve";
};

Run the applet again. If you use the above policy file with the
Socket permissions indicated, it works just fine.

 appletviewer -J-Djava.security.policy=DbaApplPol
 DbaAppl.html

JDBC-ODBC Bridge with ODBC Driver

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissions

file:///T|/General/Documentation/Java/Basic Java 1/dba.html (7 of 12) [24.07.2000 12:30:35]

Open DataBase Connectivity (ODBC) is Microsoft's programming
interface for accessing a large number of relational databases on
numerous platforms. The JDBC-ODBC bridge is built into the Solaris
and Windows versions of the Java platform so you can do two
things:

Use ODBC from a Java program1.
Load ODBC drivers as JDBC drivers. This example uses the
JDBC-ODBC bridge to load an ODBC driver to connect to the
database. The applet has no ODBC code, however.

2.

The DriverManager uses environment settings to locate and load the
database driver. For this example, the driver file does not need to
be locally accessible.

Start the Applet: Here is the DbaOdb.html file for running the
DbaOdbAppl applet:

<HTML>
<BODY>

<APPLET CODE=DbaOdbAppl.class
 WIDTH=200
 HEIGHT=100>
</APPLET>

</BODY>
</HTML>

And here is how to start the applet:

 appletviewer DbaOdb.html

Reading a Stack Trace: If the DbaOdbAppl.java applet is
launched without a policy file, the following stack trace is generated
when the end user clicks the Click Me button.

 java.security.AccessControlException: access denied
 (java.lang.RuntimePermission
 accessClassInPackage.sun.jdbc.odbc)

The first line in the above stack trace tells you access is denied.
This means this stack trace was generated because the applet tried
to access a system resource without the proper permission. The
second line means you need a RuntimePermission that gives the
applet access to the sun.jdbc.odbc package. This package provides
the JDBC-ODBC bridge functionality to the Java1 virtual machine
(VM).

You can use Policy tool to create the policy file you need, or you
can create it with an ASCII editor. Here is the policy file with the
permission indicated by the stack trace:

grant {
 permission java.lang.RuntimePermission
 "accessClassInPackage.sun.jdbc.odbc";
};

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissions

file:///T|/General/Documentation/Java/Basic Java 1/dba.html (8 of 12) [24.07.2000 12:30:35]

Run the applet again, this time with a policy file named DbaOdbPol
that has the above permission in it:

 appletviewer -J-Djava.security.policy=DbaOdbPol
 DbaOdb.html

You get a stack trace again, but this time it is a different error
condition.

 java.security.AccessControlException:
 access denied (java.lang.RuntimePermission
 file.encoding read)

The stack trace means the applet needs read permission to the
encoded (binary) file. Here is the DbaOdbPol policy file with the
permission indicated by the stack trace added to it:

 grant {
 permission java.lang.RuntimePermission
 "accessClassInPackage.sun.jdbc.odbc";
 permission java.util.PropertyPermission
 "file.encoding", "read";
 };

Run the applet again. If you use the above policy file with the
Runtime and Property permissions indicated, it works just fine.

 appletviewer -J-Djava.security.policy=DbaOdbPol
 DbaOdb.html

Database Access by Servlets

As you learned in Lesson 6, servlets are under the security policy in
force for the web server under which they run. When the database
read and write code is added to the FileIOServlet from Lesson 6, the
DbaServlet.java servlet for this lesson executes without restriction
under Java WebServerTM 1.1.1.

The web server has to be configured to locate the database.
Consult your web server documentation or database administrator
for help. With Java WebServer 1.1.1, the configuration setup
involves editing the startup scripts with such things as environment
settings for loading the ODBC driver, and locating and connecting
to the database.

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissions

file:///T|/General/Documentation/Java/Basic Java 1/dba.html (9 of 12) [24.07.2000 12:30:35]

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

import java.sql.*;
import java.net.*;
import java.io.*;

public class DbaServlet extends HttpServlet {

 private Connection c;
 final static private String _driver =
 "sun.jdbc.odbc.JdbcOdbcDriver";
 final static private String _user = "username";
 final static private String _pass = "password";
 final static private String
 _url = "jdbc:odbc:jdc";

public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException{
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<title>Example<title>" +
 "<body bgcolor=FFFFFF>");

 out.println("<h2>Button Clicked</h2>");

 String DATA = request.getParameter("DATA");

 if(DATA != null){
 out.println("Text from
 form:");
 out.println(DATA);
 } else {
 out.println("No text entered.");
 }

//Establish database connection
 try{
 Class.forName (_driver);
 c = DriverManager.getConnection(_url,
 _user,

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissions

file:///T|/General/Documentation/Java/Basic Java 1/dba.html (10 of 12) [24.07.2000 12:30:35]

 _pass);
 } catch (Exception e) {
 e.printStackTrace();
 System.exit(1);
 }

 try{
//Code to write to database
 Statement stmt = c.createStatement();
 String updateString = "INSERT INTO dba " +
 "VALUES ('" + DATA + "')";
 int count = stmt.executeUpdate(updateString);

//Code to read from database
 ResultSet results = stmt.executeQuery(
 "SELECT TEXT FROM dba ");
 while(results.next()){
 String s = results.getString("TEXT");
 out.println("

 Text from database:");
 out.println(s);
 }
 stmt.close();
 }catch(java.sql.SQLException e){
 System.out.println(e.toString());
 }

 out.println("<P>Return to
 Form");
 out.close();
 }
}

More Information

You can find more information on variable access settings in the
Objects and Classes trail in The Java Tutorial

1 As used on this web site, the terms "Java virtual machine" or
"JVM" mean a virtual machine for the Java platform.

[TOP]

Print Button
 [This page was updated: 31-Mar-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissions

file:///T|/General/Documentation/Java/Basic Java 1/dba.html (11 of 12) [24.07.2000 12:30:35]

http://java.sun.com/docs/books/tutorial/java/javaOO/index.html
http://java.sun.com/docs/books/tutorial
file:///servlet/PrintPageServlet
http://java.sun.com/products/
file:///developer/index.html
file:///developer/infodocs/index.shtml
file:///developer/support/index.html
file:///developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://java.sun.com/applets/
http://java.sun.com/docs/books/tutorial/
http://java.sun.com/jobs/
http://java.sun.com/nav/business/
http://java.sun.com/javastore/
http://java.sun.com/casestudies/
file:///siteinfo/faq.html
file:///feedback/index.html
http://www.dynamicdiagrams.net/mapa/cgi-bin/help.tcl?db=javasoft&dest=http://java.sun.com/
http://java.sun.com/a-z/index.html

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Sun
Microsystems,

Inc.Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissions

file:///T|/General/Documentation/Java/Basic Java 1/dba.html (12 of 12) [24.07.2000 12:30:35]

http://www.att.com/business_traveler/attdirecttollfree/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

Java
Technology

Home
Page

A-Z Index

Java Developer Connection(SM)
Online Training

Downloads, APIs,
Documentation
Java Developer

Connection
Tutorials, Tech Articles,

Training
Online Support

Community Discussion

News & Events from
Everywhere

Products from
Everywhere

How Java Technology
is Used Worldwide

Print Button

Training Index

JavaTM Programming Language Basics,
Part 1

Lesson 8: Remote Method Invocation

[<<BACK] [CONTENTS] [NEXT>>]

The JavaTM Remote Method Invocation (RMI) application
programming interface (API) enables client and server
communications over the net. Typically, client programs send
requests to a server program, and the server program responds to
those requests.

A common example is sharing a word processing program over a
network. The word processor is installed on a server, and anyone
who wants to use it starts it from his or her machine by double
clicking an icon on the desktop or typing at the command line. The
invocation sends a request to a server program for acess to the
software, and the server program responds by making the software
available to the requestor.

The RMI API lets you create a
publicly accessible remote
server object that enables client
and server communications
through simple method calls on
the server object. Clients can
easily communicate directly
with the server object and

indirectly with each other through the server object using Uniform
Resource Locators (URLs) and HyperText Transfer Protocol (HTTP).

This lesson explains how to use the RMI API to establish client and
server communications.

About the Example

Program Behavior❍

File Summary❍

Compile the Example❍

Start the RMI Registry❍

Run the RemoteServer Server Object❍

Run the RMIClient1 Program❍

Run the RMIClient2 Program❍

●

RemoteServer Class●

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation

file:///T|/General/Documentation/Java/Basic Java 1/rmi.html (1 of 12) [24.07.2000 12:30:44]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
file:///developer/index.html
file:///developer/onlineTraining/
http://java.sun.com/products/
file:///developer/index.html
file:///developer/infodocs/index.shtml
file:///developer/support/index.html
file:///developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
file:///servlet/PrintPageServlet
file:///developer/onlineTraining/index.html

Send Interface●

RMIClient1 Class●

RMIClient2 Class●

More Information●

About the Example

This lesson converts the File Input and Output application from
Lesson 6: File Access and Permissions to the RMI API.

