
 1

Copyright
Table of Contents
Index
Full Description
Reviews
Reader reviews
Errata

Java™ NIO

Ron Hitchens
Publisher: O'Reilly
First Edition August 2002
ISBN: 0-596-00288-2, 312 pages

Java NIO explores the new I/O capabilities of version 1.4 in detail and
shows you how to put these features to work to greatly improve the
efficiency of the Java code you write. This compact volume examines the
typical challenges that Java programmers face with I/O and shows you how
to take advantage of the capabilities of the new I/O features. You'll learn
how to put these tools to work using examples of common, real-world I/O
problems and see how the new features have a direct impact on
responsiveness, scalability, and reliability.

Because the NIO APIs supplement the I/O features of version 1.3, rather
than replace them, you'll also learn when to use new APIs and when the
older 1.3 I/O APIs are better suited to your particular application.

http://www.oreillynet.com/cs/catalog/view/au/950?x-t=book.view

 2

Table of Content
Table of Content ... 2
Dedication ... 4
Preface... 4

Organization.. 5
Who Should Read This Book ... 7
Software and Versions .. 8
Conventions Used in This Book ... 8
How to Contact Us.. 10
Acknowledgments... 11

Chapter 1. Introduction ... 13
1.1 I/O Versus CPU Time... 13
1.2 No Longer CPU Bound... 14
1.3 Getting to the Good Stuff.. 15
1.4 I/O Concepts ... 16
1.5 Summary... 25

Chapter 2. Buffers... 26
2.1 Buffer Basics... 27
2.2 Creating Buffers.. 41
2.3 Duplicating Buffers... 44
2.4 Byte Buffers .. 46
2.5 Summary... 59

Chapter 3. Channels .. 61
3.1 Channel Basics.. 62
3.2 Scatter/Gather ... 70
3.3 File Channels .. 75
3.4 Memory-Mapped Files.. 89
3.5 Socket Channels.. 101
3.6 Pipes.. 121
3.7 The Channels Utility Class ... 126
3.8 Summary... 127

Chapter 4. Selectors .. 129
4.1 Selector Basics .. 129
4.2 Using Selection Keys.. 138
4.3 Using Selectors ... 142
4.4 Asynchronous Closability... 152
4.5 Selection Scaling... 152
4.6 Summary... 158

Chapter 5. Regular Expressions.. 160
5.1 Regular Expression Basics.. 160
5.2 The Java Regular Expression API .. 163
5.3 Regular Expression Methods of the String Class ... 185
5.4 Java Regular Expression Syntax... 186
5.5 An Object-Oriented File Grep .. 190
5.6 Summary... 196

 3

Chapter 6. Character Sets.. 198
6.1 Character Set Basics ... 198
6.2 Charsets... 200
6.3 The Charset Service Provider Interface .. 222
6.4 Summary... 235

Appendix A. NIO and the JNI .. 237
Appendix C. NIO Quick Reference .. 243

C.1 Package java.nio... 243
C.2 Package java.nio.channels.. 251
C.4 Package java.nio.charset .. 266
C.5 Package java.nio.charset.spi... 271
C.6 Package java.util.regex... 271

Colophon... 274

 4

Dedication

To my wife, Karen.

What would I do without you?

Preface

Computers are useless. They can only give you answers.

—Pablo Picasso

This book is about advanced input/output on the Java platform, specifically I/O using the
Java 2 Standard Edition (J2SE) Software Development Kit (SDK), Version 1.4 and later.
The 1.4 release of J2SE, code-named Merlin, contains significant new I/O capabilities
that we'll explore in detail. These new I/O features are primarily collected in the
java.nio package (and its subpackages) and have been dubbed New I/O (NIO). In this
book, you'll see how to put these exciting new features to work to greatly improve the I/O
efficiency of your Java applications.

Java has found its true home among Enterprise Applications (a slippery term if ever there
was one), but until the 1.4 release of the J2SE SDK, Java has been at a disadvantage
relative to natively compiled languages in the area of I/O. This weakness stems from
Java's greatest strength: Write Once, Run Anywhere. The need for the illusion of a virtual
machine, the JVM, means that compromises must be made to make all JVM deployment
platforms look the same when running Java bytecode. This need for commonality across
operating-system platforms has resulted, to some extent, in a least-common-denominator
approach.

Nowhere have these compromises been more sorely felt than in the arena of I/O. While
Java possesses a rich set of I/O classes, they have until now concentrated on providing
common capabilities, often at a high level of abstraction, across all operating systems.
These I/O classes have primarily been stream-oriented, often invoking methods on
several layers of objects to handle individual bytes or characters.

This object-oriented approach, composing behaviors by plugging I/O objects together,
offers tremendous flexibility but can be a performance killer when large amounts of data
must be handled. Efficiency is the goal of I/O, and efficient I/O often doesn't map well to
objects. Efficient I/O usually means that you must take the shortest path from Point A to
Point B. Complexity destroys performance when doing high-volume I/O.

The traditional I/O abstractions of the Java platform have served well and are appropriate
for a wide range of uses. But these classes do not scale well when moving large amounts
of data, nor do they provide some common I/O functionality widely available on most
operating systems today. These features — such as file locking, nonblocking I/O,
readiness selection, and memory mapping — are essential for scalability and may be

 5

required to interact properly with non-Java applications, especially at the enterprise level.
The classic Java I/O mechanism doesn't model these common I/O services.

Real companies deploy real applications on real systems, not abstractions. In the real
world, performance matters — it matters a lot. The computer systems that companies buy
to deploy their large applications have high-performance I/O capabilities (often
developed at huge expense by the system vendors), which Java has until now been unable
to fully exploit. When the business need is to move a lot of data as fast as possible, the
ugly-but-fast solution usually wins out over pretty-but-slow. Time is money, after all.

JDK 1.4 is the first major Java release driven primarily by the Java Community Process.
The JCP (http://jcp.org/) provides a means by which users and vendors of Java products
can propose and specify new features for the Java platform. The subject of this book,
Java New I/O (NIO), is a direct result of one such proposal. Java Specification Request
#51 (http://jcp.org/jsr/detail/51.jsp) details the need for high-speed, scalable I/O, which
better leverages the I/O capabilities of the underlying operating system. The new classes
comprising java.nio and its subpackages, as well as java.util.regex and changes to a
few preexisting packages, are the resulting implementation of JSR 51. Refer to the JCP
web site for details on how the JSR process works and the evolution of NIO from initial
request to released reference implementation.

With the Merlin release, Java now has the tools to make use of these powerful
operating-system I/O capabilities where available. Java no longer needs to take a
backseat to any language when it comes to I/O performance.

Organization

This book is divided into six chapters, each dealing with a major aspect of Java NIO.
Chapter 1 discusses general I/O concepts to set the stage for the specific discussions that
follow. Chapter 2 through Chapter 4 cover the core of NIO: buffers, channels, and
selectors. Following that is a discussion of the new regular expression API. Regular
expression processing dovetails with I/O and was included under the umbrella of the JSR
51 feature set. To wrap up, we take a look at the new pluggable character set mapping
capabilities, which are also a part of NIO and JSR 51.

