

Guide 108
Version 1.2

Advanced Java
The tutorial given in ITS Guide 58: Getting started with Java provides basic
information on developing programs in the Java programming language. This
Guide introduces some other topics on Java. In particular, it discusses:
• the creation of Java programs that have graphical user interfaces (GUIs);
• the handling of collections of data using the List, Set and Map interfaces of

Java's Collections API;
• the production of Java applets, code that gets executed when a person

visits a WWW page.

£1

Document code: Guide 108
Title: Advanced Java
Version: 1.2
Date: June 2006
Produced by: University of Durham Information Technology Service

Copyright © 2006 University of Durham Information Technology Service
& Barry Cornelius

Conventions:

In this document, the following conventions are used:
• A typewriter font is used for what you see on the screen.
• A bold typewriter font is used to represent the actual characters you type at

the keyboard.
• A slanted typewriter font is used for items such as filenames which you should

replace with particular instances.
• A bold font is used to indicate named keys on the keyboard, for example,

Esc and Enter, represent the keys marked Esc and Enter, respectively.
• A bold font is also used where a technical term or command name is used in

the text.
• Where two keys are separated by a forward slash (as in Ctrl/B, for example),

press and hold down the first key (Ctrl), tap the second (B), and then release
the first key.

Contents

1 Introduction ..1

2 Providing a graphical user interface (GUI) ..1
2.1 APIs for producing GUIs ..1
2.2 What the Swing API includes and how it is organised2
2.3 A simple example of a GUI ..2
2.4 Stage A: obtaining the current date and time...2
2.5 Stage B: creating a window ...3
2.6 Stage C: adding GUI components to the window ..4
2.7 Stage D: responding to a click of the button ..6
2.8 Stage E: altering the JTextField component ..8
2.9 Stage F: closing the window ..10
2.10 Conclusion ...12

3 The Collections API ...13
3.1 An introduction to the Collections API..13
3.2 The interface List and the classes ArrayList and LinkedList14
3.3 Using the Iterator interface...18
3.4 The methods contains, indexOf, lastIndexof and remove............................19
3.5 An example of a complete program that manipulates a list22
3.6 Conclusion ...23

4 Writing applets (for use with the WWW)..23
4.1 Using HTML to code WWW pages ..23
4.2 Getting Java bytecodes executed when a WWW page is visited24
4.3 Deriving from Applet instead of declaring a main method25
4.4 Dealing with the different versions of the Java platform27
4.5 Using appletviewer when developing Java applets28
4.6 The lifecycle of a Java applet...30
4.7 Overriding the init method..30
4.8 Restrictions imposed on Java applets ...31
4.9 Reworking an application as an applet: GetDateApplet...............................32
4.10 Producing code that can be used either as an application or an applet33
4.11 Using the Java archive tool..33

5 Other information about Java...34

Guide 108: Advanced Java i

1 Introduction
The tutorial given in ITS Guide 58: Getting started with Java provides basic
information on developing programs in the Java programming language.
This Guide introduces some other topics on Java. In particular, it discusses:

• the creation of Java programs that have graphical user interfaces
(GUIs);

• the handling of collections of data using the List, Set and Map
interfaces of Java's Collections API;

• the production of Java applets, code that gets executed when a
person visits a WWW page.

This Guide refers to the WWW pages documenting the Core APIs:
http://java.sun.com/j2se/1.4.2/docs/api. These WWW pages can also be
downloaded to filespace on your own computer. This Guide uses the
notation $API/java/lang/String.html to refer to the WWW page
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html.

2 Providing a graphical user interface (GUI)

2.1 APIs for producing GUIs
One of the attractive features of Java is that it has APIs for producing GUIs.
One of these APIs is called the Abstract Windowing Toolkit (or AWT), and it
is provided in the package java.awt. Although the AWT has been present
from the start, the facilities that the Java platform provides for producing
GUIs have changed with each major release of Java.

In JDK 1.0, a reasonably comprehensive set of features were provided.
However, events such as mouse movements, button clicks, and window
closing had to be handled in a way which led to inefficient code, and code
that was inappropriate in an object-oriented system.

In JDK 1.1, the event-handling mechanism was changed: instead, an object
can register itself to handle any events on a particular GUI component
(such as a mouse, a button or a window).

With the release of the Java 2 Platform in December 1998, a new set of
classes for building GUIs was introduced. These classes form what is
known as the Swing API. Unlike the AWT, the code of the classes that
implement the Swing API is completely written in Java. Because of this, it is
easy for a programmer to add new GUI components that can be used
alongside the Swing components. However, when writing programs that
use the Swing API, it is still necessary to use some of the basic classes of
the java.awt package.

The Swing API also has a pluggable look-and-feel. The look of a window in
a Windows environment is different from that in a Motif environment
running on a UNIX workstation. With the Swing API, you can choose the
look-and-feel to be that of a particular platform, to be a platform-
independent look-and-feel, or to be a look-and-feel that depends on the
platform on which the program is running.

Guide 108: Advanced Java 1

http://java.sun.com/j2se/1.4.2/docs/api
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html

Unfortunately, during the various beta releases of the Swing API, the
position of the Swing API moved. This has been inconvenient for those
people developing code (or looking at books) that use this API. Although
it has previously resided at com.sun.java.swing and later at java.awt.swing, the
Swing API is now in the javax.swing package.

2.2 What the Swing API includes and how it is organised
The package javax.swing consists of many classes. It provides GUI
components such as buttons, checkboxes, lists, menus, tables, text areas,
and trees. It also includes GUI components that are containers (such as
menu bars and windows), and higher-level components (such as dialog
boxes, including dialog boxes for opening or saving files). And there are
also classes for basic drawing operations, and for manipulating images,
fonts and colours, and for handling events such as mouse clicks.

Many of these GUI components will have common features. For example,
there is a method called setBackground that can be used to alter the
background colour of a component. Although it would be possible to include
a method declaration called setBackground in each of the classes, this is not
sensible. Because Java has inheritance, it allows classes to be arranged in
a class hierarchy: this means the Swing designers can declare the
setBackground method in a class high up in the class hierarchy and it is
automatically available in the classes that are lower down in the class
hierarchy. So, an extensive class hierarchy is used to organise the classes
of the Swing API (and the AWT).

2.3 A simple example of a GUI
Suppose we want a Java program that creates a window that has a button
and a textfield (an area for storing a line of text), and each time the button
is clicked the textfield is updated to show the current date and time.

Rather than just present the program that accomplishes this task, the
program will be developed in stages, each stage conquering some of the
problems that occur.

2.4 Stage A: obtaining the current date and time
To begin with, we need to know how to get the current date and time. The
class Date from the java.util package can be used to do this. So the
following program can be used to output the current date and time:

 1: // // GetDateProg.java
 2: // Stage A: outputting the current date and time to the screen.
 3: // Barry Cornelius, 22nd November 1999
 4: import java.util. Date;
 5: public class GetDateProg
 6: {
 7: public static void main(final String[] pArgs)
 8: {
 9: final Date tDate = new Date();
 10: System.out.println(tDate);
 11: }
 12: }

Guide 108: Advanced Java 2

2.5 Stage B: creating a window
When producing a GUI, we will need to create windows on the screen. The
Swing API has a number of classes that enable a program to create a new
window on the screen or to make use of an existing window.

The classes are:

• JWindow — which allows a window without a border or a menu bar to
be displayed;

• JFrame — which allows a window with a border and possibly a menu
bar to be displayed;

• JDialog — which allows a dialog box to be displayed;
• JInternalFrame — which allows a frame to be created inside an

existing frame;
• JApplet — which allows the frame of a WWW page to be accessed by

a Java applet.