Program Behavior

The RMIClient1 program presents a simple user interface and
prompts for text input. When you click the Click Me button, the text
is sent to the RMIClient2 program by way of the remote server
object. When you click the Click Me button on the RMIClient2 program,
the text sent from RMIClient1 appears.

First Instance of Client 1

If you start a second instance of RMIClient1 and type in some text,
that text is sent to RMIClient2 when you click the Click Me button. To
see the text received by RMIClient2, click its Click Me button.

Second Instance of Client 1

File Summary

The example program consists of the RMIClient1 program, remote
object and interface, and the RMIClient2 program as illustrated in
the diagram. The corresponding source code files for these
executables are described in the bullet list below.

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation

file:///T|/General/Documentation/Java/Basic Java 1/rmi.html (2 of 12) [24.07.2000 12:30:44]

RMIClient1.java: Client program that calls the sendData method
on the RemoteServer server object.

●

RMIClient2.java: Client program that calls the getData method
on the RemoteServer server object.

●

RemoteServer.java: Remote server object that implements
Send.java and the sendData and getData remote methods.

●

Send.java: Remote interface that declares the sendData and
getData remote server methods.

●

In addition, the following java.policy security policy file grants the
permissions needed to run the example.

grant {
 permission java.net.SocketPermission
 "*:1024-65535",
 "connect,accept,resolve";
 permission java.net.SocketPermission
 "*:80", "connect";
 permission java.awt.AWTPermission
 "accessEventQueue";
 permission java.awt.AWTPermission
 "showWindowWithoutWarningBanner";
};

Compile the Example

These instructions assume development is in the zelda home
directory. The server program is compiled in the home directory for
user zelda, but copied to the public_html directory for user zelda where
it runs.

Here is the command sequence for the Unix and Win32 platforms;
an explanation follows.

Unix:
cd /home/zelda/classes
javac Send.java
javac RemoteServer.java
javac RMIClient2.java
javac RMIClient1.java
rmic -d . RemoteServer
cp RemoteServer*.class /home/zelda/public_html/classes
cp Send.class /home/zelda/public_html/classes

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation

file:///T|/General/Documentation/Java/Basic Java 1/rmi.html (3 of 12) [24.07.2000 12:30:44]

Win32:
cd \home\zelda\classes
javac Send.java
javac RemoteServer.java
javac RMIClient2.java
javac RMIClient1.java
rmic -d . RemoteServer
copy RemoteServer*.class \home\zelda\public_html\classes
copy Send.class \home\zelda\public_html\classes

The first two javac commands compile the RemoteServer and Send
class and interface. The third javac command compiles the RMIClient2
class. The last javac command compiles the RMIClient1 class.

The next line runs the rmic command on the RemoteServer server
class. This command produces output class files of the form
ClassName_Stub.class and ClassName_Skel.class. These output classes let
clients invoke methods on the RemoteServer server object.

The first copy command moves the RemoteServer class file with its
associated skel and stub class files to a publicly accessible location in
the /home/zelda/public_html/classes directory, which is on the server
machine, so they can be publicly accessed and downloaded. They
are placed in the public_html directory to be under the web server
running on the server machine because these files are accessed by
client programs using URLs.

The second copy command moves the Send class file to the same
location for the same reason. The RMIClient1 and RMIClient2 class files
are not made publicly accessible; they communicate from their
client machines using URLs to access and download the remote
object files in the public_html directory.

RMIClient1 is invoked from a client-side directory and uses the
server-side web server and client-side Java VM to download
the publicly accessible files.

●

RMIClient2 is invoked from a client-side directory and uses the
server-side web server and client-side Java VM to download
the publicly accessible files.

●

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation

file:///T|/General/Documentation/Java/Basic Java 1/rmi.html (4 of 12) [24.07.2000 12:30:44]

Start the RMI Registry

Before you start the client programs, you must start the RMI
Registry, which is a server-side naming repository that allows
remote clients to get a reference to the remote server object.

Before you start the RMI Registry, make sure the shell or window
in which you run the rmiregistry command does not have a
CLASSPATH environment variable that points to the remote object
classes, including the stub and skel classes, anywhere on your
system. If the RMI Registry finds these classes when it starts, it will
not load them from the server-side Java VM, which will create
problems when clients try to download the remote server classes.

The following commands unset the CLASSPATH and start the RMI
Registry on the default 1099 port. You can specify a different port
by adding the port number as follows: rmiregistry 4444 &. If you
specify a different port number, you must specify the same port
number in your server-side code as well.

Unix:
cd /home/zelda/public_html/classes
unsetenv CLASSPATH
rmiregistry &

Win32:
cd \home\zelda\public_html\classes
set CLASSPATH=
start rmiregistry

Note: You might want to set the CLASSPATH back to its
original setting at this point.

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation

file:///T|/General/Documentation/Java/Basic Java 1/rmi.html (5 of 12) [24.07.2000 12:30:44]

Run the RemoteServer Server Object

To run the example programs, start RemoteServer first. If you start
either RMIClient1 or RMIClient2 first, they will not be able to establish
a connection because the remote server object is not running.

In this example, RemoteServer is started from the
/home/zelda/public_html/classes directory.

The lines beginning at java should be all on one line with spaces
where the lines break. The properties specified with the -D option to
the java interpreter command are program attributes that manage
the behavior of the program for this invocation.

Unix:
cd /home/zelda/public_html/classes
java
-Djava.rmi.server.codebase=http://kq6py/~zelda/classes
-Djava.rmi.server.hostname=kq6py.eng.sun.com
-Djava.security.policy=java.policy RemoteServer

Win32:
cd \home\zelda\public_html\classes
java -Djava.rmi.server.codebase=file:
 c:\home\zelda\public_html\classes
-Djava.rmi.server.hostname=kq6py.eng.sun.com
-Djava.security.policy=java.policy RemoteServer

The java.rmi.server.codebase property specifies where the publicly
accessible classes are located.

●

The java.rmi.server.hostname property is the complete host name
of the server where the publicly accessible classes reside.

●

The java.rmi.security.policy property specifies the policy file with
the permissions needed to run the remote server object and
access the remote server classes for download.

●

The class to execute (RemoteServer).●

Run the RMIClient1 Program

Here is the command sequence for the Unix and Win32 platforms;
an explanation follows.

In this example, RMIClient1 is started from the /home/zelda/classes
directory.

The lines beginning at java should be all on one line with spaces
where the lines break. Properties specified with the -D option to the
java interpreter command are program attributes that manage the
behavior of the program for this invocation.

Unix:
cd /home/zelda/classes

java -Djava.rmi.server.codebase=
 http://kq6py/~zelda/classes/

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation

file:///T|/General/Documentation/Java/Basic Java 1/rmi.html (6 of 12) [24.07.2000 12:30:44]

-Djava.security.policy=java.policy
 RMIClient1 kq6py.eng.sun.com

Win32:
cd \home\zelda\classes

java -Djava.rmi.server.codebase=
 file:c:\home\zelda\classes\
-Djava.security.policy=java.policy
 RMIClient1 kq6py.eng.sun.com

The java.rmi.server.codebase property specifies where the publicly
accessible classes for downloading are located.

●

The java.security.policy property specifies the policy file with the
permissions needed to run the client program and access the
remote server classes.

●

The client program class to execute (RMIClient1), and the host
name of the server (Kq6py) where the remote server classes
are.

●

Run RMIClient2

Here is the command sequence for the Unix and Win32 platforms;
an explanation follows.

In this example, RMIClient2 is started from the /home/zelda/classes
directory.

The lines beginning at java should be all on one line with spaces
where the lines break. The properties specified with the -D option to
the java interpreter command are program attributes that manage
the behavior of the program for this invocation.

Unix:
cd /home/zelda/classes
java -Djava.rmi.server.codebase=
 http://kq6py/~zelda/classes
-Djava.security.policy=java.policy
 RMIClient2 kq6py.eng.sun.com

Win32:
cd \home\zelda\classes
java -Djava.rmi.server.codebase=
 file:c:\home\zelda\public_html\classes
-Djava.security.policy=java.policy
 RMIClient2 kq6py.eng.sun.com

The java.rmi.server.codebase property specifies where the publicly
accessible classes are located.

