
4

Events

In this chapter:
• Java 1.0 Event Model
• The Event Class
• The Java 1.1 Event

Model

This chapter covers Java’s event-driven programming model. Unlike procedural
programs, windows-based programs require an event-driven model in which the
underlying environment tells your program when something happens. For exam-
ple, when the user clicks on the mouse, the environment generates an event that it
sends to the program. The program must then figure out what the mouse click
means and act accordingly.

This chapter covers two different event models, or ways of handling events. In Java
1.0.2 and earlier, events were passed to all components that could possibly have an
interest in them. Events themselves were encapsulated in a single Event class. Java
1.1 implements a “delegation” model, in which events are distributed only to
objects that have been registered to receive the event. While this is somewhat more
complex, it is much more efficient and also more flexible, because it allows any
object to receive the events generated by a component. In turn, this means that
you can separate the user interface itself from the event-handling code.

In the Java 1.1 event model, all event functionality is contained in a new package,
java.awt.event. Within this package, subclasses of the abstract class AWTEvent rep-
resent different kinds of events. The package also includes a number of Event-
Listener inter faces that are implemented by classes that want to receive different
kinds of events; they define the methods that are called when events of the appro-
priate type occur. A number of adapter classes are also included; they correspond
to the EventListener inter faces and provide null implementations of the methods
in the corresponding listener. The adapter classes aren’t essential but provide a
convenient shortcut for developers; rather than declaring that your class imple-
ments a particular EventListener inter face, you can declare that your class
extends the appropriate adapter.

94

10 July 2002 22:18

The old and new event models are incompatible. Although Java 1.1 supports both,
you should not use both models in the same program.

4.1 Java 1.0 Event Model
The event model used in versions 1.0 through 1.0.2 of Java is fairly simple. Upon
receiving a user-initiated event, like a mouse click, the system generates an
instance of the Event class and passes it along to the program. The program identi-
fies the event’s target (i.e., the component in which the event occurred) and asks
that component to handle the event. If the target can’t handle this event, an
attempt is made to find a component that can, and the process repeats. That is all
there is to it. Most of the work takes place behind the scenes; you don’t have to
worr y about identifying potential targets or delivering events, except in a few spe-
cial circumstances. Most Java programs only need to provide methods that deal
with the specific events they care about.

4.1.1 Identifying the Target
All events occur within a Java Component. The program decides which component
gets the event by starting at the outermost level and working in. In Figure 4-1,
assume that the user clicks at the location (156, 70) within the enclosing Frame’s
coordinate space. This action results in a call to the Frame’s deliverEvent()

method, which determines which component within the frame should receive the
event and calls that component’s deliverEvent() method. In this case, the process
continues until it reaches the Button labeled Blood, which occupies the rectangu-
lar space from (135, 60) to (181, 80). Blood doesn’t contain any internal compo-
nents, so it must be the component for which the event is intended. Therefore, an
action event is delivered to Blood, with its coordinates translated to fit within the
button’s coordinate space—that is, the button receives an action event with the
coordinates (21, 10). If the user clicked at the location (47, 96) within the Frame’s
coordinate space, the Frame itself would be the target of the event because there is
no other component at this location.

To reach Blood, the event follows the component/container hierarchy shown in
Figure 4-2.

4.1.2 Dealing With Events
Once deliverEvent() identifies a target, it calls that target’s handleEvent()

method (in this case, the handleEvent() method of Blood) to deliver the event for
processing. If Blood has not overridden handleEvent(), its default implementa-
tion would call Blood’s action() method. If Blood has not overridden action(),
its default implementation (which is inherited from Component) is executed and

4.1 JAV A 1.0 EVENT MODEL 95

10 July 2002 22:18

96 CHAPTER 4: EVENTS

Figure 4–1: deliverEvent

DeliverEvent

Panel 1

Panel 2

Fe

of an

Panel 3

Fi Fo Fum I Smell The Blood

Level 3

Level 1

Level 2

Englishman

deliverEvent

deliverEvent

deliverEvent

Figure 4–2: deliverEvent screen model

does nothing. For your program to respond to the event, you would have to pro-
vide your own implementation of action() or handleEvent().

handleEvent() plays a particularly important role in the overall scheme. It is really
a dispatcher, which looks at the type of event and calls an appropriate method to
do the actual work: action() for action events, mouseUp() for mouse up events,
and so on. Table 4-1 shows the event-handler methods you would have to override
when using the default handleEvent() implementation. If you create your own
handleEvent(), either to handle an event without a default handler or to process
events differently, it is best to leave these naming conventions in place. Whenever

10 July 2002 22:18

you override an event-handler method, it is a good idea to call the overridden
method to ensure that you don’t lose any functionality. All of the event handler
methods return a boolean, which determines whether there is any further event
processing; this is described in the next section, “Passing the Buck.”

Table 4–1: Event Types and Event Handlers

Event Type Event Handler

MOUSE_ENTER mouseEnter()

MOUSE_EXIT mouseExit()

MOUSE_MOVE mouseMove()

MOUSE_DRAG mouseDrag()

MOUSE_DOWN mouseDown()

MOUSE_UP mouseUp()

KEY_PRESS keyDown()

KEY_ACTION keyDown()

KEY_RELEASE keyUp()

KEY_ACTION_RELEASE keyUp()

GOT_FOCUS gotFocus()

LOST_FOCUS lostFocus()

ACTION_EVENT action()

4.1.3 Passing the Buck
In actuality, deliverEvent() does not call handleEvent() directly. It calls the
postEvent() method of the target component. In turn, postEvent() manages the
calls to handleEvent(). postEvent() provides this additional level of indirection to
monitor the return value of handleEvent(). If the event handler returns true, the
handler has dealt with the event completely. All processing has been completed,
and the system can move on to the next event. If the event handler returns false,
the handler has not completely processed the event, and postEvent() will contact
the component’s Container to finish processing the event. Using the screen in Fig-
ure 4-1 as the basis, Example 4-1 traces the calls through deliverEvent(),
postEvent(), and handleEvent(). The action starts when the user clicks on the
Blood button at coordinates (156, 70). In short, Java dives into the depths of the
screen’s component hierarchy to find the target of the event (by way of the
method deliverEvent()). Once it locates the target, it tries to find something to
deal with the event by working its way back out (by way of postEvent(), han-
dleEvent(), and the convenience methods). As you can see, there’s a lot of

4.1 JAV A 1.0 EVENT MODEL 97

10 July 2002 22:18

98 CHAPTER 4: EVENTS

overhead, even in this relatively simple example. When we discuss the Java 1.1
event model, you will see that it has much less overhead, primarily because it
doesn’t need to go looking for a component to process each event.

Example 4–1: The deliverEvent, postEvent, and handleEvent Methods

DeliverEvent.deliverEvent (Event e) called
DeliverEvent.locate (e.x, e.y)
Finds Panel1
Translate Event Coordinates for Panel1
Panel1.deliverEvent (Event e)

Panel1.locate (e.x, e.y)
Finds Panel3
Translate Event Coordinates for Panel3
Panel3.deliverEvent (Event e)

Panel3.locate (e.x, e.y)
Finds Blood
Translate Event Coordinates for Blood
Blood.deliverEvent (Event e)

Blood.postEvent (Event e)
Blood.handleEvent (Event e)

Blood.mouseDown (Event e, e.x, e.y)
returns false

return false
Get parent Container Panel3
Translate Event Coordinates for Panel3
Panel3.postEvent (Event e)

Panel3.handleEvent (Event e)
Component.mouseDown (Event e, e.x, e.y)

returns false
return false

Get parent Container Panel1
Translate Event Coordinates for Panel1
Panel1.postEvent (Event e)

Panel1.handleEvent (Event e)
Component.action (Event e, e.x, e.y)

return false
return false

Get parent Container DeliverEvent
Translate Event Coordinates for DeliverEvent
DeliverEvent.postEvent (Event e)

DeliverEvent.handleEvent
DeliverEvent.action (Event e, e.x, e.y)

return true
return true

return true
return true

return true
return true

return true
return true

return true
return true

10 July 2002 22:18

4.1.4 Overriding handleEvent()
In many programs, you only need to override convenience methods like action()
and mouseUp(); you usually don’t need to override handleEvent(), which is the
high level event handler that calls the convenience methods. However, conve-
nience methods don’t exist for all event types. To act upon an event that doesn’t
have a convenience method (for example, LIST_SELECT), you need to override
handleEvent() itself. Unfortunately, this presents a problem. Unlike the conve-
nience methods, for which the default versions don’t take any action, han-

dleEvent() does quite a lot: as we’ve seen, it’s the dispatcher that calls the
convenience methods. Therefore, when you override handleEvent(), either you
should reimplement all the features of the method you are overriding (a very bad
idea), or you must make sure that the original handleEvent()is still executed to
ensure that the remaining events get handled properly. The simplest way for you
to do this is for your new handleEvent() method to act on any events that it is
interested in and return true if it has handled those events completely. If the
incoming event is not an event that your handleEvent() is interested in, you
should call super.handleEvent() and return its return value. The following code
shows how you might override handleEvent() to deal with a LIST_SELECT event:

public boolean handleEvent (Event e) {
if (e.id == Event.LIST_SELECT) { // take care of LIST_SELECT

System.out.println ("Selected item: " + e.arg);
return true; // LIST_SELECT handled completely; no further action

} else { // make sure we call the overridden method to ensure
// that other events are handled correctly

return super.handleEvent (e);
}

}

4.1.5 Basic Event Handlers
The convenience event handlers like mouseDown(), keyUp(), and lostFocus() are
all implemented by the Component class. The default versions of these methods do
nothing and return false. Because these methods do nothing by default, when
overriding them you do not have to ensure that the overridden method gets
called. This simplifies the programming task, since your method only needs to
return false if it has not completely processed the event. However, if you start to
subclass nonstandard components (for example, if someone has created a fancy
AudioButton, and you’re subclassing that, rather than the standard Button), you
probably should explicitly call the overridden method. For example, if you are
overriding mouseDown(), you should include a call to super.mouseDown(), just as
we called super.handleEvent() in the previous example. This call is “good

4.1 JAV A 1.0 EVENT MODEL 99

10 July 2002 22:18

100 CHAPTER 4: EVENTS

housekeeping”; most of the time, your program will work without it. However, your
program will break as soon as someone changes the behavior of the AudioButton

and adds some feature to its mouseDown() method. Calling the super class’s event
handler helps you write “bulletproof” code.

The code below overrides the mouseDown() method. I’m assuming that we’re
extending a standard component, rather than extending some custom compo-
nent, and can therefore dispense with the call to super.mouseDown().

public boolean mouseDown (Event e, int x, int y) {
System.out.println (“Coordinates: “ + x + “-“ + y);
if ((x > 100) || (y < 100))

return false; // we’re not interested in this event; pass it on
else // we’re interested;

... // this is where event-specific processing goes
return true; // no further event processing

}

Here’s a debugging hint: when overriding an event handler, make sure that the
parameter types are correct—remember that each convenience method has differ-
ent parameters. If your overriding method has parameters that don’t match the
original method, the program will still compile correctly. However, it won’t work.
Because the parameters don’t match, your new method simply overloads the origi-
nal, rather than overriding it. As a result, your method will never be called.

4.2 The Event Class
An instance of the Event class is a platform-independent representation that
encapsulates the specifics of an event that happens within the Java 1.0 model. It
contains everything you need to know about an event: who, what, when, where,
and why the event happened. Note that the Event class is not used in the Java 1.1
event model; instead, Java 1.1 has an AWTEvent class, with subclasses for different
event types.

When an event occurs, you decide whether or not to process the event. If you
decide against reacting, the event passes through your program quickly without
anything happening. If you decide to handle the event, you must deal with it
quickly so the system can process the next event. If handling the event requires a
lot of work, you should move the event-handling code into its own thread. That
way, the system can process the next event while you go off and process the first. If
you do not multithread your event processing, the system becomes slow and unre-
sponsive and could lose events. A slow and unresponsive program frustrates users
and may convince them to find another solution for their problems.

10 July 2002 22:18

4.2.1 Variables
Event contains ten instance variables that offer all the specific information for a
particular event.

Instance variables

public Object arg
The arg field contains some data regarding the event, to be interpreted by the
recipient. For example, if the user presses Return within a TextField, an
Event with an id of ACTION_EVENT is generated with the TextField as the
target and the string within it as the arg. See a description of each specific
event to find out what its arg means.

public int clickCount
The clickCount field allows you to check for double clicking of the mouse.
This field is relevant only for MOUSE_DOWN events. There is no way to specify the
time delta used to determine how quick a double-click needs to be, nor is
there a maximum value for clickCount. If a user quickly clicks the mouse
four times, clickCount is four. Only the passage of a system-specific time delta
will reset the value so that the next MOUSE_DOWN is the first click. The incre-
menting of clickCount does not care which mouse button is pressed.

public Event evt
The evt field does not appear to be used anywhere but is available if you wish
to pass around a linked list of events. Then your program can handle this
event and tell the system to deal with the next one (as demonstrated in the fol-
lowing code), or you can process the entire chain yourself.

public boolean mouseDown (Event e, int x, int y) {
System.out.println ("Coordinates: " + x + "-" + y);
if (e.evt != null)

postEvent (e.evt);
return true;

}

public int id
The id field of Event contains the identifier of the event. The system-gener-
ated events are the following Event constants:

WINDOW_DESTROY MOUSE_ENTER

WINDOW_EXPOSE MOUSE_EXIT

WINDOW_ICONIFY MOUSE_DRAG

WINDOW_DEICONIFY SCROLL_LINE_UP

4.2 THE EVENT CLASS 101

10 July 2002 22:18

102 CHAPTER 4: EVENTS

KEY_PRESS SCROLL_LINE_DOWN

KEY_RELEASE SCROLL_PAGE_UP

KEY_ACTION SCROLL_PAGE_DOWN

KEY_ACTION_RELEASE SCROLL_ABSOLUTE

MOUSE_DOWN LIST_SELECT

MOUSE_UP LIST_DESELECT

MOUSE_MOVE ACTION_EVENT

As a user, you can create your own event types and store your own unique
event ID here. In Java 1.0, there is no formal way to prevent conflicts between
your events and system events, but using a negative IO is a good ad-hoc
method. It is up to you to check all the user events generated in your program
in order to avoid conflicts among user events.

public int key
For keyboard-related events, the key field contains the integer representation
of the keyboard element that caused the event. Constants are available for the
keypad keys. To examine key as a character, just cast it to a char. For nonkey-
board-related events, the value is zero.

pubic int modifiers
The modifiers field shows the state of the modifier keys when the event hap-
pened. A flag is set for each modifier key pressed by the user when the event
happened. Modifier keys are Shift, Control, Alt, and Meta. Since the middle
and right mouse key are indicated in a Java event by a modifier key, one rea-
son to use the modifiers field is to determine which mouse button triggered
an event. See Section 4.2.4 for an example.

public Object target
The target field contains a reference to the object that is the cause of the
event. For example, if the user selects a button, the button is the target of the
event. If the user moves the mouse into a Frame, the Frame is the target. The
target indicates where the event happened, not the component that is deal-
ing with it.

public long when
The when field contains the time of the event in milliseconds. The following
code converts this long value to a Date to examine its contents:

Date d = new Date (e.when);

public int x
public int y

The x and y fields show the coordinates where the event happened. The coor-
dinates are always relative to the top left corner of the target of the event and
get translated based on the top left corner of the container as the event gets

10 July 2002 22:18

passed through the containing components. (See the previous Section 4.1.1
for an example of this translation.) It is possible for either or both of these to
be outside the coordinate space of the applet (e.g., if user quickly moves the
mouse outside the applet).

