
Introduction to Java and NetBeans:
Hello World!

The Tools You Will Use

What is Java?

Java is a computer programming language — accompanied by a set of development tools, libraries, and

runtime "virtual machines" for a variety of platforms — originally developed by James Gosling and his team

of programmers at Sun Microsystems. (Sun continues to own the Java trademark; to declare and evolve the

standard for Java; and to develop the core tools, classes, and virtual machines that make up the Java family

of products.) The key goals of the Java platform are as follows:

It is intended to be highly portable, allowing code compiled on one platform to be run on another (using

the Java virtual machine architecture), even if the CPUs and operating systems of the two systems are

completely different.

It is intended to be secure. Compiled Java code can be "signed" with certificates issued by trusted

agencies, to ensure that software which purports to be from a given provider is indeed from that

provider; also, runtime policies can be set, granting each Java class a configurable level of access to the

resources of the host system, based on whether the code is signed or unsigned (and, if signed, based on

the signer), as well as the source and location of the compiled code.

It is intended to be general-purpose. Although Java originally gained wide attention as a language and

runtime platform for Web applets (actually, Java was originally intended for use in "intelligent devices"

— set-top boxes, PDAs, etc.), and although its virtual machine architecture means that Java programs

will generally not run as fast as code which is compiled and optimized for a specific hardware platform

and operating system, the language and APIs are intended to give sufficient flexibility for a wide variety

of applications, with an acceptable level of performance for most.

Finally, it was, and is, intended to leverage and encourage good programming practices — through the

evolving product itself, and through supporting materials available from Sun. A central set of practices

supported by Java are referred to as "object-oriented programming".

In most of these aspects, Java succeeds pretty well. Of course, there is a price for the flexibility and power

that Java offers: while its learning curve may not be as steep as that for C++ (for example), expertise in Java

still requires a significant amount of time and practice. Nonetheless, a programmer can become productive in

Java in a relatively short amount of time, and a casual programmer can do good work in Java without having

to be a Java guru.

What is Object-Oriented Programming?

Object-oriented programming is a programming style, and a set of programming practices — usually

supported to some extent by the underlying programming language and environment — through the use of

which a programmer is able to do the following:

Define and instantiate (i.e. create new variables based on) custom variable types, based on the intrinsic

types in the language, and on other custom types.

Incorporate the operations relevant to the new types (i.e. how they behave) into the definitions of the

types.

Define and use the new types as specializations of the types on which they are based — supporting the

same operations, with extensions, modifications, and additions to the relevant operations as appropriate.

Programmatically invoke the operations associated with a custom type, on an instance of that type,

without the invoking code having to be aware of the internal details of that type — or even that the

instance may be of a type which is a specialization of the referred-to type. In other words, the variable

types can be "black boxes", and an instance of a specialized type can be treated as if it were an instance

of the more general type on which the specialization is based.

The ability to encapsulate data and behavior together makes OOP a very good fit for modeling and

simulation projects, where objects in the physical world (with their own attributes and behaviors) are

mapped to corresponding objects (with the associated attributes and behaviors) in a computer program, and

the interactions between those objects are simulated in the program.

A few programming languages have been designed from the ground-up as purely object-oriented languages.

However, many more are hybrids — existing languages with object-oriented features added in, or new

languages which incorporate some object-oriented, and some non-object-oriented, concepts and features. For

example, Visual Basic and Object Pascal (the Pascal dialect used in Delphi) fall into the category of

languages which started out as non-object-oriented, and which have had object-oriented features grafted on;

on the other hand, C++ and Java fall into the category of hybrid languages which have incorporated some

object-oriented elements — and some non-object-oriented elements — from their inceptions.

How do I start writing Java programs?

Given Sun's aims for Java, it would make sense for Sun to make Java compilers, libraries, and virtual

machines widely available, at minimal cost. In fact, that is exactly what they have done — not just at low

cost, but at no cost (in most cases). The Java Development Kit (JDK) can be downloaded free of charge from

the Sun Java site (http://java.sun.com), for Windows and several flavors of Unix/Linux (including Mac OS

X), and for several different CPUs. With the JDK, you can compile Java applications and applets (which can

use the services provided by the classes in the extensive Java API), package compiled classes into .jar

archives, sign archives — even develop Java programs that will run on cell phones and PDAs.

Also available from the Sun Java site is complete reference documentation for Java — the language, tools,

and APIs — and The Java Tutorial. The latter guides a new Java programmer, step-by-step, through

exercises that explore all of the key features of the Java language, and a large portion of the API library.

Introduction to Java and NetBeans: Hello World! 2 of 9

http://java.sun.com
http://java.sun.com/docs/books/tutorial/

What is NetBeans?

There's one very important thing missing from the JDK: a development environment. You can write Java

code with any text editor (a fair number still program with notepad.exe), and then use the compiler in the

JDK, but a good development environment can have a dramatic impact on programmer productivity — as

well as on the rate at which a programmer moves up the learning curve.