●

The java.rmi.server.hostname property is the complete host name
of the server where the publicly accessible classes reside.

●

The java.rmi.security.policy property specifies the policy file with
the permissions needed to run the remote server object and
access the remote server classes for download.

●

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation

file:///T|/General/Documentation/Java/Basic Java 1/rmi.html (7 of 12) [24.07.2000 12:30:44]

The class to execute (RMIClient2).●

RemoteServer Class

The RemoteServer class extends UnicastRemoteObject and implements
the sendData and getData methods declared in the Send interface.
These are the remotely accessible methods.

UnicastRemoteObject implements a number of java.lang.Object methods
for remote objects and includes constructors and static methods to
make a remote object available to receive method calls from client
programs.

class RemoteServer extends UnicastRemoteObject
 implements Send {

 String text;

 public RemoteServer() throws RemoteException {
 super();
 }

 public void sendData(String gotText){
 text = gotText;
 }

 public String getData(){
 return text;
 }

The main method installs the RMISecurityManager and opens a
connection with a port on the machine where the server program
runs. The security manager determines whether there is a policy
file that lets downloaded code perform tasks that require
permissions. The main method creates a name for the the
RemoteServer object that includes the server name (kq6py) where the
RMI Registry and remote object run, and the name, Send.

By default the server name uses port 1099. If you want to use a
different port number, you can add it with a colon as follows:
kq6py:4444. If you change the port here, you must start the RMI
Registry with the same port number.

The try block creates an instance of the RemoteServer class and binds
the name to the remote object to the RMI Registry with the
Naming.rebind(name, remoteServer); statement.

 public static void main(String[] args){
 if(System.getSecurityManager() == null) {
 System.setSecurityManager(new
 RMISecurityManager());
 }
 String name = "//kq6py.eng.sun.com/Send";
 try {
 Send remoteServer = new RemoteServer();

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation

file:///T|/General/Documentation/Java/Basic Java 1/rmi.html (8 of 12) [24.07.2000 12:30:44]

 Naming.rebind(name, remoteServer);
 System.out.println("RemoteServer bound");
 } catch (java.rmi.RemoteException e) {
 System.out.println("Cannot create
 remote server object");
 } catch (java.net.MalformedURLException e) {
 System.out.println("Cannot look up
 server object");
 }
 }
}

Note: The remoteServer object is type Send (see instance
declaration at top of class) because the interface
available to clients is the Send interface and its methods;
not the RemoteServer class and its methods.

Send Interface

The Send interface declares the methods implemented in the
RemoteServer class. These are the remotely accessible methods.

public interface Send extends Remote {

 public void sendData(String text)
 throws RemoteException;
 public String getData() throws RemoteException;
}

RMIClient1 Class

The RMIClient1 class establishes a connection to the remote server
program and sends data to the remote server object. The code to
do these things is in the actionPerformed and main methods.

actionPerformed Method

The actionPerformed method calls the RemoteServer.sendData method to
send text to the remote server object.

public void actionPerformed(ActionEvent event){
 Object source = event.getSource();

 if(source == button){
//Send data over socket
 String text = textField.getText();
 try{
 send.sendData(text);
 } catch (java.rmi.RemoteException e) {
 System.out.println("Cannot send data to server");
 }
 textField.setText(new String(""));
 }

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation

file:///T|/General/Documentation/Java/Basic Java 1/rmi.html (9 of 12) [24.07.2000 12:30:44]

}

main Method

The main method installs the RMISecurityManager and creates a name
to use to look up the RemoteServer server object. The client uses the
Naming.lookup method to look up the RemoteServer object in the RMI
Registry running on the server.

The security manager determines whether there is a policy file that
lets downloaded code perform tasks that require permissions.

 RMIClient1 frame = new RMIClient1();

 if(System.getSecurityManager() == null) {
 System.setSecurityManager(new RMISecurityManager());
 }

 try {
//args[0] contains name of server where Send runs
 String name = "//" + args[0] + "/Send";
 send = ((Send) Naming.lookup(name));
 } catch (java.rmi.NotBoundException e) {
 System.out.println("Cannot look up
 remote server object");
 } catch(java.rmi.RemoteException e){
 System.out.println("Cannot look up
 remote server object");
 } catch(java.net.MalformedURLException e) {
 System.out.println("Cannot look up
 remote server object");
 }

RMIClient2 Class

The RMIClient2 class establishes a connection with the remote
server program and gets the data from the remote server object
and displays it. The code to do this is in the actionPerformed and main
methods.

actionPerformed Method

The actionPerformed method calls the RemoteServer.getData method to
retrieve the data sent by the client program. This data is appended
to the TextArea object for display to the end user on the server side.

public void actionPerformed(ActionEvent event) {
 Object source = event.getSource();

 if(source == button){
 try{
 String text = send.getData();
 textArea.append(text);
 } catch (java.rmi.RemoteException e) {

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation

file:///T|/General/Documentation/Java/Basic Java 1/rmi.html (10 of 12) [24.07.2000 12:30:45]

 System.out.println("Cannot send data
 to server");
 }
 }
 }
}

main Method

The main method installs the RMISecurityManager and creates a name
to use to look up the RemoteServer server object. The args[0]
parameter provides the name of the server host. The client uses
the Naming.lookup method to look up the RemoteServer object in the
RMI Registry running on the server.

The security manager determines whether there is a policy file that
lets downloaded code perform tasks that require permissions.

 RMIClient2 frame = new RMIClient2();

 if(System.getSecurityManager() == null) {
 System.setSecurityManager(new RMISecurityManager());
 }

 try {
 String name = "//" + args[0] + "/Send";
 send = ((Send) Naming.lookup(name));
 } catch (java.rmi.NotBoundException e) {
 System.out.println("Cannot look up remote
 server object");
 } catch(java.rmi.RemoteException e){
 System.out.println("Cannot look up remote
 server object");
 } catch(java.net.MalformedURLException e) {
 System.out.println("Cannot look up remote
 server object");
 }

More Information

You can find more information on the RMI API in the RMI trail of
The Java Tutorial.

[TOP]

Print Button
 [This page was updated: 31-Mar-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation

file:///T|/General/Documentation/Java/Basic Java 1/rmi.html (11 of 12) [24.07.2000 12:30:45]

http://java.sun.com/docs/books/tutorial/rmi/index.html
http://java.sun.com/docs/books/tutorial/index.html
file:///servlet/PrintPageServlet
http://java.sun.com/products/
file:///developer/index.html
file:///developer/infodocs/index.shtml
file:///developer/support/index.html
file:///developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://java.sun.com/applets/
http://java.sun.com/docs/books/tutorial/
http://java.sun.com/jobs/
http://java.sun.com/nav/business/
http://java.sun.com/javastore/
http://java.sun.com/casestudies/
file:///siteinfo/faq.html
file:///feedback/index.html
http://www.dynamicdiagrams.net/mapa/cgi-bin/help.tcl?db=javasoft&dest=http://java.sun.com/
http://java.sun.com/a-z/index.html

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Sun
Microsystems,

Inc.Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation

file:///T|/General/Documentation/Java/Basic Java 1/rmi.html (12 of 12) [24.07.2000 12:30:45]

http://www.att.com/business_traveler/attdirecttollfree/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

Java
Technology

Home
Page

A-Z Index

Java Developer Connection(SM)
Online Training

Downloads, APIs,
Documentation
Java Developer

Connection
Tutorials, Tech Articles,

Training
Online Support

Community Discussion

News & Events from
Everywhere

Products from
Everywhere

How Java Technology
is Used Worldwide

Print Button

Training Index

JavaTM Programming Language Basics,
Part 1
In Closing

[<<BACK] [CONTENTS]

After completing this tutorial you should have a basic
understanding of JavaTM programming and how to use some of the
more common application programming interfaces (APIs) available
in the Java platform. You should also have a solid understanding of
the similarities and differences between the three most common
kinds of Java programs: applications, applets, and servlets.

Java Programming Language Basics, Part 2, is now available. It
covers sockets, threads, cryptography, building a more complex
user interface, serialization, collections, internationalization, and
Java Archive (JAR) files. It also presents object-oriented concepts
as they relate to the examples in Part 1 and Part 2.

You can also explore programming in the Java language on your
own with the help of the articles, training materials, other
documents available on the Docs & Training page.