4.2.2 Constants
Numerous constants are provided with the Event class. Several designate which
event happened (the why). Others are available to help in determining the func-
tion key a user pressed (the what). And yet more are available to make your life
easier.

When the system generates an event, it calls a handler method for it. To deal with
the event, you have to override the appropriate method. The different event type
sections describe which methods you override.

Key constants

These constants are set when a user presses a key. Most of them correspond to
function and keypad keys; since such keys are generally used to invoke an action
from the program or the system, Java calls them action keys and causes them to gen-
erate a different Event type (KEY_ACTION) from regular alphanumeric keys
(KEY_PRESS).

Table 4-2 shows the constants used to represent keys and the event type that uses
each constant. The values, which are all declared public static final int,
appear in the key variable of the event instance. A few keys represent ASCII char-
acters that have string equivalents such as \n. Black stars (�) mark the constants
that are new in Java 1.1; they can be used with the 1.0 event model, provided that
you are running Java 1.1. Java 1.1 events use a different set of key constants
defined in the KeyEvent class.

Table 4–2: Constants for Keys in Java 1.0

Constant Event Type Constant Event Type

HOME KEY_ACTION F9 KEY_ACTION

END KEY_ACTION F10 KEY_ACTION

PGUP KEY_ACTION F11 KEY_ACTION

PGDN KEY_ACTION F12 KEY_ACTION

UP KEY_ACTION PRINT_SCREEN� KEY_ACTION

DOWN KEY_ACTION SCROLL_LOCK� KEY_ACTION

LEFT KEY_ACTION CAPS_LOCK� KEY_ACTION

RIGHT KEY_ACTION NUM_LOCK� KEY_ACTION

F1 KEY_ACTION PAUSE� KEY_ACTION

4.2 THE EVENT CLASS 103

10 July 2002 22:18

104 CHAPTER 4: EVENTS

Table 4–2: Constants for Keys in Java 1.0 (continued)

Constant Event Type Constant Event Type

F2 KEY_ACTION INSERT� KEY_ACTION

F3 KEY_ACTION ENTER (\n)� KEY_PRESS

F4 KEY_ACTION BACK_SPACE (\b)� KEY_PRESS

F5 KEY_ACTION TAB (\t)� KEY_PRESS

F6 KEY_ACTION ESCAPE� KEY_PRESS

F7 KEY_ACTION DELETE� KEY_PRESS

F8 KEY_ACTION

Modifiers

Modifiers are keys like Shift, Control, Alt, or Meta. When a user presses any key or
mouse button that generates an Event, the modifiers field of the Event instance is
set. You can check whether any modifier key was pressed by ANDing its constant
with the modifiers field. If multiple modifier keys were down at the time the event
occurred, the constants for the different modifiers are ORed together in the field.

public static final int ALT_MASK

public static final int CTRL_MASK

public static final int META_MASK

public static final int SHIFT_MASK

When reporting a mouse event, the system automatically sets the modifiers field.
Since Java is advertised as supporting the single-button mouse model, all buttons
generate the same mouse events, and the system uses the modifiers field to differ-
entiate between mouse buttons. That way, a user with a one- or two-button mouse
can simulate a three-button mouse by clicking on his mouse while holding down a
modifier key. Table 4-3 lists the mouse modifier keys; an applet in Section 4.2.4
demonstrates how to differentiate between mouse buttons.

Table 4–3: Mouse Button Modifier Keys

Mouse Button Modifier Key

Left mouse button None

Middle mouse button ALT_MASK

Right mouse button META_MASK

10 July 2002 22:18

For example, if you have a three-button mouse, and click the right button, Java
generates some kind of mouse event with the META_MASK set in the modifiers field.
If you have a one-button mouse, you can generate the same event by clicking the
mouse while depressing the Meta key.

NOTE If you have a multibutton mouse and do an Alt+right mouse or
Meta+left mouse, the results are platform specific. You should get a
mouse event with two masks set.

Key events

The component peers deliver separate key events when a user presses and releases
nearly any key. KEY_ACTION and KEY_ACTION_RELEASE are for the function and
arrow keys, while KEY_PRESS and KEY_RELEASE are for the remaining control and
alphanumeric keys.

public static final int KEY_ACTION
The peers deliver the KEY_ACTION event when the user presses a function
or keypad key. The default Component.handleEvent() method calls the
keyDown() method for this event. If the user holds down the key, this event is
generated multiple times. If you are using the 1.1 event model, the interface
method KeyListener.keyPressed() handles this event.

public static final int KEY_ACTION_RELEASE
The peers deliver the KEY_ACTION_RELEASE event when the user releases a
function or keypad key. The default handleEvent() method for Component

calls the keyUp() method for this event. If you are using the 1.1 event model,
the KeyListener.keyReleased() inter face method handles this event.

public static final int KEY_PRESS
The peers deliver the KEY_PRESS event when the user presses an ordinary key.
The default Component.handleEvent() method calls the keyDown() method
for this event. Holding down the key causes multiple KEY_PRESS events to be
generated. If you are using the 1.1 event model, the interface method KeyLis-

tener.keyPressed() handles this event.

public static final int KEY_RELEASE
The peers deliver KEY_RELEASE events when the user releases an ordinary key.
The default handleEvent() method for Component calls the keyUp() method
for this event. If you are using the 1.1 event model, the interface method
KeyListener.keyReleased() handles this event.

4.2 THE EVENT CLASS 105

10 July 2002 22:18

106 CHAPTER 4: EVENTS

NOTE If you want to capture arrow and keypad keys under the X Window
System, make sure the key codes are set up properly, using the
xmodmap command.

NOTE Some platforms generate events for the modifier keys by themselves,
whereas other platforms require modifier keys to be pressed with
another key. For example, on a Windows 95 platform, if Ctrl+A is
pressed, you would expect one KEY_PRESS and one KEY_RELEASE.
However, there is a second KEY_RELEASE for the Control key. Under
Motif, you get only a single KEY_RELEASE.

Window events

Window events happen only for components that are children of Window. Several
of these events are available only on certain platforms. Like other event types, the
id variable holds the value of the specific event instance.

public static final int WINDOW_DESTROY
The peers deliver the WINDOW_DESTROY event whenever the system tells a win-
dow to destroy itself. This is usually done when the user selects the window
manager’s Close or Quit window menu option. By default, Frame instances do
not deal with this event, and you must remember to catch it yourself. If you
are using the 1.1 event model, the WindowListener.windowClosing() inter-
face method handles this event.

public static final int WINDOW_EXPOSE
The peers deliver the WINDOW_EXPOSE event whenever all or part of a window
becomes visible. To find out what part of the window has become uncovered,
use the getClipRect() method (or getClipBounds() in Java version 1.1) of
the Graphics parameter to the paint() method. If you are using the 1.1 event
model, the WindowListener.windowOpening() inter face method most closely
corresponds to the handling of this event.

public static final int WINDOW_ICONIFY
The peers deliver the WINDOW_ICONIFY event when the user iconifies the win-
dow. If you are using the 1.1 event model, the interface method WindowLis-

tener.windowIconified() handles this event.

public static final int WINDOW_DEICONIFY
The peers deliver the WINDOW_DEICONIFY event when the user de-iconifies the
window. If you are using the 1.1 event model, the interface method Win-

dowListener.windowDeiconified() handles this event.

10 July 2002 22:18

public static final int WINDOW_MOVED
The WINDOW_MOVED event signifies that the user has moved the window. If you
are using the 1.1 event model, the ComponentListener.componentMoved()

inter face method handles this event.

Mouse events

The component peers deliver mouse events when a user presses or releases a
mouse button. Events are also delivered whenever the mouse moves. In order to
be platform independent, Java pretends that all mice have a single button. If you
press the second or third button, Java generates a regular mouse event but sets the
event’s modifers field with a flag that indicates which button was pressed. If you
press the left button, no modifiers flags are set. Pressing the center button sets the
ALT_MASK flag; pressing the right button sets the META_MASK flag. Therefore, you
can determine which mouse button was pressed by looking at the Event.modi-

fiers attribute. Furthermore, users with a one-button or two-button mouse can
generate the same events by pressing a mouse button while holding down the Alt
or Meta keys.

NOTE Early releases of Java (1.0.2 and earlier) only propagated mouse
events from Canvas and Container objects. With the 1.1 event
model, the events that different components process are better
defined.

public static final int MOUSE_DOWN
The peers deliver the MOUSE_DOWN event when the user presses any mouse but-
ton. This action must occur over a component that passes along the
MOUSE_DOWN event. The default Component.handleEvent() method calls the
mouseDown() method for this event. If you are using the 1.1 event model, the
MouseListener.mousePressed() inter face method handles this event.

public static final int MOUSE_UP
The peers deliver the MOUSE_UP event when the user releases the mouse but-
ton. This action must occur over a component that passes along the MOUSE_UP
event. The default handleEvent() method for Component calls the mouseUp()

method for this event. If you are using the 1.1 event model, the interface
method MouseListener.mouseReleased() handles this event.

public static final int MOUSE_MOVE
The peers deliver the MOUSE_MOVE event whenever the user moves the mouse
over any part of the applet. This can happen many, many times more than you
want to track, so make sure you really want to do something with this event
before trying to capture it. (You can also capture MOUSE_MOVE events and

4.2 THE EVENT CLASS 107

10 July 2002 22:18

108 CHAPTER 4: EVENTS

without losing much, choose to deal with only every third or fourth move-
ment.) The default handleEvent() method calls the mouseMove() method for
the event. If you are using the 1.1 event model, the interface method MouseMo-

tionListener.mouseMoved() handles this event.

public static final int MOUSE_DRAG
The peers deliver the MOUSE_DRAG event whenever the user moves the mouse
over any part of the applet with a mouse button depressed. The default
method handleEvent() calls the mouseDrag() method for the event. If you are
using the 1.1 event model, the interface method MouseMotionLis-

tener.mouseDragged() handles this event.

public static final int MOUSE_ENTER
The peers deliver the MOUSE_ENTER event whenever the cursor enters a compo-
nent. The default handleEvent() method calls the mouseEnter() method for
the event. If you are using the 1.1 event model, the interface method
MouseListener.mouseEntered() handles this event.

public static final int MOUSE_EXIT
The peers deliver the MOUSE_EXIT event whenever the cursor leaves a compo-
nent. The default handleEvent() method calls the mouseExit() method for
the event. If you are using the 1.1 event model, the interface method
MouseListener.mouseExited() handles this event.

Scrolling events

The peers deliver scrolling events for the Scrollbar component. The objects that
have a built-in scrollbar (like List, ScrollPane, and TextArea) do not generate
these events. No default methods are called for any of the scrolling events. They
must be dealt with in the handleEvent() method of the Container or a subclass of
the Scrollbar. You can determine which particular event occurred by checking
the id variable of the event, and find out the new position of the thumb by looking
at the arg variable or calling getValue() on the scrollbar. See also the description
of the AdjustmentListener inter face later in this chapter.

public static final int SCROLL_LINE_UP
The scrollbar peers deliver the SCROLL_LINE_UP event when the user presses
the arrow pointing up for the vertical scrollbar or the arrow pointing left for
the horizontal scrollbar. This decreases the scrollbar setting by one back
toward the minimum value. If you are using the 1.1 event model, the interface
method AdjustmentListener.adjustmentValueChanged() handles this event.

10 July 2002 22:18

public static final int SCROLL_LINE_DOWN
The peers deliver the SCROLL_LINE_DOWN event when the user presses the
arrow pointing down for the vertical scrollbar or the arrow pointing right for
the horizontal scrollbar. This increases the scrollbar setting by one toward the
maximum value. If you are using the 1.1 event model, the interface method
AdjustmentListener.adjustmentValueChanged() handles this event.

public static final int SCROLL_PAGE_UP
The peers deliver the SCROLL_PAGE_UP event when the user presses the mouse
with the cursor in the area between the slider and the decrease arrow. This
decreases the scrollbar setting by the paging increment, which defaults to 10,
back toward the minimum value. If you are using the 1.1 event model, the
inter face method AdjustmentListener.adjustmentValueChanged() handles
this event.

public static final int SCROLL_PAGE_DOWN
The peers deliver the SCROLL_PAGE_DOWN event when the user presses the
mouse with the cursor in the area between the slider and the increase arrow.
This increases the scrollbar setting by the paging increment, which defaults to
10, toward the maximum value. If you are using the 1.1 event model, the inter-
face method AdjustmentListener.adjustmentValueChanged() handles this
event.

public static final int SCROLL_ABSOLUTE
The peers deliver the SCROLL_ABSOLUTE event when the user drags the slider
part of the scrollbar. There is no set time period or distance between multiple
SCROLL_ABSOLUTE events. If you are using the Java version 1.1 event model, the
AdjustmentListener.adjustmentValueChanged() inter face method handles
this event.

public static final int SCROLL_BEGIN �

The SCROLL_BEGIN event is not delivered by peers, but you may wish to use it to
signify when a user drags the slider at the beginning of a series of
SCROLL_ABSOLUTE events. SCROLL_END, described next, would then be used to
signify the end of the series.

public static final int SCROLL_END �

The SCROLL_END event is not delivered by peers, but you may wish to use it to
signify when a user drags the slider at the end of a series of SCROLL_ABSOLUTE
events. SCROLL_BEGIN, described previously, would have been used to signify
the beginning of the series.

4.2 THE EVENT CLASS 109

10 July 2002 22:18

110 CHAPTER 4: EVENTS

List events

Two events specific to the List class are passed along by the peers. They signify
when the user has selected or deselected a specific choice in the List. It is not
ordinarily necessary to capture these events, because the peers deliver the
ACTION_EVENT when the user double-clicks on a specific item in the List and it is
this ACTION_EVENT that triggers something to happen. However, if there is reason
to do something when the user has just single-clicked on a choice, these events
may be useful. An example of how they would prove useful is if you are displaying
a list of filenames with the ability to preview files before loading. Single selection
would preview, double-click would load, and deselect would stop previewing.

