
Customized Onsite Training: Java 7, JSF 2, PrimeFaces, Servlets/JSP, Ajax/jQuery, Android, Spring, Hibernate, Hadoop, GWT, REST, etc: http://courses.coreservlets.com/

Network Servers

Note: again, there is no need to use my NetworkServer class for these exercises; you could easily 
write everything from scratch. Using NetworkServer will just save you a few lines of code. If you 
do use it, you would need to copy NetworkServer.java and SocketUtil.java into your Eclipse proj-
ect, then do something like this:

public class MyServer extends NetworkServer {
public MyServer(int port) {

super(port);
}

public void handleConnection(Socket s) throws IOException {
// This is the main code you need to write

}
}

Then, your driver routine (the one that has main) would do:
MyServer server = new MyServer(some-port);
server.listen(); // Start listening for incoming connections

1. Make a server that sends a random number to anyone that connects to it. Connect to it from a 
Web browser. Also connect to it using telnet. (Open a DOS window and type “telnet localhost 
portnumber”. Kill telnet by hitting Control-] and then entering “Quit”.) 

2. Make a Java client program that connects to it and prints out the number that is sent. (Hint: 
you may have already written this in your solutions to the networking clients exercises.)

3. Make a server that takes two numbers on separate lines, adds them together, and returns the 
sum. (Recall that Double.parseDouble will turn a String into a double). Test with telnet, but 
note that you will have to type “blind” because the Windows telnet client does not echo the 
characters you type by default. Linux and MacOS telnet clients do echo properly, but even on 
Windows this is a useful way to test.

4. Make a client that takes a host, port, and two numbers from the command line, uses the addi-
tion server to sum the two numbers, and prints the result.

5. Make a multithreaded version of your SumServer. Your networking code will be the same in 
both cases, but where you put it will be different. Start by copying and renaming the Multi-
threadedServer and ConnectionHandler classes, then call the appropriate networking code 
from the run method of your renamed ConnectionHandler. Reminder: you rename a class in 
Eclipse by right-clicking on the classname at the left side (or selecting the name within the 
editor, then right-clicking), then doing Refactor --> Rename.