Here is a simple program that displays a new window on the screen:

 13: // Stage B: creating a window. // GetDateProg.java
 14: // Barry Cornelius, 22nd November 1999
 15: import javax.swing. JFrame;
 16: public class GetDateProg
 17: {
 18: public static void main(final String[] pArgs)
 19: {
 20: final JFrame tJFrame = new JFrame("GetDateProg: Stage B");
 21: tJFrame.setLocation(50, 100);
 22: tJFrame.setSize(300, 200);
 23: tJFrame.setVisible(true);
 24: }
 25: }

The program creates an object of the class JFrame. One of JFrame's
constructors allows you to choose the string that is put into the title bar of
the window:

JFrame tJFrame = new JFrame("GetDateProg: Stage B");

The use of this class instance creation expression just creates the JFrame
object: it does not display the window on the screen. This is done by a call
of the method setVisible:

tJFrame.setVisible(true);

Unless you specify otherwise, when the window is displayed, it will be
positioned in the top left-hand corner of the screen. The call:

tJFrame.setLocation(50, 100);

says that you want the top left-hand corner of the window to be positioned
50 pixels from the left-hand side of the screen and 100 pixels down from
the top of the screen. And the call:

tJFrame.setSize(300, 200);

says that you want the window to be 300 pixels wide and 200 pixels high.

When this program is executed, it just displays a blank window on the
screen. The result of executing this program is shown here:

Guide 108: Advanced Java 3

The program has no code to understand the removal of the window: so if
you want to stop the execution of this program, you will need to press
Ctrl/C in the window in which you typed the command:

java GetDateProg

2.6 Stage C: adding GUI components to the window
Some GUI components will now be put into the window that is displayed by
the program. As with the previous program, the first step is to create an
object to represent that window:

JFrame tJFrame = new JFrame("GetDateProg: Stage C");

In order to get our program to display a textfield and a button, the program
needs to create these GUI components and add them to the content pane
of the frame.

The Swing API contains classes that enable us to represent textfields and
buttons:

JTextField tJTextField = new JTextField("hello", 35);
JButton tJButton = new JButton("Get Date");

There are a number of constructors for these classes (as shown at
$API/javax/swing/JTextField.html and $API/javax/swing/JButton.html). The
ones used above create a textfield containing 35 columns which is
initialized to the string "hello", and a button containing a label with the
characters "Get Date". Once again, this just creates two objects within an
executing Java program that represent a textfield and a button. It does not
do anything with them, such as make them visible.

Guide 108: Advanced Java 4

These GUI components need to be added to the content pane of the
JFrame window. We can get a reference to the JFrame's content pane by
executing the method getContentPane:

Container tContentPane = tJFrame.getContentPane();

The actual way in which GUI components are displayed within a container
such as this content pane is controlled by a layout manager. The default
layout manager for a content pane is a layout known as BorderLayout.

The BorderLayout layout manager allows you to use a method called add to
place components in five divisions of the content page appropriately known
as NORTH, WEST, CENTER, EAST and SOUTH. These divisions are
illustrated by this diagram:

CENTER

NORTH

WEST EAST

SOUTH

You do not have to put a component in each division: the layout manager
will arrange the spacing of the components that you do provide:

tContentPane.add(tJTextField, BorderLayout.NORTH);
tContentPane.add(tJButton, BorderLayout.SOUTH);

The class java.awt.BorderLayout conveniently provides constants named
NORTH, WEST, CENTER, EAST and SOUTH.

If you are unhappy with the layout, you can either use Container's setLayout
method to choose another layout manager or you can use an object of
class Box or JPanel to group items together. Both of these classes are in the
javax.swing package: the Box class uses a layout called BoxLayout, and the
JPanel class uses a layout called FlowLayout.

When you have added all of the components to the content pane, you
should apply the method pack (from the class java.awt.Window) to the frame.
This arranges for the size of the frame to be just big enough to
accommodate the components. So this time there is no call of setSize:
instead the call of pack determines an appropriate size for the window. A
call of pack often appears just before a call of setVisible:

tJFrame.pack();
tJFrame.setVisible(true);

Guide 108: Advanced Java 5

Here is the complete program:

 26: // Stage C: adding GUI components to the window. // GetDateProg.java
 27: // Barry Cornelius, 22nd November 1999
 28: import java.awt. BorderLayout;
 29: import java.awt. Container;
 30: import javax.swing. JButton;
 31: import javax.swing. JFrame;
 32: import javax.swing. JTextField;
 33: public class GetDateProg
 34: {
 35: public static void main(final String[] pArgs)
 36: {
 37: final JFrame tJFrame = new JFrame("GetDateProg: Stage C");
 38: final JTextField tJTextField = new JTextField("hello", 35);
 39: final JButton tJButton = new JButton("Get Date");
 40: final Container tContentPane = tJFrame.getContentPane();
 41: tContentPane.add(tJTextField, BorderLayout.NORTH);
 42: tContentPane.add(tJButton, BorderLayout.SOUTH);
 43: tJFrame.pack();
 44: tJFrame.setVisible(true);
 45: }
 46: }

What gets displayed when this program is executed is shown below. As this
time there is no call of setLocation, the window will appear in the top left-
hand corner of the screen.

2.7 Stage D: responding to a click of the button
Having arranged for the textfield and the button to appear in the window,
we need to be able to react to the user clicking the button. As was
mentioned earlier, handling events such as mouse clicks, mouse
movements, key presses, window iconising, window removal, ... , is an area
in which the Java Platform was improved between JDK 1.0 and JDK 1.1.
Here we will look at how events are handled in versions of the Java
platform from JDK 1.1 onwards.

In order to handle the event of a user clicking on the JButton component,
you need to do two things:

• create an object that has an actionPerformed method containing the
code that you want to be executed (when the user clicks on the
JButton component);

• indicate that this object is responsible for handling any events
associated with the JButton component.

To put this a little more formally:

1 the program needs to create an object that is of a class that
implements the ActionListener interface (which is defined in the
package java.awt.event);

Guide 108: Advanced Java 6

2 the program needs to use the addActionListener method to register
this object as the listener for events on the JButton component.

If you look at the WWW page $API/java/awt/event/ActionListener.html, you
will see that in order to implement the java.awt.event.ActionListener interface
you just need to have a class that declares one method, a method called
actionPerformed that has the header:

public void actionPerformed(ActionEvent pActionEvent)

So, here is a class called JButtonListener that implements this interface:

 47: // Stage D: a class whose actionPerformed method. // JButtonListener.java
 48: // writes to standard output.
 49: // Barry Cornelius, 22nd November 1999
 50: import java.awt.event. ActionEvent;
 51: import java.awt.event. ActionListener;
 52: import java.util. Date;
 53: public class JButtonListener implements ActionListener
 54: {
 55: public JButtonListener()
 56: {
 57: }
 58: public void actionPerformed(final ActionEvent pActionEvent)
 59: {
 60: final Date tDate = new Date();
 61: System.out.println(tDate);
 62: }
 63: }
 64:

The GetDateProg program can create an object of this class in the usual
way:

JButtonListener tJButtonListener = new JButtonListener();

That satisfies the first requirement given above.

The program also needs to say that this object is going to be responsible
for handling the clicks on the button. What we are effectively wanting to do
is to say: `please execute this object's actionPerformed method whenever
there is a click on the JButton component`. In order to do this, we need to
associate the object that has the actionPerformed method with the JButton
object; or, in the jargon of Java, our JButtonListener object needs to be
added as a listener for any events associated with the JButton object. This
can be done using:

tJButton.addActionListener(tJButtonListener);

Because the addActionListener method has been applied to tJButton, the
actionPerformed method of the object passed as an argument to
addActionListener (i.e., tJButtonListener) will be executed at each click of this
JButton component.

Here is the code of this version of the GetDateProg program:

Guide 108: Advanced Java 7

 65: // Stage D: responding to a click of a button. // GetDateProg.java
 66: // Barry Cornelius, 22nd November 1999
 67: import java.awt. BorderLayout;
 68: import java.awt. Container;
 69: import javax.swing. JButton;
 70: import javax.swing. JFrame;
 71: import javax.swing. JTextField;
 72: public class GetDateProg
 73: {
 74: public static void main(final String[] pArgs)
 75: {
 76: final JFrame tJFrame = new JFrame("GetDateProg: Stage D");
 77: final JTextField tJTextField = new JTextField("hello", 35);
 78: final JButton tJButton = new JButton("Get Date");
 79: final JButtonListener tJButtonListener = new JButtonListener();
 80: tJButton.addActionListener(tJButtonListener);
 81: final Container tContentPane = tJFrame.getContentPane();
 82: tContentPane.add(tJTextField, BorderLayout.NORTH);
 83: tContentPane.add(tJButton, BorderLayout.SOUTH);
 84: tJFrame.pack();
 85: tJFrame.setVisible(true);
 86: }
 87: }

An example of what happens when the JButton component is clicked is
shown here:

Note that we do not have any precise control over when the actionPerformed
method is called: this is at the whim of the person using the program. The
act of registering code that will be executed later is sometimes referred to
as creating a callback.