No default methods are called for any of the list events. They must be dealt with in
the handleEvent() method of the Container of the List or a subclass of the List.
You can determine which particular event occurred by checking the id variable of
the event.

public static final int LIST_SELECT
The peers deliver the LIST_SELECT event when the user selects an item in a
List. If you are using the 1.1 event model, the interface method ItemLis-

tener.itemStateChanged() handles this event.

public static final int LIST_DESELECT
The peers deliver the LIST_DESELECT event when an item in a List has been
deselected. This is generated only if the List permits multiple selections. If
you are using the 1.1 event model, the ItemListener.itemStateChanged()

inter face method handles this event.

Focus events

The peers deliver focus events when a component gains (GOT_FOCUS) or loses
(LOST_FOCUS) the input focus. No default methods are called for the focus events.
They must be dealt with in the handleEvent() method of the Container of the
component or a subclass of the component. You can determine which particular
event occurred by checking the id variable of the event.

NOTE Early releases of Java (1.0.2 and before) did not propagate focus
events on all platforms. This is fixed in release 1.1 of Java. Still, you
should avoid capturing focus events if you want to write portable 1.0
code.

10 July 2002 22:18

public static final int GOT_FOCUS
The peers deliver the GOT_FOCUS event when a component gets the input
focus. If you are using the 1.1 event model, the FocusListener.focusGained()
inter face method handles this event.

public static final int LOST_FOCUS
The peers deliver the LOST_FOCUS event when a component loses the input
focus. If you are using the 1.1 event model, the FocusListener.focusLost()

inter face method handles this event.

FileDialog events

The FileDialog events are another set of nonportable events. Ordinarily, the
FileDialog events are completely dealt with by the system, and you never see
them. Refer to Chapter 6, Containers for exactly how to work with the FileDialog

object. If you decide to create a generic FileDialog object, you can use these
events to indicate file loading and saving. These constants would be used in the id
variable of the specific event instance:

public static final int LOAD_FILE
public static final int SAVE_FILE

Miscellaneous events

ACTION_EVENT is probably the event you deal with most frequently. It is generated
when the user performs the desired action for a specific component type (e.g.,
when a user selects a button or toggles a checkbox). This constant would be found
in the id variable of the specific event instance.

public static final int ACTION_EVENT
The circumstances that lead to the peers delivering the ACTION_EVENT event
depend upon the component that is the target of the event and the user’s plat-
form. Although the event can be passed along differently on different plat-
forms, users will be accustomed to how the peers work on their specific plat-
forms and will not care that it is different on the other platforms. For example,
a Java 1.0 List component on a Microsoft Windows platform allows the user to
select an item by pressing the first letter of the choice, whereupon the List

tries to find an item that starts with the letter. The X Window System List

component does not provide this capability. It works like a normal X List,
where the user must scroll to locate the item and then select it.

When the ACTION_EVENT is generated, the arg variable of the specific Event

instance is set based upon the component type. In Chapters 5–11, which

4.2 THE EVENT CLASS 111

10 July 2002 22:18

112 CHAPTER 4: EVENTS

describe Java’s GUI components, the description of each component contains
an “Events” subsection that describes the value of the event’s arg field. If you
are using the 1.1 event model, the ActionListener.actionPerformed() and
ItemListener.itemStateChanged() inter face methods handle this event,
depending upon the component type.

4.2.3 Event Methods
Constructors

Ordinarily, the peers deliver all your events for you. However, if you are creating
your own components or want to communicate across threads, it may be necessary
to create your own events. You can also create your own events to notify your com-
ponent’s container of application-specific occurrences. For example, if you were
implementing your own tab sequencing for text fields, you could create a “next
text field” event to tell your container to move to the next text field. Once you cre-
ate the event, you send it through the system using the Component.postEvent()

method.

public Event (Object target, long when, int id, int x, int y, int key, int modifiers, Object arg)
The first version of the constructor is the most complete and is what the other
two call. It initializes all the fields of the Event to the parameters passed and
sets clickCount to 0. See the descriptions of the instance variables Section
4.2.1 for the meanings of the arguments.

public Event (Object target, long when, int id, int x, int y, int key, int modifiers)
The second constructor version calls the first with arg set to null.

public Event (Object target, int id, Object arg)
The final version calls the first constructor with the when, x, y, key, and modi-

fiers parameters set to 0.

Modifier methods

The modifier methods check to see if the different modifier mask values are set.
They report the state of each modifier key at the moment an event occurred. It is
possible for multiple masks to be set if multiple modifiers are pressed when the
event occurs.

There is no altDown() method; to check whether the Alt key is pressed you must
directly compare the event’s modifiers against the Event.ALT_MASK constant. The
metaDown() method is helpful when dealing with mouse events to see if the user
pressed the right mouse button.

10 July 2002 22:18

public boolean shiftDown ()
The shiftDown() method returns true if the Shift key was pressed and false

other wise. There is no way to differentiate left and right shift keys.

public boolean controlDown ()
The controlDown() method returns true if the Control key was pressed and
false other wise.

public boolean metaDown ()
The metaDown() method returns true if the Meta key was pressed and false

other wise.

Miscellaneous methods

public void translate (int x, int y)
The translate() method translates the x and y coordinates of the Event

instance by x and y. The system does this so that the coordinates of the event
are relative to the component receiving the event, rather than the container of
the component. The system takes care of all this for you when passing the
event through the containment hierarchy (not the object hierarchy), so you
do not have to bother with translating them yourself. Figure 4-3 shows how this
method would change the location of an event from a container down to an
internal component.

protected String paramString ()
When you call the toString() method of Event, the paramString() method is
called in turn to build the string to display. In the event you subclass Event to
add additional information, instead of having to provide a whole new
toString() method, you need only add the new information to the string
already generated by paramString(). Assuming the new information is foo,
this would result in the following method declaration:

protected String paramString() {
return super.paramString() + ",foo=" + foo;

}

public String toString ()
The toString() method of Event returns a string with numerous components.
The only variables that will always be in the output will be the event ID and the
x and y coordinates. The others will be present if necessary (i.e., non-null):
key (as the integer corresponding to a keyboard event), shift when shift-

Down() is true; control, when controlDown() is true; meta, when metaDown() is
true; target (if it was a Component); and arg (the value depends on the target
and ID). toString() does not display all pieces of the Event information. An
event when moving a Scrollbar might result in the following:

4.2 THE EVENT CLASS 113

10 July 2002 22:18

114 CHAPTER 4: EVENTS

Object sees mouse click event at position
(118, 77)

Mouse Click

Object sees mouse click event at position (245, 143)

Object sees mouse
click event at position
(30, 19)

Figure 4–3: Translating an event’s location relative to a component

java.awt.Event[id=602,x=374,y=110,target=java.awt.Scrollbar[374,
110,15x50,val=1,vis=true,min=0,max=255,vert],arg=1]

4.2.4 Working With Mouse Buttons in Java 1.0
As stated earlier, the modifiers component of Event can be used to differentiate
the different mouse buttons. If the user has a multibutton mouse, the modifiers

field is set automatically to indicate which button was pressed. If the user does not
own a multibutton mouse, he or she can press the mouse button in combination
with the Alt or Meta keys to simulate a three-button mouse. Example 4-2 is a sam-
ple program called mouseEvent that displays the mouse button selected.

Example 4–2: Differentiating Mouse Buttons in Java 1.0

import java.awt.*;
import java.applet.*;
public class mouseEvent extends Applet {

String theString = "Press a Mouse Key";
public synchronized void setString (String s) {

theString = s;
}
public synchronized String getString () {

return theString;
}
public synchronized void paint (Graphics g) {

g.drawString (theString, 20, 20);
}
public boolean mouseDown (Event e, int x, int y) {

if (e.modifiers == Event.META_MASK) {

10 July 2002 22:18

Example 4–2: Differentiating Mouse Buttons in Java 1.0 (continued)

setString ("Right Button Pressed");
} else if (e.modifiers == Event.ALT_MASK) {

setString ("Middle Button Pressed");
} else {

setString ("Left Button Pressed");
}
repaint ();
return true;

}
public boolean mouseUp (Event e, int x, int y) {

setString ("Press a Mouse Key");
repaint ();
return true;

}
}

Unfortunately, this technique does not always work. With certain components on
some platforms, the peer captures the mouse event and does not pass it along; for
example, on Windows, the display-edit menu of a TextField appears when you
select the right mouse button. Be cautious about relying on multiple mouse but-
tons; better yet, if you want to ensure absolute portability, stick to a single
button.

4.2.5 Comprehensive Event List
Unfortunately, there are many platform-specific differences in the way event han-
dling works. It’s not clear whether these differences are bugs or whether vendors
think they are somehow improving their product by introducing portability prob-
lems. We hope that as Java matures, different platforms will gradually come into
synch. Until that happens, you might want your programs to assume the lowest
common denominator. If you are willing to take the risk, you can program for a
specific browser or platform, but should be aware of the possibility of changes.

Appendix C, Platform-Specific Event Handling, includes a table that shows which
components pass along which events by default in the most popular environments.
This table was developed using an interactive program called compList, which gen-
erates a list of supported events for each component. You can find compList on
this book’s Web site, http://www.ora.com/catalog/javawt. If you want to check the
behavior of some new platform, or a newer version of one of the platforms in
Appendix C, feel free to use compList. It does require a little bit of work on your
part. You have to click, toggle, type, and mouse over every object. Hopefully, as
Java matures, this program will become unnecessary.

4.2 THE EVENT CLASS 115

10 July 2002 22:18

116 CHAPTER 4: EVENTS

4.3 The Java 1.1 Event Model
Now it’s time to discuss the new event model that is implemented by the 1.1
release of the JDK. Although this model can seem much more complex (it does
have many more pieces), it is really much simpler and more efficient. The new
event model does away with the process of searching for components that are
interested in an event—deliverEvent(), postEvent(), handleEvent()—and all
that. The new model requires objects be registered to receive events. Then, only
those objects that are registered are told when the event actually happens.

This new model is called “delegation”; it implements the Observer-Observable
design pattern with events. It is important in many respects. In addition to being
much more efficient, it allows for a much cleaner separation between GUI compo-
nents and event handling. It is important that any object, not just a Component, can
receive events. Therefore, you can separate your event-handling code from your
GUI code. One set of classes can implement the user interface; another set of
classes can respond to the events generated by the interface. This means that if
you have designed a good interface, you can reuse it in different applications by
changing the event processing. The delegation model is essential to JavaBeans,
which allows interaction between Java and other platforms, like OpenDoc or
ActiveX. To allow such interaction, it was essential to separate the source of an
event from the recipient.*

The delegation model has several other important ramifications. First, event han-
dlers no longer need to worry about whether or not they have completely dealt
with an event; they do what they need to, and return. Second, events can be broad-
cast to multiple recipients; any number of classes can be registered to receive an
event. In the old model, broadcasting was possible only in a very limited sense, if at
all. An event handler could declare that it hadn’t completely processed an event,
thus letting its container receive the event when it was done, or an event handler
could generate a new event and deliver it to some other component. In any case,
developers had to plan how to deliver events to other recipients. In Java 1.1, that’s
no longer necessary. An event will be delivered to every object that is registered as
a listener for that event, regardless of what other objects do with the event. Any lis-
tener can mark an event “consumed,” so it will be ignored by the peer or (if they
care) other listeners.

Finally, the 1.1 event model includes the idea of an event queue. Instead of having
to override handleEvent() to see all events, you can peek into the system’s event
queue by using the EventQueue class. The details of this class are discussed at the
end of this chapter.

* For more information about JavaBeans, see http://splash.javasoft.com/beans/.

10 July 2002 22:18

In Java 1.1, each component is an event source that can generate certain types of
events, which are all subclasses of AWTEvent. Objects that are interested in an event
are called listeners. Each event type corresponds to a listener interface that specifies
the methods that are called when the event occurs. To receive an event, an object
must implement the appropriate listener interface and must be registered with the
event’s source, by a call to an “add listener” method of the component that gener-
ates the event. Who calls the “add listener” method can vary; it is probably the best
design for the component to register any listeners for the events that it generates,
but it is also possible for the event handler to register itself, or for some third
object to handle registration (for example, one object could call the constructor
for a component, then call the constructor for an event handler, then register the
event handler as a listener for the component’s events).

This sounds complicated, but it really isn’t that bad. It will help to think in con-
crete terms. A TextField object can generate action events, which in Java 1.1 are
of the class ActionEvent. Let’s say we have an object of class TextActionHandler
that is called myHandler that is interested in receiving action events from a text
field named inputBuffer. This means that our object must implement the
ActionListener inter face, and this in turn, means that it must include an
actionPerformed() method, which is called when an action event occurs. Now, we
have to register our object’s interest in action events generated by inputBuffer; to
do so, we need a call to inputBuffer.addActionListener(myHandler). This call
would probably be made by the object that is creating the TextField but could
also be made by our event handler itself. The code might be as simple as this:

...
public void init(){

...
inputBuffer = new TextField();
myHandler = new TextActionHandler();
inputBuffer.addActionListener(myHandler); // register the handler for the

// buffer’s events
add (inputBuffer); // add the input buffer to the display
...

}

Once our object has been registered, myHandler.actionPerformed() will be called
whenever a user does anything in the text field that generates an action event, like
typing a carriage return. In a way, actionPerformed() is very similar to the
action() method of the old event model—except that it is not tied to the Compo-
nent hierarchy; it is part of an interface that can be implemented by any object
that cares about events.

4.3 THE JAV A 1.1 EVENT MODEL 117

10 July 2002 22:18

118 CHAPTER 4: EVENTS

Of course, there are many other kinds of events. Figure 4-4 shows the event hierar-
chy for Java 1.1. Figure 4-5 shows the different listener interfaces, which are all
subinter faces of EventListener, along with the related adapter classes.

extendsCLASS

ABSTRACT CLASS

ActionEvent

AWTEvent

java.awt.event

KEY

java.awt

AdjustmentEvent

ComponentEvent

ItemEvent

TextEvent

ContainerEvent

FocusEvent

InputEvent

PaintEvent

WindowEvent

KeyEvent

MouseEvent

Figure 4–4: AWTEvent class hierarchy

Some of the listener interfaces are constructed to deal with multiple events. For
instance, the MouseListener inter face declares five methods to handle different
kinds of mouse events: mouse down, mouse up, click (both down and up), mouse
enter, and mouse exit. Strictly speaking, this means that an object interested in
mouse events must implement MouseListener and must therefore implement five
methods to deal with all possible mouse actions. This sounds like a waste of the
programmer’s effort; most of the time, you’re only interested in one or two of
these events. Why should you have to implement all five methods? Fortunately, you
don’t. The java.awt.event package also includes a set of adapter classes, which are
shorthands that make it easier to write event handlers. The adapter class for any
listener interface provides a null implementation of all the methods in that inter-
face. For example, the MouseAdapter class provides stub implementations of the
methods mouseEntered(), mouseExited(), mousePressed(), mouseReleased(), and
mouseClicked(). If you want to write an event-handling class that deals with mouse
clicks only, you can declare that your class extends MouseAdapter. It then inherits
all five of these methods, and your only programming task is to override the single
method you care about: mouseClicked().

