
Java Arrays, Objects, Methods

Course Topics

Elements of the Java Platform

The Java Language

 Java Arrays, Objects, Methods

Java’s Object Orientation and I/O

Interfaces, Graphical User Interfaces, and Applets

Topics this week:

Last Week
Last Week - Control Flow - Branching
Control Flow - Loops
Creating Multiple Student Objects
Java Objects
References to and Creating Objects
Creating collections of objects
What is an "array"?
Arrays
Creating an array
Arrays Can Be Made of Any Type or Class
Array Manipulation
Saving Multiple Student Objects
Objects - Instances of classes
Java Methods
Introduction to Inheritance
Inheritance Example
Assignment for next time

1

Minimal Employee class

2

Java Arrays, Objects, Methods

Last Week

The Java Language:
The syntax and constructs for writing Java code

The Java Platform

Java Program (application, applet, servlet) bytecode

Java Application Programming Interface (standard packages; also bytecode)

Java Virtual Machine (executes bytecode)

Hardware, e.g., your PC, OSF1, workstations, rings, ...

Primitive Data Types

 byte
 short
 int
 long
 double
 float
 char

 boolean

String is a built-in Object type, not a Primitive

User Defined Objects
Creating and initializing instances of classes

3

Java Arrays, Objects, Methods

Last Week - Control Flow - Branching

"if" statements

 if (expression that evaluates to a boolean result) {
 // Perform the enclosed statements if true
 ...
 }
 else {
 // Perform the enclosed statements if not true
 ...
 }

"switch" statements

 switch (expression that results in an integer value) {
 case 42: // or whatever a possible value of expression is
 ...
 break;
 case 39: // or whatever another possible value is
 ...
 break;
 ...
 default: // (optional) catch all other values
 ...
 break;
 }

4

Java Arrays, Objects, Methods

Control Flow - Loops

"for" loops
Perform group of statements for a number of times

 for (initialization ; expression that evaluates to boolean ; increment) {

 // Code that executes each time through the loop ...

 }

"while" loops
Perform group of statements while a condition is statisfied

 while (expression that evaluates to boolean) {

 // Code that executes each time through the loop ...

 }

"do ... while" loops
Perform group of statements while a condition is statisfied

 do {

 // Code that executes each time through the loop ...

 } while (expression that evaluates to boolean);

Question: How is while different from do ... while

5

Java Arrays, Objects, Methods

Creating Multiple Student Objects

6

/** Encapsulate information relating to a single student.
 ** @author: Jonathan Doughty
 **/

public class StudentGroup {

 public static void main(String[] args) {
 if ((args.length == 0) || (args.length % 2) != 0) {
 System.out.println("usage java StudentGroup [student names]");
 }
 else {
 StudentGroup.makeSomeStudents(args);
 }
 }

 public static void makeSomeStudents(String[] arguments) {

 CSStudent aStudent;
 int nextId = 0;

 for (int arg = 0; arg < arguments.length; arg++) {

 // Each time through the loop a new CSStudent object is
 // created and its reference is assigned to the aStudent
 // field.

 String name = arguments[arg];
 String id = String.valueOf(nextId);
 nextId++;

 aStudent = new CSStudent(name, id);
 aStudent.setGrade(100);

 // Ask each Student to identify itself
 System.out.println(aStudent);
 }

 // Question: Do any of the CSStudent objects created still
 // exist?
 }
}

7

Java Arrays, Objects, Methods

Java Objects

Classes

Definition: A class is a blueprint or prototype that defines the variables and
methods common to all objects of a certain kind.

from: The Java Tutorial, Campione & Walrath, 1998

Objects - Instances of classes

Definition: An object is a software bundle of variables (fields) and related
methods.

from: The Java Tutorial, Campione & Walrath, 1998

Objects instantiate classes
Objects are created (via new) from the template that a class defines.

Question: Why define classes and create object types?

8

Java Arrays, Objects, Methods

References to and Creating Objects

Primitives come into existence by declaring them

 int count;
 float distance;
 boolean guilty;
 char letter;

Declaring an Object type establishes space for an Object
reference
But does not, by itself, create the object itself.