For the impatient, anxious to jump ahead, here is the executive summary:

Buffers

The new Buffer classes are the linkage between regular Java classes and channels.
Buffers implement fixed-size arrays of primitive data elements, wrapped inside an
object with state information. They provide a rendezvous point: a Channel
consumes data you place in a Buffer (write) or deposits data (read) you can then
fetch from the buffer. There is also a special type of buffer that provides for
memory-mapping files.

http://jcp.org/
http://jcp.org/jsr/detail/51.jsp

 6

We'll discuss buffer objects in detail in Chapter 2.

Channels

The most important new abstraction provided by NIO is the concept of a channel.
A Channel object models a communication connection. The pipe may be
unidirectional (in or out) or bidirectional (in and out). A channel can be thought
of as the pathway between a buffer and an I/O service.

In some cases, the older classes of the java.io package can make use of channels.
Where appropriate, new methods have been added to gain access to the Channel
associated with a file or socket object.

Most channels can operate in nonblocking mode, which has major scalability
implications, especially when used in combination with selectors.

We'll examine channels in Chapter 3.

File locking and memory-mapped files

The new FileChannel object in the java.nio.channels package provides many
new file-oriented capabilities. Two of the most interesting are file locking and the
ability to memory map files.

File locking is an essential tool for coordinating access to shared data among
cooperating processes.

The ability to memory map files allows you to treat file data on disk as if it was in
memory. This exploits the virtual memory capabilities of the operating system to
dynamically cache file content without committing memory resources to hold a
copy of the file.

File locking and memory-mapped files are also discussed in Chapter 3.

Sockets

The socket channel classes provide a new method of interacting with network
sockets. Socket channels can operate in nonblocking mode and can be used with
selectors. As a result, many sockets can be multiplexed and managed more
efficiently than with the traditional socket classes of java.net.

The three new socket channels, ServerSocketChannel, SocketChannel, and
DatagramChannel, are covered in Chapter 3.

Selectors

 7

Selectors provide the ability to do readiness selection. The Selector class provides
a mechanism by which you can determine the status of one or more channels
you're interested in. Using selectors, a large number of active I/O channels can be
monitored and serviced by a single thread easily and efficiently.

We'll discuss selectors in detail in Chapter 4.

Regular expressions

The new java.util.regex package brings Perl-like regular expression
processing to Java. This is a long-awaited feature, useful for a wide range of
applications.

The new regular expression APIs are considered part of NIO because they were
specified by JSR 51 along with the other NIO features. In many respects, it's
orthogonal to the rest of NIO but is extremely useful for file processing and many
other purposes.

Chapter 5 discusses the JDK 1.4 regular expression APIs.

Character sets

The java.nio.charsets package provides new classes for mapping characters to
and from byte streams. These new classes allow you to select the mapping by
which characters will be translated or create your own mappings.

Issues relating to character transcoding are covered in Chapter 6.

Who Should Read This Book

This book is intended for intermediate to advanced Java programmers: those who have a
good handle on the language and want (or need!) to take full advantage of the new
capabilities of Java NIO for large-scale and/or sophisticated data handling. In the text, I
assume that you are familiar with the standard class packages of the JDK, object-oriented
techniques, inheritance, and so on. I also assume that you know the basics of how I/O
works at the operating-system level, what files are, what sockets are, what virtual
memory is, and so on. Chapter 1 provides a high-level review of these concepts but does
not explain them in detail.

If you are still learning your way around the I/O packages of the Java platform, you may
first want to take a look at Java I/O by Elliote Rusty Harold (O'Reilly)
(http://www.oreilly.com/catalog/javaio/). It provides an excellent introduction to the
java.io packages. While this book could be considered a follow-up to that book, it is not
a continuation of it. This book concentrates on making use of the new java.nio
packages to maximize I/O performance and introduces some new I/O concepts that are
outside the scope of the java.io package.

http://www.oreilly.com/catalog/javaio/

 8

We also explore character set encoding and regular expressions, which are a part of the
new feature set bundled with NIO. Those programmers implementing character sets for
internationalization or for specialized applications will be interested in the
java.nio.charsets package discussed in Chapter 6.

And those of you who've switched to Java, but keep returning to Perl for the ease of
regular expression handling, no longer need to stray from Java. The new
java.util.regex package provides all but the most obscure regular expression
capabilities from Perl 5 in the standard JDK (and adds a few new things as well).

Software and Versions

This book describes the I/O capabilities of Java, particularly the java.nio and
java.util.regex packages, which first appear in J2SE, Version 1.4. Therefore, you
must have a working version of the Java 1.4 (or later) SDK to use the material presented
in this book. You can obtain the Java SDK from Sun by visiting their web site at
http://java.sun.com/j2se/1.4/. I also refer to the J2SE SDK as the Java Development Kit
(JDK) in the text. In the context of this book, they mean the same thing.

This book is based on the final JDK version, 1.4.0, released in February 2002. Early
access (beta) versions of 1.4 where widely available for several months prior. Important
changes were made to the NIO APIs shortly before final release. For that reason, you
may see discussions of NIO published before the final release that conflict with some
details in this book. This text has been updated to include all known last-minute changes
and should be in agreement with the final 1.4.0 release. Later releases of J2SE may
introduce further changes that conflict with this text. Refer to the documentation provided
with your software distribution if there is any doubt.

This book contains many examples demonstrating how to use the APIs. All code
examples and related information can be downloaded from http://www.javanio.info/.
Additional examples and test code are available there. Additional code examples
provided by the NIO implementation team are available at
http://java.sun.com/j2se/1.4/docs/guide/nio/example/.

Conventions Used in This Book

Like all programmers, I have my religious beliefs regarding code-formatting style. The
samples in this book are formatted according to my preferences, which are fairly
conventional. I'm a believer in eight-column tab indents and lots of separating whitespace.
Some of the code examples have had their indents reduced to four columns because of
space constraints. The source code available on the web site has tab indents.

When I provide API examples and lists of methods from a class in the JDK, I generally
provide only the specific methods referenced in the immediate text. I leave out the
methods that are not of interest at that point. I often provide the full class API at the

http://java.sun.com/j2se/1.4/
http://www.javanio.info/
http://java.sun.com/j2se/1.4/docs/guide/nio/example/

 9

beginning of a chapter or section, then list subsets of the API near the specific discussions
that follow.

These API samples are usually not syntactically correct; they are extracts of the method
signatures without the method bodies and are intended to illustrate which methods are
available and the parameters they accept. For example:

public class Foo
{
 public static final int MODE_ABC
 public static final int MODE_XYZ

 public abstract void baz (Blather blather);
 public int blah (Bar bar, Bop bop)
}

In this case, the method baz() is syntactically complete because abstract declarations
consist of nothing but signature. But blah() lacks a semi-colon, which implies that the
method body follows in the class definition. And when I list public fields defining
constants, such as MODE_ABC and MODE_XYZ, I intentionally don't list the values they are
initialized to. That information is not important. The public name is defined so that you
can use it without knowing the value of the constant.