A particularly convenient way to use the adapters is to write an anonymous inner
class. For example, the following code deals with the MOUSE_PRESSED event without
creating a separate listener class:

10 July 2002 22:18

implements

extends

INTERFACE

CLASS ABSTRACT CLASS

Object

java.lang

java.util

ComponentListener

ContainerListener

FocusListener

KeyListener

MouseListener

MouseMotionListener

TextListener

ItemListener

WindowListener

java.awt.event

KEY

ActionListener

AdjustmentListener

ComponentAdapter

ContainerAdapter

FocusAdapter

KeyAdapter

MouseAdapter

MouseMotionAdapter

WindowAdapter

EventListener

Figure 4–5: AWT EventListener and Adapter class hierarchies

addMouseListener (new MouseAdapter() {
public void mousePressed (MouseEvent e) {
// do what’s needed to handle the event
System.out.println ("Clicked at: " + e.getPoint());

}
});

This code creates a MouseAdapter, overrides its mousePressed() method, and regis-
ters the resulting unnamed object as a listener for mouse events. Its mouse-

Pressed() method is called when MOUSE_PRESSED events occur. You can also use
the adapter classes to implement something similar to a callback. For example, you
could override mousePressed() to call one of your own methods, which would
then be called whenever a MOUSE_PRESSED event occurs.

There are adapter classes for most of the listener interfaces; the only exceptions
are the listener interfaces that contain only one method (for example, there’s no
ActionAdapter to go with ActionListener). When the listener interface contains

4.3 THE JAV A 1.1 EVENT MODEL 119

10 July 2002 22:18

120 CHAPTER 4: EVENTS

only one method, an adapter class is superfluous. Event handlers may as well
implement the listener interface directly, because they will have to override the
only method in the interface; creating a dummy class with the interface method
stubbed out doesn’t accomplish anything. The different adapter classes are dis-
cussed with their related EventListener inter faces.

With all these adapter classes, listener interfaces, and event classes, it’s easy to get
confused. Here’s a quick summary of the different pieces involved and the roles
they play:

• Components generate AWTEvents when something happens. Different sub-
classes of AWTEvent represent different kinds of events. For example, mouse
events are represented by the MouseEvent class. Each component can generate
certain subclasses of AWTEvent.

• Event handlers are registered to receive events by calls to an “add listener”
method in the component that generates the event. There is a different “add
listener” method for every kind of AWTEvent the component can generate; for
example, to declare your interest in a mouse event, you call the component’s
addMouseListener() method.

• Ever y event type has a corresponding listener interface that defines the meth-
ods that are called when that event occurs. To be able to receive events, an
event handler must therefore implement the appropriate listener interface.
For example, MouseListener defines the methods that are called when mouse
events occur. If you create a class that calls addMouseListener(), that class had
better implement the MouseListener inter face.

• Most event types also have an adapter class. For example, MouseEvents have a
MouseAdapter class. The adapter class implements the corresponding listener
inter face but provides a stub implementation of each method (i.e., the
method just returns without taking any action). Adapter classes are shorthand
for programs that only need a few of the methods in the listener interface. For
example, instead of implementing all five methods of the MouseListener inter-
face, a class can extend the MouseAdapter class and override the one or two
methods that it is interested in.

4.3.1 Using the 1.1 Event Model
Before jumping in and describing all the different pieces in detail, we will look at a
simple applet that uses the Java 1.1 event model. Example 4-3 is equivalent to
Example 4-2, except that it uses the new event model; when you press a mouse but-
ton, it just tells you what button you pressed. Notice how the new class,
mouseEvent11, separates the user interface from the actual work. The class

10 July 2002 22:18

mouseEvent11 implements a very simple user interface. The class UpDownCatcher
handles the events, figures out what to do, and calls some methods in
mouseEvent11 to communicate the results. I added a simple interface that is called
GetSetString to define the communications between the user interface and the
event handler; strictly speaking, this isn’t necessar y, but it’s a good programming
practice.

Example 4–3: Handling Mouse Events in Java 1.1

// Java 1.1 only
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
interface GetSetString {

public void setString (String s);
public String getString ();

}

The UpDownCatcher class is responsible for handling events generated by the user
inter face. It extends MouseAdapter so that it needs to implement only the
MouseListener methods that we care about (such as mousePressed() and
mouseReleased()).

class UpDownCatcher extends MouseAdapter {
GetSetString gss;
public UpDownCatcher (GetSetString s) {

gss = s;
}

The constructor simply saves a reference to the class that is using this handler.

public void mousePressed (MouseEvent e) {
int mods = e.getModifiers();
if ((mods & MouseEvent.BUTTON3_MASK) != 0) {

gss.setString ("Right Button Pressed");
} else if ((mods & MouseEvent.BUTTON2_MASK) != 0) {

gss.setString ("Middle Button Pressed");
} else {

gss.setString ("Left Button Pressed");
}
e.getComponent().repaint();

}

The mousePressed method overrides one of the methods of the MouseAdapter

class. The method mousePressed() is called whenever a user presses any mouse
button. This method figures out which button on a three-button mouse was
pressed and calls the setString() method in the user interface to inform the user
of the result.

4.3 THE JAV A 1.1 EVENT MODEL 121

10 July 2002 22:18

122 CHAPTER 4: EVENTS

public void mouseReleased (MouseEvent e) {
gss.setString ("Press a Mouse Key");
e.getComponent().repaint();

}
}

The mouseReleased method overrides another of the methods of the Mouse-

Adapter class. When the user releases the mouse button, it calls setString() to
restore the user interface to the original message.

public class mouseEvent11 extends Applet implements GetSetString {
private String theString = "Press a Mouse Key";
public synchronized void setString (String s) {

theString = s;
}
public synchronized String getString () {

return theString;
}
public synchronized void paint (Graphics g) {

g.drawString (theString, 20, 20);
}
public void init () {

addMouseListener (new UpDownCatcher(this));
}

}

mouseEvent11 is a very simple applet that implements our user interface. All it
does is draw the desired string on the screen; the event handler tells it what string
to draw. The init() method creates an instance of the event handler, which is
UpDownCatcher, and registers it as interested in mouse events.

Because the user interface and the event processing are in separate classes, it
would be easy to use this user interface for another purpose. You would have to
replace only the UpDownCatcher class with something else—perhaps a more com-
plex class that reported when the mouse entered and exited the area.

4.3.2 AWTEvent and Its Children
Under the 1.1 delegation event model, all system events are instances of AWTEvent
or its subclasses. The model provides two sets of event types. The first set are fairly
raw events, such as those indicating when a component gets focus, a key is pressed,
or the mouse is moved. These events exist in ComponentEvent and its subclasses,
along with some new events previously available only by overriding non-event-
related methods. In addition, higher-level event types (for example, selecting a
button) are encapsulated in other subclasses of AWTEvent that are not children of
ComponentEvent.

10 July 2002 22:18

4.3.2.1 AWTEvent

Variables

protected int id �

The id field of AWTEvent is protected and is accessible through the getID()

method. It serves as the identifier of the event type, such as the ACTION_PER-

FORMED type of ActionEvent or the MOUSE_MOVE type of Event. With the delega-
tion event model, it is usually not necessary to look at the event id unless you
are looking in the event queue; just register the appropriate event listener.

Constants The constants of AWTEvent are used in conjunction with the internal
method Component.eventEnabled(). They are used to help the program
determine what style of event handling (true/false-containment or
listening-delegation) the program uses and which events a component processes.
If you want to process 1.1 events without providing a listener, you need to set the
mask for the type of event you want to receive. Look in Chapter 5, Components, for
more information on the use of these constants:

public final static long ACTION_EVENT_MASK �
public final static long ADJUSTMENT_EVENT_MASK �
public final static long COMPONENT_EVENT_MASK �
public final static long CONTAINER_EVENT_MASK �
public final static long FOCUS_EVENT_MASK �
public final static long ITEM_EVENT_MASK �
public final static long KEY_EVENT_MASK �
public final static long MOUSE_EVENT_MASK �
public final static long MOUSE_MOTION_EVENT_MASK �
public final static long TEXT_EVENT_MASK �
public final static long WINDOW_EVENT_MASK �

In addition to the mask constants, the constant RESERVED_ID_MAX is the largest
event ID reserved for “official” events. You may use ID numbers greater than this
value to create your own events, without risk of conflicting with standard events.

public final static long RESERVED_ID_MAX �

Constructors Since AWTEvent is an abstract class, you cannot call the
constructors directly. They are automatically called when an instance of a child
class is created.

public AWTEvent(Event event) �

The first constructor creates an AWTEvent from the parameters of a 1.0 Event.
The event.target and event.id are passed along to the second constructor.

4.3 THE JAV A 1.1 EVENT MODEL 123

10 July 2002 22:18

124 CHAPTER 4: EVENTS

public AWTEvent(Object source, int id) �

This constructor creates an AWTEvent with the given source; the source is the
object generating the event. The id field serves as the identifier of the event
type. It is protected and is accessible through the getID() method. With the
delegation event model, it is usually not necessary to look at the event id
unless you are looking in the event queue or in the processEvent() method
of a component; just register the appropriate event listener.

Methods

public int getID() �

The getID() method returns the id from the constructor, thus identifying the
event type.

protected void consume() �

The consume() method is called to tell an event that it has been handled. An
event that has been marked “consumed” is still delivered to the source compo-
nent’s peer and to all other registered listeners. However, the peer will ignore
the event; other listeners may also choose to ignore it, but that’s up to them. It
isn’t possible for a listener to “unconsume” an event that has already been
marked “consumed.”

Noncomponent events cannot be consumed. Only keyboard and mouse event
types can be flagged as consumed. Marking an event “consumed” is useful if
you are capturing keyboard input and need to reject a character; if you call
consume(), the key event never makes it to the peer, and the keystroke isn’t
displayed. In Java 1.0, you would achieve the same effect by writing an event
handler (e.g., keyDown()) that returns true.

You can assume that an event won’t be delivered to the peer until all listeners
have had a chance to consume it. However, you should not make any other
assumptions about the order in which listeners are called.

protected boolean isConsumed() �

The isConsumed() method returns whether the event has been consumed. If
the event has been consumed, either by default or through consume(), this
method returns true; other wise, it returns false.

public String paramString() �

When you call the toString() method of an AWTEvent, the paramString()

method is called in turn to build the string to display. Since you are most fre-
quently dealing with children of AWTEvent, the children need only to override
paramString() to add their specific information.

10 July 2002 22:18

public String toString() �

The toString() method of AWTEvent returns a string with the name of the
event, specific information about the event, and the source. In the method
MouseAdapter.mouseReleased(), printing the parameter would result in some-
thing like the following:

java.awt.event.MouseEvent[MOUSE_RELEASED,(69,107),mods=0,clickCount=1] on panel1

4.3.2.2 ComponentEvent

Constants

public final static int COMPONENT_FIRST �

public final static int COMPONENT_LAST �

The COMPONENT_FIRST and COMPONENT_LAST constants hold the endpoints of
the range of identifiers for ComponentEvent types.

public final static int COMPONENT_HIDDEN �

The COMPONENT_HIDDEN constant identifies component events that occur
because a component was hidden. The interface method ComponentLis-

tener.componentHidden() handles this event.

public final static int COMPONENT_MOVED �

The COMPONENT_MOVED constant identifies component events that occur
because a component has moved. The ComponentListener.componentMoved()
inter face method handles this event.

public final static int COMPONENT_RESIZED �

The COMPONENT_RESIZED constant identifies component events that occur
because a component has changed size. The interface method ComponentLis-

tener.componentResized() handles this event.

public final static int COMPONENT_SHOWN �

The COMPONENT_SHOWN constant identifies component events that occur
because a component has been shown (i.e., made visible). The interface
method ComponentListener.componentShown() handles this event.

Constructors

public ComponentEvent(Component source, int id) �

This constructor creates a ComponentEvent with the given source; the source is
the object generating the event. The id field identifies the event type. If sys-
tem generated, the id will be one of the last four constants above. However,
nothing stops you from creating your own id for your event types.

4.3 THE JAV A 1.1 EVENT MODEL 125

10 July 2002 22:18

126 CHAPTER 4: EVENTS

Methods

public Component getComponent() �

The getComponent() method returns the source of the event—that is, the
component initiating the event.

public String paramString() �

When you call the toString() method of an AWTEvent, the paramString()

method is called in turn to build the string to display. At the ComponentEvent

level, paramString() adds a string containing the event id (if available) and
the bounding rectangle for the source (if appropriate). For example:

java.awt.event.ComponentEvent[COMPONENT_RESIZED (0, 0, 100x100)] on button0

4.3.2.3 ContainerEvent

The ContainerEvent class includes events that result from specific container
operations.

Constants

public final static int CONTAINER_FIRST �

public final static int CONTAINER_LAST �

The CONTAINER_FIRST and CONTAINER_LAST constants hold the endpoints of
the range of identifiers for ContainerEvent types.

public final static int COMPONENT_ADDED �

The COMPONENT_ADDED constant identifies container events that occur because
a component has been added to the container. The interface method Con-

tainerListener.componentAdded() handles this event. Listening for this event
is useful if a common listener should be attached to all components added to
a container.

public final static int COMPONENT_REMOVED �

The COMPONENT_REMOVED constant identifies container events that occur
because a component has been removed from the container. The interface
method ContainerListener.componentRemoved() handles this event.

Constructors

public ContainerEvent(Container source, int id, Component child) �

The constructor creates a ContainerEvent with the given source (the con-
tainer generating the event), to which the given child has been added or
removed. The id field serves as the identifier of the event type. If system gen-
erated, the id will be one of the constants described previously. However,
nothing stops you from creating your own id for your event types.

10 July 2002 22:18

Methods

public Container getContainer() �

The getContainer() method returns the container that generated the event.

public Component getComponent() �

The getComponent() method returns the component that was added to or
removed from the container.

public String paramString() �

When you call the toString() method of an AWTEvent, the paramString()

method is in turn called to build the string to display. At the ContainerEvent

level, paramString() adds a string containing the event id (if available) along
with the name of the child.