Monica Pawlan is a staff writer on the JDC team. She has a
background in 2D and 3D graphics, security, database products,
and loves to explore emerging technologies.
monica.pawlan@eng.sun.com

Print Button
 [This page was updated: 31-Mar-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Sun
Microsystems,

Inc.Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Java(TM) Language Basics, Part 1, In Closing

file:///T|/General/Documentation/Java/Basic Java 1/end.html [24.07.2000 12:30:46]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
file:///developer/index.html
file:///developer/onlineTraining/
http://java.sun.com/products/
file:///developer/index.html
file:///developer/infodocs/index.shtml
file:///developer/support/index.html
file:///developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
file:///servlet/PrintPageServlet
file:///developer/onlineTraining/index.html
file:///developer/onlineTraining/Programming/BasicJava2
file:///developer/technicalArticles
file:///developer/onlineTraining
file:///developer/infodocs/
http://java.sun.com/people/monicap
mailto:monica.pawlan@eng.sun.com
file:///servlet/PrintPageServlet
http://java.sun.com/products/
file:///developer/index.html
file:///developer/infodocs/index.shtml
file:///developer/support/index.html
file:///developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://java.sun.com/applets/
http://java.sun.com/docs/books/tutorial/
http://java.sun.com/jobs/
http://java.sun.com/nav/business/
http://java.sun.com/javastore/
http://java.sun.com/casestudies/
file:///siteinfo/faq.html
file:///feedback/index.html
http://www.dynamicdiagrams.net/mapa/cgi-bin/help.tcl?db=javasoft&dest=http://java.sun.com/
http://java.sun.com/a-z/index.html
http://www.att.com/business_traveler/attdirecttollfree/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

import java.awt.Color;
import java.awt.BorderLayout;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;

class FileIO extends JFrame implements ActionListener {
 JLabel text;
 JButton button;
 JPanel panel;
 JTextField textField;
 private boolean _clickMeMode = true;

 FileIO() { //Begin Constructor
 text = new JLabel("Text to save to file:");
 button = new JButton("Click Me");
 button.addActionListener(this);
 textField = new JTextField(30);
 panel = new JPanel();
 panel.setLayout(new BorderLayout());
 panel.setBackground(Color.white);
 getContentPane().add(panel);
 panel.add(BorderLayout.NORTH, text);
 panel.add(BorderLayout.CENTER, textField);
 panel.add(BorderLayout.SOUTH, button);
 } //End Constructor

 public void actionPerformed(ActionEvent event){
 Object source = event.getSource();
//The equals operator (==) is one of the few operators
//allowed on an object in the Java programming language
 if (source == button) {
 String s = null;
 //Write to file
 if (_clickMeMode){
 try {
 String text = textField.getText();
 byte b[] = text.getBytes();
 String outputFileName = System.getProperty("user.home",
 File.separatorChar + "home" +
 File.separatorChar + "zelda") +
 File.separatorChar + "text.txt";
 FileOutputStream out = new FileOutputStream(outputFileName);
 out.write(b);
 out.close();
 } catch(java.io.IOException e) {
 System.out.println("Cannot write to text.txt");
 }
 //Read from file
 try {
 String inputFileName = System.getProperty("user.home",
 File.separatorChar + "home" +
 File.separatorChar + "zelda") +
 File.separatorChar + "text.txt";
 File inputFile = new File(inputFileName);
 FileInputStream in = new FileInputStream(inputFile);
 byte bt[] = new byte[(int)inputFile.length()];
 in.read(bt);
 s = new String(bt);
 in.close();
 } catch(java.io.IOException e) {
 System.out.println("Cannot read from text.txt");
 }
 //Clear text field
 textField.setText("");

file:///T|/General/Documentation/Java/Basic Java 1/Code/FileIO.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/FileIO.java (1 of 2) [24.07.2000 12:30:48]

 //Display text read from file
 text.setText("Text retrieved from file:");
 textField.setText(s);
 button.setText("Click Again");
 _clickMeMode = false;
 } else {
//Save text to file
 text.setText("Text to save to file:");
 textField.setText("");
 button.setText("Click Me");
 _clickMeMode = true;
 }
 }
 }

 public static void main(String[] args){
 FileIO frame = new FileIO();
 frame.setTitle("Example");
 WindowListener l = new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
 };
 frame.addWindowListener(l);
 frame.pack();
 frame.setVisible(true);
 }
}

file:///T|/General/Documentation/Java/Basic Java 1/Code/FileIO.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/FileIO.java (2 of 2) [24.07.2000 12:30:48]

import java.awt.Color;
import java.awt.BorderLayout;
import java.awt.event.*;
import javax.swing.*;

import java.io.*;
import java.net.*;

import java.rmi.*;
import java.rmi.server.*;

class RMIClient1 extends JFrame
 implements ActionListener {

 JLabel text, clicked;
 JButton button;
 JPanel panel;
 JTextField textField;
 Socket socket = null;
 PrintWriter out = null;
 static Send send;

 RMIClient1(){ //Begin Constructor
 text = new JLabel("Text to send:");
 textField = new JTextField(20);
 button = new JButton("Click Me");
 button.addActionListener(this);

 panel = new JPanel();
 panel.setLayout(new BorderLayout());
 panel.setBackground(Color.white);
 getContentPane().add(panel);
 panel.add("North", text);
 panel.add("Center", textField);
 panel.add("South", button);
 } //End Constructor

 public void actionPerformed(ActionEvent event){
 Object source = event.getSource();

 if(source == button){
//Send data over socket
 String text = textField.getText();
 try{
 send.sendData(text);
 } catch (java.rmi.RemoteException e) {
 System.out.println("Cannot send data to server");
 }
 textField.setText(new String(""));
 }
 }

 public static void main(String[] args){
 RMIClient1 frame = new RMIClient1();
 frame.setTitle("Client One");
 WindowListener l = new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
 };

 frame.addWindowListener(l);
 frame.pack();
 frame.setVisible(true);

file:///T|/General/Documentation/Java/Basic Java 1/Code/RMIClient1.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/RMIClient1.java (1 of 2) [24.07.2000 12:30:50]

 if(System.getSecurityManager() == null) {
 System.setSecurityManager(new RMISecurityManager());
 }

 try {
 String name = "//" + args[0] + "/Send";
 send = ((Send) Naming.lookup(name));
 } catch (java.rmi.NotBoundException e) {
 System.out.println("Cannot look up remote server object");
 } catch(java.rmi.RemoteException e){
 System.out.println("Cannot look up remote server object");
 } catch(java.net.MalformedURLException e) {
 System.out.println("Cannot look up remote server object");
 }
 }
}

file:///T|/General/Documentation/Java/Basic Java 1/Code/RMIClient1.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/RMIClient1.java (2 of 2) [24.07.2000 12:30:50]

import java.awt.Color;
import java.awt.BorderLayout;
import java.awt.event.*;
import javax.swing.*;

import java.io.*;
import java.net.*;

import java.rmi.*;
import java.rmi.server.*;

class RMIClient2 extends JFrame
 implements ActionListener {

 JLabel text, clicked;
 JButton button;
 JPanel panel;
 JTextArea textArea;
 Socket socket = null;
 PrintWriter out = null;
 static Send send;

 RMIClient2(){ //Begin Constructor
 text = new JLabel("Text received:");
 textArea = new JTextArea();
 button = new JButton("Click Me");
 button.addActionListener(this);

 panel = new JPanel();
 panel.setLayout(new BorderLayout());
 panel.setBackground(Color.white);
 getContentPane().add(panel);
 panel.add("North", text);
 panel.add("Center", textArea);
 panel.add("South", button);
 } //End Constructor

 public void actionPerformed(ActionEvent event){
 Object source = event.getSource();

 if(source == button){
 try{
 String text = send.getData();
 textArea.append(text);
 } catch (java.rmi.RemoteException e) {
 System.out.println("Cannot access data in server");
 }
 }
 }

 public static void main(String[] args){
 RMIClient2 frame = new RMIClient2();
 frame.setTitle("Client Two");
 WindowListener l = new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
 };

 frame.addWindowListener(l);
 frame.pack();
 frame.setVisible(true);

 if(System.getSecurityManager() == null) {
 System.setSecurityManager(new RMISecurityManager());

file:///T|/General/Documentation/Java/Basic Java 1/Code/RMIClient2.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/RMIClient2.java (1 of 2) [24.07.2000 12:30:51]