2.8 Stage E: altering the JTextField component
Although the program of Stage D outputs the current date and time
whenever the JButton component is clicked, the program sends this output
to the standard output, i.e., to the terminal window that runs the program.
What we really want to do is to copy the date and time into the JTextField
component. And it is the variable tJTextField of the main method of
GetDateProg that points to the JTextField object that we want to be updated
each time the user clicks on the button.

Guide 108: Advanced Java 8

How can we refer to this JTextField object within the actionPerformed
method? We cannot just use tJTextField as this variable is local to the main
method, and, anyway, the main method is in a different class from the
actionPerformed method.

The easiest way is to alter the constructor for the listener object so that
tJTextField is passed as an argument:

JButtonListener tJButtonListener = new JButtonListener(tJTextField);

In this way, when the JButtonListener object is being created, the constructor
knows which JTextField object we want to be altered: it is the one pointed to
by tJTextField.

What can the constructor do with this information? Well, it can make its own
copy of the pointer:

public JButtonListener(JTextField pJTextField)
{
 iJTextField = pJTextField;
}

where iJTextField is a private field of the JButtonListener object.

So when the JButtonListener object is created, it stores a pointer to the
JTextField object in a field of the JButtonListener object. Whenever the
actionPerformed method is executed, it just has to alter the contents of the
object pointed to by iJTextField.

In order to change the value of a JTextField object, we need to apply a
method called setText to the object, passing the appropriate string as an
argument. Since we actually want to set the textfield to a string describing
the current date and time, we need to do:

Date tDate = new Date();
iJTextField.setText("" + tDate);

Here is the complete text of this new version of the JButtonListener class:

 88: // // JButtonListener.java
 89: // Stage E: implementing the ActionListener interface.
 90: // Barry Cornelius, 22nd November 1999
 91: import java.awt.event. ActionEvent;
 92: import java.awt.event. ActionListener;
 93: import java.util. Date;
 94: import javax.swing. JTextField;
 95: public class JButtonListener implements ActionListener
 96: {
 97: private JTextField iJTextField;
 98: public JButtonListener(final JTextField pJTextField)
 99: {
100: iJTextField = pJTextField;
101: }
102: public void actionPerformed(final ActionEvent pActionEvent)
103: {
104: final Date tDate = new Date();
105: iJTextField.setText("" + tDate);
106: }
107: }
108:

The GetDateProg program for this stage is the same as that used for Stage
D. An example of what happens when the JButton component is clicked is
shown here.:

Guide 108: Advanced Java 9

2.9 Stage F: closing the window
Although this has achieved our goal of altering the JTextField component
whenever the JButton component is clicked, there is one other thing that we
ought to do. Up until now, the only way in which we have been able to
terminate the execution of the program has been to press Ctrl/C. With this
example, it may be useful to terminate the execution when the user closes
the window.

In the same way that an ActionListener object is created to handle clicks on
the JButton, we can establish an object which is responsible for handling
events on a window. Unlike the ActionListener interface where we only had
to provide one method, the WindowListener interface requires us to provide
seven methods to provide for seven events concerning the manipulation of
windows. The details are given on java.awt.event.WindowListener's WWW
page which is at $API/java/awt/event/WindowListener.html.

Here is a class that implements the WindowListener interface:

109: // // ExitOnWindowClosing.java
110: // Stage F: implementing the WindowListener interface.
111: // Barry Cornelius, 22nd November 1999
112: import java.awt. Window;
113: import java.awt.event. WindowEvent;
114: import java.awt.event. WindowListener;
115: public class ExitOnWindowClosing implements WindowListener
116: {
117: public void windowActivated(final WindowEvent pWindowEvent)
118: {
119: }
120: public void windowClosed(final WindowEvent pWindowEvent)
121: {
122: }
123: public void windowClosing(final WindowEvent pWindowEvent)
124: {
125: final Window tWindow = pWindowEvent.getWindow();
126: tWindow.setVisible(false);
127: tWindow.dispose();
128: System.exit(0);
129: }
130: public void windowDeactivated(final WindowEvent pWindowEvent)
131: {
132: }
133: public void windowDeiconified(final WindowEvent pWindowEvent)
134: {
135: }
136: public void windowIconified(final WindowEvent pWindowEvent)
137: {
138: }
139: public void windowOpened(final WindowEvent pWindowEvent)
140: {
141: }
142: }

Guide 108: Advanced Java 10

Note that this class has the implements clause implements
WindowListener and has method declarations for each of the seven
methods.

Because we only want to do something special when a window is about to
close, some code has been provided for the windowClosing method whereas
the other six method declarations have empty blocks.

When using the ActionListener interface, we had to:

• provide an object of a class that implements the ActionListener
interface;

• register this object as a listener for clicks on the JButton component.

We have to do similar things when using the WindowListener interface.

Consider this version of the GetDateProg program:

143: // // GetDateProg.java
144: // Stage F: using a WindowListener to handle a window-closing event.
145: // Barry Cornelius, 22nd November 1999
146: import java.awt. BorderLayout;
147: import java.awt. Container;
148: import javax.swing. JButton;
149: import javax.swing. JFrame;
150: import javax.swing. JTextField;
151: public class GetDateProg
152: {
153: public static void main(final String[] pArgs)
154: {
155: final JFrame tJFrame = new JFrame("GetDateProg: Stage F");
156: final JTextField tJTextField = new JTextField("hello", 35);
157: final JButton tJButton = new JButton("Get Date");
158: final JButtonListener tJButtonListener = new JButtonListener(tJTextField);
159: tJButton.addActionListener(tJButtonListener);
160: final Container tContentPane = tJFrame.getContentPane();
161: tContentPane.add(tJTextField, BorderLayout.NORTH);
162: tContentPane.add(tJButton, BorderLayout.SOUTH);
163: final ExitOnWindowClosing tExitOnWindowClosing =
164: new ExitOnWindowClosing();
165: tJFrame.addWindowListener(tExitOnWindowClosing);
166: tJFrame.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
167: tJFrame.pack();
168: tJFrame.setVisible(true);
169: }
170: }

This program includes code that creates an ExitOnWindowClosing object:

ExitOnWindowClosing tExitOnWindowClosing = new ExitOnWindowClosing();

and registers this object as a listener for window events on the window
associated with the tJFrame object:

tJFrame.addWindowListener(tExitOnWindowClosing);

The following statement (from the GetDateProg program) ensures that, when
the user clicks on the window's close button, the window is not removed
from the screen:

tJFrame.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

This is to ensure that the program retains control: the window will only be
removed when the program executes setVisible with an argument of false.

Guide 108: Advanced Java 11

Now when the user manipulates the window, one of the methods of the
ExitOnWindowClosing class will get executed. Most of these do not do
anything. However, when the user clicks on the button to close the window,
the code of the following method declaration gets executed:

public void windowClosing(final WindowEvent pWindowEvent)
{
 final Window tWindow = pWindowEvent.getWindow();
 tWindow.setVisible(false);
 tWindow.dispose();
 System.exit(0);
}

You can see that when the windowClosing method is called, some object
(that is of the class WindowEvent) is passed as an argument to
windowClosing. This object contains details of what caused the window
event to take place. The WindowEvent class has various methods that can
be applied to this WindowEvent object: one of these is called getWindow. So,
the first statement of the windowClosing method makes tWindow point to the
Window object associated with the window being closed. For GetDateProg,
this is the JFrame object that was created by its main method.

A reference variable (that is of a class type) can point to an object of its
class or an object of any subclass. Here, tWindow, a reference variable of
the class type java.awt.Window is pointing to an object of the class
javax.swing.JFrame, one of the subclasses of java.awt.Window.

The next statement of the windowClosing method calls the setVisible method.
The call of setVisible with argument false ensures that the window is no
longer displayed on the screen. When a Window object (such as a JFrame
object) is created, some other objects are created. The call of dispose
indicates that the space for these objects is no longer required. Although in
general it is useful to do this, it is unnecessary in this program as the call of
dispose is followed by the call of System.exit that terminates the program.