4.3.2.4 FocusEvent

The FocusEvent class contains the events that are generated when a component
gets or loses focus. These may be either temporary or permanent focus changes. A
temporar y focus change is the result of something else happening, like a window
appearing in front of you. Once the window is removed, focus is restored. A per-
manent focus change is usually the result of focus traversal, using the keyboard or
the mouse: for example, you clicked in a text field to type in it, or used Tab to
move to the next component. More programmatically, permanent focus changes
are the result of calls to Component.requestFocus().

Constants

public final static int FOCUS_FIRST �

public final static int FOCUS_LAST �

The FOCUS_FIRST and FOCUS_LAST constants hold the endpoints of the range
of identifiers for FocusEvent types.

public final static int FOCUS_GAINED �

The FOCUS_GAINED constant identifies focus events that occur because a com-
ponent gains input focus. The FocusListener.focusGained() inter face
method handles this event.

public final static int FOCUS_LOST �

The FOCUS_LOST constant identifies focus events that occur because a compo-
nent loses input focus. The FocusListener.focusLost() inter face method
handles this event.

Constructors

4.3 THE JAV A 1.1 EVENT MODEL 127

10 July 2002 22:18

128 CHAPTER 4: EVENTS

public FocusEvent(Component source, int id, boolean temporary) �

This constructor creates a FocusEvent with the given source; the source is the
object generating the event. The id field serves as the identifier of the event
type. If system generated, the id will be one of the two constants described
previously. However, nothing stops you from creating your own id for your
event types. The temporary parameter is true if this event represents a tempo-
rar y focus change.

public FocusEvent(Component source, int id) �

This constructor creates a FocusEvent by calling the first constructor with the
temporary parameter set to false; that is, it creates an event for a permanent
focus change.

Methods

public boolean isTemporar y() �

The isTemporary() method returns true if the focus event describes a tempo-
rar y focus change, false if the event describes a permanent focus change.
Once set by the constructor, the setting is permanent.

public String paramString() �

When you call the toString() method of an AWTEvent, the paramString()

method is in turn called to build the string to display. At the FocusEvent level,
paramString() adds a string showing the event id (if available) and whether
or not it is temporary.

4.3.2.5 WindowEvent

The WindowEvent class encapsulates the window-oriented events.

Constants

public final static int WINDOW_FIRST �

public final static int WINDOW_LAST �

The WINDOW_FIRST and WINDOW_LAST constants hold the endpoints of the range
of identifiers for WindowEvent types.

public final static int WINDOW_ICONIFIED �

The WINDOW_ICONIFIED constant identifies window events that occur because
the user iconifies a window. The WindowListener.windowIconified() inter-
face method handles this event.

10 July 2002 22:18

public final static int WINDOW_DEICONIFIED �

The WINDOW_DEICONIFIED constant identifies window events that occur because
the user de-iconifies a window. The interface method WindowListener.win-

dowDeiconified() handles this event.

public final static int WINDOW_OPENED �

The WINDOW_OPENED constant identifies window events that occur the first time
a Frame or Dialog is made visible with show(). The interface method Win-

dowListener.windowOpened() handles this event.

public final static int WINDOW_CLOSING �

The WINDOW_CLOSING constant identifies window events that occur because the
user wants to close a window. This is similar to the familiar event Event.WIN-
DOW_DESTROY dealt with under 1.0 with frames. The WindowListener.window-

Closing() inter face method handles this event.

public final static int WINDOW_CLOSED �

The WINDOW_CLOSED constant identifies window events that occur because a
Frame or Dialog has finally closed, after hide() or destroy(). This comes
after WINDOW_CLOSING, which happens when the user wants the window to
close. The WindowListener.windowClosed() inter face method handles this
event.

NOTE If there is a call to System.exit() in the windowClosing() listener,
the window will not be around to call windowClosed(), nor will other
listeners know.

public final static int WINDOW_ACTIVATED �

The WINDOW_ACTIVATED constant identifies window events that occur because
the user brings the window to the front, either after showing the window, de-
iconifying, or removing whatever was in front. The interface method Win-

dowListener.windowActivated() handles this event.

public final static int WINDOW_DEACTIVATED �

The WINDOW_DEACTIVATED constant identifies window events that occur because
the user makes another window the active window. The interface method Win-

dowListener.windowDeactivated() handles this event.

Constructors

public WindowEvent(Window source, int id) �

This constructor creates a WindowEvent with the given source; the source is the
object generating the event. The id field serves as the identifier of the event
type. If system generated, the id will be one of the seven constants described
previously. However, nothing stops you from creating your own id for your

4.3 THE JAV A 1.1 EVENT MODEL 129

10 July 2002 22:18

130 CHAPTER 4: EVENTS

event types.

Methods

public Window getWindow() �

The getWindow() method returns the Window that generated the event.

public String paramString() �

When you call the toString() method of an AWTEvent, the paramString()

method is in turn called to build the string to display. At the WindowEvent

level, paramString() adds a string containing the event id (if available). In a
call to windowClosing(), printing the parameter would yield:

java.awt.event.WindowEvent[WINDOW_CLOSING] on frame0

4.3.2.6 PaintEvent

The PaintEvent class encapsulates the paint-oriented events. There is no corre-
sponding PaintListener class, so you cannot listen for these events. To process
them, override the paint() and update() routines of Component. The PaintEvent

class exists to ensure that events are serialized properly through the event queue.

Constants

public final static int PAINT_FIRST �

public final static int PAINT_LAST �

The PAINT_FIRST and PAINT_LAST constants hold the endpoints of the range
of identifiers for PaintEvent types.

public final static int PAINT �

The PAINT constant identifies paint events that occur because a component
needs to be repainted. Override the Component.paint() method to handle
this event.

public final static int UPDATE �

The UPDATE constant identifies paint events that occur because a component
needs to be updated before painting. This usually refreshes the display. Over-
ride the Component.update() method to handle this event.

Constructors

public PaintEvent(Component source, int id, Rectangle updateRect) �

This constructor creates a PaintEvent with the given source. The source is the
object whose display needs to be updated. The id field identifies the event
type. If system generated, the id will be one of the two constants described
previously. However, nothing stops you from creating your own id for your
event types. updateRect represents the rectangular area of source that needs
to be updated.

10 July 2002 22:18

Methods

public Rectangle getUpdateRect()
The getUpdateRect() method returns the rectangular area within the
PaintEvent’s source component that needs repainting. This area is set by
either the constructor or the setUpdateRect() method.

public void setUpdateRect(Rectangle updateRect)
The setUpdateRect() method changes the area of the PaintEvent’s source
component that needs repainting.

public String paramString() �

When you call the toString() method of an AWTEvent, the paramString()

method is called in turn to build the string to display. At the PaintEvent level,
paramString() adds a string containing the event id (if available) along with
the area requiring repainting (a clipping rectangle). If you peek in the event
queue, one possible result may yield:

java.awt.event.PaintEvent[PAINT,updateRect=java.awt.Rectangle[x=0,y=0,
width=192,height=173]] on frame0

4.3.2.7 InputEvent

The InputEvent class provides the basis for the key and mouse input and move-
ment routines. KeyEvent and MouseEvent provide the specifics of each.

Constants The constants of InputEvent help identify which modifiers are
present when an input event occurs, as shown in Example 4-3. To examine the
event modifiers and test for the presence of these masks, call getModifiers() to
get the current set of modifiers.

public final static int ALT_MASK �

public final static int CTRL_MASK �

public final static int META_MASK �

public final static int SHIFT_MASK �

The first set of InputEvent masks are for the different modifier keys on the
keyboard. They are often set to indicate which button on a multibutton mouse
has been pressed.

public final static int BUTTON1_MASK �

public final static int BUTTON2_MASK �

public final static int BUTTON3_MASK �

The button mask constants are equivalents for the modifier masks, allowing
you to write more intelligible code for dealing with button events. BUT-

TON2_MASK is the same as ALT_MASK, and BUTTON3_MASK is the same as

4.3 THE JAV A 1.1 EVENT MODEL 131

10 July 2002 22:18

132 CHAPTER 4: EVENTS

META_MASK; BUTTON1_MASK currently isn’t usable and is never set. For example,
if you want to check whether the user pressed the second (middle) mouse but-
ton, you can test against BUTTON2_MASK rather than ALT_MASK. Example 4-3
demonstrates how to use these constants.

Constructors InputEvent is an abstract class with no public constructors.

Methods Unlike the Event class, InputEvent has an isAltDown() method to
check the ALT_MASK setting.

public boolean isAltDown() �

The isAltDown() method checks to see if ALT_MASK is set. If so, isAltDown()
returns true; other wise, it returns false.

public boolean isControlDown() �

The isControlDown() method checks to see if CONTROL_MASK is set. If so,
isControlDown() returns true; other wise, it returns false.

public boolean isMetaDown() �

The isMetaDown() method checks to see if META_MASK is set. If so, the method
isMetaDown() returns true; other wise, it returns false.

public boolean isShiftDown() �

The isShiftDown() method checks to see if SHIFT_MASK is set. If so, the
method isShiftDown() returns true; other wise, it returns false.

public int getModifiers() �

The getModifiers() method returns the current state of the modifier keys.
For each modifier key pressed, a different flag is raised in the return argu-
ment. To check if a modifier is set, AND the return value with a flag and check
for a nonzero value.

if ((ie.getModifiers() & MouseEvent.META_MASK) != 0) {
System.out.println ("Meta is set");

}

public long getWhen() �

The getWhen() method returns the time at which the event occurred. The
return value is in milliseconds. Convert the long value to a Date to examine
the contents. For example:

Date d = new Date (ie.getWhen());

public void consume() �

This class overrides the AWTEvent.consume() method to make it public. Any-
one, not just a subclass, can mark an InputEvent as consumed.

10 July 2002 22:18

public boolean isConsumed() �

This class overrides the AWTEvent.isconsumed() method to make it public.
Anyone can find out if an InputEvent has been consumed.

4.3.2.8 KeyEvent

The KeyEvent class is a subclass of InputEvent for dealing with keyboard events.
There are two fundamental key actions: key presses and key releases. These are
represented by KEY_PRESSED and KEY_RELEASED events. Of course, it’s inconvenient
to think in terms of all these individual actions, so Java also keeps track of the “log-
ical” keys you type. These are represented by KEY_TYPED events. For every keyboard
key pressed, a KeyEvent.KEY_PRESSED event occurs; the key that was pressed is
identified by one of the virtual keycodes from Table 4-4 and is available through
the getKeyCode() method. For example, if you type an uppercase A, you will get
two KEY_PRESSED events, one for shift (VK_SHIFT) and one for the “a” (VK_A). You
will also get two KeyEvent.KEY_RELEASED events. However, there will only be one
KeyEvent.KEY_TYPED event; if you call getKeyChar() for the KEY_TYPED event, the
result will be the Unicode character “A” (type char). KEY_TYPED events do not hap-
pen for action-oriented keys like function keys.

Constants Like the Event class, numerous constants help you identify all the
keyboard keys. Table 4-4 shows the constants that refer to these keyboard keys. The
values are all declared public static final int. A few keys represent ASCII
characters that have string equivalents like \n.

Table 4–4: Key Constants in Java 1.1

VK_ENTER VK_0 VK_A VK_F1 VK_ACCEPT

VK_BACK_SPACE VK_1 VK_B VK_F2 VK_CONVERT

VK_TAB VK_2 VK_C VK_F3 VK_FINAL

VK_CANCEL VK_3 VK_D VK_F4 VK_KANA

VK_CLEAR VK_4 VK_E VK_F5 VK_KANJI

VK_SHIFT VK_5 VK_F VK_F6 VK_MODECHANGE

VK_CONTROL VK_6 VK_G VK_F7 VK_NONCONVERT

VK_ALT VK_7 VK_H VK_F8

VK_PAUSE VK_8 VK_I VK_F9

VK_CAPS_LOCK VK_9 VK_J VK_F10

VK_ESCAPE VK_NUMPAD0 VK_K VK_F11

VK_SPACE VK_NUMPAD1 VK_L VK_F12

VK_PAGE_UP VK_NUMPAD2 VK_M VK_DELETE

4.3 THE JAV A 1.1 EVENT MODEL 133

10 July 2002 22:18

134 CHAPTER 4: EVENTS

Table 4–4: Key Constants in Java 1.1 (continued)

VK_PAGE_DOWN VK_NUMPAD3 VK_N VK_NUM_LOCK

VK_END VK_NUMPAD4 VK_O VK_SCROLL_LOCK

VK_HOME VK_NUMPAD5 VK_P VK_PRINTSCREEN

VK_LEFT VK_NUMPAD6 VK_Q VK_INSERT

VK_UP VK_NUMPAD7 VK_R VK_HELP

VK_RIGHT VK_NUMPAD8 VK_S VK_META

VK_DOWN VK_NUMPAD9 VK_T VK_BACK_QUOTE

VK_COMMA VK_MULTIPLY VK_U VK_QUOTE

VK_PERIOD VK_ADD VK_V VK_OPEN_BRACKET

VK_SLASH VK_W VK_CLOSE_BRACKETVK_SEPARATERa

VK_SEMICOLON VK_SUBTRACT VK_X

VK_EQUALS VK_DECIMAL VK_Y

VK_BACK_SLASH VK_DIVIDE VK_Z

a Expect VK_SEPARATOR to be added at some future point. This constant represents the numeric
separator key on your keyboard.

public final static int VK_UNDEFINED �

When a KEY_TYPED event happens, there is no keycode. If you ask for it, the
getKeyCode() method returns VK_UNDEFINED.

public final static char CHAR_UNDEFINED �

For KEY_PRESSED and KEY_RELEASED events that do not have a corresponding
Unicode character to display (like Shift), the getKeyChar() method returns
CHAR_UNDEFINED.

Other constants identify what the user did with a key.

public final static int KEY_FIRST �

public final static int KEY_LAST �

The KEY_FIRST and KEY_LAST constants hold the endpoints of the range of
identifiers for KeyEvent types.

public final static int KEY_PRESSED �

The KEY_PRESSED constant identifies key events that occur because a keyboard
key has been pressed. To differentiate between action and non-action keys, call
the isActionKey() method described later. The KeyListener.keyPressed()

inter face method handles this event.

10 July 2002 22:18

public final static int KEY_RELEASED �

The KEY_RELEASED constant identifies key events that occur because a key-
board key has been released. The KeyListener.keyReleased() inter face
method handles this event.

public final static int KEY_TYPED �

The KEY_TYPED constant identifies a combination of a key press followed by a
key release for a non-action oriented key. The KeyListener.keyTyped() inter-
face method handles this event.

Constructors

public KeyEvent(Component source, int id, long when, int modifiers, int keyCode,
char keyChar) �

This constructor* creates a KeyEvent with the given source; the source is the
object generating the event. The id field identifies the event type. If system-
generated, the id will be one of the constants above. However, nothing stops
you from creating your own id for your event types. The when parameter rep-
resents the time the event happened. The modifiers parameter holds the
state of the various modifier keys; masks to represent these keys are defined in
the InputEvent class. Finally, keyCode is the virtual key that triggered the
event, and keyChar is the character that triggered it.