 }

 try {
 String name = "//" + args[0] + "/Send";
 send = ((Send) Naming.lookup(name));
 } catch (java.rmi.NotBoundException e) {
 System.out.println("Cannot access data in server");
 } catch(java.rmi.RemoteException e){
 System.out.println("Cannot access data in server");
 } catch(java.net.MalformedURLException e) {
 System.out.println("Cannot access data in server");
 }
 }
}

file:///T|/General/Documentation/Java/Basic Java 1/Code/RMIClient2.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/RMIClient2.java (2 of 2) [24.07.2000 12:30:51]

import java.awt.Font;
import java.awt.Color;
import java.awt.BorderLayout;
import java.awt.event.*;
import javax.swing.*;

import java.io.*;
import java.net.*;

import java.rmi.*;
import java.rmi.server.*;

class RemoteServer extends UnicastRemoteObject
 implements Send {

 private String text;

 public RemoteServer() throws RemoteException {
 super();
 }

 public void sendData(String gotText){
 text = gotText;
 }

 public String getData(){
 return text;
 }

 public static void main(String[] args){
 if(System.getSecurityManager() == null) {
 System.setSecurityManager(new RMISecurityManager());
 }

 String name = "//kq6py.eng.sun.com/Send";
 try {
 Send remoteServer = new RemoteServer();
 Naming.rebind(name, remoteServer);
 System.out.println("RemoteServer bound");
 } catch (java.rmi.RemoteException e) {
 System.out.println("Cannot create remote server object");
 } catch (java.net.MalformedURLException e) {
 System.out.println("Cannot look up server object");
 }
 }
}

file:///T|/General/Documentation/Java/Basic Java 1/Code/RemoteServer.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/RemoteServer.java [24.07.2000 12:30:51]

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Send extends Remote {

 public void sendData(String text) throws RemoteException;
 public String getData() throws RemoteException;
}

file:///T|/General/Documentation/Java/Basic Java 1/Code/Send.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/Send.java [24.07.2000 12:30:52]

grant {
 permission java.net.SocketPermission "*:1024-65535", "connect,accept,resolve";
 permission java.net.SocketPermission "*:80", "connect";
 permission java.awt.AWTPermission "accessEventQueue";
 permission java.awt.AWTPermission "showWindowWithoutWarningBanner";
 permission java.util.PropertyPermission "user.home", "read";
 permission java.io.FilePermission "${user.home}/text.txt", "write";
 permission java.io.FilePermission "${user.home}/text2.txt", "read";

};

file:///T|/General/Documentation/Java/Basic Java 1/Code/java.policy

file:///T|/General/Documentation/Java/Basic Java 1/Code/java.policy [24.07.2000 12:30:52]

import java.awt.Color;
import java.awt.BorderLayout;
import java.awt.event.*;
import javax.swing.*;
import java.sql.*;
import java.net.*;
import java.util.*;
import java.io.*;

class Dba extends JFrame implements ActionListener {

 JLabel text, clicked;
 JButton button, clickButton;
 JPanel panel;
 JTextField textField;
 private boolean _clickMeMode = true;

 private Connection c;

 final static private String _driver = "oracle.jdbc.driver.OracleDriver";
 final static private String _url =
"jdbc:oracle:thin:username/password@(description=(address_list=(address=(protocol=tcp)(host=developer)(port=1521)))(source_route=yes)(connect_data=(sid=ansid)))";

 Dba(){ //Begin Constructor
 text = new JLabel("Text to save to database:");
 button = new JButton("Click Me");
 button.addActionListener(this);
 textField = new JTextField(20);
 panel = new JPanel();
 panel.setLayout(new BorderLayout());
 panel.setBackground(Color.white);
 getContentPane().add(panel);
 panel.add(BorderLayout.NORTH, text);
 panel.add(BorderLayout.CENTER, textField);
 panel.add(BorderLayout.SOUTH, button);
 } //End Constructor

 public void actionPerformed(ActionEvent event){
 try{
// Load the Driver
 Class.forName (_driver);
// Make Connection
 c = DriverManager.getConnection(_url);
 }
 catch (java.lang.ClassNotFoundException e){
 System.out.println("Cannot find driver class");
 System.exit(1);
 }catch (java.sql.SQLException e){
 System.out.println("Cannot get connection");
 System.exit(1);
 }

 Object source = event.getSource();
 if(source == button){
 if(_clickMeMode){
 JTextArea displayText = new JTextArea();
 try{
 //Code to write to database
 String theText = textField.getText();
 Statement stmt = c.createStatement();
 String updateString = "INSERT INTO dba VALUES ('" + theText + "')";

file:///T|/General/Documentation/Java/Basic Java 1/Code/Dba.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/Dba.java (1 of 2) [24.07.2000 12:30:54]

 int count = stmt.executeUpdate(updateString);
 //Code to read from database
 ResultSet results = stmt.executeQuery("SELECT TEXT FROM dba ");
 while(results.next()){
 String s = results.getString("TEXT");
 displayText.append(s + "\n");
 }
 stmt.close();
 }catch(java.sql.SQLException e){
 System.out.println("Cannot create SQL statement");
 }

 //Display text read from database
 text.setText("Text retrieved from database:");
 button.setText("Click Again");
 _clickMeMode = false;
//Display text read from database
 } else {
 text.setText("Text to save to database:");
 textField.setText("");
 button.setText("Click Me");
 _clickMeMode = true;
 }
 }
}

 public static void main(String[] args){
 Dba frame = new Dba();
 frame.setTitle("Example");
 WindowListener l = new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
 };
 frame.addWindowListener(l);
 frame.pack();
 frame.setVisible(true);
 }
}

file:///T|/General/Documentation/Java/Basic Java 1/Code/Dba.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/Dba.java (2 of 2) [24.07.2000 12:30:54]

import java.awt.Color;
import java.awt.BorderLayout;
import java.awt.event.*;
import java.applet.Applet;
import javax.swing.*;
import java.sql.*;
import java.net.*;
import java.io.*;

public class DbaAppl extends Applet implements ActionListener {

 JLabel text, clicked;
 JButton button, clickButton;
 JTextField textField;
 private boolean _clickMeMode = true;
 private Connection c;

 final static private String _driver = "oracle.jdbc.driver.OracleDriver";
 final static private String _url =
"jdbc:oracle:thin:username/password@(description=(address_list=(address=(protocol=tcp)(host=developer)(port=1521)))(source_route=yes)(connect_data=(sid=ansid)))";

 public void init(){
 setBackground(Color.white);
 text = new JLabel("Text to save to file:");
 clicked = new JLabel("Text retrieved from file:");
 button = new JButton("Click Me");
 button.addActionListener(this);
 clickButton = new JButton("Click Again");
 clickButton.addActionListener(this);
 textField = new JTextField(20);
 setLayout(new BorderLayout());
 setBackground(Color.white);
 add(BorderLayout.NORTH, text);
 add(BorderLayout.CENTER, textField);
 add(BorderLayout.SOUTH, button);
 }

 public void start(){
 System.out.println("Applet starting.");
 }

 public void stop(){
 System.out.println("Applet stopping.");
 }

 public void destroy(){
 System.out.println("Destroy method called.");
 }

 public void actionPerformed(ActionEvent event){
 try{
 Class.forName (_driver);
 c = DriverManager.getConnection(_url);
 }catch (java.lang.ClassNotFoundException e){
 System.out.println("Cannot find driver");
 System.exit(1);
 }catch (java.sql.SQLException e){
 System.out.println("Cannot get connection");
 System.exit(1);
 }

 Object source = event.getSource();

file:///T|/General/Documentation/Java/Basic Java 1/Code/DbaAppl.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/DbaAppl.java (1 of 2) [24.07.2000 12:30:55]

 if(source == button){
 if(_clickMeMode){
 JTextArea displayText = new JTextArea();
 try{
 //Write to database
 String theText = textField.getText();
 Statement stmt = c.createStatement();
 String updateString = "INSERT INTO dba VALUES ('" + theText + "')";
 int count = stmt.executeUpdate(updateString);
 //Read from database
 ResultSet results = stmt.executeQuery("SELECT TEXT FROM dba ");
 while(results.next()){
 String s = results.getString("TEXT");
 displayText.append(s + "\n");
 }
 stmt.close();
 }catch(java.sql.SQLException e){
 System.out.println("Cannot create SQL statement");
 System.exit(1);
 }