2.10 Conclusion
In this section, we have only seen a glimpse of what is available in the
Swing API. You may also want to look at:

• JTextArea and JScrollPane which enable you to set up a scrollable
multi-line area of text;

• Box which enables you to group GUI components together;
• JDialog which enables you to display a dialog box forcing the user to

respond to a question;
• JDesktopPane and JInternalFrame which enable you to create windows

inside a parent window;
• JMenuBar, JMenu and JMenuItem which enable you to add a menu

system to a window.

Guide 108: Advanced Java 12

3 The Collections API

3.1 An introduction to the Collections API
Besides having APIs for GUIs, another attraction of Java is that it has an
API for representing collections of values. This API, which was new with the
Java 2 Platform, is known as the Collections API.

The designers of the Collections API have decided that there are three
main ways in which we will want to represent a collection of values:

• as a list — an ordered collection or sequence of values: there may be
duplicates;

• as a set — a collection where each value appears only once: there
are no duplicates;

• as a map — a collection where there is a mapping from keys to
values: the keys are unique.

They have provided interfaces called List, Set and Map that define the
methods that can be applied to objects that are lists, sets and maps.

One of the benefits of using a List is that it allows duplicates, i.e., it allows
the same value to appear more than once in the collection. This may be
important. For example, if you are representing a collection of CDs, it may
be that you have the same CD more than once. Or it may be that you are
some kind of collector; perhaps you collect beer mats. In this case, you will
often have duplicates because these allow you the possibility of swopping
one of your duplicates with another collector.

The other benefit of using a List is that it allows values to be ordered in any
way you like. For example, suppose you want to represent a mailbox as a
collection of messages. The user might want to add a message to this
mailbox at some particular position in the mailbox, or they might want to
delete a particular message from the mailbox. Or, if you have a queue of
people, you will want insertions to be made at the tail of the queue whereas
deletions are to be made at the head of the queue. For both of these
examples, a List could be used.

For the List interface, the API provides two classes that implement the
interface. They are called ArrayList and LinkedList. The class ArrayList should
be used if you want to make random accesses to the values of a collection,
e.g., for a collection of messages in a mailbox, you will want to access each
individual message: you might want to access the 5th message, then the
2nd, then the 7th, and so on. This is a typical situation in which ArrayList
would be used.

The other class that implements the List interface is called LinkedList. This
should be considered if you want to make frequent insertions and deletions
from a list. If insertions/deletions dominate the activities that are performed
on the List, then a LinkedList should be considered (instead of an ArrayList).
In practice, it seems that the implementation of ArrayList is very good as it is
often as fast or better than LinkedList in situations where. intuitively,
LinkedList should be faster.

However, if your collection has no duplicates or you do not want such
flexibility about ordering, you may want to consider representing the

Guide 108: Advanced Java 13

collection using a Set. For the Set interface, a class called HashSet is
provided. This gives a fast implementation of:

• adding new elements to a set;
• removing elements from a set;
• seeing whether a set contains a particular value.

Unlike the List, it is not possible to control the order in which values are
stored in a Set. However, it may be that the values being added to a Set
have a natural order. This is an ordering that is based on comparing the
values of the collection. For example, for a set of strings, the collection may
be ordered in alphabetical order; for a set of people, the collection may be
ordered by alphabetical order of the name field of each person; and so on.

For this kind of collection, the designers of the Collections API have
provided a subinterface of Set called SortedSet, and a class called TreeSet
that implements the SortedSet interface. So, for an object that is of the
TreeSet class, the method that iterates through the elements of the set
produces the values in this natural order.

Finally, for some collections, a particular part of each value in the collection
in some way identifies the value: it is called the key. The distinguishing
feature of the Map interface is that it permits us to represent a mapping
from keys to values. It could be used to represent a dictionary, a mapping
from words to meanings. Or a database that, given a person's name,
delivers the personal details of that person.

With the database, it may not be important for the values to be ordered: we
may have no requirement to go through the thousands of people in the
database in some order. Instead, we just want the values of the collection
to be stored as efficiently as possible. For such a collection, the Collections
API provides a class called HashMap (that implements the Map interface).

However, in the case of the dictionary, we may want the values of the
collection to be sorted by the order of the words, as this will allow us easily
to output the dictionary. There is a subinterface of the Map interface called
SortedMap, and a class called TreeMap that implements this interface.

The preceding paragraphs summarize the overall design of a large part of
the Collections API, and also briefly indicate the situations in which you
might use the various interfaces and classes. In this Guide, we will just be
looking at Lists.

3.2 The interface List and the classes ArrayList and LinkedList
A list is an ordered collection of elements, where each element contains a
pointer to a value. You could visualize an object that is a list as:

...

0 1 2 3

Guide 108: Advanced Java 14

A list of the methods that can be applied to an object that is a list is given at
$API/java/util/List.html.

To begin with, we will just consider the following methods of the List
interface:

• add — which adds a new element to a list;
• remove — which removes an element from a list;
• get — which returns a pointer to the value that is at a particular

position in the list;
• set — which replaces the value of the element that is at a particular

position in the list;
• size — which returns how many elements there are in the list.

We will now look at an example that shows how these methods can be
used.

In the example, we will use the class Person that was produced in ITS
Guide 58: Getting started with Java. Suppose we have three people:

Person tTom = new Person("Tom%1.6%1981-12-25");
Person tDick = new Person("Dick%1.7%1980-3-18");
Person tHarry = new Person("Harry%1.8%1979-8-4");

Suppose we want to create a list containing these three people. List is an
interface, and (as was mentioned earlier) the Collections API provides two
classes that implement this interface: they are ArrayList and LinkedList. So a
list can be created using either:

List tList = new ArrayList();

or:

List tList = new LinkedList();

Both of these statements create an empty list.

Suppose we use an ArrayList. We can visualize the ArrayList's empty list as
follows:

tList

0 ...

Having created the empty list, the statements:

int tSize = tList.size();
boolean tIsEmpty = tList.isEmpty();

assign 0 to the variable tSize and the value true to tIsEmpty.

Suppose tTom points to a Person object. We can add the tTom object to the
list using:

tList.add(tTom);

The result can be visualized as:

Guide 108: Advanced Java 15

1 ...

"Tom"

tTom

tList

where only the first field of the Person object has been shown in detail.

The designers of the Collections API have chosen to share the objects of a
collection with clients of the collection. This means that the add method
does not make its own copy of the object pointed to by tTom: it just
establishes a new element of the list that points to the object that tTom is
pointing to. So, the value of any element of the list that points to the tTom
object will be affected if we later choose to change the value of the object
pointed to by tTom.

If we now do:

tList.add(tHarry); // TH

the list will contain two elements, the first one describing Tom, the second
one describing Harry. The comment after the call of add, i.e., // TH, gives a
cryptic indication of the state of the list after the method call has been
executed.

So we now have the following situation:

tTom tHarry

2 ...

"Tom" "Harry"

tList

The add method has a parameter that is of the class Object. This means
that the method can be used with an object of any class. It also means that
the argument of the call does not have to be of the same class each time
we call the method, and so we could build lists where the elements of the
list do not have the same class.

The get method can be used to obtain the value of any element of the list.
This method has one parameter: it indicates the position of the element in
the list. The numbering of the elements starts from 0 (rather than from 1).
So to get a pointer to the object at the first element of the list use:

Person tFirstPerson = (Person)tList.get(0);

Guide 108: Advanced Java 16

Because a List can be used to store objects of any class, the result type of
get is Object. So tList.get(0) returns a value of class Object and we have to
cast this in order to treat the object as a Person object. If you cast to the
wrong type, then (at execution time) the program will crash with a
ClassCastException.

The above statement results in a situation that can be visualized as:
tList

tHarry

2 ...

"Tom" "Harry"
tFirstPerson

tTom

Note again that, because the Collections API adopts the share approach,
tFirstPerson points to the same object as that of one of the elements of the
list.

If we also execute the statements:

System.out.println(tFirstPerson);
System.out.println((Person)tList.get(1));
System.out.println(tList.size());

the following would be output:

Tom%1.6%1981-12-25
Harry%1.8%1979-08-04
2

When add is used with one argument as in the calls given earlier, the new
element is added at the end of the list. Instead, we can use add with an
additional argument that indicates a position:

tList.add(1, tDick); // TDH

This means that tDick is to be inserted at position 1 and the element
previously at position 1 is now at position 2.