Where possible, I extract this API information directly from the code distributed with the
1.4 JDK. When I started writing this book, the JDK was at Version 1.4 beta 2. Every
effort has been made to keep the code snippets current. My apologies for any
inaccuracies that may have crept in. The source code included with the JDK is the final
authority.

Font Conventions

I use standard O'Reilly font conventions in this book. This is not entirely by choice. I
composed the manuscript directly as XML using a pure Java GUI editor (XXE from
http://www.xmlmind.com/), which enforced the DTD I used, O'Reilly's subset of
DocBook (http://www.oasis-open.org/). As such, I never specified fonts or type styles. I'd
select XML elements such as <filename> or <programlisting>, and O'Reilly's
typesetting software applied the appropriate type style.

This, of course, means nothing to you. So here's the rundown on font conventions used in
this text:

Italic is used for:

• Pathnames, filenames, and program names
• Internet addresses, such as domain names and URLs
• New terms where they are defined

Constant Width is used for:

http://www.xmlmind.com/
http://www.oasis-open.org/

 10

• Names and keywords in Java code, including method names, variable names, and
class names

• Program listings and code snippets
• Constant values

Constant Width Bold is used for:

• Emphasis within code examples

This icon designates a note, which is an important aside to the nearby text.

This icon designates a warning relating to the nearby text.

How to Contact Us

Although this is not the first book I've written, it's the first I've written for general
publication. It's far more difficult to write a book than to read one. And it's really quite
frightening to expound on Java-related topics because the subject matter is so extensive
and changes rapidly. There are also vast numbers of very smart people who can and will
point out the slightest inaccuracy you commit to print.

I would like to hear any comments you may have, positive or negative. I believe I did my
homework on this project, but errors inevitably creep in. I'm especially interested in
constructive feedback on the structure and content of the book. I've tried to structure it so
that topics are presented in a sensible order and in easily absorbed chunks. I've also tried
to cross-reference heavily so it will be useful when accessed randomly.

Offers of lucrative consulting contracts, speaking engagments, and free stuff are
appreciated. Spurious flames and spam are cheerfully ignored.

You can contact me at ron@javanio.info or visit http://www.javanio.info/.

O'Reilly and I have verified the information in this book to the best of our ability, but you
may find that features have changed (or even that we have made mistakes!). Please let us
know about any errors you find, as well as your suggestions for future editions, by
writing to:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (U.S. and Canada)
(707) 829-0515 (international/local)

mailto:ron@javanio.info
http://www.javanio.info/

 11

(707) 829-0104 (fax)

You can also contact O'Reilly by email. To be put on the mailing list or request a catalog,
send a message to:

info@oreilly.com

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/javanio/

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

For more information about O'Reilly books, conferences, Resource Centers, and the
O'Reilly Network, see O'Reilly's web site at:

http://www.oreilly.com/

Acknowledgments

It's a lot of work putting a book together, even one as relatively modest in scope as this.
I'd like to express my gratitude to several people for their help with this endeavor.

First and foremost, I'd like to thank Mike Loukides, my editor at O'Reilly, for affording
me the chance join the ranks of O'Reilly authors. I still wonder how I managed to wind
up with a book deal at O'Reilly. It's a great honor and no small responsibility. Thanks
Mike, and sorry about the comma splices.

I'd also like to thank Bob Eckstein and Kyle Hart, also of O'Reilly, for their efforts on my
behalf: Bob for his help with early drafts of this book and Kyle for giving me free stuff at
JavaOne (oh, that marketing campaign may be helpful too). Jessamyn Read turned my
clumsy pictures into professional illustrations. I'd also like to thank the prolific David
Flanagan for mentioning my minuscule contribution to Java in a Nutshell, Fourth Edition
(O'Reilly), and for letting me use the regular expression syntax table from that book.

Authors of technical books rely heavily on technical reviewers to detect errors and
omissions. Technical review is especially important when the material is new and
evolving, as was the case with NIO. The 1.4 APIs were literally a moving target when I
began work on this project. I'm extremely lucky that Mark Reinhold of Sun
Microsystems, Specification Lead for JSR 51 and author of much of the NIO code in
JDK 1.4, agreed to be a reviewer. Mark reviewed a very early and very rough draft. He
kindly set me straight on many points and provided valuable insight that helped me

mailto:info@oreilly.com
http://www.oreilly.com/catalog/javanio/
mailto:bookquestions@oreilly.com
http://www.oreilly.com/

 12

tremendously. Mark also took time out while trying to get the 1.4.1 release in shape to
provide detailed feedback on the final draft. Thanks Mark.

Several other very smart people looked over my work and provided constructive
feedback. Jason Hunter (http://www.servlets.com/) eagerly devoured the first review draft
within hours and provided valuable organizational input. The meticulous John G. Miller,
Jr., of Digital Gamers, Inc. (johnmiller@digigamers.com, http://www.digigamers.com/),
carefully reviewed the draft and example code. John's real-world experience with NIO on
a large scale in an online, interactive game environment made this book a better one. Will
Crawford (http://www.williamcrawford.info/) found time he couldn't afford to read the
entire manuscript and provided laser-like, highly targeted feedback.

I'd also like to thank Keith J. Koski and Michael Daudel (mgd@ronsoft.com), fellow
members of a merry band of Unix and Java codeslingers I've worked with over the last
several years, known collectively as the Fatboys. The Fatboys are thinning out, getting
married, moving to the suburbs, and having kids (myself included), but as long as Bill
can suck gravy through a straw, the Fatboy dream lives on. Keith and Mike read several
early drafts, tested code, gave suggestions, and provided encouragement. Thanks guys,
you're "phaser enriched."

And last but not least, I want to thank my wife, Karen. She doesn't grok this tech stuff but
is wise and caring and loves me and feeds me fruit. She lights my soul and gives me
reason. Together we pen the chapters in our book of life.

http://www.servlets.com/
mailto:johnmiller@digigamers.com
http://www.digigamers.com/
http://www.williamcrawford.info/
mailto:mgd@ronsoft.com

 13

Chapter 1. Introduction

Get the facts first. You can distort them later.

—Mark Twain

Let's talk about I/O. No, no, come back. It's not really all that dull. Input/output (I/O) is
not a glamorous topic, but it's a very important one. Most programmers think of I/O in
the same way they do about plumbing: undoubtedly essential, can't live without it, but it
can be unpleasant to deal with directly and may cause a big, stinky mess when not
working properly. This is not a book about plumbing, but in the pages that follow, you
may learn how to make your data flow a little more smoothly.