The KeyEvent constructor throws the IllegalArgumentException run-time
exception in two situations. First, if the id is KEY_TYPED and keyChar is
CHAR_UNDEFINED, it throws an exception because if a key has been typed, it
must be associated with a character. Second, if the id is KEY_TYPED and key-

Code is not VK_UNDEFINED, it throws an exception because typed keys fre-
quently represent combinations of key codes (for example, Shift struck with
“a”). It is legal for a KEY_PRESSED or KEY_RELEASED event to contain both a
keyCode and a keyChar, though it’s not clear what such an event would repre-
sent.

Methods

public char getKeyChar() �

The getKeyChar() method retrieves the Unicode character associated with the
key in this KeyEvent. If there is no character, CHAR_UNDEFINED is returned.

public void setKeyChar(char KeyChar) �

The setKeyChar() method allows you to change the character for the
KeyEvent. You could use this method to convert characters to uppercase.

* Beta releases of Java 1.1 have an additional constructor that lacks the keyChar parameter. Comments
in the code indicate that this constructor will be deleted prior to the 1.1.1 release.

4.3 THE JAV A 1.1 EVENT MODEL 135

10 July 2002 22:18

136 CHAPTER 4: EVENTS

public int getKeyCode() �

The getKeyCode() method retrieves the virtual keycode (i.e., one of the con-
stants in Table 4-4) of this KeyEvent.

public void setKeyCode(int keyCode) �

The setKeyCode() method allows you to change the keycode for the KeyEvent.
Changes you make to the KeyEvent are seen by subsequent listeners and the
component’s peer.

public void setModifiers(int modifiers) �

The setModifiers() method allows you to change the modifier keys associ-
ated with a KeyEvent to modifiers. The parent class InputEvent already has a
getModifiers() method that is inherited. Since this is your own personal copy
of the KeyEvent, no other listener can find out about the change.

public boolean isActionKey() �

The isActionKey() method allows you to check whether the key associated
with the KeyEvent is an action key (e.g., function, arrow, keypad) or not (e.g.,
an alphanumeric key). For action keys, this method returns true; other wise, it
returns false. For action keys, the keyChar field usually has the value
CHAR_UNDEFINED.

public static String getKeyText (int keyCode) �

The static getKeyText() method returns the localized textual string for key-
Code. For each nonalphanumeric virtual key, there is a key name (the “key
text”); these names can be changed using the AWT properties. Table 4-5 shows
the properties used to redefine the key names and the default name for each
key.

Table 4–5: Key Text Properties

Property Default Property Default

AWT.accept Accept AWT.f8 F8

AWT.add NumPad + AWT.f9 F9

AWT.alt Alt AWT.help Help

AWT.backQuote Back Quote AWT.home Home

AWT.backSpace Backspace AWT.insert Insert

AWT.cancel Cancel AWT.kana Kana

AWT.capsLock Caps Lock AWT.kanji Kanji

AWT.clear Clear AWT.left Left

AWT.control Control AWT.meta Meta

AWT.decimal NumPad . AWT.modechange Mode Change

AWT.delete Delete AWT.multiply NumPad *

AWT.divide NumPad / AWT.noconvert No Convert

10 July 2002 22:18

Table 4–5: Key Text Properties (continued)

Property Default Property Default

AWT.down Down AWT.numLock Num Lock

AWT.end End AWT.numpad NumPad

AWT.enter Enter AWT.pause Pause

AWT.escape Escape AWT.pgdn Page Down

AWT.final Final AWT.pgup Page Up

AWT.f1 F1 AWT.printScreen Print Screen

AWT.f10 F10 AWT.quote Quote

AWT.f11 F11 AWT.right Right

AWT.f12 F12 AWT.scrollLock Scroll Lock

AWT.f2 F2 AWT.separator NumPad ,

AWT.f3 F3 AWT.shift Shift

AWT.f4 F4 AWT.space Space

AWT.f5 F5 AWT.subtract NumPad -

AWT.f6 F6 AWT.tab Tab

AWT.f7 F7 AWT.unknown Unknown keyCode

AWT.up Up

public static String getKeyModifiersText (int modifiers) �

The static getKeyModifiersText() method returns the localized textual string
for modifiers. The parameter modifiers is a combination of the key masks
defined by the InputEvent class. As with the keys themselves, each modifier is
associated with a textual name. If multiple modifiers are set, they are concate-
nated with a plus sign (+) separating them. Similar to getKeyText(), the
strings are localized because for each modifier, an awt property is available to
redefine the string. Table 4-6 lists the properties and the default modifier
names.

Table 4–6: Key Modifiers Text Properties

Property Default

AWT.alt Alt

AWT.control Ctrl

AWT.meta Meta

AWT.shift Shift

public String paramString() �

When you call the toString() method of an AWTEvent, the paramString()

method is called in turn to build the string to display. At the KeyEvent level,

4.3 THE JAV A 1.1 EVENT MODEL 137

10 July 2002 22:18

138 CHAPTER 4: EVENTS

paramString() adds a textual string for the id (if available), the text for the
key (if available from getKeyText()), and modifiers (from getKeyModifiers-

Text()). A key press event would result in something like the following:

java.awt.event.KeyEvent[KEY_PRESSED,keyCode=118,
F7,modifiers=Ctrl+Shift] on textfield0

4.3.2.9 MouseEvent

The MouseEvent class is a subclass of InputEvent for dealing with mouse events.

Constants

public final static int MOUSE_FIRST �

public final static int MOUSE_LAST �

The MOUSE_FIRST and MOUSE_LAST constants hold the endpoints of the range
of identifiers for MouseEvent types.

public final static int MOUSE_CLICKED �

The MOUSE_CLICKED constant identifies mouse events that occur when a mouse
button is clicked. A mouse click consists of a mouse press and a mouse release.
The MouseListener.mouseClicked() inter face method handles this event.

public final static int MOUSE_DRAGGED �

The MOUSE_DRAGGED constant identifies mouse events that occur because the
mouse is moved over a component with a mouse button pressed. The interface
method MouseMotionListener.mouseDragged() handles this event.

public final static int MOUSE_ENTERED �

The MOUSE_ENTERED constant identifies mouse events that occur when the
mouse first enters a component. The MouseListener.mouseEntered() inter-
face method handles this event.

public final static int MOUSE_EXITED �

The MOUSE_EXISTED constant identifies mouse events that occur because the
mouse leaves a component’s space. The MouseListener.mouseExited() inter-
face method handles this event.

public final static int MOUSE_MOVED �

The MOUSE_MOVED constant identifies mouse events that occur because the
mouse is moved without a mouse button down. The interface method Mouse-

MotionListener.mouseMoved() handles this event.

public final static int MOUSE_PRESSED �

The MOUSE_PRESSED constant identifies mouse events that occur because a
mouse button has been pressed. The MouseListener.mousePressed() inter-
face method handles this event.

10 July 2002 22:18

public final static int MOUSE_RELEASED �

The MOUSE_RELEASED constant identifies mouse events that occur because a
mouse button has been released. The MouseListener.mouseReleased() inter-
face method handles this event.

Constructors

public MouseEvent(Component source, int id, long when, int modifiers, int x, int y,
int clickCount, boolean popupTrigger) �

This constructor creates a MouseEvent with the given source; the source is the
object generating the event. The id field serves as the identifier of the event
type. If system-generated, the id will be one of the constants described in the
previous section. However, nothing stops you from creating your own id for
your event types. The when parameter represents the time the event happened.
The modifiers parameter holds the state of the various modifier keys, using
the masks defined for the InputEvent class, and lets you determine which but-
ton was pressed. (x, y) represents the coordinates of the event relative to the
origin of source, while clickCount designates the number of consecutive
times the mouse button was pressed within an indeterminate time period.
Finally, the popupTrigger parameter signifies whether this mouse event should
trigger the display of a PopupMenu, if one is available. (The PopupMenu class is
discussed in Chapter 10, Would You Like to Choose from the Menu?)

Methods

public int getX() �

The getX() method returns the current x coordinate of the event relative to
the source.

public int getY() �

The getY() method returns the current y coordinate of the event relative to
the source.

public synchronized Point getPoint() �

The getPoint() method returns the current x and y coordinates of the event
relative to the event source.

public synchronized void translatePoint(int x, int y) �

The translatePoint() method translates the x and y coordinates of the
MouseEvent instance by x and y. This method functions similarly to the
Event.translate() method.

4.3 THE JAV A 1.1 EVENT MODEL 139

10 July 2002 22:18

140 CHAPTER 4: EVENTS

public int getClickCount() �

The getClickCount() method retrieves the current clickCount setting for the
event.

public boolean isPopupTrigger() �

The isPopupTrigger() method retrieves the state of the popupTrigger setting
for the event. If this method returns true and the source of the event has an
associated PopupMenu, the event should be used to display the menu, as shown
in the following code. Since the action the user performs to raise a pop-up
menu is platform specific, this method lets you raise a pop-up menu without
worr ying about what kind of event took place. You only need to call isPopup-
Trigger() and show the menu if it returns true.

public void processMouseEvent(MouseEvent e) {
if (e.isPopupTrigger())

aPopup.show(e.getComponent(), e.getX(), e.getY());
super.processMouseEvent(e);

}

public String paramString() �

When you call the toString() method of an AWTEvent, the paramString()

method is called in turn to build the string to display. At the MouseEvent level,
a textual string for the id (if available) is tacked on to the coordinates, modi-
fiers, and click count. A mouse down event would result in something like the
following:

java.awt.event.MouseEvent[MOUSE_PRESSED,(5,7),mods=0,clickCount=2] on textfield0

4.3.2.10 ActionEvent

The ActionEvent class is the first higher-level event class. It encapsulates events
that signify that the user is doing something with a component. When the user
selects a button, list item, or menu item, or presses the Return key in a text field,
an ActionEvent passes through the event queue looking for listeners.

Constants

public final static int ACTION_FIRST �

public final static int ACTION_LAST �

The ACTION_FIRST and ACTION_LAST constants hold the endpoints of the range
of identifiers for ActionEvent types.

public final static int ACTION_PERFORMED �

The ACTION_PERFORMED constant represents when a user activates a compo-
nent. The ActionListener.actionPerformed() inter face method handles this
event.

10 July 2002 22:18

public static final int ALT_MASK �

public static final int CTRL_MASK �

public static final int META_MASK �

public static final int SHIFT_MASK �

Similar to the mouse events, action events have modifiers. However, they are
not automatically set by the system, so they don’t help you see what modifiers
were pressed when the event occurred. You may be able to use these constants
if you are generating your own action events. To see the value of an action
event’s modifiers, call getModifiers().

Constructors

public ActionEvent(Object source, int id, String command) �

This constructor creates an ActionEvent with the given source; the source is
the object generating the event. The id field serves as the identifier of the
event type. If system-generated, the id will be ACTION_PERFORMED. However,
nothing stops you from creating your own id for your event types. The com-

mand parameter is the event’s action command. Ideally, the action command
should be some locale-independent string identifying the user’s action. Most
components that generate action events set this field to the selected item’s
label by default.

public ActionEvent(Object source, int id, String command, int modifiers) �

This constructor adds modifiers to the settings for an ActionEvent. This
allows you to define action-oriented events that occur only if certain modifier
keys are pressed.

Methods

public String getActionCommand() �

The getActionCommand() method retrieves the command field from the event. It
represents the command associated with the object that triggered the event.
The idea behind the action command is to differentiate the command associ-
ated with some event from the displayed content of the event source. For
example, the action command for a button may be Help. However, what the
user sees on the label of the button could be a string localized for the environ-
ment of the user. Instead of having your event handler look for 20 or 30 possi-
ble labels, you can test whether an event has the action command Help.

public int getModifiers() �

The getModifiers() method returns the state of the modifier keys. For each
one set, a different flag is raised in the method’s return value. To check if a
modifier is set, AND the return value with a flag, and check for a nonzero
value.

4.3 THE JAV A 1.1 EVENT MODEL 141

10 July 2002 22:18

142 CHAPTER 4: EVENTS

public String paramString() �

When you call the toString() method of an AWTEvent, the paramString()

method is called in turn to build the string to display. At the ActionEvent

level, paramString() adds a textual string for the event id (if available), along
with the command from the constructor. When the user selects a Button with
the action command Help, printing the resulting event yields:

java.awt.event.ActionEvent[ACTION_PERFORMED,cmd=Help] on button0

4.3.2.11 AdjustmentEvent

The AdjustmentEvent class is another higher-level event class. It encapsulates
events that represent scrollbar motions. When the user moves the slider of a scroll-
bar or scroll pane, an AdjustmentEvent passes through the event queue looking
for listeners. Although there is only one type of adjustment event, there are five
subtypes represented by constants UNIT_DECREMENT, UNIT_INCREMENT, and so on.

Constants

public final static int ADJUSTMENT_FIRST �

public final static int ADJUSTMENT_LAST �

The ADJUSTMENT_FIRST and ADJUSTMENT_LAST constants hold the endpoints of
the range of identifiers for AdjustmentEvent types.

public final static int ADJUSTMENT_VALUE_CHANGED �

The ADJUSTMENT_VALUE_CHANGED constant identifies adjustment events that
occur because a user moves the slider of a Scrollbar or ScrollPane. The
AdjustmentListener.adjustmentValueChanged() inter face method handles
this event.

public static final int UNIT_DECREMENT �

UNIT_DECREMENT identifies adjustment events that occur because the user
selects the increment arrow.

public static final int UNIT_INCREMENT �

UNIT_INCREMENT identifies adjustment events that occur because the user
selects the decrement arrow.

public static final int BLOCK_DECREMENT �

BLOCK_DECREMENT identifies adjustment events that occur because the user
selects the block decrement area, between the decrement arrow and the slider.

public static final int BLOCK_INCREMENT �

BLOCK_INCREMENT identifies adjustment events that occur because the user
selects the block increment area, between the increment arrow and the slider.

10 July 2002 22:18

public static final int TRACK �

TRACK identifies adjustment events that occur because the user selects the
slider and drags it. Multiple adjustment events of this subtype usually occur
consecutively.

Constructors

public AdjustmentEvent(Adjustable source, int id, int type, int value) �

This constructor creates an AdjustmentEvent with the given source; the
source is the object generating the event. The id field serves as the identifier
of the event type. If system-generated, the id of the AdjustmentEvent will be
ADJUSTMENT_VALUE_CHANGED. However, nothing stops you from creating your
own id for your event types. The type parameter is normally one of the five
subtypes, with value being the current setting of the slider, but is not
restricted to that.