Here are some other examples of calls of methods from the List interface:

tList.add(3, tHarry); // TDHH
tList.add(0, tDick); // DTDHH
tList.remove(tHarry); // DTDH
tList.remove(1); // DDH
tList.set(0, tTom); // TDH

where the comments give a cryptic description of the state of the list after
each statement has been executed.

Guide 108: Advanced Java 17

3.3 Using the Iterator interface
We often want to do some task to each element of a list. This is known as
iterating through the elements of the list. With a List, it is possible to do this
using the following code:

for (int tPersonNumber = 0; tPersonNumber<tList.size(); tPersonNumber++)
{
 final Person tPerson = (Person)tList.get(tPersonNumber);
 iProcessPerson(tPerson);
}

where iProcessPerson is a method that contains the code that we want to
execute on each element of the list. Although this would be reasonably
efficient for a list that is implemented as an ArrayList, for a LinkedList it is
very inefficient. This is because a LinkedList is implemented as a doubly-
linked list:

tList

nullnull

"Dick" "Harry""Tom"

0 1 2

Consider what happens when the above code is used when tList points to a
LinkedList object. When get is called, the code of get has to work its way
down the list starting from the first element, and this has to be done on
each of the calls of get.

So, we will avoid calling get in a loop. A different approach uses the iterator
method that is defined in the List interface:

Iterator tIterator = tList.iterator();

No matter whether tList is pointing to an ArrayList object or a LinkedList
object, the call of iterator will create information that enables the list to be
iterated efficiently. Assuming tList is pointing to a LinkedList object, then,
after the above statement has been executed, some sort of structure like
the following will have been set up:

nullnull

0 1 2

3 0

tIterator

tList

1

shortcuts

pos 0 21size

Guide 108: Advanced Java 18

The call of iterator returns a pointer to an object which supports the Iterator
interface. This interface has the methods documented at
$API/java/util/Iterator.html.

The methods iterator, hasNext and next can be used as follows:

Iterator tIterator = tList.iterator();
while (tIterator.hasNext())
{
 final Person tPerson = (Person)tIterator.next();
 iProcessPerson(tPerson);
}

The methods hasNext and next can be efficiently implemented: a call of
hasNext just returns the value of pos<size, and a call of next just returns the
value of the posth element of the shortcuts and also increases the value of
pos by 1.

3.4 The methods contains, indexOf, lastIndexof and remove
Given the method called iterator, it is very easy to find out whether a
collection contains a particular value. Suppose we have a List which
contains a collection of values all of which are Person objects. Suppose we
now want to write a method called iIsInList that returns true if and only if the
List object pList has an element which points to an object representing a
person with the name pName:

private static boolean iIsInList(final List pList, final String pName)
{
 final Iterator tIterator = pList.iterator();
 while (tIterator.hasNext())
 {
 final Person tPerson = (Person)tIterator.next();
 if (pName.equals(tPerson.getName()))
 {
 return true;
 }
 }
 return false;
}

Here is an example of a call of this method:

boolean tFound = iIsInList(tList, "Dick");

However, it is a waste of time declaring this method as the List interface has
a method called contains that does this job for us. So instead we can use:

Person tTargetPerson = new Person("Dick%%");
boolean tFound = tList.contains(tTargetPerson);

Each of the methods:

public boolean contains(Object pValue);
public int indexOf(Object pValue);
public int lastIndexOf(Object pValue);

public boolean remove(Object pValue);

(of the List interface) requires the target list to be searched from the head
(or the tail for lastIndexOf) of the list to find an element of the list that has the
same value as the object pointed to by pValue. The WWW pages that
document this interface ($API/java/util/List.html) state that each of these

Guide 108: Advanced Java 19

methods looks for an element e such that pValue.equals(e). Because the
parameter e is of type Object, the method being used here has the header:

public boolean equals(Object pObject);

Because pValue, the target of the equals, is actually of the class Person, and
because the class declaration for Person declares a method with the above
header then that method will be used when any of these four methods is
executed.

So, when executing:

Person tTargetPerson = new Person("Dick%%");
boolean tFound = tList.contains(tTargetPerson);

the contains method searches to see if it can find an element which equals
that of tTargetPerson. It will use the method called equals declared in the
class Person. This method says that two Person objects are equal if and
only if the names are the same. For this to work, the class Person must
provide a method with the header:

public boolean equals(Object pObject);

rather than (or in addition to):

public boolean equals(Person pPerson);

The method contains is not particularly useful if you want to do something to
an element of the collection. Instead, it is better to use indexOf which will
return the position of the element. Here is an example:

final Person tTargetPerson = new Person("Dick%%");
final int tPosition = tList.indexOf(tTargetPerson);
if (tPosition=0)
{
 final Person tPerson = (Person)tList.get(tPosition);
 tPerson.setName("Richard");
 ...
}

Because the Collections API uses the share approach, tPerson is pointing to
the same object that an element of tList is pointing to. So, the statement:

tPerson.setName("Richard");

also changes one of the elements of tList (which may or may not be what
you want). If you prefer not to alter the element of the list, the result of the
call of get should be cloned:

final Person tPerson = new Person((Person)tList.get(tPosition));
tPerson.setName("Richard");
...

It is also possible to use indexOf when you want to remove an element from
a list: first find the appropriate position in the list and then remove the
element at that position:

Person tTargetPerson = new Person("Dick%%");
int tPosition = tList.indexOf(tTargetPerson);
if (tPosition=0)
{
 tList.remove(tPosition);
}

Guide 108: Advanced Java 20

However, the List interface has another remove method which is more
suitable (as it eliminates the need to call indexOf). So, the above is better
coded as:

Person tTargetPerson = new Person("Dick%%");
tList.remove(tTargetPerson);

Guide 108: Advanced Java 21

3.5 An example of a complete program that manipulates a list
Here is a complete program that manipulates a list.

171: // // ExamineList.java
172: // Read a list of people from a file, output the list, and then examine it.
173: // Barry Cornelius, 6th February 2000
174: import java.util. ArrayList;
175: import java.io. BufferedReader;
176: import java.io. FileReader;
177: import java.io. InputStreamReader;
178: import java.io. IOException;
179: import java.util. Iterator;
180: import java.util. List;
181: public class ExamineList
182: {
183: public static void main(final String[] pArgs) throws IOException
184: {
185: if (pArgs.length!=1)
186: {
187: System.out.println("Usage: java ExamineList datafile");
188: System.exit(1);
189: }
190: final List tList = new ArrayList();
191: // read a list of people from a file
192: final BufferedReader tInputHandle =
193: new BufferedReader(new FileReader(pArgs[0]));
194: while (true)
195: {
196: final String tFileLine = tInputHandle.readLine();
197: if (tFileLine==null)
198: {
199: break;
200: }
201: final Person tFilePerson = new Person(tFileLine);
202: tList.add(tFilePerson);
203: }
204: // output the list that has been read in
205: final Iterator tIterator = tList.iterator();
206: while (tIterator.hasNext())
207: {
208: final Person tIteratePerson = (Person)tIterator.next();
209: System.out.println(tIteratePerson);
210: }
211: // ask the user to examine the list
212: final BufferedReader tKeyboard =
213: new BufferedReader(new InputStreamReader(System.in));
214: while (true)
215: {
216: System.out.print("Person? ");
217: System.out.flush();
218: final String tKeyboardLine = tKeyboard.readLine();
219: if (tKeyboardLine.equals(""))
220: {
221: break;
222: }
223: final Person tTargetPerson = new Person(tKeyboardLine);
224: System.out.print(tTargetPerson);
225: final int tPosition = tList.indexOf(tTargetPerson);
226: if (tPosition=0)
227: {
228: System.out.println(" is at position " + tPosition);
229: }
230: else
231: {
232: System.out.println(" is absent");
233: }
234: }
235: }
236: }

Guide 108: Advanced Java 22

The program begins by obtaining the name of a file from the command line.
It then reads lines from this file, each line containing the details about one
person. As it reads each line, it creates a Person object and adds this object
to a list. Having read the file, the program uses an Iterator to output the
contents of the list. Finally, the program keeps reading lines from the
keyboard (each line containing the details of a person) and finding out
whether the person is in the list. It keeps doing this until the user of the
program types in an empty line.

3.6 Conclusion
As mentioned earlier, besides providing Lists, the Collections API also
provides interfaces and classes for Sets and Maps. These are used in a
similar way to those for Lists.

4 Writing applets (for use with the WWW)

4.1 Using HTML to code WWW pages
When you use a WWW browser (such as Netscape's Navigator or
Microsoft's Internet Explorer) to display a WWW page, you will see a
combination of paragraphs of text, bulletted lists of information, tables of
information, images, links to other pages, and so on. The people that have
prepared WWW pages have coded them (or have arranged for them to be
coded) using HTML (HyperText Markup Language).

Here is an example of some HTML:

237: <HTML>
238: <HEAD>
239: <TITLE>A Simple Example</TITLE>
240: </HEAD>
241: <BODY>
242: <P>
243: This is the first sentence of the first paragraph. And here is the
244: second.
245: Here is a third sentence. And
246: here is the last one of the first paragraph.
247: </P>
248: <P>
249: Here is a second paragraph.
250: It has a list of items:
251:
252: first point;
253: second point;
254: third point;
255:
256: </P>
257: </BODY>
258: </HTML>

We will suppose that this text has been stored in a file called Simple.html.
The HTML language involves the use of tags which usually occur in pairs.
An example is <P> and </P> which are used to indicate that the embedded
text should be displayed by the WWW browser as a paragraph.

When someone (perhaps on the other side of the world) uses a browser to
visit a WWW page, the HTML instructions are transferred across the
Internet to the browser; the browser interprets these instructions and then
displays something within the browser's window. The HTML given in the file

Guide 108: Advanced Java 23

Simple.html would cause a browser to display something like that shown
here.

4.2 Getting Java bytecodes executed when a WWW page is visited
Since the inception of the WWW in the early 1990s, people have been
finding different ways of making a WWW page more appealing to the visitor
to the page. When Sun first produced Java in 1995, they thought it would
be useful if Java code could be executed as part of browsing a WWW
page. The Java code could do some processing and display its output
within the pane of the WWW browser. They showed that this was possible
by producing a WWW browser that had this capability — it was first called
WebRunner and later called HotJava. They then persuaded Netscape
whose browser (Navigator) was the most popular at that time to include a
Java interpreter as part of the code of Navigator. Support for Java within
Microsoft's Internet Explorer came later.

Guide 108: Advanced Java 24

In order that the author of a WWW page could indicate which Java .class
file was to be executed when the WWW page was loaded, HTML was
altered to include an APPLET tag. Here is an example of some HTML that
includes an APPLET tag. Suppose that this text is stored in the file
HelloApplet.html.

259: <HTML>
260: <HEAD>
261: <TITLE>The HelloApplet Example</TITLE>
262: </HEAD>
263: <BODY>
264: <P>
265: Start.
266: </P>
267: <APPLET CODE="HelloApplet.class" WIDTH="150" HEIGHT="25">
268: <P>Java does not seem to be supported by your WWW browser</P>
269: </APPLET>
270: <P>
271: Finish.
272: </P>
273: </BODY>
274: </HTML>

WWW browsers ignore tags that they do not understand. So if a WWW
browser is given this HTML and it does not understand the APPLET tag, it
will display the message Java does not seem to be supported by your WWW
browser. However, if a WWW browser is capable of running Java, then,
when the HTML interpreter of the browser sees this APPLET tag, it will start
to obtain the bytecodes from the file mentioned in the CODE attribute of the
APPLET tag. So, with the HTML given in the file HelloApplet.html, it would
download the bytecodes that are in the file HelloApplet.class. Unless you
also include a CODEBASE attribute, the browser will assume that this file is
in the same directory from which it is obtaining the file containing the HTML
instructions.

These bytecodes will be transferred from the .class file into a storage area
known to the Java interpreter of the WWW browser. Often the bytecodes of
a .class file will take some time to be transferred and so the rest of the
WWW page is likely to be displayed before they arrive. When the
bytecodes have finally arrived, the browser's Java interpreter will execute
them.

So, although the author of the WWW page compiled the Java source code
on his/her computer, the .class file(s) that were produced by the compiler
will be executed by the Java interpreter contained in a WWW browser that
is running on the computer of the person visiting the WWW page.

4.3 Deriving from Applet instead of declaring a main method
So far the Java source code that we have produced has been for programs
that we have run on our own computer. Such programs are called Java
applications. We are now about to produce Java source code that is to be
run by the Java interpreter of a WWW browser. This kind of source code is
called a Java applet.

The source code for an application is different from that for an applet. For
an application, we provide a class that has a method called main, and this is
the method that is executed first when we run the java command, the
command that executes the Java interpreter. For an applet, we do not

Guide 108: Advanced Java 25

provide a main method: instead, we use inheritance to derive a class from
java.applet.Applet and override methods like paint, init, start, stop and destroy.
We do this because this is what the Java interpreter contained in the WWW
browser expects.

Here is an example of some Java source code that is a Java applet:

275: // The code of the HelloApplet applet paints a string. // HelloApplet.java
276: // Barry Cornelius, 24th April 1999
277: import java.applet.Applet;
278: import java.awt.Graphics;
279: public class HelloApplet extends Applet
280: {
281: public void paint(Graphics pGraphics)
282: {
283: pGraphics.drawString("Hello world", 50, 25);
284: }
285: }

This can be compiled in the usual way:

javac HelloApplet.java

in order to produce the file HelloApplet.class.

Suppose we tell a WWW browser to read the WWW page that is in the file
HelloApplet.html. When it reaches the APPLET tag, it knows it has to obtain
the bytecodes contained in the file HelloApplet.class. When these bytecodes
have arrived, the Java interpreter contained in the WWW browser will
create an object of the HelloApplet class. And, because we have overridden
the paint method, the code of this method will be executed. The result is
displayed within the window of the browser (as shown here).

The code of HelloApplet is simple, and so the only classes that it depends
on are classes from Java's Core APIs. However, normally the code for an
applet will be dependent on other classes that the author has written. If this
is the case, then, as the Java interpreter executes the bytecodes, it will
detect that the bytecodes of other classes that need to be downloaded, and

Guide 108: Advanced Java 26

so it will return to the author's WWW site to download the bytecodes from
the appropriate .class files.

4.4 Dealing with the different versions of the Java platform
Early versions of WWW browsers contain a Java interpreter that
understands JDK 1.0.2, the version of Java that was prevalent at the time
they were released. Each time a new version of a WWW browser was
released, the latest version of the Java interpreter was included in the
browser. So the Java interpreter of some WWW browsers understand
JDK 1.1.x (although, unfortunately, with many versions of WWW browsers,
some parts of JDK 1.1.x are missing).

During the years 1996-1998, this led to a chaotic state of affairs: some
browsers would only execute applets coded with JDK 1.0.2, and other
browsers only understood parts of JDK 1.1. The best advice during this
time was to write the Java source code for Java applets in terms of the
language and the APIs of JDK 1.0.2, and to compile the source code with
the JDK 1.0.2 compiler.

Of course, such an approach does not mean that you can reap the benefits
of later versions of the Java Platform. For example, the way of handling
events (such as the event of a user clicking a button) was improved
between JDK 1.0 and JDK 1.1. And the Java 2 Platform brought the
release of the Swing and Collection APIs.

The Java 2 Platform equivalent of the HelloApplet applet is the HelloJApplet
applet that is given here:

286: // A JDK 1.2 version of the HelloApplet applet. // HelloJApplet.java
287: // Barry Cornelius, 24th April 1999
288: import java.awt.Graphics;
289: import javax.swing.JApplet;
290: public class HelloJApplet extends JApplet
291: {
292: public void paint(final Graphics pGraphics)
293: {
294: pGraphics.drawString("Hello world", 50, 25);
295: }
296: }

This class is derived from the JApplet class (from javax.swing), a class that is
itself derived from java.applet.Applet. But, because it uses the features that
were new with the Java 2 Platform, how can we run this applet?

Recognizing that browsers supporting different versions of Java interpreters
was a major problem, Sun looked at how this problem might be overcome.
They decided that it would be more flexible to provide a plug-in containing a
Java interpreter. (A plug-in is an additional piece of software that a browser
can be configured to use. The advantage of using a plug-in is that a user
can update it without having to update the browser.)