Object-oriented program design is all about encapsulation. Encapsulation is a good thing:
it partitions responsibility, hides implementation details, and promotes object reuse. This
partitioning and encapsulation tends to apply to programmers as well as programs. You
may be a highly skilled Java programmer, creating extremely sophisticated objects and
doing extraordinary things, and yet be almost entirely ignorant of some basic concepts
underpinning I/O on the Java platform. In this chapter, we'll momentarily violate your
encapsulation and take a look at some low-level I/O implementation details in the hope
that you can better orchestrate the multiple moving parts involved in any I/O operation.

1.1 I/O Versus CPU Time

Most programmers fancy themselves software artists, crafting clever routines to squeeze
a few bytes here, unrolling a loop there, or refactoring somewhere else to consolidate
objects. While those things are undoubtedly important, and often a lot of fun, the gains
made by optimizing code can be easily dwarfed by I/O inefficiencies. Performing I/O
usually takes orders of magnitude longer than performing in-memory processing tasks on
the data. Many coders concentrate on what their objects are doing to the data and pay
little attention to the environmental issues involved in acquiring and storing that data.

Table 1-1 lists some hypothetical times for performing a task on units of data read from
and written to disk. The first column lists the average time it takes to process one unit of
data, the second column is the amount of time it takes to move that unit of data from and
to disk, and the third column is the number of these units of data that can be processed
per second. The fourth column is the throughput increase that will result from varying the
values in the first two columns.

Table 1-1. Throughput rate, processing versus I/O time
Process time (ms) I/O time (ms) Throughput (units/sec) Gain (%)

5 100 9.52 (benchmark)
2.5 100 9.76 2.44
1 100 9.9 3.96
5 90 10.53 10.53
5 75 12.5 31.25

 14

5 50 18.18 90.91
5 20 40 320
5 10 66.67 600

The first three rows show how increasing the efficiency of the processing step affects
throughput. Cutting the per-unit processing time in half results only in a 2.2% increase in
throughput. On the other hand, reducing I/O latency by just 10% results in a 9.7%
throughput gain. Cutting I/O time in half nearly doubles throughput, which is not
surprising when you see that time spent per unit doing I/O is 20 times greater than
processing time.

These numbers are artificial and arbitrary (the real world is never so simple) but are
intended to illustrate the relative time magnitudes. As you can see, I/O is often the
limiting factor in application performance, not processing speed. Programmers love to
tune their code, but I/O performance tuning is often an afterthought, or is ignored entirely.
It's a shame, because even small investments in improving I/O performance can yield
substantial dividends.

1.2 No Longer CPU Bound

To some extent, Java programmers can be forgiven for their preoccupation with
optimizing processing efficiency and not paying much attention to I/O considerations. In
the early days of Java, the JVMs interpreted bytecodes with little or no runtime
optimization. This meant that Java programs tended to poke along, running significantly
slower than natively compiled code and not putting much demand on the I/O subsystems
of the operating system.

But tremendous strides have been made in runtime optimization. Current JVMs run
bytecode at speeds approaching that of natively compiled code, sometimes doing even
better because of dynamic runtime optimizations. This means that most Java applications
are no longer CPU bound (spending most of their time executing code) and are more
frequently I/O bound (waiting for data transfers).

But in most cases, Java applications have not truly been I/O bound in the sense that the
operating system couldn't shuttle data fast enough to keep them busy. Instead, the JVMs
have not been doing I/O efficiently. There's an impedance mismatch between the
operating system and the Java stream-based I/O model. The operating system wants to
move data in large chunks (buffers), often with the assistance of hardware Direct
Memory Access (DMA). The I/O classes of the JVM like to operate on small pieces —
single bytes, or lines of text. This means that the operating system delivers buffers full of
data that the stream classes of java.io spend a lot of time breaking down into little
pieces, often copying each piece between several layers of objects. The operating system
wants to deliver data by the truckload. The java.io classes want to process data by the
shovelful. NIO makes it easier to back the truck right up to where you can make direct
use of the data (a ByteBuffer object).

 15

This is not to say that it was impossible to move large amounts of data with the
traditional I/O model — it certainly was (and still is). The RandomAccessFile class in
particular can be quite efficient if you stick to the array-based read() and write() methods.
Even those methods entail at least one buffer copy, but are pretty close to the underlying
operating-system calls.

As illustrated by Table 1-1, if your code finds itself spending most of its time waiting for
I/O, it's time to consider improving I/O performance. Otherwise, your beautifully crafted
code may be idle most of the time.

1.3 Getting to the Good Stuff

Most of the development effort that goes into operating systems is targeted at improving
I/O performance. Lots of very smart people toil very long hours perfecting techniques for
schlepping data back and forth. Operating-system vendors expend vast amounts of time
and money seeking a competitive advantage by beating the other guys in this or that
published benchmark.

Today's operating systems are modern marvels of software engineering (OK, some are
more marvelous than others), but how can the Java programmer take advantage of all this
wizardry and still remain platform-independent? Ah, yet another example of the
TANSTAAFL principle.[1]

[1] There Ain't No Such Thing As A Free Lunch.

The JVM is a double-edged sword. It provides a uniform operating environment that
shelters the Java programmer from most of the annoying differences between
operating-system environments. This makes it faster and easier to write code because
platform-specific idiosyncrasies are mostly hidden. But cloaking the specifics of the
operating system means that the jazzy, wiz-bang stuff is invisible too.

What to do? If you're a developer, you could write some native code using the Java
Native Interface (JNI) to access the operating-system features directly. Doing so ties you
to a specific operating system (and maybe a specific version of that operating system) and
exposes the JVM to corruption or crashes if your native code is not 100% bug free. If
you're an operating-system vendor, you could write native code and ship it with your
JVM implementation to provide these features as a Java API. But doing so might violate
the license you signed to provide a conforming JVM. Sun took Microsoft to court about
this over the JDirect package which, of course, worked only on Microsoft systems. Or, as
a last resort, you could turn to another language to implement performance-critical
applications.

The java.nio package provides new abstractions to address this problem. The Channel
and Selector classes in particular provide generic APIs to I/O services that were not
reachable prior to JDK 1.4. The TANSTAAFL principle still applies: you won't be able
to access every feature of every operating system, but these new classes provide a

 16

powerful new framework that encompasses the high-performance I/O features commonly
available on commercial operating systems today. Additionally, a new Service Provider
Interface (SPI) is provided in java.nio.channels.spi that allows you to plug in new
types of channels and selectors without violating compliance with the specifications.

With the addition of NIO, Java is ready for serious business, entertainment, scientific and
academic applications in which high-performance I/O is essential.

The JDK 1.4 release contains many other significant improvements in addition to NIO.
As of 1.4, the Java platform has reached a high level of maturity, and there are few
application areas remaining that Java cannot tackle. A great guide to the full spectrum of
JDK features in 1.4 is Java In A Nutshell, Fourth Edition by David Flanagan (O'Reilly).

1.4 I/O Concepts

The Java platform provides a rich set of I/O metaphors. Some of these metaphors are
more abstract than others. With all abstractions, the further you get from hard, cold
reality, the tougher it becomes to connect cause and effect. The NIO packages of JDK 1.4
introduce a new set of abstractions for doing I/O. Unlike previous packages, these are
focused on shortening the distance between abstraction and reality. The NIO abstractions
have very real and direct interactions with real-world entities. Understanding these new
abstractions and, just as importantly, the I/O services they interact with, is key to making
the most of I/O-intensive Java applications.