//Display text read from database
 text.setText("Text retrieved from file:");
 button.setText("Click Again");
 _clickMeMode = false;
//Display text read from database
 } else {
 text.setText("Text to save to file:");
 textField.setText("");
 button.setText("Click Me");
 _clickMeMode = true;
 }
 }
 }
}

file:///T|/General/Documentation/Java/Basic Java 1/Code/DbaAppl.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/DbaAppl.java (2 of 2) [24.07.2000 12:30:55]

import java.awt.Font;
import java.awt.Color;
import java.awt.BorderLayout;
import java.awt.event.*;
import java.applet.Applet;
import javax.swing.*;

import java.sql.*;
import java.net.*;
import java.io.*;

public class DbaOdbAppl extends Applet
 implements ActionListener {

 JLabel text, clicked;
 JButton button, clickButton;
 JTextField textField;
 private boolean _clickMeMode = true;
 private Connection c;
 final static private String _driver = "sun.jdbc.odbc.JdbcOdbcDriver";
 final static private String _user = "username";
 final static private String _pass = "password";
 final static private String _url = "jdbc:odbc:jdc";
 public void init(){
 text = new JLabel("Text to save to file:");
 clicked = new JLabel("Text retrieved from file:");
 button = new JButton("Click Me");
 button.addActionListener(this);
 clickButton = new JButton("Click Again");
 clickButton.addActionListener(this);
 textField = new JTextField(20);
 setLayout(new BorderLayout());
 setBackground(Color.white);
 add(BorderLayout.NORTH, text);
 add(BorderLayout.CENTER, textField);
 add(BorderLayout.SOUTH, button);
 }

 public void start(){
 }

 public void stop(){
 System.out.println("Applet stopping.");
 }

 public void destroy(){
 System.out.println("Destroy method called.");
 }

 public void actionPerformed(ActionEvent event){
 try{
 Class.forName (_driver);
 c = DriverManager.getConnection(_url, _user, _pass);
 }catch (Exception e){
 e.printStackTrace();
 System.exit(1);
 }

 Object source = event.getSource();
 if(source == button){
 if(_clickMeMode){
 JTextArea displayText = new JTextArea();
 try{
 //Write to database
 String theText = textField.getText();

file:///T|/General/Documentation/Java/Basic Java 1/Code/DbaOdbAppl.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/DbaOdbAppl.java (1 of 2) [24.07.2000 12:30:56]

 Statement stmt = c.createStatement();
 String updateString = "INSERT INTO dba VALUES ('" + theText + "')";
 int count = stmt.executeUpdate(updateString);
 //Read from database
 ResultSet results = stmt.executeQuery("SELECT TEXT FROM dba ");
 while(results.next()){
 String s = results.getString("TEXT");
 displayText.append(s + "\n");
 }
 stmt.close();
 }catch(java.sql.SQLException e){
 System.out.println("Cannot create SQL statement");
 System.exit(1);
 }

//Display text read from database
 text.setText("Text retrieved from file:");
 button.setText("Click Again");
 _clickMeMode = false;
//Display text read from database
 } else {
 text.setText("Text to save to file:");
 textField.setText("");
 button.setText("Click Me");
 _clickMeMode = true;
 }
 }
 }
}

file:///T|/General/Documentation/Java/Basic Java 1/Code/DbaOdbAppl.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/DbaOdbAppl.java (2 of 2) [24.07.2000 12:30:56]

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

import java.sql.*;
import java.net.*;
import java.io.*;

public class DbaServlet extends HttpServlet {

 private Connection c;
 final static private String _driver = "sun.jdbc.odbc.JdbcOdbcDriver";
 final static private String _user = "username";
 final static private String _pass = "password";
 final static private String _url = "jdbc:odbc:jdc";

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<title>Example</title>" +
 "<body bgcolor=FFFFFF>");

 out.println("<h2>Button Clicked</h2>");

 String DATA = request.getParameter("DATA");

 if(DATA != null){
 out.println("Text from form:");
 out.println(DATA);
 } else {
 out.println("No text entered.");
 }

//Establish database connection
 try{
 Class.forName (_driver);
 c = DriverManager.getConnection(_url, _user,_pass);
 }catch (java.sql.SQLException e){
 System.out.println("Cannot get connection");
 System.exit(1);
 }catch (java.lang.ClassNotFoundException e) {
 System.out.println("Driver class not found");
 }

 try{
//Code to write to database
 Statement stmt = c.createStatement();
 String updateString = "INSERT INTO dba " + "VALUES ('" + DATA + "')";
 int count = stmt.executeUpdate(updateString);

//Code to read from database
 ResultSet results = stmt.executeQuery("SELECT TEXT FROM dba ");
 while(results.next()){
 String s = results.getString("TEXT");
 out.println("
Text from database:");
 out.println(s);
 }
 stmt.close();
 }catch(java.sql.SQLException e){
 System.out.println("Cannot create SQL statement");
 System.exit(1);

file:///T|/General/Documentation/Java/Basic Java 1/Code/DbaServlet.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/DbaServlet.java (1 of 2) [24.07.2000 12:30:57]

 }

 out.println("<P>Return to Form");
 out.close();
 }
}

file:///T|/General/Documentation/Java/Basic Java 1/Code/DbaServlet.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/DbaServlet.java (2 of 2) [24.07.2000 12:30:57]

import java.awt.Color;
import java.awt.BorderLayout;
import java.awt.event.*;
import javax.swing.*;

class SwingUI extends JFrame
 implements ActionListener {

 JLabel text, clicked;
 JButton button, clickButton;
 JPanel panel;
 private boolean _clickMeMode = true;

 SwingUI(){ //Begin Constructor
 text = new JLabel("I'm a Simple Program");
 button = new JButton("Click Me");
 button.addActionListener(this);

 panel = new JPanel();
 panel.setLayout(new BorderLayout());
 panel.setBackground(Color.white);
 getContentPane().add(panel);
 panel.add(BorderLayout.CENTER, text);
 panel.add(BorderLayout.SOUTH, button);
 } //End Constructor

 public void actionPerformed(ActionEvent event){
 Object source = event.getSource();
 if (_clickMeMode) {
 text.setText("Button Clicked");
 button.setText("Click Again");
 _clickMeMode = false;
 } else {
 text.setText("I'm a Simple Program");
 button.setText("Click Me");
 _clickMeMode = true;
 }
 }

 public static void main(String[] args){
 SwingUI frame = new SwingUI();
 frame.setTitle("Example");
 WindowListener l = new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
 };

 frame.addWindowListener(l);
 frame.pack();
 frame.setVisible(true);
 }

}

file:///T|/General/Documentation/Java/Basic Java 1/Code/SwingUI.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/SwingUI.java [24.07.2000 12:30:58]

import java.awt.Font;
import java.awt.Color;
import java.awt.BorderLayout;
import java.awt.event.*;
import javax.swing.*;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.File;

class FileIOError extends JFrame
 implements ActionListener {

 JLabel text;
 JButton button;
 JPanel panel;
 JTextField textField;
 private boolean _clickMeMode = true;

 FileIOError(){ //Begin Constructor
 text = new JLabel("Text to save to file:");
 button = new JButton("Click Me");
 button.addActionListener(this);
 textField = new JTextField(20);

 panel = new JPanel();
 panel.setLayout(new BorderLayout());
 panel.setBackground(Color.white);
 getContentPane().add(panel);
 panel.add("North", text);
 panel.add("Center", textField);
 panel.add("South", button);
 } //End Constructor

 public void actionPerformed(ActionEvent event){
 Object source = event.getSource();
 if(source == button){
 if(_clickMeMode){
 JLabel label = new JLabel();

//Write to file
 try{
 String text = textField.getText();
 byte b[] = text.getBytes();

 String outputFileName = System.getProperty("user.home",
File.separatorChar + "home" + File.separatorChar + "monicap") + File.separatorChar +
"text.txt";
 File outputFile = new File(outputFileName);
 FileOutputStream out = new FileOutputStream(outputFile);
 out.write(b);
 out.close();
 }catch(java.io.IOException e){
 System.out.println("Cannot write to text.txt");
 }