Fortunately, Sun recognized this shortcoming several years ago, and in 1999 acquired an Integrated

Development Environment (IDE) intended for Java development — and written in Java, as well — called

NetBeans; they also acquired the company that developed the IDE. In 2000, Sun released NetBeans to open

source, allowing the entire community of NetBeans users to participate directly in the IDE's evolution. Just

as is the case with Java itself, Sun maintains control over the specification of NetBeans, and over the official

releases; but developers oustide Sun are encouraged to contribute fixes and enhancements, and to participate

in the specifications and standards processes.

NetBeans can be downloaded free of charge from netbeans.org

Introduction to Java and NetBeans: Hello World! 3 of 9

http://www.netbeans.org

"Hello World" with Java and NetBeans

Why "Hello World"?

"Hello World" is the generic name for a program which does nothing more than display or print the text:

"Hello, world!" Since the 1970s (the earliest documented appearance was in an internal Bell Laboratories

memo on C programming), the "Hello World" program has been widely used as a first program — a first

program for someone just learning to program, a first program for a programmer learning a new language, a

first program used by a compiler writer to test a new build, etc. "Hello World" programs can be very simple

(like the one we will write today), or much fancier (for example, using advanced features of a GUI to present

an animated "Hello World" message).

Many of you have never programmed in Java before; some that have, have never used NetBeans. So, "Hello

World" is probably not a bad place to start.

Exercise #1: Creating a new NetBeans project

Launch the NetBeans program (it may take a few minutes to fully start up, the first time after installation).

When it has completed its startup process, select New Project… from the File menu, to open the New

Project wizard:

Select General from the list of categories, and Java Application from the list of projects. Then, press the

Next button, to go to the following screen:

Introduction to Java and NetBeans: Hello World! 4 of 9

Follow these steps to complete the New Java Application screen:

For Project Name, type "Hello World" (don't worry about spelling or case for this one — the name

you type is the name NetBeans will use when displaying the project in its workspace, but is has little

to do with the compilation and execution of your program).

1.

The value provided by default in Project Location is probably fine; but if you want to be able to copy

your work to a floppy or USB drive, it might be easier if you specify a directory (by clicking the

Browse… button, and navigating from there) that will be easily found later. (The Desktop is pretty

good for this purpose.) In any event, you will want to write this value down for later use.

2.

Make sure that Set as Main Project is checked.3.

Make sure that Create Main Class is checked, and type "HelloWorld" for the class name (this time,

spelling and case are very important — also make sure you don't have spaces between the words).

4.

Click the Finish button.5.

Now, you should see a new NetBeans project, with the source file for the class you specified (in step #4)

open and ready for editing. (Don't worry if your NetBeans screen isn't laid out in exactly the same way: as

long as you see your new project on the left, and the HelloWorld.java file open on the right, you are doing

fine.)

Introduction to Java and NetBeans: Hello World! 5 of 9

Here are some things to notice about this what is displayed in the NetBeans workspace:

The Java class for our program is HelloWorld (hint: look for the line that begins with the words public

class); similarly, the file in which we define the class is HelloWorld.java. It is very important that

these two match — not just in name (except for the .java file extension), but also in case (more on that

below).

The HelloWorld class contains a method called main. Every Java standalone application must have at

least one class which has a main method, declared in this way. (Note that there are many other kinds of

classes in Java, which don't need a main method; also, there are different kinds of Java programs —

applets, for example — which use different methods as starting points.)

Note that NetBeans has automatically included a line (a comment line) in the main method, which

reads: "// TODO code application logic here"; we will be replacing this line in a few minutes.

The HelloWorld class contains a constructor; this is the code that begins with public HelloWorld().

A constructor is used for creating individual instances (objects) based on the class definition. Since our

first program will be so simple, we can ignore this for now.

As it stands, the code compiles and runs cleanly (even though it doesn't really do anything when it

runs); we can check this by selecting Run Main Project from the Run menu (if the code has been

modified, this will also cause the code to be recompiled before it is run). In general, it is a good practice

to write code in such a way that you can compile and test often — even before the code does everything

it is supposed to do. Similarly, when changing existing code, make and test small changes — rather

than making a large number of changes, and only then trying to compile and test, and finding out that

there are several errors in the code.

Introduction to Java and NetBeans: Hello World! 6 of 9

Exercise #2: Adding the "Hello, World!" code

As mentioned above, every Java standalone application has a method called main, which is declared just like

our own method by that name. There is a reason for this: the Java "executive" (the software responsible for

loading and running programs written in Java) needs to be able to find this method, to know where our

program starts. In other words, the main method is the starting point for a Java standalone application. Since

all we need to do in our program is display a single line of text, it makes sense to keep things simple, and put

the Java code to do that in the main method.

Actually, NetBeans has made our task pretty easy: all we need to do is replace the line that reads " // TODO

code application logic here" with the line of code that will display "Hello, world!" The question is,

what code will do that?