Methods

public Adjustable getAdjustable() �

The getAdjustable() method retrieves the Adjustable object associated with
this event—that is, the event’s source.

public int getAdjustmentType() �

The getAdjustmentType() method retrieves the type parameter from the con-
structor. It represents the subtype of the current event and, if system-gener-
ated, is one of the following constants: UNIT_DECREMENT, UNIT_INCREMENT,
BLOCK_DECREMENT, BLOCK_INCREMENT, or TRACK.

public int getValue() �

The getValue() method retrieves the value parameter from the constructor.
It represents the current setting of the adjustable object.

public String paramString() �

When you call the toString() method of an AWTEvent, the paramString()

method is called to help build the string to display. At the AdjustableEvent

level, paramString() adds a textual string for the event id (if available), along
with a textual string of the type (if available), and value. For example:

java.awt.event.AdjustableEvent[ADJUSTMENT_VALUE_CHANGED,
adjType=TRACK,value=27] on scrollbar0

4.3.2.12 ItemEvent

The ItemEvent class is another higher-level event class. It encapsulates events that
occur when the user selects a component, like ActionEvent. When the user selects

4.3 THE JAV A 1.1 EVENT MODEL 143

10 July 2002 22:18

144 CHAPTER 4: EVENTS

a checkbox, choice, list item, or checkbox menu item, an ItemEvent passes
through the event queue looking for listeners. Although there is only one type of
ItemEvent, there are two subtypes represented by the constants SELECTED and DE-

SELECTED.

Constants

public final static int ITEM_FIRST �

public final static int ITEM_LAST �

The ITEM_FIRST and ITEM_LAST constants hold the endpoints of the range of
identifiers for ItemEvent types.

public final static int ITEM_STATE_CHANGED �

The ITEM_STATE_CHANGED constant identifies item events that occur because a
user selects a component, thus changing its state. The interface method Item-

Listener.itemStateChanged() handles this event.

public static final int SELECTED �

SELECTED indicates that the user selected the item.

public static final int DESELECTED �

DESELECTED indicates that the user deselected the item.

Constructors

public ItemEvent(ItemSelectable source, int id, Object item, int stateChange) �

This constructor creates a ItemEvent with the given source; the source is the
object generating the event. The id field serves as the identifier of the event
type. If system-generated, the id will be ITEM_STATE_CHANGE. However, noth-
ing stops you from creating your own id for your event types. The item param-
eter represents the text of the item selected: for a Checkbox, this would be its
label, for a Choice the current selection. For your own events, this parameter
could be virtually anything, since its type is Object.

Methods

public ItemSelectable getItemSelectable() �

The getItemSelectable() method retrieves the ItemSelectable object associ-
ated with this event—that is, the event’s source.

public Object getItem() �

The getItem() method returns the item that was selected. This usually repre-
sents some text to help identify the source but could be nearly anything for
user-generated events.

10 July 2002 22:18

public int getStateChange() �

The getStateChange() method returns the stateChange parameter from the
constructor and, if system generated, is either SELECTED or DESELECTED.

public String paramString() �

When you call the toString() method of an AWTEvent, the paramString()

method is called in turn to build the string to display. At the ItemEvent level,
paramString() adds a textual string for the event id (if available), along with a
textual string indicating the value of stateChange (if available) and item. For
example:

java.awt.event.ItemEvent[ITEM_STATE_CHANGED,item=Help,
stateChange=SELECTED] on checkbox1

4.3.2.13 TextEvent

The TextEvent class is yet another higher-level event class. It encapsulates events
that occur when the contents of a TextComponent have changed, although is not
required to have a TextComponent source. When the contents change, either pro-
grammatically by a call to setText() or because the user typed something, a
TextEvent passes through the event queue looking for listeners.

Constants

public final static int TEXT_FIRST �

public final static int TEXT_LAST �

The TEXT_FIRST and TEXT_LAST constants hold the endpoints of the range of
identifiers for TextEvent types.

public final static int TEXT_VALUE_CHANGED �

The TEXT_VALUE_CHANGED constant identifies text events that occur because a
user changes the contents of a text component. The interface method
TextListener.textValueChanged() handles this event.

Constructors

public TextEvent(Object source, int id) �

This constructor creates a TextEvent with the given source; the source is the
object generating the event. The id field identifies the event type. If system-
generated, the id will be TEXT_VALUE_CHANGE. However, nothing stops you
from creating your own id for your event types.

Method

public String paramString() �

When you call the toString() method of an AWTEvent, the paramString()

method is called in turn to build the string to display. At the TextEvent level,
paramString() adds a textual string for the event id (if available).

4.3 THE JAV A 1.1 EVENT MODEL 145

10 July 2002 22:18

146 CHAPTER 4: EVENTS

4.3.3 Event Listener Interfaces and Adapters
Java 1.1 has 11 event listener interfaces, which specify the methods a class must
implement to receive different kinds of events. For example, the ActionListener

inter face defines the single method that is called when an ActionEvent occurs.
These interfaces replace the various event-handling methods of Java 1.0: action()
is now the actionPerformed() method of the ActionListener inter face,
mouseUp() is now the mouseReleased() method of the MouseListener inter face,
and so on. Most of the listener interfaces have a corresponding adapter class,
which is an abstract class that provides a null implementation of all the methods in
the interface. (Although an adapter class has no abstract methods, it is declared
abstract to remind you that it must be subclassed.) Rather than implementing a
listener interface directly, you have the option of extending an adapter class and
overriding only the methods you care about. (Much more complex adapters are
possible, but the adapters supplied with AWT are very simple.) The adapters are
available for the listener interfaces with multiple methods. (If there is only one
method in the listener interface, there is no need for an adapter.)

This section describes Java 1.1’s listener interfaces and adapter classes. It’s worth
noting here that Java 1.1 does not allow you to modify the original event when
you’re writing an event handler.

4.3.3.1 ActionListener

The ActionListener inter face contains the one method that is called when an
ActionEvent occurs. It has no adapter class. For an object to listen for action
events, it is necessary to call the addActionListener() method with the class that
implements the ActionListener inter face as the parameter. The method addAc-

tionListener() is implemented by Button, List, MenuItem, and TextField com-
ponents. Other components don’t generate action events.

public abstract void actionPerformed(ActionEvent e) �

The actionPerformed() method is called when a component is selected or
activated. Every component is activated differently; for a List, activation
means that the user has double-clicked on an entry. See the appropriate sec-
tion for a description of each component.

actionPerformed() is the Java 1.1 equivalent of the action() method in the
1.0 event model.

4.3.3.2 AdjustmentListener

The AdjustmentListener inter face contains the one method that is called when
an AdjustmentEvent occurs. It has no adapter class. For an object to listen for
adjustment events, it is necessary to call addAdjustmentListener() with the class

10 July 2002 22:18

that implements the AdjustmentListener inter face as the parameter. The addAd-

justmentListener() method is implemented by the Scrollbar component and
the Adjustable inter face. Other components don’t generate adjustment events.

public abstract void adjustmentValueChanged(AdjustmentEvent e) �

The adjustmentValueChanged() method is called when a slider is moved. The
Scrollbar and ScrollPane components have sliders, and generate adjustment
events when the sliders are moved. (The TextArea and List components also
have sliders, but do not generate adjustment events.) See the appropriate sec-
tion for a description of each component.

There is no real equivalent to adjustmentValueChanged() in Java 1.0; to work
with scrolling events, you had to override the handleEvent() method.

4.3.3.3 ComponentListener and ComponentAdapter

The ComponentListener inter face contains four methods that are called when a
ComponentEvent occurs; component events are used for general actions on compo-
nents, like moving or resizing a component. The adapter class corresponding to
ComponentListener is ComponentAdapter. If you care only about one or two of the
methods in ComponentListener, you can subclass the adapter and override only
the methods that you are interested in. For an object to listen for component
events, it is necessary to call Component.addComponentListener() with the class
that implements the interface as the parameter.

public abstract void componentResized(ComponentEvent e) �

The componentResized() method is called when a component is resized (for
example, by a call to Component.setSize()).

public abstract void componentMoved(ComponentEvent e) �

The componentMoved() method is called when a component is moved (for
example, by a call to Component.setLocation()).

public abstract void componentShown(ComponentEvent e) �

The componentShown() method is called when a component is shown (for
example, by a call to Component.show()).

public abstract void componentHidden(ComponentEvent e) �

The componentHidden() method is called when a component is hidden (for
example, by a call to Component.hide()).

4.3.3.4 ContainerListener and ContainerAdapter

The ContainerListener inter face contains two methods that are called when a
ContainerEvent occurs; container events are generated when components are

4.3 THE JAV A 1.1 EVENT MODEL 147

10 July 2002 22:18

148 CHAPTER 4: EVENTS

added to or removed from a container. The adapter class for ContainerListener is
ContainerAdapter. If you care only about one of the two methods in Container-

Listener, you can subclass the adapter and override only the method that you are
interested in. For a container to listen for container events, it is necessary to call
Container.addContainerListener() with the class that implements the interface
as the parameter.

public abstract void componentAdded(ContainerEvent e) �

The componentAdded() method is called when a component is added to a con-
tainer (for example, by a call to Container.add()).

public abstract void componentRemoved(ContainerEvent e) �

The componentRemoved() method is called when a component is removed
from a container (for example, by a call to Container.remove()).

4.3.3.5 FocusListener and FocusAdapter

The FocusListener inter face has two methods, which are called when a Focus-

Event occurs. Its adapter class is FocusAdapter. If you care only about one of the
methods, you can subclass the adapter and override the method you are interested
in. For an object to listen for a FocusEvent, it is necessar y to call the Compo-

nent.addFocusListener() method with the class that implements the FocusLis-

tener inter face as the parameter.

public abstract void focusGained(FocusEvent e) �

The focusGained() method is called when a component receives input focus,
usually by the user clicking the mouse in the area of the component.

This method is the Java 1.1 equivalent of Component.gotFocus() in the Java
1.0 event model.

public abstract void focusLost(FocusEvent e) �

The focusLost() method is called when a component loses the input focus.

This method is the Java 1.1 equivalent of Component.lostFocus() in the Java
1.0 event model.

4.3.3.6 ItemListener

The ItemListener inter face contains the one method that is called when an Ite-

mEvent occurs. It has no adapter class. For an object to listen for an ItemEvent, it is
necessar y to call addItemListener() with the class that implements the ItemLis-

tener inter face as the parameter. The addItemListener() method is implemented
by the Checkbox, CheckboxMenuItem, Choice, and List components. Other compo-
nents don’t generate item events.

10 July 2002 22:18

public abstract void itemStateChanged(ItemEvent e) �

The itemStateChanged() method is called when a component’s state is modi-
fied. Every component is modified differently; for a List, modifying the com-
ponent means single-clicking on an entry. See the appropriate section for a
description of each component.

4.3.3.7 KeyListener and KeyAdapter

The KeyListener inter face contains three methods that are called when a
KeyEvent occurs; key events are generated when the user presses or releases keys.
The adapter class for KeyListener is KeyAdapter. If you only care about one or two
of the methods in KeyListener, you can subclass the adapter and only override the
methods that you are interested in. For an object to listen for key events, it is nec-
essar y to call Component.addKeyListener() with the class that implements the
inter face as the parameter.

public abstract void keyPressed(KeyEvent e) �

The keyPressed() method is called when a user presses a key. A key press is,
literally, just what it says. A key press event is called for every key that is
pressed, including keys like Shift and Control. Therefore, a KEY_PRESSED event
has a virtual key code identifying the physical key that was pressed; but that’s
not the same as a typed character, which usually consists of several key presses
(for example, Shift+A to type an uppercase A). The keyTyped() method
reports actual characters.

This method is the Java 1.1 equivalent of Component.keyDown() in the Java 1.0
event model.

public abstract void keyReleased(KeyEvent e) �

The keyReleased() method is called when a user releases a key. Like the key-
Pressed() method, when dealing with keyReleased(), you must think of vir-
tual key codes, not characters.

This method is the Java 1.1 equivalent of Component.keyUp() in the Java 1.0
event model.

public abstract void keyTyped(KeyEvent e) �

The keyTyped() method is called when a user types a key. The method key-

Typed() method reports the actual character typed. Action-oriented keys, like
function keys, do not trigger this method being called.

4.3.3.8 MouseListener and MouseAdapter

The MouseListener inter face contains five methods that are called when a non-
motion oriented MouseEvent occurs; mouse events are generated when the user
presses or releases a mouse button. (Separate classes, MouseMotionListener and

4.3 THE JAV A 1.1 EVENT MODEL 149

10 July 2002 22:18

150 CHAPTER 4: EVENTS

MouseMotionAdapter, are used to handle mouse motion events; this means that
you can listen for mouse clicks only, without being bothered by thousands of
mouse motion events.) The adapter class for MouseListener is MouseAdapter. If
you care about only one or two of the methods in MouseListener, you can subclass
the adapter and override only the methods that you are interested in. For an
object to listen for mouse events, it is necessary to call the method Window.addWin-

dowListener() with the class that implements the interface as the parameter.

public abstract void mouseEntered(MouseEvent e) �

The mouseEntered() method is called when the mouse first enters the bound-
ing area of the component.

This method is the Java 1.1 equivalent of Component.mouseEnter() in the Java
1.0 event model.

public abstract void mouseExited(MouseEvent e) �

The mouseExited() method is called when the mouse leaves the bounding
area of the component.

This method is the Java 1.1 equivalent of Component.mouseExit() in the Java
1.0 event model.

public abstract void mousePressed(MouseEvent e) �

The mousePressed() method is called each time the user presses a mouse but-
ton within the component’s space.

This method is the Java 1.1 equivalent of Component.mouseDown() in the Java
1.0 event model.

public abstract void mouseReleased(MouseEvent e) �

The mouseReleased() method is called when the user releases the mouse but-
ton after a mouse press. The user does not have to be over the original com-
ponent any more; the original component (i.e., the component in which the
mouse was pressed) is the source of the event.

This method is the Java 1.1 equivalent of Component.mouseUp() in the Java 1.0
event model.

public abstract void mouseClicked(MouseEvent e) �

The mouseClicked() method is called once each time the user clicks a mouse
button; that is, once for each mouse press/mouse release combination.

4.3.3.9 MouseMotionListener and MouseMotionAdapter

The MouseMotionListener inter face contains two methods that are called when a
motion-oriented MouseEvent occurs; mouse motion events are generated when the
user moves the mouse, whether or not a button is pressed. (Separate classes,

10 July 2002 22:18

MouseListener and MouseAdapter, are used to handle mouse clicks and enter-
ing/exiting components. This makes it easy to ignore mouse motion events, which
are very frequent and can hurt performance. You should listen only for mouse
motion events if you specifically need them.) MouseMotionAdapter is the adapter
class for MouseMotionListener. If you care about only one of the methods in
MouseMotionListener, you can subclass the adapter and override only the method
that you are interested in. For an object to listen for mouse motion events, it is
necessar y to call Component.addMouseMotionListener() with the class that imple-
ments the interface as the parameter.

public abstract void mouseMoved(MouseEvent e) �

The mouseMoved() method is called every time the mouse moves within the
bounding area of the component, and no mouse button is pressed.