//Read from file
 try{
 String inputFileName = System.getProperty("user.home",
File.separatorChar + "home" + File.separatorChar + "monicap") + File.separatorChar +
"text.txt";
 File inputFile = new File(inputFileName);
 FileInputStream in = new FileInputStream(inputFile);
 byte bt[] = new byte[(int)inputFile.length()];
 int i;

file:///T|/General/Documentation/Java/Basic Java 1/Code/FileIOError.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/FileIOError.java (1 of 2) [24.07.2000 12:30:59]

 i = in.read(bt);
 String s = new String(bt);
 label.setText(s);
 in.close();
 }catch(java.io.IOException e){
 System.out.println("Cannot read from text.txt");
 }
 text.setText("Text retrieved from file:");
 button.setText("Click Again");
 _clickMeMode = false;
 } else {
 text.setText("Text to save to file:");
 textField.setText("");
 button.setText("Click Me");
 _clickMeMode = true;
 }
 }
 }

 public static void main(String[] args){
 FileIO frame = new FileIO();
 frame.setTitle("Example");
 WindowListener l = new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
 };

 frame.addWindowListener(l);
 frame.pack();
 frame.setVisible(true);
 }
}

file:///T|/General/Documentation/Java/Basic Java 1/Code/FileIOError.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/FileIOError.java (2 of 2) [24.07.2000 12:30:59]

import java.awt.Color;
import java.awt.BorderLayout;
import java.awt.event.*;
import javax.swing.*;
import java.applet.Applet;
import java.io.*;

public class FileIOAppl extends JApplet implements ActionListener {
 JLabel text;
 JButton button;
 JPanel panel;
 JTextField textField;
 private boolean _clickMeMode = true;

 public void init(){
 getContentPane().setLayout(new BorderLayout(1, 2));
 getContentPane().setBackground(Color.white);
 text = new JLabel("Text to save to file:");
 button = new JButton("Click Me");
 button.addActionListener(this);
 textField = new JTextField(30);
 getContentPane().add(BorderLayout.NORTH, text);
 getContentPane().add(BorderLayout.CENTER, textField);
 getContentPane().add(BorderLayout.SOUTH, button);
 }
 public void start() {
 System.out.println("Applet starting.");
}

 public void stop() {
 System.out.println("Applet stopping.");
 }

 public void destroy() {
 System.out.println("Destroy method called.");
 }

 public void actionPerformed(ActionEvent event){
 Object source = event.getSource();
 if (source == button) {
 String s = null;
//Variable to display text read from file
 if (_clickMeMode) {
 try {
 //Code to write to file
 String text = textField.getText();
 String outputFileName = System.getProperty("user.home",
 File.separatorChar + "home" +
 File.separatorChar + "zelda") +
 File.separatorChar + "text.txt";
 FileWriter out = new FileWriter(outputFileName);
 out.write(text);
 out.close();

 //Code to read from file
 String inputFileName = System.getProperty("user.home",
 File.separatorChar + "home" +
 File.separatorChar + "zelda") +
 File.separatorChar + "text.txt";
 File inputFile = new File(inputFileName);
 FileReader in = new FileReader(inputFile);
 char c[] = new char[(int)inputFile.length()];
 in.read(c);
 s = new String(c);
 in.close();

file:///T|/General/Documentation/Java/Basic Java 1/Code/FileIOAppl.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/FileIOAppl.java (1 of 2) [24.07.2000 12:31:00]

 } catch(java.io.IOException e) {
 System.out.println("Cannot access text.txt");
 }
//Clear text field
 textField.setText("");
//Display text read from file
 text.setText("Text retrieved from file:");
 textField.setText(s);
 button.setText("Click Again");
 _clickMeMode = false;
 } else {
//Save text to file
 text.setText("Text to save to file:");
 button.setText("Click Me");
 textField.setText("");
 _clickMeMode = true;
 }
 }
 }//end action performed method
}

file:///T|/General/Documentation/Java/Basic Java 1/Code/FileIOAppl.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/FileIOAppl.java (2 of 2) [24.07.2000 12:31:00]

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class FileIOServlet extends HttpServlet {
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<body bgcolor=FFFFFF>");
 out.println("<h2>Button Clicked</h2>");
 String data = request.getParameter("data");
 if (data != null && data.length() > 0) {
 out.println("Text from form:");
 out.println(data);
 } else {
 out.println("No text entered.");
 }
 try {
//Code to write to file
 String outputFileName=
 System.getProperty("user.home",
 File.separatorChar + "home" +
 File.separatorChar + "monicap") +
 File.separatorChar + "text.txt";
 FileWriter fout = new FileWriter(outputFileName);
 fout.write(data);
 fout.close();
//Code to read from file
 String inputFileName =
 System.getProperty("user.home",
 File.separatorChar + "home" +
 File.separatorChar + "monicap") +
 File.separatorChar + "text.txt";
 FileReader fin = new FileReader(inputFileName);
 char c[] = new char[(char)inputFileName.length()];
 fin.read(c);
 String s = new String(c);
 out.println("<P>Text from file:");
 out.println(s);
 fin.close();
 } catch(java.io.IOException e) {
 System.out.println("Cannot access text.txt");
 }
 out.println("<P>Return to Form");
 out.close();
 }
}

file:///T|/General/Documentation/Java/Basic Java 1/Code/FileIOServlet.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/FileIOServlet.java [24.07.2000 12:31:00]

import java.awt.Color;
import java.awt.BorderLayout;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;

class AppendIO extends JFrame implements ActionListener {
 JLabel text;
 JButton button;
 JPanel panel;
 JTextField textField;
 private boolean _clickMeMode = true;

 AppendIO() { //Begin Constructor
 text = new JLabel("Text to save to file:");
 button = new JButton("Click Me");
 button.addActionListener(this);
 textField = new JTextField(30);
 panel = new JPanel();
 panel.setLayout(new BorderLayout());
 panel.setBackground(Color.white);
 getContentPane().add(panel);
 panel.add(BorderLayout.NORTH, text);
 panel.add(BorderLayout.CENTER, textField);
 panel.add(BorderLayout.SOUTH, button);
 } //End Constructor

 public void actionPerformed(ActionEvent event){
 Object source = event.getSource();
 if (source == button){
 String s = null;
 if (_clickMeMode){
 try {
 //Write to file
 String text = textField.getText();
 byte b[] = text.getBytes();
 String outputFileName = System.getProperty("user.home",
 File.separatorChar + "home" +
 File.separatorChar + "zelda") +
 File.separatorChar + "text.txt";
 File outputFile = new File(outputFileName);
 RandomAccessFile out = new RandomAccessFile(outputFile, "rw");
 out.seek(outputFile.length());
 out.write(b);

 //Write a new line (NL) to the file.
 out.writeByte('\n');
 out.close();

 //Read from file
 String inputFileName = System.getProperty("user.home",
 File.separatorChar + "home" +
 File.separatorChar + "zelda") +
 File.separatorChar + "text.txt";
 File inputFile = new File(inputFileName);
 FileInputStream in = new FileInputStream(inputFile);
 byte bt[] = new byte[(int)inputFile.length()];
 in.read(bt);
 s = new String(bt);
 in.close();
 } catch(java.io.IOException e) {
 System.out.println(e.toString());
 }
//Clear text field
 textField.setText("");

file:///T|/General/Documentation/Java/Basic Java 1/Code/AppendIO.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/AppendIO.java (1 of 2) [24.07.2000 12:31:02]

//Display text read from file
 text.setText("Text retrieved from file:");
 textField.setText(s);
 button.setText("Click Again");
 _clickMeMode = false;
 } else {
//Save text to file
 text.setText("Text to save to file:");
 textField.setText("");
 button.setText("Click Me");
 _clickMeMode = true;
 }
 }
 }//end action performed method

 public static void main(String[] args) {
 JFrame frame = new AppendIO();
 frame.setTitle("Example");
 WindowListener l = new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
 };
 frame.addWindowListener(l);
 frame.pack();
 frame.setVisible(true);
 }
}

file:///T|/General/Documentation/Java/Basic Java 1/Code/AppendIO.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/AppendIO.java (2 of 2) [24.07.2000 12:31:02]

<HTML>
<HEAD>
<TITLE>Example</TITLE>
</HEAD>
<BODY BGCOLOR="WHITE">

<TABLE BORDER="2" CELLPADDING="2">
<TR><TD WIDTH="275">

<H2>I'm a Simple Form</H2>

Enter some text and click the Submit button.

Clicking Submit invokes
ExampServlet.java,

which returns an HTML page to the browser.