This book assumes that you are familiar with basic I/O concepts. This section provides a
whirlwind review of some basic ideas just to lay the groundwork for the discussion of
how the new NIO classes operate. These classes model I/O functions, so it's necessary to
grasp how things work at the operating-system level to understand the new I/O
paradigms.

In the main body of this book, it's important to understand the following topics:

• Buffer handling
• Kernel versus user space
• Virtual memory
• Paging
• File-oriented versus stream I/O
• Multiplexed I/O (readiness selection)

1.4.1 Buffer Handling

Buffers, and how buffers are handled, are the basis of all I/O. The very term
"input/output" means nothing more than moving data in and out of buffers.

Processes perform I/O by requesting of the operating system that data be drained from a
buffer (write) or that a buffer be filled with data (read). That's really all it boils down to.

 17

All data moves in or out of a process by this mechanism. The machinery inside the
operating system that performs these transfers can be incredibly complex, but
conceptually, it's very straightforward.

Figure 1-1 shows a simplified logical diagram of how block data moves from an external
source, such as a disk, to a memory area inside a running process. The process requests
that its buffer be filled by making the read() system call. This results in the kernel issuing
a command to the disk controller hardware to fetch the data from disk. The disk
controller writes the data directly into a kernel memory buffer by DMA without further
assistance from the main CPU. Once the disk controller finishes filling the buffer, the
kernel copies the data from the temporary buffer in kernel space to the buffer specified by
the process when it requested the read() operation.

Figure 1-1. Simplified I/O buffer handling

This obviously glosses over a lot of details, but it shows the basic steps involved.

Note the concepts of user space and kernel space in Figure 1-1. User space is where
regular processes live. The JVM is a regular process and dwells in user space. User space
is a nonprivileged area: code executing there cannot directly access hardware devices, for
example. Kernel space is where the operating system lives. Kernel code has special
privileges: it can communicate with device controllers, manipulate the state of processes
in user space, etc. Most importantly, all I/O flows through kernel space, either directly (as
decsribed here) or indirectly (see Section 1.4.2).

When a process requests an I/O operation, it performs a system call, sometimes known as
a trap, which transfers control into the kernel. The low-level open(), read(), write(), and
close() functions so familiar to C/C++ coders do nothing more than set up and perform
the appropriate system calls. When the kernel is called in this way, it takes whatever steps
are necessary to find the data the process is requesting and transfer it into the specified
buffer in user space. The kernel tries to cache and/or prefetch data, so the data being
requested by the process may already be available in kernel space. If so, the data
requested by the process is copied out. If the data isn't available, the process is suspended
while the kernel goes about bringing the data into memory.

Looking at Figure 1-1, it's probably occurred to you that copying from kernel space to the
final user buffer seems like extra work. Why not tell the disk controller to send it directly
to the buffer in user space? There are a couple of problems with this. First, hardware is
usually not able to access user space directly.[2] Second, block-oriented hardware devices
such as disk controllers operate on fixed-size data blocks. The user process may be

 18

requesting an oddly sized or misaligned chunk of data. The kernel plays the role of
intermediary, breaking down and reassembling data as it moves between user space and
storage devices.

[2] There are many reasons for this, all of which are beyond the scope of this book.
Hardware devices usually cannot directly use virtual memory addresses.

1.4.1.1 Scatter/gather

Many operating systems can make the assembly/disassembly process even more efficient.
The notion of scatter/gather allows a process to pass a list of buffer addresses to the
operating system in one system call. The kernel can then fill or drain the multiple buffers
in sequence, scattering the data to multiple user space buffers on a read, or gathering
from several buffers on a write (Figure 1-2).

Figure 1-2. A scattering read to three buffers

This saves the user process from making several system calls (which can be expensive)
and allows the kernel to optimize handling of the data because it has information about
the total transfer. If multiple CPUs are available, it may even be possible to fill or drain
several buffers simultaneously.

1.4.2 Virtual Memory

All modern operating systems make use of virtual memory. Virtual memory means that
artificial, or virtual, addresses are used in place of physical (hardware RAM) memory
addresses. This provides many advantages, which fall into two basic categories:

1. More than one virtual address can refer to the same physical memory location.
2. A virtual memory space can be larger than the actual hardware memory available.

The previous section said that device controllers cannot do DMA directly into user space,
but the same effect is achievable by exploiting item 1 above. By mapping a kernel space
address to the same physical address as a virtual address in user space, the DMA
hardware (which can access only physical memory addresses) can fill a buffer that is
simultaneously visible to both the kernel and a user space process. (See Figure 1-3.)

Figure 1-3. Multiply mapped memory space

 19

This is great because it eliminates copies between kernel and user space, but requires the
kernel and user buffers to share the same page alignment. Buffers must also be a multiple
of the block size used by the disk controller (usually 512 byte disk sectors). Operating
systems divide their memory address spaces into pages, which are fixed-size groups of
bytes. These memory pages are always multiples of the disk block size and are usually
powers of 2 (which simplifies addressing). Typical memory page sizes are 1,024, 2,048,
and 4,096 bytes. The virtual and physical memory page sizes are always the same. Figure
1-4 shows how virtual memory pages from multiple virtual address spaces can be
mapped to physical memory.

Figure 1-4. Memory pages

1.4.3 Memory Paging

To support the second attribute of virtual memory (having an addressable space larger
than physical memory), it's necessary to do virtual memory paging (often referred to as
swapping, though true swapping is done at the process level, not the page level). This is a
scheme whereby the pages of a virtual memory space can be persisted to external disk
storage to make room in physical memory for other virtual pages. Essentially, physical
memory acts as a cache for a paging area, which is the space on disk where the content of
memory pages is stored when forced out of physical memory.

Figure 1-5 shows virtual pages belonging to four processes, each with its own virtual
memory space. Two of the five pages for Process A are loaded into memory; the others
are stored on disk.

Figure 1-5. Physical memory as a paging-area cache

 20

Aligning memory page sizes as multiples of the disk block size allows the kernel to issue
direct commands to the disk controller hardware to write memory pages to disk or reload
them when needed. It turns out that all disk I/O is done at the page level. This is the only
way data ever moves between disk and physical memory in modern, paged operating
systems.

Modern CPUs contain a subsystem known as the Memory Management Unit (MMU).
This device logically sits between the CPU and physical memory. It contains the mapping
information needed to translate virtual addresses to physical memory addresses. When
the CPU references a memory location, the MMU determines which page the location
resides in (usually by shifting or masking the bits of the address value) and translates that
virtual page number to a physical page number (this is done in hardware and is extremely
fast). If there is no mapping currently in effect between that virtual page and a physical
memory page, the MMU raises a page fault to the CPU.