Objects must be declared and then instantiated

Creating (Instantiating) and Using Objects

 Insect bug; // declare name for Insect reference
 bug = new Insect(); // create and save the instance

9

Java Arrays, Objects, Methods

Creating collections of objects
Several ways to create a group of objects, all of the same type:

Individual instance variables:

Student aStudent;
Student anotherStudent;
Student yetAnotherStudent;
...
aStudent = new Student();
aStudent.setName("Fred Flintstone");
anotherStudent = new Student();
anotherStudent.setName("Wilma Flintstone");
yetAnotherStudent = new Student();
yetAnotherStudent.setName("Barney Rubble");

Arrays
To be discussed in a few minutes

One of Java’s "Collections" classes

java.util.Vector;
java.util.Hashtable;
java.util.LinkedList;
java.util.HashMap;
java.util.ArrayList;

We won’t be covering the Collection classes in this course.

10

Java Arrays, Objects, Methods

What is an "array"?

A graphic representation

A variable (field, reference)

 int answer;
 CSStudent aStudent;

An array

 int[] answers = new int[4];
 CSStudent[] someStudents = new CSStudent[4];

11

Java Arrays, Objects, Methods

Arrays

Arrays themselves are objects in Java
Even arrays of primitive data types.

int intArray [];

intArray = new int[4];

float [] fnumbers = new float[8];

CSStudent studentArray[] = new CSStudent[10];

Note the last declaration and instantiation of an array of CSStudent
objects
Note that array declarations use [] , not ()

Question: How many CSStudent objects are created by the
declaration?

Since arrays are objects they inherit all the characteristics of
java.lang.Object
All array objects also have some other characteristics; i.e., each array has an
associated field named length.

Notice it is a field named length, unlike the instance method named length()
associated with String objects.

12

Java Arrays, Objects, Methods

Creating an array
... is like creating an object from a class:

declaration - assigns a name to the reference
instantiation - creates space for the object
initialization - gives the objects values for the first time

Arrays of primitive data types are initialized to 0

int[] grades;

grades = new int[60];

Arrays of Objects are initialized to null

Student[] students;

students = new Student[60];

The students array has been declared and instantiated, but not yet initialized: no
Student object references have been assigned to the array elements.

To initialize the array elements, you need to instantiate each
individually:

for (int nextStudent = 0; nextStudent < 10; nextStudent++) {
 students[nextStudent] = new CSStudent();
}

13

Java Arrays, Objects, Methods

Arrays Can Be Made of Any Type or Class

"Declaring a variable of array type does not create an array object or
allocate any space for array components. It creates only the variable itself,
which can contain a reference to an array."

from: Java Language Specification, Gosling, Joy, and Steel, 1996

Arrays are created (instantiated) with new, just like other objects.

Once an array is created, its length never changes.

Question: Any idea why?

Examples

int[] intArray = new int[4]; // elements initially set to 0

CreditCard cards[] = new CreditCard[MAXCARDS];
 // elements initially set to null
 // notice the [] can be placed with the field name
 // or the type; though the latter is "better"

Tip: If you need a colllection’s size to change consider using java.util.Vector or
another collection class instead of arrays

14

Java Arrays, Objects, Methods

ArrayExample.java

15

/** An Example of some array manipulation
 **/

public class ArrayExample {

 public static void main (String args[]) {

 int numberOfElements = 0;
 if (args.length > 0) {
 // Use value from command line
 numberOfElements = Integer.parseInt(args[0]);
 }

 ArrayExample anExample = new ArrayExample();

 anExample.initializeArray(numberOfElements);

 // Notice that method calls can be included in other method
 // calls: in this case, returning primitive values that will
 // be converted to String objects.

