
D

Image Loading

In this appendix:
• How Images are

Loaded
• A Brief Tour of

sun.awt.image

D.1 How Images are Loaded
You have seen how easy it is to display an image on screen and have probably
guessed that there’s more going on behind the scenes. The getImage() and draw-

Image() methods trigger a series of events that result in the image being available
for display on the ImageObserver. The image is fetched asynchronously in another
thread. The entire process* goes as follows:

1. The call to getImage() triggers Toolkit to call createImage() for the image’s
InputStreamImageSource (which is a URLImageSource in this case; it would be
a FileImageSource if we were loading the image from a local file).

2. The Toolkit registers the image as being “desired.” Desired just means that
something will eventually want the image loaded. The system then waits until
an ImageObserver registers its interest in the image.

3. The drawImage() method (use of MediaTracker or prepareImage()) registers
an ImageObserver as interested.

4. Registering an ImageObserver kicks the image’s ImageRepresentation into
action; this is the start of the loading process, although image data isn’t actu-
ally transferred until step 9. ImageRepresentation implements the ImageCon-

sumer inter face.

5. The start of production registers the image source (ImageProducer URLImage-
Source) with the ImageFetcher and also registers the ImageRepresentation as
an ImageConsumer for the image.

* This summary covers Sun’s implementation (JDK). Implementations that don’t derive from the JDK
may behave completely differently.

1017

10 July 2002 22:28

1018 APPENDIX D: IMAGE LOADING

6. The ImageFetcher creates a thread to get the image from its source.

7. The ImageFetcher reads data and passes it along to the InputStreamImage-

Source, which is a URLImageSource.

8. The URLImageSource determines that JPEGImageDecoder is the proper
ImageDecoder for converting the input stream into an Image. (Other ImageDe-
coders are used for other image types, like GIF.)

9. The ImageProducer starts reading the image data from the source; it calls the
ImageConsumer (i.e., the ImageRepresentation) as it processes the image. The
most important method in the ImageConsumer inter face is setPixels(), which
delivers pixel data to the consumer for rendering onscreen.

10. As the ImageConsumer (i.e., the ImageRepresentation) gets additional infor-
mation, it notifies the ImageObserver via imageUpdate() calls.

11. When the image is fully acquired across the network, the thread started by the
ImageFetcher stops.

As you see, there are a lot of unfamiliar moving pieces. Many of them are from the
java.awt.image package and are discussed in Chapter 12, Image Processing. Others
are from the sun.awt.image package; they are hidden in that you don’t need to
know anything about them to do image processing in Java. However, if you’re curi-
ous, we’ll briefly summarize these classes in the next section.

D.2 A Brief Tour of sun.awt.image
The classes in sun.awt.image do the behind-the-scenes work for rendering an
image from a file or across the network. This information is purely for the curious;
you should never have to work with these classes yourself.

Image

The Image class in this package represents a concrete Image instance. It con-
tains the basis for the Image class that is actually used on the run-time plat-
form, which exists in the package for the specific environment. For instance,
the sun.awt.win32 package includes the W32Image (Java 1.0), the
sun.awt.windows package includes WImage (Java 1.1), while the
sun.awt.motif package includes the X11Image, and the sun.awt.macos pack-
age includes the MacImage.

ImageRepresentation

The ImageRepresentation is the ImageConsumer that watches the creation of
the image and notifies the ImageObserver when it is time to update the dis-
play. It plays an important part in the overall control of the Image production
process.

10 July 2002 22:28

Image sources
A Java image can come from three different sources: memory (through cre-

ateImage()), local disk, or the network (through getImage()).

• OffScreenImageSource implements ImageProducer for a single framed
image in memory. When an Image created from an OffScreenImageSource

is drawn with drawImage(), the ImageObserver parameter can be null

since all the image information is already in memory and there is no need
for periodic updating as more is retrieved from disk. You can get the
graphics context of OffScreenImageSource images and use the context to
draw on the image area. This is how double buffering works.

• InputStreamImageSource implements ImageProducer for an image that
comes from disk or across the network. When an Image created from an
InputStreamImageSource is drawn with drawImage(), the ImageObserver

parameter should be the component being drawn on (usually this) since
the image information will be loaded periodically with the help of the
ImageObserver inter face). This class determines how to decode the image
type and initializes the ImageDecoder to one of GifImageDecoder, JPEGIm-
ageDecoder, or XbmImageDecoder, although that can be overridden by a
subclass. It can use a ContentHandler to work with unknown image types.

• FileImageSource is a subclass of InputStreamImageSource for images that
come from the filesystem. It uses the filename to determine the type of
image to decode and checks the security manager to ensure that access is
allowed.

• URLImageSource is a subclass of InputStreamImageSource for images that
are specified by a URL.

• ByteArrayImageSource (Java 1.1 only) is a subclass of InputStreamImage-
Source for images that are created by calling Toolkit.createIm-

age(byte[]).

Image decoders
An ImageDecoder is utilized to convert the image source to an image object. If
there is no decoder for an image type, it can be read in with the help of a Con-
tentHandler or your own class that implements ImageProducer, like the
PPMImageDecoder shown in Chapter 12.

• GifImageDecoder reads in an image file in the GIF format.

• JPEGImageDecoder reads in an image file in the JPEG format.

D.2 A BRIEF TOUR OF SUN.AWT.IMAGE 1019

10 July 2002 22:28

1020 APPENDIX D: IMAGE LOADING

• XbmImageDecoder reads in an image file in the XBM format. Although
XBM support is not required by the language specification, support is pro-
vided with Netscape Navigator, Internet Explorer, HotJava, and the Java
Developer’s Kit from Sun.

ImageFetcher

The ImageFetcher class fetches the actual image from its source. This class cre-
ates a separate daemon thread to fetch each image. The thread is run at a
higher priority than the default but not at the maximum priority.

10 July 2002 22:28

	How Images are Loaded
	A Brief Tour of sun.awt.image