A page fault results in a trap, similar to a system call, which vectors control into the
kernel along with information about which virtual address caused the fault. The kernel
then takes steps to validate the page. The kernel will schedule a pagein operation to read
the content of the missing page back into physical memory. This often results in another
page being stolen to make room for the incoming page. In such a case, if the stolen page
is dirty (changed since its creation or last pagein) a pageout must first be done to copy the
stolen page content to the paging area on disk.

If the requested address is not a valid virtual memory address (it doesn't belong to any of
the memory segments of the executing process), the page cannot be validated, and a
segmentation fault is generated. This vectors control to another part of the kernel and
usually results in the process being killed.

Once the faulted page has been made valid, the MMU is updated to establish the new
virtual-to-physical mapping (and if necessary, break the mapping of the stolen page), and
the user process is allowed to resume. The process causing the page fault will not be
aware of any of this; it all happens transparently.

This dynamic shuffling of memory pages based on usage is known as demand paging.
Some sophisticated algorithms exist in the kernel to optimize this process and to prevent
thrashing, a pathological condition in which paging demands become so great that
nothing else can get done.

1.4.4 File I/O

 21

File I/O occurs within the context of a filesystem. A filesystem is a very different thing
from a disk. Disks store data in sectors, which are usually 512 bytes each. They are
hardware devices that know nothing about the semantics of files. They simply provide a
number of slots where data can be stored. In this respect, the sectors of a disk are similar
to memory pages; all are of uniform size and are addressable as a large array.

A filesystem is a higher level of abstraction. Filesystems are a particular method of
arranging and interpreting data stored on a disk (or some other random-access,
block-oriented device). The code you write almost always interacts with a filesystem, not
with the disks directly. It is the filesystem that defines the abstractions of filenames, paths,
files, file attributes, etc.

The previous section mentioned that all I/O is done via demand paging. You'll recall that
paging is very low level and always happens as direct transfers of disk sectors into and
out of memory pages. So how does this low-level paging translate to file I/O, which can
be performed in arbitrary sizes and alignments?

A filesystem organizes a sequence of uniformly sized data blocks. Some blocks store
meta information such as maps of free blocks, directories, indexes, etc. Other blocks
contain file data. The meta information about individual files describes which blocks
contain the file data, where the data ends, when it was last updated, etc.

When a request is made by a user process to read file data, the filesystem implementation
determines exactly where on disk that data lives. It then takes action to bring those disk
sectors into memory. In older operating systems, this usually meant issuing a command
directly to the disk driver to read the needed disk sectors. But in modern, paged operating
systems, the filesystem takes advantage of demand paging to bring data into memory.

Filesystems also have a notion of pages, which may be the same size as a basic memory
page or a multiple of it. Typical filesystem page sizes range from 2,048 to 8,192 bytes
and will always be a multiple of the basic memory page size.

How a paged filesystem performs I/O boils down to the following:

• Determine which filesystem page(s) (group of disk sectors) the request spans. The
file content and/or metadata on disk may be spread across multiple filesystem
pages, and those pages may be noncontiguous.

• Allocate enough memory pages in kernel space to hold the identified filesystem
pages.

• Establish mappings between those memory pages and the filesystem pages on
disk.

• Generate page faults for each of those memory pages.
• The virtual memory system traps the page faults and schedules pageins to validate

those pages by reading their contents from disk.
• Once the pageins have completed, the filesystem breaks down the raw data to

extract the requested file content or attribute information.

 22

Note that this filesystem data will be cached like other memory pages. On subsequent I/O
requests, some or all of the file data may still be present in physical memory and can be
reused without rereading from disk.

Most filesystems also prefetch extra filesystem pages on the assumption that the process
will be reading the rest of the file. If there is not a lot of contention for memory, these
filesystem pages could remain valid for quite some time. In which case, it may not be
necessary to go to disk at all when the file is opened again later by the same, or a
different, process. You may have noticed this effect when repeating a similar operation,
such as a grep of several files. It seems to run much faster the second time around.

Similar steps are taken for writing file data, whereby changes to files (via write()) result
in dirty filesystem pages that are subsequently paged out to synchronize the file content
on disk. Files are created by establishing mappings to empty filesystem pages that are
flushed to disk following the write operation.

1.4.4.1 Memory-mapped files

For conventional file I/O, in which user processes issue read() and write() system calls to
transfer data, there is almost always one or more copy operations to move the data
between these filesystem pages in kernel space and a memory area in user space. This is
because there is not usually a one-to-one alignment between filesystem pages and user
buffers. There is, however, a special type of I/O operation supported by most operating
systems that allows user processes to take maximum advantage of the page-oriented
nature of system I/O and completely avoid buffer copies. This is memory-mapped I/O,
which is illustrated in Figure 1-6.

Figure 1-6. User memory mapped to filesystem pages

Memory-mapped I/O uses the filesystem to establish a virtual memory mapping from
user space directly to the applicable filesystem pages. This has several advantages:

• The user process sees the file data as memory, so there is no need to issue read()
or write() system calls.

• As the user process touches the mapped memory space, page faults will be
generated automatically to bring in the file data from disk. If the user modifies the

 23

mapped memory space, the affected page is automatically marked as dirty and
will be subsequently flushed to disk to update the file.

• The virtual memory subsystem of the operating system will perform intelligent
caching of the pages, automatically managing memory according to system load.

• The data is always page-aligned, and no buffer copying is ever needed.
• Very large files can be mapped without consuming large amounts of memory to

copy the data.

Virtual memory and disk I/O are intimately linked and, in many respects, are simply two
aspects of the same thing. Keep this in mind when handling large amounts of data. Most
operating systems are far more effecient when handling data buffers that are page-aligned
and are multiples of the native page size.

1.4.4.2 File locking

File locking is a scheme by which one process can prevent others from accessing a file or
restrict how other processes access that file. Locking is usually employed to control how
updates are made to shared information or as part of transaction isolation. File locking is
essential to controlling concurrent access to common resources by multiple entities.
Sophisticated applications, such as databases, rely heavily on file locking.

While the name "file locking" implies locking an entire file (and that is often done),
locking is usually available at a finer-grained level. File regions are usually locked, with
granularity down to the byte level. Locks are associated with a particular file, beginning
at a specific byte location within that file and running for a specific range of bytes. This is
important because it allows many processes to coordinate access to specific areas of a file
without impeding other processes working elsewhere in the file.

File locks come in two flavors: shared and exclusive. Multiple shared locks may be in
effect for the same file region at the same time. Exclusive locks, on the other hand,
demand that no other locks be in effect for the requested region.

The classic use of shared and exclusive locks is to control updates to a shared file that is
primarily used for read access. A process wishing to read the file would first acquire a
shared lock on that file or on a subregion of it. A second wishing to read the same file
region would also request a shared lock. Both could read the file concurrently without
interfering with each other. However, if a third process wishes to make updates to the file,
it would request an exclusive lock. That process would block until all locks (shared or
exclusive) are released. Once the exclusive lock is granted, any reader processes asking
for shared locks would block until the exclusive lock is released. This allows the updating
process to make changes to the file without any reader processes seeing the file in an
inconsistent state. This is illustrated by Figures Figure 1-7 and Figure 1-8.

Figure 1-7. Exclusive-lock request blocked by shared locks

 24

Figure 1-8. Shared-lock requests blocked by exclusive lock

File locks are either advisory or mandatory. Advisory locks provide information about
current locks to those processes that ask, but such locks are not enforced by the operating
system. It is up to the processes involved to cooperate and pay attention to the advice the
locks represent. Most Unix and Unix-like operating systems provide advisory locking.
Some can also do mandatory locking or a combination of both.

Mandatory locks are enforced by the operating system and/or the filesystem and will
prevent processes, whether they are aware of the locks or not, from gaining access to
locked areas of a file. Usually, Microsoft operating systems do mandatory locking. It's
wise to assume that all locks are advisory and to use file locking consistently across all
applications accessing a common resource. Assuming that all locks are advisory is the
only workable cross-platform strategy. Any application depending on mandatory
file-locking semantics is inherently nonportable.

1.4.5 Stream I/O

Not all I/O is block-oriented, as described in previous sections. There is also stream I/O,
which is modeled on a pipeline. The bytes of an I/O stream must be accessed sequentially.
TTY (console) devices, printer ports, and network connections are common examples of
streams.

Streams are generally, but not necessarily, slower than block devices and are often the
source of intermittent input. Most operating systems allow streams to be placed into
nonblocking mode, which permits a process to check if input is available on the stream
without getting stuck if none is available at the moment. Such a capability allows a
process to handle input as it arrives but perform other functions while the input stream is
idle.

A step beyond nonblocking mode is the ability to do readiness selection. This is similar to
nonblocking mode (and is often built on top of nonblocking mode), but offloads the
checking of whether a stream is ready to the operating system. The operating system can

 25

be told to watch a collection of streams and return an indication to the process of which
of those streams are ready. This ability permits a process to multiplex many active
streams using common code and a single thread by leveraging the readiness information
returned by the operating system. This is widely used in network servers to handle large
numbers of network connections. Readiness selection is essential for high-volume
scaling.

1.5 Summary

This overview of system-level I/O is necessarily terse and incomplete. If you require
more detailed information on the subject, consult a good reference — there are many
available. A great place to start is the definitive operating-system textbook, Operating
System Concepts, Sixth Edition, by my old boss Avi Silberschatz (John Wiley & Sons).

With the preceding overview, you should now have a pretty good idea of the subjects that
will be covered in the following chapters. Armed with this knowledge, let's move on to
the heart of the matter: Java New I/O (NIO). Keep these concrete ideas in mind as you
acquire the new abstractions of NIO. Understanding these basic ideas should make it easy
to recognize the I/O capabilities modeled by the new classes.

We're about to begin our Grand Tour of NIO. The bus is warmed up and ready to roll.
Climb on board, settle in, get comfortable, and let's get this show on the road.

 26

Chapter 2. Buffers

It's all relative.

—Big Al Einstein

We begin our sightseeing tour of the java.nio packages with the Buffer classes. These
classes are the foundation upon which java.nio is built. In this chapter, we'll take a
close look at buffers, discover the various types, and learn how to use them. We'll then
see how the java.nio buffers relate to the channel classes of java.nio.channels.

A Buffer object is a container for a fixed amount of data. It acts as a holding tank, or
staging area, where data can be stored and later retrieved. Buffers are filled and drained,
as we discussed in Chapter 1. There is one buffer class for each of the nonboolean
primitive data types. Although buffers act upon the primitive data types they store,
buffers have a strong bias toward bytes. Nonbyte buffers can perform translation to and
from bytes behind the scenes, depending on how the buffer was created.[1] We'll examine
the implications of data storage within buffers later in this chapter.

[1] This implies byte-ordering issues, which we'll discuss in Section 2.4.1.

Buffers work hand in glove with channels. Channels are portals through which I/O
transfers take place, and buffers are the sources or targets of those data transfers. For
outgoing transfers, data you want to send is placed in a buffer, which is passed to a
channel. For inbound transfers, a channel deposits data in a buffer you provide. This
hand-off of buffers between cooperating objects (usually objects you write and one or
more Channel objects) is key to efficient data handling. Channels will be covered in
detail in Chapter 3.

Figure 2-1 is a class diagram of the Buffer class-specialization hierarchy. At the top is the
generic Buffer class. Buffer defines operations common to all buffer types, regardless of
the data type they contain or special behaviors they may possess. This common ground
will be our jumping-off point.

Figure 2-1. The Buffer family tree

 27

2.1 Buffer Basics

Conceptually, a buffer is an array of primitive data elements wrapped inside an object.
The advantage of a Buffer class over a simple array is that it encapsulates data content
and information about the data into a single object. The Buffer class and its specialized
subclasses define a API for processing data buffers.

2.1.1 Attributes

There are four attributes all buffers possess that provide information about the contained
data elements. These are:

Capacity

The maximum number of data elements the buffer can hold. The capacity is set
when the buffer is created and can never be changed.

Limit

The first element of the buffer that should not be read or written. In other words,
the count of live elements in the buffer.

Position

The index of the next element to be read or written. The position is updated
automatically by relative get() and put() methods.

Mark

A remembered position. Calling mark() sets mark = position. Calling reset() sets
position = mark. The mark is undefined until set.

 28

The following relationship between these four attributes always holds:

0 <= mark <= position <= limit <= capacity

Let's look at some examples of these attributes in action. Figure 2-2 shows a logical view
of a newly created ByteBuffer with a capacity of 10.

Figure 2-2. A newly created ByteBuffer

The position is set to 0, and the capacity and limit are set to 10, just past the last byte the
buffer can hold. The mark is initially undefined. The capacity is fixed, but the other three
attributes can change as the buffer is used.

2.1.2 Buffer API

Let's take a look now at how we can use a buffer. These are the method signatures for the
Buffer class:

package java.nio;

public abstract class Buffer {
 public final int capacity()
 public final int position()
 public final Buffer position (int newPosition)
 public final int limit()
 public final Buffer limit (int newLimit)
 public final Buffer mark()
 public final Buffer reset()
 public final Buffer clear()
 public final Buffer flip()
 public final Buffer rewind()
 public final int remaining()
 public final boolean hasRemaining()
 public abstract boolean isReadOnly();
}

One thing to notice about this API is that methods you would normally expect to return
void, such as clear(), instead return a Buffer reference. These methods return a reference
to the object they were invoked upon (this). This is a class design technique that allows
for invocation chaining. Chaining invocations allows code like this:

buffer.mark();
buffer.position(5);
buffer.reset();

 29

to be written like this:

buffer.mark().position(5).reset();

The classes in java.nio were designed with invocation chaining in mind. You may have
seen invocation chaining used with the StringBuffer class.