 System.out.println("sum = " + anExample.Sum() +
 " average = " + anExample.Average());
 }

 private int[] intArray; // all instance (non static) methods
 // have acess to this ’instance’ variable

 /** Initialize the array (which will be made big enough to hold
 size entries) contents with some numbers */
 public void initializeArray(int size) {

 intArray = new int[size];

 int startValue = size * 3; // pick any number

 for (int i = 0; i < intArray.length; i++) {
 intArray[i] = startValue; // put current number in next slot
 startValue = startValue - 2; // and calculate next number
 }
 }

 /** Calculate the sum of the array contents */
 public long Sum() {
 int index;
 int arrayLen;
 long sum = 0;

 // All arrays have a length field that specifies how many
 // elements the array contains

 arrayLen = intArray.length;

 // Calculate the sum the values in all array elements

 for (index = 0; index < arrayLen; index++) {
 sum += intArray[index];
 }
 return sum;
 }

 /** Calculate the average of the array contents */
 public double Average() {

 // Notice that Average calls Sum() to total the values in the
 // array, rather than duplicating that calculation here. What
 // is going on with the "(double)" ?

 double average = (double) Sum() / intArray.length;
 return average;
 }

}

16

Java Arrays, Objects, Methods

Array Manipulation

In class example of some array manipulation
Write a Java class named Arrays.java. This class should have the following
methods.

1. public void listArgs(String [] args)
To list out the arguments in an array of Strings

2. public long product(int [] intArray)
To compute the product of the integers in the array intArray

3. public static void main(String[] args)
Should have the following code:

if (args.length == 0) {
 System.out.println("usage: Arrays [integers]");
}
else {
 Arrays inst = new Arrays();
 inst.listArgs(args);

 int input[] = new int[args.length];
 for (int i = 0; i < args.length; i++) {
 input[i] = Integer.parseInt(args[i]);
 }
 System.out.print("product = ");
 long answer = inst.product(input);
 System.out.println(answer);
}

17

Java Arrays, Objects, Methods

Saving Multiple Student Objects
Also demonstrates one class using instances of another

18

/** A class that will make use of another class.
 **/
public class CSClass {

 public static void main(String[] args) {
 if (args.length == 0) {
 System.out.println("usage java CSClass [student names]");
 }
 else {
 int numberOfStudents = args.length;
 CSClass cs161 = new CSClass(numberOfStudents);
 cs161.enroll(args);
 cs161.assignLabPartners();
 cs161.listRoster();
 }
 }

 // Instance fields
 CSStudent students[] = null;
 int last = 0;

 public CSClass(int number) {
 students = new CSStudent[number];
 }

 public void enroll(String[] names) {
 int numberOfStudents = names.length;
 int id = 0;

 for (int arg = 0; arg < numberOfStudents; arg++) {

 String name = names[arg];

 id++; // assign next id
 String idString = String.valueOf(id); // as a String

 CSStudent aStudent = new CSStudent(name, idString);

 aStudent.setGrade(100);

 // save the reference to the current student in the next array slot
 students[last] = aStudent;
 last++;
 }
 }

 public void assignLabPartners() {

 // Assign every other pair of students as lab partners
 int next = 0;
 int pairs = last / 2;
 while (pairs > 0) {
 students[next].setLabPartner(students[next+1]);
 students[next+1].setLabPartner(students[next]);
 next += 2;
 pairs--;
 }

 // If there were an odd number of students in the array the
 // last one won’t have a lab partner.
 }

 public void listRoster() {
 for (int i = last - 1; i >= 0; i--) {
 // Ask each Student to identify itself, last to first
 System.out.println(students[i]);
 }
 }
}

19

And the complete CSStudent.java that’s been used in preceding examples

20

/** Encapsulate information relating to a single student.
 ** @author: Jonathan Doughty
 **/

public class CSStudent {

 // Instance variables (fields) that will be associated with
 // each student

 private String GMU_Id;
 private String name;
 private int homeworkGrade;
 private CSStudent labPartner;

 // Constructors for the class

 private CSStudent() { // why do you think this is?
 }

 public CSStudent(String name, String id) {
 this.name = name;
 GMU_Id = id;
 }

 // An accessor method to set the Student’s name field; not
 // needed any more but left in because a student’s name could
 // change.
 public void setName(String studentName) {
 name = studentName;
 }