<FORM METHOD="POST" ACTION="/servlet/ExampServlet">

<INPUT TYPE="TEXT" NAME="DATA" SIZE=30>

<P>
<INPUT TYPE="SUBMIT" VALUE="Click Me">
<INPUT TYPE="RESET">
</FORM>

</TD></TR>
</TABLE>

</BODY>
</HTML>

Example

file:///T|/General/Documentation/Java/Basic Java 1/Code/simpleHTML.html [24.07.2000 12:31:02]

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ExampServlet extends HttpServlet {

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<title>Example</title>" +
 "<body bgcolor=FFFFFF>");

 out.println("<h2>Button Clicked</h2>");

 String DATA = request.getParameter("DATA");

 if(DATA != null){
 out.println(DATA);
 } else {
 out.println("No text entered.");
 }

 out.println("<P>Return to Form");
 out.close();
}
}

file:///T|/General/Documentation/Java/Basic Java 1/Code/ExampServlet.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/ExampServlet.java [24.07.2000 12:31:03]

import java.applet.Applet;
import java.awt.Graphics;
import java.awt.Color;

public class SimpleApplet extends Applet{

 String text = "I'm a simple applet";

 public void init() {
 text = "I'm a simple applet";
 setBackground(Color.cyan);
 }

 public void start() {
 System.out.println("starting...");
 }

 public void stop() {
 System.out.println("stopping...");
 }

 public void destroy() {
 System.out.println("preparing to unload...");
 }

 public void paint(Graphics g){
 System.out.println("Paint");
 g.setColor(Color.blue);
 g.drawRect(0, 0,
 getSize().width -1,
 getSize().height -1);
 g.setColor(Color.red);
 g.drawString(text, 15, 25);
 }
}

file:///T|/General/Documentation/Java/Basic Java 1/Code/SimpleApplet.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/SimpleApplet.java [24.07.2000 12:31:04]

import java.awt.Color;
import java.awt.BorderLayout;
import java.awt.event.*;
import javax.swing.*;
import java.applet.Applet;

public class ApptoAppl extends Applet
 implements ActionListener {

 JLabel text;
 JButton button;
 JPanel panel;
 private boolean _clickMeMode = true;

 public void init(){
 setLayout(new BorderLayout(1, 2));
 setBackground(Color.white);

 text = new JLabel("I'm a Simple Program");
 button = new JButton("Click Me");
 button.addActionListener(this);
 add("Center", text);
 add("South", button);
 }

 public void start(){
 System.out.println("Applet starting.");
 }

 public void stop(){
 System.out.println("Applet stopping.");
 }

 public void destroy(){
 System.out.println("Destroy method called.");
 }

 public void actionPerformed(ActionEvent event){
 Object source = event.getSource();
 if (_clickMeMode) {
 text.setText("Button Clicked");
 button.setText("Click Again");
 _clickMeMode = false;
 } else {
 text.setText("I'm a Simple Program");
 button.setText("Click Me");
 _clickMeMode = true;
 }
 }
}

file:///T|/General/Documentation/Java/Basic Java 1/Code/ApptoAppl.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/ApptoAppl.java [24.07.2000 12:31:04]

//A Very Simple Example
class ExampleProgram {

 public static void main(String[] args){

 System.out.println("I'm a Simple Program");
 }
}

file:///T|/General/Documentation/Java/Basic Java 1/Code/ExampleProgram.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/ExampleProgram.java [24.07.2000 12:31:05]

class LessonTwoA {
 static String text = "I'm a Simple Program";
 public static void main(String[] args){
 System.out.println(text);
 }
}

file:///T|/General/Documentation/Java/Basic Java 1/Code/LessonTwoA.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/LessonTwoA.java [24.07.2000 12:31:06]

class LessonTwoB {

 String text = "I'm a Simple Program";
 static String text2 = "I'm static text";

 String getText(){
 return text;
 }

 String getStaticText(){
 return text2;
 }

 public static void main(String[] args){
 LessonTwoB progInstance = new LessonTwoB();
 String retrievedText = progInstance.getText();
 String retrievedStaticText = progInstance.getStaticText();
 System.out.println(retrievedText);
 System.out.println(retrievedStaticText);
 }
}

file:///T|/General/Documentation/Java/Basic Java 1/Code/LessonTwoB.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/LessonTwoB.java [24.07.2000 12:31:06]

class LessonTwoC {

 static String text = "I'm a Simple Program";

 static String getText(){
 return text;
 }

 public static void main(String[] args){
 String retrievedText = getText();
 System.out.println(retrievedText);
 }
}

file:///T|/General/Documentation/Java/Basic Java 1/Code/LessonTwoC.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/LessonTwoC.java [24.07.2000 12:31:07]

class LessonTwoD {

 String text;

 LessonTwoD(){
 text = "I'm a Simple Program";
 }

 String getText(){
 return text;
 }

 public static void main(String[] args){
 LessonTwoD progInst = new LessonTwoD();
 String retrievedText = progInst.getText();
 System.out.println(retrievedText);
 }
}

file:///T|/General/Documentation/Java/Basic Java 1/Code/LessonTwoD.java

file:///T|/General/Documentation/Java/Basic Java 1/Code/LessonTwoD.java [24.07.2000 12:31:08]

	Local Disk
	Essentials of the Java(TM) Programming Language, Part 1
	Java(TM) Language Basics, Part 1, Lesson 1: Compiling & Running a Simple Program
	Java(TM) Language Basics, Part 1, Lesson 2: Building Applications
	Java(TM) Language Basics, Part 1, Lesson 3: Building Applets
	Java(TM) Language Basics, Part 1, Lesson 4: Building A User Interface
	Java(TM) Language Basics, Part1, Lesson 5: Writing Servlets
	Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions
	Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissions
	Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation
	Java(TM) Language Basics, Part 1, In Closing
	file:///T|/General/Documentation/Java/Basic Java 1/Code/FileIO.java
	file:///T|/General/Documentation/Java/Basic Java 1/Code/RMIClient1.java
	file:///T|/General/Documentation/Java/Basic Java 1/Code/RMIClient2.java
	file:///T|/General/Documentation/Java/Basic Java 1/Code/RemoteServer.java
	file:///T|/General/Documentation/Java/Basic Java 1/Code/Send.java
	file:///T|/General/Documentation/Java/Basic Java 1/Code/java.policy
	file:///T|/General/Documentation/Java/Basic Java 1/Code/Dba.java
	file:///T|/General/Documentation/Java/Basic Java 1/Code/DbaAppl.java
	file:///T|/General/Documentation/Java/Basic Java 1/Code/DbaOdbAppl.java
	file:///T|/General/Documentation/Java/Basic Java 1/Code/DbaServlet.java
	file:///T|/General/Documentation/Java/Basic Java 1/Code/SwingUI.java
	file:///T|/General/Documentation/Java/Basic Java 1/Code/FileIOError.java
	file:///T|/General/Documentation/Java/Basic Java 1/Code/FileIOAppl.java
	file:///T|/General/Documentation/Java/Basic Java 1/Code/FileIOServlet.java
	file:///T|/General/Documentation/Java/Basic Java 1/Code/AppendIO.java
	Example
	file:///T|/General/Documentation/Java/Basic Java 1/Code/ExampServlet.java
	file:///T|/General/Documentation/Java/Basic Java 1/Code/SimpleApplet.java
	file:///T|/General/Documentation/Java/Basic Java 1/Code/ApptoAppl.java
	file:///T|/General/Documentation/Java/Basic Java 1/Code/ExampleProgram.java
	file:///T|/General/Documentation/Java/Basic Java 1/Code/LessonTwoA.java
	file:///T|/General/Documentation/Java/Basic Java 1/Code/LessonTwoB.java
	file:///T|/General/Documentation/Java/Basic Java 1/Code/LessonTwoC.java
	file:///T|/General/Documentation/Java/Basic Java 1/Code/LessonTwoD.java

	CDBHJFCPHNMFLMELGIIDFLLEJFALBPKC:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: 2600
	f2: True
	f3: 3
	f4: BasicJava
	f5: Off
	f6:

	f7:
	f8:

	CFMBBDIGMIKNHCFDDHNOGLHEOJJOGGHK:
	form1:
	x:
	f1:

	f2:

	CHFIBAPEJKNBMFPEOCOLPOHKFLMJBOMF:
	form1:
	x:
	f1:

	f2:

	LGPNCFAMBMKKDCJHJIJFDDFHKJLKPEPN:
	form1:
	x:
	f1:

	f2:

	PNFFNLCFLPOHMGMAFPMJGJKDLBHNNEPF:
	form1:
	x:
	f1:

	f2:

	GCLPIFOLCPAJOABLEFPLKNDEJKDBNDAP:
	form1:
	x:
	f1:

	f2:

	EMKJBBPGKBLPPMDIPJEEFKMPFFFMDAIEGD:
	form1:
	x:
	f1:

	f2:

	GOONGBOKPCCKCDHGJKLOCKBALLIAELNK:
	form1:
	x:
	f1:

	f2:

	LHBBBLPCGPNPNHDMDGEDENCKMMOMJNFA:
	form1:
	x:
	f1:

	f2:

	IMCBBJPDFFKBGOGCOMNPCFFPJKNHAOED:
	form1:
	x:
	f1:

	f2:

