
An Introduction to the Java
Programming Language

History of Java
In 1991, a group of Sun Microsystems engineers led by James Gosling decided to
develop a language for consumer devices (cable boxes, etc.). They wanted the
language to be small and use efficient code since these devices do not have
powerful CPUs. They also wanted the language to be hardware independent since
different manufacturers would use different CPUs. The project was code-named
Green.

These conditions led them to decide to compile the code to an intermediate
machine-like code for an imaginary CPU called a virtual machine. (Actually, there
is a real CPU that implements this virtual CPU now.) This intermediate code
(called bytecode) is completely hardware independent. Programs are run by an
interpreter that converts the bytecode to the appropriate native machine code.
Thus, once the interpreter has been ported to a computer, it can run any
bytecoded program.

Sun uses UNIX for their computers, so the developers based their new language
on C++. They picked C++ and not C because they wanted the language to be
object-oriented. The original name of the language was Oak. However, they soon
discovered that there was already a programming language called Oak, so they
changed the name to Java.

The Green project had a lot of trouble getting others interested in Java for smart
devices. It was not until they decided to shift gears and market Java as a language
for web applications that interest in Java took off. Many of the advantages that
Java has for smart devices are even bigger advantages on the web.

Currently, there are two versions of Java. The original version of Java is 1.0. At
the moment (Nov. 1997), most browsers only support this version. The newer
version is 1.1 (in addition 1.2 is in beta). Only MS Internet Explorer 4.0 and Sun's
HotJava browsers currently support it. The biggest differences in the two versions
are in the massive Java class libraries. Unfortunately, Java 1.1 applets will not run
on web browsers that do not support 1.1. (However, it is still possible to create
1.0 applets with Java 1.1 development systems.)

Basics of Java

Applications
There are 2 basic types of Java applications:
standalone

These run as a normal program on the computer. They may be a simple
console application or a windowed application. These programs have the
same capabilities of any program on the system. For example, they may read
and write files. Just as for other languages, it is easily to write a Java console
program than a windowed program. So despite the leanings of the majority
of Java books, the place to start Java programming is a standalone console
program, not an applet!

applets
These run inside a web browser. They must be windowed and have limited
power. They run in a restricted JVM (Java Virtual Machine) called the
sandbox from which file I/O and printing are impossible. (There are ways
for applets to be given more power.)

Development Tools
There are many development tools for Java:
Sun's JDK

Sun's Java Development Kit has two big advantages:

1. It is the most up to date.
2. It is free!

Its main disadvantage is that it only includes command line tools, no IDE. Many
Java books include this on a CD-ROM.
Borland's JBuilder

It contains an IDE and supports Java 1.1
MS Visual J++

It contains an IDE, but to my knowledge does not yet support Java 1.1
Symantec's Visual Cafe

It contains an IDE, but no Java 1.1 support yet.

Compiling and Running a Java Standalone Application
Hello, Java program

Here is a short Java program:
/* A simple Java program */

public class Hello {
 public static void main(String args[])
 {
 System.out.println("Hello, Java");
 }
}

Creating a Java source file

Java source files must end in an .java extension. The root name must be the same
as the name of the one public class in the source file. In the program above, the
class is named Hello and thus, the file must be named Hello.java (Yes, case is
important!).

Just as for other languages, any text editor can be used to save the text of the
program into a text file.

Compiling a Java source file

Sun's JDK includes a Java compiler named javac. To compile the above Java
program one would type:

javac Hello.java
If successful, this creates a file named Hello.class If not successful, it prints out
error messages like other compilers.

Running a Java program

To run a standalone program, Sun's JDK provides a Java interpreter called java.
To run the .class file created above, type:

java Hello
Note that .class is not specified!

The output of running the above program is simply:
Hello, Java

Java Programming
Classes and objects

Java is an object-oriented language (like C++). An object is an abstract thing in a
program. Generally, objects are not completely different from each other and can
be classified into like groups. The group an object belongs to is called a class.
Objects in the same class share two attributes:

1. A state space (i.e., the set of all possible states of the object)

speak).

Consider the Vector class that the Java class library provides. A Vector object is
basically an array that grow or shrink in size dynamically. It's state is defined by:

1. The elements stored in their given order
2. The number of elements stored

It's methods include:
addElement()

Adds an element to end of the vector increasing its size by 1
insertElementAt()

Adds an element at a specified position in the vector. The elements above
are shifted up one position and the size is increased by 1.

setElementAt()
Stores an element at a specified position in the vector. The previous element
value is lost.

removeElementAt()
Removes an element at a specified position. The elements above are shifted
down and the size is decreased by 1.

elementAt()
Returns the element at a specified position.

size()
Returns the current size of the vector.

If v is an object of type Vector, then a method is invoked on v by the following
syntax:

v.method-name(method-arguments);
For example, to add another object x to the end of v use:

v.addElement(x);
In an object-oriented language, one looks at the statement above as a request for
the v object to add the object x to the end. That is, invoking a method sends a
message to the object being acted on. The message asks the object to perform
some operation.

Primitive types

Java also supports some primitive types that are not classes. These types are
similar to the primitive types of C:
byte

a single byte (8-bit) signed integer
char

a two-byte (16-bit) Unicode character
short

a two-byte (16-bit) signed integer

int
a four-byte (32-bit) signed integer

long
an eight-byte (64-bit) signed integer

float
a four-byte floating point number

double
an eight-byte floating point number

boolean
a type of variable that may be either true or false

Defining a class

The general form of a class definition is:
public class class-name {
 /* class state definitions */
 /* class method definitions */
}
Here's an actual example that creates a Queue class:
public class Queue {
 /*
 * the state of the Queue is represented by an internal vector instance
 * (The private indicates that this part of the Queue is only
 * accessible by the methods of the Queue class. This implementation
 * hiding is known as encapsulation.)
 */

 private Vector v;

 /*
 * This is a constructor - it is used to create a new instance of
 * a Queue. The public indicates that this method is available for
 * use by any class.
 */
 public Queue()
 {
 v = new Vector(); // construct the internal vector object
 }

 /*
 * This method adds an element to the queue
 */
 public void enque(Object obj)
 {
 v.addElement(obj); // add to end of internal vector

 }

 /*
 * This method removes and returns an element from the queue
 */
 public Object deque()
 {
 if (v.size() > 0) {
 Object obj = v.elementAt(0); // read object from front of vector
 v.removeElementAt(0); // remove object from front of vector
 return obj; // return object
 }
 else
 return null; // if queue empty, return special null value
 }

 /*
 * This method returns the number of elements in the queue
 */
 public int size()
 {
 return v.size(); // return size of internal vector
 }

}

Using classes

To create an instance of a class, the instance must be constructed by a special
method called a constructor. Constructor methods always have the same name as
the class. To create a queue, one would type:

Queue q = new Queue();
The new keyword says to create a new object. The instance variable q can be used
to refer to this object. Thus, the statement:

q.enque("one");
says to enque the string "one" in the Queue referred to by q.

It is often stated that Java does not have pointers and technically this is true.
However, class reference variables act like pointers (or really more like reference
variables in C++). Assigning class instance variables do not create new instances.
For example:
 Queue q1 = new Queue(); // q1 refers to created Queue object
 Queue q2 = q1; // both q1 and q2 refer to *same* object!

 q1.enque("one");
 q2.enque("two");

 System.out.println((String) q2.deque()); // prints out "one", not "two"
Non-class instance variables (like int variables) work just as in C, assignment
does copy values of these.

These rules have important consequences for parameters of methods. For
example, consider the following method call and code:
 // method call
 int x = 5;
 Queue q = new Queue();
 method(x,q);
 ...
 // method code
 void method(int xp, Queue qp)
 {
 xp++; // changes local var xp, not x!
 qp.enque("word"); // adds "word" to the single object referenced by
 // q and qp
 }
Thus, primitive type instances are always passed by value and class instances are
always passed by reference.

Static methods and state

Normally a method acts on a single object (or instance) of a class. However, it is
possible to define a method that acts on a class itself instead of a particular
instance of the class. These classes are declared static.

The static keyword can also be used on the state variables of the class with a
similar result. The variable becomes a property of the class itself and not any
particular instance.

Static methods can only access the static variables of its class, not the non-static
variables. Here's a very simple example:
public class StaticTest {

 public int ns; // ns is a normal non-static variable
 public static int s; // s is a static variable

 public void ns_method() // normal non-static method
 {
 ns = 3; // can access ns
 s = 5; // and s
 }

 public static void s_method() // static method
 {

 s = 7; // can *only* access static s!
 }
}
Since static methods and instances are properties of a class and not an instance of
a class, they are invoked on the class itself. For example, to call the static method
above, one would type:

StaticTest.s_method();

Now we are ready to understand our initial Java program:
public class Hello {
 public static void main(String args[])
 {
 System.out.println("Hello, Java");
 }
}
System is a name of a class in the Java class library. System.out refers to a static
object in the class that represents the console screen. The println() method is
used to tell System.out to display a string on the console. Note that main() is a
static method.

Object-Oriented Programming and
Inheritance
The preceding section looked at classes from the purely Abstract Data Type view.
The object-oriented paradigm goes further by looking at relationships between
different classes. Often different classes have an IS-A relationship. This type of
relationship exists when one class is a more specialized version of another.

For example, what if one needed a searchable vector class. The Vector class does
not include a method to search for objects inside an instance. However, one could
create a new vector class that performed just like the old Vector class, but directly
supported searching.

The wrong way to do this is to create a new SearchableVector class from scratch
that contains a internal Vector (like how the Queue was implemented). This
would require one to re-specify each of Vector's methods for SearchableVector
(there are many more methods than the one's specified above!).

The right way is to use Java's inheritance mechanism. The SearchableVector
class is an extension of the Vector class. Or, in other words, a SearchableVector
IS-A Vector. A SearchableVector can do anything that a Vector can do, plus
more. Java allows one to simply define a new class that extends the features of an
existing class. The new class automatically has all the state and methods of the
existing class. The syntax is:

class subclass extends superclass {
 // new features of subclass
}
where subclass refers to the new class and superclass refers to the existing class
being extended. All classes in Java are extensions either directly or indirectly from
the Object class. Here is the definition of the SearchableVector class:
public class SearchableVector extends Vector {

 /* search returns the index of the object if found,
 * else -1
 */
 public int search(Object obj)
 {
 for(int i = 0; i < size(); i++)
 if (elementAt(i).equals(obj))
 return i;
 return -1;
 }
}
In the limit of the for loop, the size() method for a Vector is called. No object is
specified since search() itself is a method and so size() acts on the same object
that search() does. The object a method acts on can be referred to by the this
keyword. The size() call in the for loop could be replaced with this.size() with
the same effect.

The if compares the element at index i with the object searched for. The
elementAt(i) call returns the object at index i. The equals() method of this
returned object is then called to compare it with the object searched for. The
equals method of a class compares the values of two instances and returns true or
false based on whether the values are the same. The C-like == operator does not
compare values of classes in Java. It only looks at whether the two variables
compared are referring to the same object. (Remember object variables are really
references!).

Where to Go from Here
Sample code
You can download the code from my examples to try out.

Hello.java
Queue.java
SearchableVector.java
Vtest.java - Test program that uses the two classes above.

Books on Java
There are lots of Java books available. Most of them are not very good! Here are
some of my favorites.

Core Java 1.1: Volume 1 - Fundamentals by Cay S. Horstmann and Gary
Cornell, Pentice-Hall. (This will be the textbook for the Spring 1998 Java
class.)
Java in a Nutshell, 2nd Edition by David Flanagan. O'Reilly. (A very good
reference!)

© 1997 Paul Carter.
Send corrections/comments to pcarter@dogbert.comsc.ucok.edu