This method is the Java 1.1 equivalent of Component.mouseMove() in the Java
1.0 event model.

public abstract void mouseDragged(MouseEvent e) �

The mouseDragged() method is called every time the mouse moves while a
mouse button is pressed. The source of the MouseEvent is the component that
was under the mouse when it was first pressed.

This method is the Java 1.1 equivalent of Component.mouseDrag() in the Java
1.0 event model.

4.3.3.10 TextListener

The TextListener inter face contains the one method that is called when a Text-
Event occurs. It has no adapter class. For an object to listen for a TextEvent, it is
necessar y to call addTextListener() with the class that implements the Text-

Listener inter face as the parameter. The addTextListener() method is imple-
mented by the TextComponent class, and thus the TextField and TextArea

components. Other components don’t generate text events.

public abstract void textValueChanged(TextEvent e) �

The textValueChanged() method is called when a text component’s contents
are modified, either by the user (by a keystroke) or programmatically (by the
setText() method).

4.3.3.11 WindowListener and WindowAdapter

The WindowListener inter face contains seven methods that are called when a Win-
dowEvent occurs; window events are generated when something changes the visibil-
ity or status of a window. The adapter class for WindowListener is WindowAdapter.

4.3 THE JAV A 1.1 EVENT MODEL 151

10 July 2002 22:18

152 CHAPTER 4: EVENTS

If you care about only one or two of the methods in WindowListener, you can sub-
class the adapter and override only the methods that you are interested in. For an
object to listen for window events, it is necessary to call the method Win-

dow.addWindowListener() or Dialog.addWindowListener() with the class that
implements the interface as the parameter.

public abstract void windowOpened(WindowEvent e) �

The windowOpened() method is called when a Window is first opened.

public abstract void windowClosing(WindowEvent e) �

The windowClosing() method is triggered whenever the user tries to close the
Window.

public abstract void windowClosed(WindowEvent e) �

The windowClosed() method is called after the Window has been closed.

public abstract void windowIconified(WindowEvent e) �

The windowIconified() method is called whenever a user iconifies a Window.

public abstract void windowDeiconified(WindowEvent e) �

The windowDeiconified() method is called when the user deiconifies the
Window.

public abstract void windowActivated(WindowEvent e) �

The windowActivated() method is called whenever a Window is brought to the
front.

public abstract void windowDeactivated(WindowEvent e) �

The windowDeactivated() method is called when the Window is sent away from
the front, either through iconification, closing, or another window becoming
active.

4.3.4 AWTEventMulticaster
The AWTEventMulticaster class is used by AWT to manage the listener queues for
the different events, and for sending events to all interested listeners when they
occur (multicasting). Ordinarily, you have no need to work with this class or know
about its existence. However, if you wish to create your own components that have
their own set of listeners, you can use the class instead of implementing your own
event-deliver y system. See “Constructor methods” in this section for more on how
to use the AWTEventMulticaster.

AWTEventMulticaster looks like a strange beast, and to some extent, it is. It con-
tains methods to add and remove every possible kind of listener and implements
all of the listener interfaces (11 as of Java 1.1). Because it implements all the lis-
tener interfaces, you can pass an event multicaster as an argument wherever you

10 July 2002 22:18

expect any kind of listener. However, unlike a class you might implement to listen
for a specific kind of event, the multicaster includes machinery for maintaining
chains of listeners. This explains the rather odd signatures for the add() and
remove() methods. Let’s look at one in particular:

public static ActionListener add(ActionListener first, ActionListener second)

This method takes two ActionListeners and returns another ActionListener.
The returned listener is actually an event multicaster that contains the two listen-
ers given as arguments in a linked list. However, because it implements the
ActionListener inter face, it is just as much an ActionListener as any class you
might write; the fact that it contains two (or more) listeners inside it is irrelevant.
Furthermore, both arguments can also be event multicasters, containing arbitrarily
long chains of action listeners; in this case, the returned listener combines the two
chains. Most often, you will use add to add a single listener to a chain that you’re
building, like this:

actionListenerChain=AWTEventMulticaster.add(actionListenerChain,
newActionListener);

actionListenerChain is an ActionListener—but it is also a multicaster holding a
chain of action listeners. To start a chain, use null for the first argument. You
rarely need to call the AWTEventMulticaster constructor. add() is a static method,
so you can use it with either argument set to null to start the chain.

Now that you can maintain chains of listeners, how do you use them? Simple; just
deliver your event to the appropriate method in the chain. The multicaster takes
care of sending the event to all the listeners it contains:

actionListenerChain.actionPerformed(new ActionEvent(...));

Variables

protected EventListener a; �

protected EventListener b; �

The a and b event listeners each consist of a chain of EventListeners.

Constructor methods

protected AWTEventMulticaster(EventListener a, EventListener b) �

The constructor is protected. It creates an AWTEventMulticaster instance
from the two chains of listeners. An instance is automatically created for you
when you add your second listener by calling an add() method.

4.3 THE JAV A 1.1 EVENT MODEL 153

10 July 2002 22:18

154 CHAPTER 4: EVENTS

Listener methods

These methods implement all of the listener interfaces. Rather than repeating all
the descriptions, the methods are just listed.

public void actionPerformed(ActionEvent e) �

public void adjustmentValueChanged(AdjustmentEvent e) �

public void componentAdded(ContainerEvent e) �

public void componentHidden(ComponentEvent e) �

public void componentMoved(ComponentEvent e) �

public void componentRemoved(ContainerEvent e) �

public void componentResized(ComponentEvent e) �

public void componentShown(ComponentEvent e) �

public void focusGained(FocusEvent e) �

public void focusLost(FocusEvent e) �

public void itemStateChanged(ItemEvent e) �

public void keyPressed(KeyEvent e) �

public void keyReleased(KeyEvent e) �

public void keyTyped(KeyEvent e) �

public void mouseClicked(MouseEvent e) �

public void mouseDragged(MouseEvent e) �

public void mouseEntered(MouseEvent e) �

public void mouseExited(MouseEvent e) �

public void mouseMoved(MouseEvent e) �

public void mousePressed(MouseEvent e) �

public void mouseReleased(MouseEvent e) �

public void textValueChanged(TextEvent e) �

public void windowActivated(WindowEvent e) �

public void windowClosed(WindowEvent e) �

public void windowClosing(WindowEvent e) �

public void windowDeactivated(WindowEvent e) �

public void windowDeiconified(WindowEvent e) �

public void windowIconified(WindowEvent e) �

public void windowOpened(WindowEvent e) �

These methods broadcast the event given as an argument to all the listeners.

Support methods

There is an add() method for every listener interface. Again, I’ve listed them with
a single description.

public static ActionListener add(ActionListener first, ActionListener second) �

public static AdjustmentListener add(AdjustmentListener first,
AdjustmentListener second) �

10 July 2002 22:18

public static ComponentListener add(ComponentListener first, ComponentListener second) �

public static ContainerListener add(ContainerListener first, ContainerListener second) �

public static FocusListener add(FocusListener first, FocusListener second) �

public static ItemListener add(ItemListener first, ItemListener second) �

public static KeyListener add(KeyListener first, KeyListener second)
public static MouseListener add(MouseListener first, MouseListener second) �

public static MouseMotionListener add(MouseMotionListener first,
MouseMotionListener second) �

public static TextListener add(TextListener first, TextListener second) �

public static WindowListener add(WindowListener first, WindowListener second) �

These methods combine the listener sets together; they are called by the “add
listener” methods of the various components. Usually, the first parameter is
the initial listener chain, and the second parameter is the listener to add. How-
ever, nothing forces that. The combined set of listeners is returned.

protected static EventListener addInternal(EventListener first, EventListener second) �

The addInternal() method is a support routine for the various add() meth-
ods. The combined set of listeners is returned.

Again, there are remove() methods for every listener type, and I’ve economized on
the descriptions.

public static ComponentListener remove(ComponentListener list,
ComponentListener oldListener) �

public static ContainerListener remove(ContainerListener list,
ContainerListener oldListener) �

public static FocusListener remove(FocusListener list, FocusListener oldListener) �

public static KeyListener remove(KeyListener list, KeyListener oldListener) �

public static MouseMotionListener remove(MouseMotionListener list,
MouseMotionListener oldListener) �

public static MouseListener remove(MouseListener list, MouseListener oldListener) �

public static WindowListener remove(WindowListener list, WindowListener oldListener) �

public static ActionListener remove(ActionListener list, ActionListener oldListener) �

public static ItemListener remove(ItemListener list, ItemListener oldListener) �

public static AdjustmentListener remove(AdjustmentListener list,
AdjustmentListener oldListener) �

public static TextListener remove(TextListener list, TextListener oldListener) �

These methods remove oldListener from the list of listeners, list. They are
called by the “remove listener” methods of the different components. If
oldListener is not found in the list, nothing happens. All these methods
return the new list of listeners.

4.3 THE JAV A 1.1 EVENT MODEL 155

10 July 2002 22:18

156 CHAPTER 4: EVENTS

protected static EventListener removeInternal(EventListener list,
EventListener oldListener) �

The removeInternal() method is a support routine for the various remove()
methods. It removes oldListener from the list of listeners, list. Nothing
happens if oldListener is not found in the list. The new set of listeners is
returned.

protected EventListener remove(EventListener oldListener) �

This remove() method removes oldListener from the AWTEventMulticaster.
It is a support routine for removeInternal().

protected void saveInternal(ObjectOutputStream s, String k) throws IOException �

The saveInternal() method is a support method for serialization.

4.3.4.1 Using an event multicaster

Example 4-4 shows how to use AWTEventMulticaster to create a component that
generates ItemEvents. The AWTEventMulticaster is used in the addItemLis-

tener() and removeItemListener() methods. When it comes time to generate the
event in processEvent(), the itemStateChanged() method is called to notify any-
one who might be interested. The item event is generated when a mouse button is
clicked; we just count the number of clicks to determine whether an item was
selected or deselected. Since we do not have any mouse listeners, we need to
enable mouse events with enableEvents() in the constructor, as shown in the fol-
lowing example.

Example 4–4: Using an AWTEventMulticaster

// Java 1.1 only
import java.awt.*;
import java.awt.event.*;
class ItemEventComponent extends Component implements ItemSelectable {

boolean selected;
int i = 0;
ItemListener itemListener = null;
ItemEventComponent () {

enableEvents (AWTEvent.MOUSE_EVENT_MASK);
}
public Object[] getSelectedObjects() {

Object o[] = new Object[1];
o[0] = new Integer (i);
return o;

}
public void addItemListener (ItemListener l) {

itemListener = AWTEventMulticaster.add (itemListener, l);
}
public void removeItemListener (ItemListener l) {

itemListener = AWTEventMulticaster.remove (itemListener, l);
}
public void processEvent (AWTEvent e) {

10 July 2002 22:18

Example 4–4: Using an AWTEventMulticaster (continued)

if (e.getID() == MouseEvent.MOUSE_PRESSED) {
if (itemListener != null) {

selected = !selected;
i++;
itemListener.itemStateChanged (

new ItemEvent (this, ItemEvent.ITEM_STATE_CHANGED,
getSelectedObjects(),
(selected?ItemEvent.SELECTED:ItemEvent.DESELECTED)));

}
}

}
}

public class ItemFrame extends Frame implements ItemListener {
ItemFrame () {

super ("Listening In");
ItemEventComponent c = new ItemEventComponent ();
add (c, "Center");
c.addItemListener (this);
c.setBackground (SystemColor.control);
setSize (200, 200);

}
public void itemStateChanged (ItemEvent e) {

Object[] o = e.getItemSelectable().getSelectedObjects();
Integer i = (Integer)o[0];
System.out.println (i);

}
public static void main (String args[]) {

ItemFrame f = new ItemFrame();
f.show();

}
}

The ItemFrame displays just an ItemEventComponent and listens for its item events.

The EventQueue class lets you manage Java 1.1 events directly. You don’t usually
need to manage events yourself; the system takes care of event delivery behind the
scene. However, should you need to, you can acquire the system’s event queue by
calling Toolkit.getSystemEventQueue(), peek into the event queue by calling
peekEvent(), or post new events by calling postEvent(). All of these operations
may be restricted by the SecurityManager. You should not remove the events from
the queue (i.e., don’t call getNextEvent()) unless you really mean to.

Constructors

public EventQueue() �

This constructor creates an EventQueue for those rare times when you need to
manage your own queue of events. More frequently, you just work with the
system event queue acquired through the Toolkit.

4.3 THE JAV A 1.1 EVENT MODEL 157

10 July 2002 22:18

158 CHAPTER 4: EVENTS

Methods

public synchronized AWTEvent peekEvent() �

The peekEvent() method looks into the event queue and returns the first
event, without removing that event. If you modify the event, your modifica-
tions are reflected in the event still on the queue. The returned object is an
instance of AWTEvent. If the queue is empty, peekEvent() returns null.

public synchronized AWTEvent peekEvent(int id) �

This peekEvent() method looks into the event queue for the first event of the
specified type. id is one of the integer constants from an AWTEvent subclass or
an integer constant of your own. If there are no events of the appropriate type
on the queue, peekEvent() returns null.

Note that a few of the AWTEvent classes have both event types and subtypes;
peekEvent() checks event types only and ignores the subtype. For example, to
find an ItemEvent, you would call peekEvent(ITEM_STATE_CHANGED). However,
a call to peekEvent(SELECTED) would return null, since SELECTED identifies an
ItemEvent subtype.

public synchronized void postEvent(AWTEvent theEvent) �

This version of postEvent() puts a new style (Java1.1) event on the event
queue.

public synchronized AWTEvent getNextEvent() throws InterruptedException �

The getNextEvent() method removes an event from the queue. If the queue
is empty, the call waits. The object returned is the item taken from the queue;
it is either an Event or an AWTEvent. If the method call is interrupted, the
method getNextEvent() throws an InterruptedException.

10 July 2002 22:18

	Java 1.0 Event Model
	Identifying the Target
	Dealing With Events
	Passing the Buck
	Overriding handleEvent()
	Basic Event Handlers

	The Event Class
	Variables
	Constants
	Event Methods
	Working With Mouse Buttons in Java 1.0
	Comprehensive Event List

	The Java 1.1 Event Model
	Using the 1.1 Event Model
	AWTEvent and Its Children
	Event Listener Interfaces and Adapters
	AWTEventMulticaster