 // An accessor method to return this Student’s name
 public String getName() {
 return name;
 }

 // An accessor method to set the Student’s GMU_Id field (probably
 // no longer necessary)
 public void setId(String id) {
 GMU_Id = id;
 }

 // An accessor method to set the Student’s homeworkGrade field
 public void setGrade(int grade) {
 homeworkGrade = grade;
 }

 // An accessor method to assign this Student’s lab partner
 public void setLabPartner(CSStudent s) {
 labPartner = s;
 }

 // Using the toString method to enable an instance of an
 // object to identify itself usefully.
 public String toString() {

 // Since I’m going to be returning a String made up of various
 // pieces, I build up those pieces in a StringBuffer.

 StringBuffer sb = new StringBuffer();
 sb.append(name);
 sb.append(" Id# ");
 sb.append(GMU_Id);
 if (labPartner != null) {
 // Notice I don’t just use labPartner.toString(). If I did
 // I would create an infinite loop: each lab partner calls
 // its lab partner’s toString() which calls’s its lab
 // partner’s toString() ... Instead, I just get and append
 // the lab partner’s name.
 sb.append(" lab partner=");
 sb.append(labPartner.getName());
 }
 return sb.toString();
 }
}

21

Java Arrays, Objects, Methods

Objects - Instances of classes

Definition: An object is a software bundle of fields and related methods.

Notice how each Student object in the previous examples had a name, an id
value, a grade, and in the last example, an associated lab partner (another
Student.)

Each Student also had some methods that could be "called on" an instance of
the Student class: e.g., setGrade(), setLabPartner()

22

Java Arrays, Objects, Methods

Java Methods
There are two categories of methods you can write in Java:

Class Methods

Methods that are associated with a class.

They are typically "convenience" or utility methods.

Qualifying a method with the keyword static is what makes a
method a class method.

In the earlier Student examples,

 public static void makeSomeStudents(...)

were all Class methods.

Instance Methods

Methods that are associated with the instances of a class, objects
of the class data type.

They are used to ask an object to do something, e.g., assign itself
a value, perform some operation, return some internal
information, identify itself, etc.

In the Student and CSClass examples, methods such as

23

 public void setGrade(...)
 public void getName(...)
 public void listRoster()
 public String toString(...)

were all instance methods.

24

Java Arrays, Objects, Methods

Introduction to Inheritance
You say one class extends another when you want to re-use most of the
capabilities of a class, but want to add some additional capabilities, over-ride some,
or provide other specialization.

25

Java Arrays, Objects, Methods

Inheritance Example

/** encapsulate the characteristics of a Grad student
 ** @author: Jonathan Doughty
 **/

public class CSGradStudent extends CSStudent {

 private static final int MAX = 100;
 private CSStudent [] taFor;
 private int nextStudent = 0;

 // A constructor that will create student objects with specified name and id
 public CSGradStudent(String studentName, String id) {
 super(studentName, id);
 taFor = new CSStudent[MAX];
 }

 // Other methods here unique to CSGradStudents

 public void writeThesis() {
 // mumble
 }

 public String toString() {
 StringBuffer result = new StringBuffer("CSGradStudent ");
 result.append(super.toString());
 if (nextStudent > 0) {
 result.append("TA for:\n");
 for (int i = 0; i < nextStudent; i++) {
 result.append(taFor[i].getName());
 result.append("\n");
 }
 }
 return result.toString();
 }
}

26

Java Arrays, Objects, Methods

Assignment for next time

Reading

Chapter 6 - Inheritance - through the section "Constructors in Derived
Classes" that ends on page 301 (you may skip the remainder of Chapter 6)

Chapter 9 - Streams and File I/O - Up to but not including the Programming
Example that starts at the bottom of page 495.

Homework
Goal:

Write a second Java class and use the two classes written so far, this week’s
uses last’s.

Purpose:

Learn about instances of classes and storing them in an array. on them.

To start building solutions from smaller pieces: Java classes; to get those
pieces to interact.

For this assignment you will write a Java class named Boss. This class will make
use of the Employee class created last week. If you have not completed that
assignment yet, you may use the minimal version on the next page to do this
week’s assignment.

Your Boss class should have the following instance variables:
a bossName

27

an array named employees in which to store Employee objects

an int field named count to store the number of Employees who the Boss
has.

Write methods with the following signatures
a main method to start things off with the signature:

public static void main (String [] args)

see below for what main should do.

a public constructor for the class that will insure that Boss objects always
have a name field with the signature.

public Boss(String name)

This constructor should also instantiate an array to store Employee
objects (at least 60) and initialize the count of employee’s to 0. It should
not initialize the array contents; just create the array.

a method to add an Employee object to the array of Employees with the
signature

public void hire(Employee emp)

This method should increase the count of Employees associated with the
Boss as each Employee is added.

a method that will cause the Boss to hire a group of people. This method
should have the signature

public void staffUp()

This method should create a number of Employee objects (at least 5) and
then use the hire method to add them to the boss. You may use any
names and id values you choose. One way to initialize a group of names
to use would be to get them from an array that is initialized like:

28

String [] names = {"John", "Paul", "George", "Ringo", "Fred" };

You may use these names or any of your choosing and any technigue of
your choosing to give each Employee a different name as an input
parameter for your Employee constructor. Use any id values you choose.

a method to print out the Boss name followed by the names of the
Employees who are managed by a Boss in an order different than they
were added. This method should have the signature

public void list()

The main method for this class should:
1. create a single instance of the Boss class,

2. call the staffUp method on the Boss object

3. call the list method on the Boss object

Do only what is asked above. Do not add any extra code to prompt for input or
otherwise add capabilities not asked for. Be sure to create methods with the
signatures requested. Output similar to the following is all the Boss class
needs to produce:

Boss Bruce:
Fred
Ringo
George
Paul
John

Hint: To start, create the outline of your class definition by defining empty
methods with the signatures listed above. Compile it to be sure the outline is
in the right form. Then go back and start filling in the details of each method.
Compile often so you can correct errors easily.

29

Java Arrays, Objects, Methods

Minimal Employee class
The following is a minimal Employee class that you may use to do this week’s
assignment to write a Boss class. This does not fulfill all the requirements of last
week’s assignment

/** A minimal Employee class to support doing the homework that
 ** requires you to write a Department class.
 **/
public class Employee1 {

 private String empName;
 private String empId;

 public Employee1(String name, String id) {
 empName = name;
 empId = id;
 }

 public String getName() {
 return empName;
 }
}

30

	Course Topics
	Last Week
	The Java Language:
	The Java Platform
	Primitive Data Types
	String is a built-in Object type, not a Primitive
	User Defined Objects

	Last Week - Control Flow - Branching
	
	"if" statements
	"switch" statements

	Control Flow - Loops
	"for" loops
	"while" loops
	"do ... while" loops

	Creating Multiple Student Objects
	Java Objects
	Classes
	Objects - Instances of classes
	Objects instantiate classes

	References to and Creating Objects
	Primitives come into existence by declaring them
	Declaring an Object type establishes space for an Object reference
	Objects must be declared and then instantiated
	Creating †Instantiating‡ and Using Objects

	Creating collections of objects
	Individual instance variables:
	Arrays
	One of Java's "Collections" classes

	What is an "array"?
	
	A graphic representation

	A variable †field, reference‡
	An array

	Arrays
	Arrays themselves are objects in Java
	Note the last declaration and instantiation of an array of CSStudent objects
	Since arrays are objects they inherit all the characteristics of java.lang.Object

	Creating an array
	Arrays Can Be Made of Any Type or Class
	Examples

	ArrayExample.java
	Array Manipulation
	
	In class example of some array manipulation

	Saving Multiple Student Objects
	Objects - Instances of classes
	Java Methods
	
	Class Methods
	Instance Methods

	Introduction to Inheritance
	Inheritance Example
	Assignment for next time
	Reading
	Homework
	
	Goal:
	Purpose:

	Minimal Employee class