This plug-in is known as the Java Plug-in. (Note: it was previously called
the Java Activator.)

The idea is that the applet is executed using the Java interpreter contained
in this plug-in, and any Java interpreter contained in the WWW browser will
be ignored. But, how can you arrange for your browser to use the plug-in’s
Java interpreter rather than the browser’s Java interpreter?

Guide 108: Advanced Java 27

With early versions of the Java Plug-in, Sun suggested that developers of
WWW pages that use Java applets code their HTML in such a way that the
visitor to the WWW page is asked to download the plug-in to their computer
if the plug-in appropriate to the version of Java required by the applet is not
present on the computer.

Unfortunately, the way in which the HTML is written in order for this to
happen depends on what browser is being used. For example, the HTML
that is required for Netscape's Navigator is different from that that is needed
for Microsoft's Internet Explorer. Although you could provide HTML that
only works for one of these browsers, it is better for your HTML to allow any
browser. So the reasonably simple APPLET tag of the file HelloApplet.html
needs to be replaced by the HTML of the file HelloJApplet.html which is
shown on the next page.

This file contains a large number of difficult lines of HTML in order for it to
work with both Navigator and Internet Explorer. Essentially, the lines
immediately following the OBJECT tag are used by Internet Explorer,
whereas those immediately following the EMBED tag are used by Navigator.
There are details about what all this means at
http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/using_tag
s.html

On that WWW page, Sun give an even more complicated version that can
deal with situations not catered for by the HTML given on the next page.
Even though it is complicated, once you have got it right, the only parts that
need to be changed are the two sets of references to the name of the .class
file (HelloJApplet.class), the width (150) and the height (25).

With later versions of the Java Plug-in, when the user is installing the
plug-in, they can arrange for the plug-in’s interpreter to be used when a
WWW page is coded using an APPLET tag.

Obviously, you have no control over the users visiting your WWW pages:
you do not know whether their browser has the Java Plug-in installed, nor
whether it is a recent version of the Java Plug-in, nor whether they have
configured the latter to understand the APPLET tag.

At the current time, probably the best advice is as follows:

• If you are writing the applet for your own use, download the latest
version of the Java Plug-in; configure it to be used when an APPLET
tag is used; and code your WWW pages in terms of the APPLET tag.

• If you are providing your applet for others to use, do not use the
APPLET tag: instead use the complicated HTML given overleaf.

Guide 108: Advanced Java 28

http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/using_tags.html
http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/using_tags.html
http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/using_tags.html

297: <HTML>
298: <HEAD>
299: <TITLE>The HelloJApplet Example</TITLE>
300: </HEAD>
301: <BODY>
302: <P>
303: Start.
304: </P>
305: <OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
306: width="150" height="25"
307: codebase="http://java.sun.com/products/plugin/1.2/jinstall-12-win32.cab#Version=1,2,0,0">
308: <PARAM NAME="code" VALUE="HelloJApplet.class">
309: <PARAM NAME="type" VALUE="application/x-java-applet;version=1.2">
310: <COMMENT>
311: <EMBED type="application/x-java-applet;version=1.2"
312: width="150" height="25"
313: code="HelloJApplet.class"
314: pluginspage="http://java.sun.com/products/plugin/1.2/plugin-install.html">
315: <NOEMBED>
316: </COMMENT>
317: No JDK 1.2 support which is what is needed for this applet
318: </NOEMBED>
319: </EMBED>
320: </OBJECT>
321: <P>
322: Finish.
323: </P>
324: </BODY>
325: </HTML>

4.5 Using appletviewer when developing Java applets
When developing a Java applet, the .class file will often be changed before
the final version is produced. One problem that authors of Java applets
often face is the difficulty in persuading a WWW browser to load a new
version of a .class file if the .class file has changed on the author's WWW
site. With some releases of some WWW browsers, pressing the Shift key at
the same time as clicking the browser's Reload button may cause it to
reload everything. If this does not work, then the only sure way to get round
this problem is to exit from the WWW browser and to start it up again.

If you are developing a WWW applet, it will be very tedious if you have to
restart the WWW browser frequently.

However, the SDK/JDK comes with a tool called appletviewer that can be
used to view the output of an applet whose .class file is mentioned in a
WWW page. So, having compiled some Java source code, e.g.:

javac HelloJApplet.java

the HelloJApplet.class file can be executed and its output can be displayed
by running the following UNIX/MS-DOS command:

appletviewer HelloJApplet.html

You can keep this appletviewer program running. If you subsequently make
a change to the HelloJApplet.java file and then recompile it, you can get
appletviewer to load the new version of the HelloJApplet.class file by clicking
on the Reload option of the appletviewer's menu. So this appletviewer
program provides a useful tool for testing Java applets.

Guide 108: Advanced Java 29

http://java.sun.com/products/plugin/1.2/jinstall-12-win32.cab#Version=1,2,0,0
http://java.sun.com/products/plugin/1.2/plugin-install.html

4.6 The lifecycle of a Java applet
The HelloJApplet applet just overrides the paint method. Most applets do
something more involved than just painting. In order to write any code for an
applet you need to be aware of the lifecycle of an applet, i.e., the various
stages that an applet goes through from birth to death.

When the bytecodes of an applet are loaded (or reloaded), the init method
of the applet is executed. Then the applet's start method is executed. This
method is also re-executed when the user comes back to the WWW page
associated with the applet after having visited another page. Whenever the
user leaves this page, the stop method is executed. Finally, the destroy
method is executed if the WWW browser has to unload the applet.

By default, the class java.applet.Applet defines methods for init, start, stop
and destroy that do nothing, i.e., they have empty bodies. So, if you want to
define some actions to take place at the various points in the lifecycle of an
applet, you just need to override the appropriate methods.

Overriding the start and stop methods is important for applets which start a
new thread.

4.7 Overriding the init method
All of the classes that create a window on the screen (i.e., JWindow, JFrame,
JDialog, JInternalFrame and JApplet) have a content pane. This is the main
area of the window, and, we saw earlier that a program can access the
content pane of an object of one of these classes by executing its
getContentPane method.

So, instead of overriding the paint method to output the string "Hello world"
as is done by the HelloJApplet applet, we could instead add a JLabel
containing this string to the applet's content pane. As we only want to
execute the code to add the JLabel object to the content pane once, it is
appropriate to put the call of add in an init method of an applet. Here is an
applet that does this:

326: // An applet that adds a JLabel to its content pane. // JLabelJApplet.java
327: // Barry Cornelius, 3rd May 1999
328: import java.awt.BorderLayout;
329: import java.awt.Container;
330: import javax.swing.JApplet;
331: import javax.swing.JLabel;
332: public class JLabelJApplet extends JApplet
333: {
334: public void init()
335: {
336: final JLabel tJLabel = new JLabel("Hello world");
337: final Container tContentPane = getContentPane();
338: tContentPane.add(tJLabel, BorderLayout.CENTER);
339: }
340: }

Guide 108: Advanced Java 30

4.8 Restrictions imposed on Java applets
So far, programs have been able to read from files, to write to files, and to
call methods (such as System.exit) that behind the scenes make system
calls, i.e., calls to routines of the underlying operating system. Using some
of the APIs that have not been considered, it is also possible to write Java
source code that communicates with other computers. Although it is
reasonable for these sort of activities to be performed by Java source code
that is a program, i.e., a Java application, is it appropriate for these
activities to be performed by Java applets?

To be more specific: if you visit a WWW page, and the author of that WWW
page causes your WWW browser to execute some bytecodes produced by
the author, are you happy for these bytecodes to write to files on your
computer, or to read any of your files?

