
Customized Onsite Training: Java 7, JSF 2, PrimeFaces, Servlets/JSP, Ajax/jQuery, Android, Spring, Hibernate, Hadoop, GWT, REST, etc: http://courses.coreservlets.com/

Syntax and Utilities II

The first three (Lists, Maps, printf) are the most important. I threw in some other problems for 
developers that already have some experience with these topics.

1. Make a List of Circle objects. Use a random radius. Keep adding circles to the list until 
Math.random() returns less than 0.01. Then, loop down the list and print out each area.

2. Make a hash table (Map) that associates the following employee IDs with names.

Make some test cases where you test several valid and invalid ID’s and print the associated 
name.

3. Change your circle list example (problem 1) so that the areas are printed with the decimal 
points aligned and with exactly three digits after the decimal point.

4. Make a hash table (Map) that maps numbers (e.g., 2) to words (e.g, “two” or “dos”). Test it 
out by passing it a few numbers and printing out the corresponding words. Note: hash table 
keys in Java cannot be primitives; they must be objects. So, technically, you have to convert 
the numbers to Strings (e.g., String.valueOf(4) returns “4” as a String). But, if you declare the 
key to be of type Integer, autoboxing will be in effect so that you can use an int and the con-
version will occur automatically.

5. Take the state lookup example and modify it so that it works the same no matter what case the 
user supplies for the state. I.e., Maryland and MARYLAND should work identically.

6. Switch the state lookup example so that it maps state abbreviations to full state names, instead 
of the other way around.

7. Make a routine that accepts any number of state abbreviations and prints out the correspond-
ing state names.

ID Name

a1234 Steve Jobs
a1235 Scott McNealy
a1236 Jeff Bezos
a1237 Larry Ellison
a1238 Bill Gates



Customized Onsite Training: Java 7, JSF 2, PrimeFaces, Servlets/JSP, Ajax/jQuery, Android, Spring, Hibernate, Hadoop, GWT, REST, etc: http://courses.coreservlets.com/

8. Do some timing tests to compare ArrayList to LinkedList for accessing the middle element. 
Hints:

• Use System.currentTimeMillis or System.nanoTime to lookup the current time. Compute a 
delta and divide to get an elapsed time in seconds. Use printf to control the number of deci-
mal places displayed.

• To ensure meaningful results, use very long lists and access the middle element many times. 

• Have your program repeat the test several times, and throw out the first result.

9. Do similar timing tests to compare the performance of the two versions of padChar.

10. In the lecture, we talked about how to use classes that already support generics. But, it is also 
possible to create your own classes or methods that support generics. Doing so is trickier than 
simply using preexisting classes, but is not all that hard for the simple cases that account for 
the majority of uses. See http://docs.oracle.com/javase/tutorial/extra/generics/ (just the first 
three sections are needed for most cases). If you feel inspired to learn this on your own, try 
making a static method called RandomUtils.randomElement that takes an array of any non-
primitive type, and returns an element of that type, randomly selected from the array. For 
example:
Integer[] nums = { 1, 2, 3, 4 }; // Cannot use int or other primitive
int num = RandomUtils.randomElement(nums); // No typecast: num is 1, 2, 3, or 4
String[] names = { "Joe", "John", "Jane" };
String name = RandomUtils.randomElement(names); // Again, no typecast

For those who are interested in this idea but don’t want to read the tutorial, feel free to peek at 
my solution.