There is a class in the Java API which is always available to us, called System. This class provides many

services to Java applications; one of the most important is access to the standard input and output devices

(i.e. the keyboard and screen — more specifically, a text-mode window). The System.out object is the Java

encapsulation of the standard output device. The type definition for this object (remember the description of

object-oriented programming, above?) includes a number of operations — called "methods", in Java — for

sending data to the standard output device (i.e. displaying data in a text-mode window). For fun (but mostly

because we'll make use of it in a few minutes), we're going to use a method that was only recently added to

the Java API, but which has been available to C and C++ programmers for years: printf.

So, we will be calling the printf method of the System.out object. And, just as the we write System.out,

to refer to the out object in the System class, we will write System.out.printf, to refer to the printf

method in the System.out object.

The only thing left is to tell System.out.printf what it should display. In Java, we put string literals (i.e.

text that we know when we write the code, rather than text that is computed dynamically when the program

is running) inside double quotes. So, the way we would write the text we will display is exactly what you

might expect: "Hello, world!" And the way we tell System.out.printf to display that text is to pass it to

the method, inside parentheses: System.out.printf("Hello, world!"). Finally, we need to end the line of

code with a semicolon (all simple statements in Java need a semicolon at the end), giving us this complete

line of code:

Example: Statement to display "Hello, world!"

System.out.printf("Hello, world!");

Find the line of code in the HelloWorld.java file which reads "// TODO code application logic here",

and replace the entire line (but nothing else) with the line shown above.

When you are done, your main method should read as follows:

Example: "Hello World" main method

public static void main(String[] args) {
 System.out.printf("Hello, world!");
}

Select Run Main Project from the Run menu, and you should see your "Hello World" message, in the

output pane of the NetBeans workspace:

Introduction to Java and NetBeans: Hello World! 7 of 9

Exercise #3: Making it a bit more interesting

So far, so good — but let's face it: "Hello World" programs are pretty boring. We don't have time to do

anything really exciting with our program, but we can make the text displayed a little less static. In fact, that

was why we used the System.out.printf method: it makes it easy to output dynamic data, along with static

text. We haven't made use of those capabilities yet — but we will now.

Our last Java programming task in this session will be to include the current date and time (to the nearest

second) in the text we display.

First, let's see how we will need to change the "Hello World" text. The System.out.printf method lets us

include placeholders in the text; at runtime, these placeholders are replaced with values that we pass to the

method (in addition to the text itself). These placeholders not only mark the position in the text where we

want the dynamic values to appear — they also indicate the kind of values we are passing, and any

conversions we want to apply to those values, before displaying them. In this case, the placeholder for a

date/time value, formatted in a fairly universal format, is "%tc"; for now, let's assume that we will put this

placeholder in the text right after the words "Hello, world!", and in parentheses: "Hello, world!

(%tc)".

The placeholder tells the System.out.printf method where and how to display the value we pass — but it

doesn't tell it the value we want to display. We know we want to display the current date and time, but how

can we refer to that value, and pass it to the System.out.printf method? As it turns out, there is a class in

the standard Java API library, which will do most of the work for us. That class is one of the custom

datatypes we discussed earlier — the class we want is called Date, and it is located in the package (packages

are collections of classes) java.util; we can thus refer to the class as java.util.Date. When we create a

new object from this class, that new Date object will have as its value the current date and time, taken from

the computer's system clock; the way we create this new object is with the operator new, like this: new

java.util.Date().

Finally, we can pass this new object (containing the current date and time) to the System.out.printf

method, simply by including it in the parentheses, after the text, with a comma between them. After

modifying the text to include the placeholder, and adding the new Date object, our "Hello World" line of

code should read as follows:

Example: Code to display "Hello, world!", with the current date & time

System.out.printf("Hello, world! (%tc)", new java.util.Date());

Find the line of code that you previously modified in HelloWorld.java, and replace it with the line shown

above. Be very careful about your parentheses and quotation marks, when typing this new line.

Introduction to Java and NetBeans: Hello World! 8 of 9

When the change is complete, your main method should look like the following:

Example: "Hello World" main method, with display of current date & time

public static void main(String[] args) {
 System.out.printf("Hello, world! (%tc)", new java.util.Date());
}

Select Run Main Project from the Run menu, and your new "Hello World" message, with the date and

time, should appear in the NetBeans output pane:

Congratulations on completing your "Hello World" (with a twist) program in Java, with NetBeans!

Introduction to Java and NetBeans: Hello World! 9 of 9

	The Tools You Will Use
	What is Java?
	What is Object-Oriented Programming?
	How do I start writing Java programs?
	What is NetBeans?

	"Hello World" with Java and NetBeans
	Why "Hello World"?
	Exercise #1: Creating a new NetBeans project
	Exercise #2: Adding the "Hello World" code
	Exercise #3: Making it a bit more interesting