The designers of Java took the view that it is not necessarily appropriate for
these activities to be performed by Java applets that have been
downloaded from the Internet. So, the environment of an applet is
controlled by the user of the WWW browser. For example, there is no
access to local files from Netscape's Navigator, whereas HotJava users
can configure which files can be read from and which can be written to.
More details about these restrictions are given at http://java.sun.com/sfaq/

This approach is often called the Sandbox approach. This was Sun's first
attempt at controlling what an applet can do. With later revisions of the
Java Platform, Sun have been providing ways in which an applet can be
allowed to perform these activities. It is now possible to add to an applet a
digital signature authorized by a certificate obtained from a certificate
authority. If you download this signed applet and you allow your WWW
browser to accept its certificate, the applet is said to be a trusted applet.
There are more details about how to execute signed applets at
http://java.sun.com/security/signExample12/

Sun's main WWW page on security restrictions is
http://java.sun.com/security/

Guide 108: Advanced Java 31

http://java.sun.com/sfaq
http://java.sun.com/security/signExample12
http://java.sun.com/security

4.9 Reworking an application as an applet: GetDateApplet
Many of the programs that you have already produced can easily be
rewritten as Java applets. Often this can be done by putting the code of the
main method into an applet's init method. For example, we could take the
statements of the main method of the GetDateProg program (given earlier in
Stage F) and put them into an init method of a GetDateApplet class. The
resulting code is shown here:

341: // // GetDateApplet.java
342: // An applet containing the button to get the date and time.
343: // Barry Cornelius, 22nd November 1999
344: import java.awt. BorderLayout;
345: import java.awt. Container;
346: import javax.swing. JApplet;
347: import javax.swing. JButton;
348: import javax.swing. JFrame;
349: import javax.swing. JTextField;
350: public class GetDateApplet extends JApplet
351: {
352: public void init()
353: {
354: final JFrame tJFrame = new JFrame("GetDateApplet: Stage F");
355: final JTextField tJTextField = new JTextField("hello", 35);
356: final JButton tJButton = new JButton("Get Date");
357: final JButtonListener tJButtonListener =
358: new JButtonListener(tJTextField);
359: tJButton.addActionListener(tJButtonListener);
360: final Container tContentPane = tJFrame.getContentPane();
361: tContentPane.add(tJTextField, BorderLayout.NORTH);
362: tContentPane.add(tJButton, BorderLayout.SOUTH);
363: tJFrame.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
364: tJFrame.pack();
365: tJFrame.setVisible(true);
366: }
367: }

In producing this class, the two statements of GetDateProg that establish a
window listener:

final ExitOnWindowClosing tExitOnWindowClosing = new ExitOnWindowClosing();
tJFrame.addWindowListener(tExitOnWindowClosing);

have been omitted. This is because the ExitOnWindowClosing class has a
windowClosing method that calls System.exit. For the reasons explained in
the previous section, it is not appropriate for an applet to have this code.

When an applet is executed, if it creates any new windows then these will
appear with a yellow warning banner displaying the text
Warning: Applet Window. This text warns the user of the WWW browser that
the window being displayed ha s not been produced by a trusted applet.
The WWW page at http://java.sun.com/products/plugin/plugin.faq.html says
that the `yellow warning banner is an important security feature. It cannot
be disabled by untrusted applets. If you use a signed applet, where the
signing key is trusted by the end user, then the warning banner will not be
shown.`

Guide 108: Advanced Java 32

http://java.sun.com/products/plugin/plugin.faq.html

4.10 Producing code that can be used either as an application or an applet
If you want to use some Java source code sometimes as an application
and sometimes as an applet, it would be better not to have duplicate copies
of the code as is the case with the main method of the GetDateProg class
and the init method of the GetDateApplet class. It is usually easy to rewrite
the code of the program and applet classes so as to avoid the duplication.

4.11 Using the Java archive tool
As was mentioned earlier, the CODE attribute in the HTML that is used to
run an applet identifies the name of the file containing the bytecodes of the
applet's class. However, normally, the author of an applet will provide a
number of supporting classes as well as the class of the applet. It was
pointed out earlier that the bytecodes of each of the .class files will be
downloaded from the author's WWW site as the Java interpreter being used
by the WWW browser detects that it requires them.

For example, suppose a directory contains the files for the GetDateApplet
applet. The following files would have to be downloaded in order to execute
this applet: GetDateApplet.class and JButtonListener.class. Obviously,
programs are usually a lot more complicated than this: such programs may
have a large number of .class files.

The Java 2 SDK (or the JDK) contains a tool that enables the author of an
applet to combine a number of files into a single file. The resulting file is
called a Java Archive. The tool is called jar, and, like the other commands
of the SDK/JDK, it can be run from a UNIX/MS-DOS command line. The
documentation for the jar command says `When the components of an
applet or application (.class files, images and sounds) are combined into a
single archive, they may be downloaded by a Java agent (like a browser) in
a single HTTP transaction, rather than requiring a new connection for each
piece. This dramatically improves download times. jar also compresses files
and so further improves download time.`

Assuming that the directory containing the files for the GetDateApplet applet
only contains .class files that are associated with this applet, then a Java
Archive can be produced from these .class files by the UNIX/MS-DOS
command line:

jar cvf GetDateApplet.jar *.class

The first argument to the jar command, which in this example is cvf,
indicates the options that you want to be passed to the jar command. There
are three main ways in which the jar command is used. If the options
contain a c, then this means that you want to create an archive; if they
contain a t, you want the jar command just to list the contents of an archive
(that already exists); and if they contain an x, you want the command to
extract some .class files from an archive.

If the options include the letter v, then the jar command will produce some
output to tell you what it is doing — v means verbose. Finally, the f means
that the name of an archive is given as the next argument. When a c option
is present, the remaining arguments give the names of the .class files that
you want to be put into the archive. In UNIX/MS-DOS, the notation *.class
refers to all of the files in the current directory that have a .class extension.

Guide 108: Advanced Java 33

So the above jar command produces a file called GetDateApplet.jar that
contains a compressed archive of the two .class files that constitute the
GetDateApplet applet.

Suppose a WWW page contains a CODE attribute to say that the bytecodes
of an applet's class are stored in the file GetDateApplet.class. If you want the
WWW browser to download the bytecodes in the Java Archive
GetDateApplet.jar instead of downloading each .class file, you will need to
include an ARCHIVE attribute as well as the CODE attribute.

If your HTML uses an APPLET tag or an EMBED tag, the syntax of the
ARCHIVE attribute is:

archive="GetDateApplet.jar"

and, if your HTML uses an OBJECT tag, you need to include:

<PARAM NAME="archive" VALUE="GetDateApplet.jar">

Note you need a CODE attribute as well as the ARCHIVE attribute: the latter
gives the name of the file containing the Java Archive (in which all the .class
files are stored) and the CODE attribute gives the name of the class file that
contains the class of the applet, i.e., effectively it identifies the bytecodes
that are executed first.

As mentioned earlier, there are two advantages in using a Java Archive:

• One HTTP connection from the computer running the WWW browser
to the computer of the author's WWW site is made to obtain the
bytecodes in the Java Archive instead of making lots of HTTP
connections, one for each of the .class files.

• Because the information in the Java Archive are stored in a
compressed format, there is less bytes to be downloaded.

5 Other information about Java
ITS Guide 58: Getting started with Java can be used to find out about the
basics of writing programs in Java. Guide 58 also provides:

• the URLs of some WWW pages that form the primary resources for
information about Java;

• details about some books that can be used to find out more
information about the Java programming language.

Guide 108: Advanced Java 34

	1 Introduction
	2 Providing a graphical user interface (GUI)
	2.1 APIs for producing GUIs
	2.2 What the Swing API includes and how it is organised
	2.3 A simple example of a GUI
	2.4 Stage A: obtaining the current date and time
	2.5 Stage B: creating a window
	2.6 Stage C: adding GUI components to the window
	2.7 Stage D: responding to a click of the button
	2.8 Stage E: altering the JTextField component
	2.9 Stage F: closing the window
	2.10 Conclusion

	3 The Collections API
	3.1 An introduction to the Collections API
	3.2 The interface List and the classes ArrayList and LinkedList
	3.3 Using the Iterator interface
	3.4 The methods contains, indexOf, lastIndexof and remove
	3.5 An example of a complete program that manipulates a list
	3.6 Conclusion

	4 Writing applets (for use with the WWW)
	4.1 Using HTML to code WWW pages
	4.2 Getting Java bytecodes executed when a WWW page is visited
	4.3 Deriving from Applet instead of declaring a main method
	4.4 Dealing with the different versions of the Java platform
	4.5 Using appletviewer when developing Java applets
	4.6 The lifecycle of a Java applet
	4.7 Overriding the init method
	4.8 Restrictions imposed on Java applets
	4.9 Reworking an application as an applet: GetDateApplet
	4.10 Producing code that can be used either as an application or an applet
	4.11 Using the Java archive tool

	5 Other information about Java