When used wisely, invocation chaining can produce concise, elegant,
and easy-to-read code. When abused, it yields a cryptic tangle of
muddled gibberish. Use invocation chaining when it improves
readability and makes your intentions clearer. If clarity of purpose
suffers when using invocation chaining, don't use it. Always make
your code easy for others to read.

Another thing to note about this API is the isReadOnly() method. All buffers are readable,
but not all are writable. Each concrete buffer class implements isReadOnly() to indicate
whether it will allow the buffer content to be modified. Some types of buffers may not
have their data elements stored in an array. The content of MappedByteBuffer, for
example, may actually be a read-only file. You can also explicitly create read-only view
buffers to protect the content from accidental modification. Attempting to modify a
read-only buffer will cause a ReadOnlyBufferException to be thrown. But we're getting
ahead of ourselves.

2.1.3 Accessing

Let's start at the beginning. Buffers manage a fixed number of data elements. But at any
given time, we may care about only some of the elements within the buffer. That is, we
may have only partially filled the buffer before we want to drain it. We need ways to
track the number of data elements that have been added to the buffer, where to place the
next element, etc. The position attribute does this. It indicates where the next data
element should be inserted when calling put() or from where the next element should be
retrieved when get() is invoked. Astute readers will note that the Buffer API listed above
does not contain get() or put() methods. Every buffer class has these methods, but the
types of the arguments they take, and the types they return, are unique to each subclass,
so they can't be declared as abstract in the top-level Buffer class. Their definitions must
be deferred to type-specific subclasses. For this discussion, we'll assume we're using the
ByteBuffer class with the methods shown here (there are additional forms of get() and
put(), which we'll discuss in Section 2.1.10):

public abstract class ByteBuffer
 extends Buffer implements Comparable
{
 // This is a partial API listing

 public abstract byte get();
 public abstract byte get (int index);
 public abstract ByteBuffer put (byte b);

 30

 public abstract ByteBuffer put (int index, byte b);
}

Gets and puts can be relative or absolute. In the previous listing, the relative versions are
those that don't take an index argument. When the relative methods are called, the
position is advanced by one upon return. Relative operations can throw exceptions if the
position advances too far. For put(), if the operation would cause the position to exceed
the limit, a BufferOverflowException will be thrown. For get(),
BufferUnderflowException is thrown if the position is not smaller than the limit. Absolute
accesses do not affect the buffer's position, but can throw
java.lang.IndexOutOfBoundsException if the index you provide is out of range (negative
or not less than the limit).

2.1.4 Filling

Let's try an example. We'll load the byte values representing the ASCII character
sequence Hello into a ByteBuffer object named buffer. After the following code is
executed on the newly created buffer from Figure 2-2, the resulting state of the buffer
would be as shown in Figure 2-3:

buffer.put((byte)'H').put((byte)'e').put((byte)'l').put((byte)'l').put(
(byte)'o');

Figure 2-3. Buffer after five put()s

Notice that each character must be cast to byte in this example. We can't do this:

buffer.put('H');

without casting because we're putting bytes, not characters. Remember that in Java,
characters are represented internally in Unicode, and each Unicode character occupies 16
bits. The examples in this section use bytes containing the numeric values of the ASCII
character set. By casting a char to a byte, we're discarding the high-order eight bits to
create an eight-bit byte value. This generally works for Latin characters but not for all
possible Unicode characters. To keep things simple, we're intentionally ignoring
character set mapping issues for the moment. Character encoding is covered in detail in
Chapter 6.

Now that we have some data sitting in the buffer, what if we want to make some changes
without losing our place? The absolute version of put() lets us do so. Suppose we want to

 31

change the content of our buffer from the ASCII equivalent of Hello to Mellow. We can
do this with:

buffer.put(0, (byte)'M').put((byte)'w');

This does an absolute put to replace the byte at location 0 with the hexadecimal value
0x4D, places 0x77 in the byte at the current position (which wasn't affected by the
absolute put()), and increments the position by one. The result is shown in Figure 2-4.

Figure 2-4. Buffer after modification

2.1.5 Flipping

We've filled the buffer, now we must prepare it for draining. We want to pass this buffer
to a channel so the content can be written out. But if the channel performs a get() on the
buffer now, it will fetch undefined data from beyond the good data we just inserted. If we
set the position back to 0, the channel will start fetching at the right place, but how will it
know when it has reached the end of the data we inserted? This is where the limit
attribute comes in. The limit indicates the end of the active buffer content. We need to set
the limit to the current position, then reset the position to 0. We can do so manually with
code like this:

buffer.limit(buffer.position()).position(0);

But this flipping of buffers from fill to drain state was anticipated by the designers of the
API; they provided a handy convenience method to do it for us:

buffer.flip();

The flip() method flips a buffer from a fill state, where data elements can be appended, to
a drain state ready for elements to be read out. Following a flip, the buffer of Figure 2-4
would look like Figure 2-5.

Figure 2-5. Buffer after being flipped

 32

The rewind() method is similar to flip() but does not affect the limit. It only sets the
position back to 0. You can use rewind() to go back and reread the data in a buffer that
has already been flipped.

What if you flip a buffer twice? It effectively becomes zero-sized. Apply the same steps
to the buffer of Figure 2-5; set the limit to the position and the position to 0. Both the
limit and position become 0. Attempting get() on a buffer with position and limit of 0
results in a BufferUnderflowException. put() causes a BufferOverflowException.

2.1.6 Draining

If we pass the buffer of Figure 2-5 to a channel now, it will pull out the data we placed
there, starting at the position and stopping at the limit. Slick, no?

By the same token, if you receive a buffer that was filled elsewhere, you'll probably need
to flip it before retrieving the content. For example, if a channel read() operation has
completed, and you want to look at the data placed in the buffer by the channel, you'll
need to flip the buffer before calling get(). The channel object invokes put() on the buffer
to add data; puts and reads can be freely intermixed.

The boolean method hasRemaining() will tell you if you've reached the buffer's limit
when draining. The following is a way to drain elements from a buffer to an array (in
Section 2.1.10, we'll learn about more efficient ways to do bulk transfers):

for (int i = 0; buffer.hasRemaining(), i++) {
 myByteArray [i] = buffer.get();
}

Alternatively, the remaining() method will tell you the number of elements that remain
from the current position to the limit. You can use a loop like this to drain the buffer of
Figure 2-5:

int count = buffer.remaining();

for (int i = 0; i < count, i++) {
 myByteArray [i] = buffer.get();
}

If you have exclusive control of the buffer, this would be more efficient because the limit
will not be checked (which requires invocation of an instance method on buffer) on
every iteration of the loop. The first example above would allow for multiple threads to
drain elements from the buffer concurrently.

Buffers are not thread-safe. If you want to access a given buffer
concurrently from multiple threads, you'll need to do your own
synchronization (e.g., acquiring a lock on the buffer object) prior to
accessing the buffer.

 33

Once a buffer has been filled and drained, it can be reused. The clear() method resets a
buffer to an empty state. It doesn't change any of the data elements of the buffer but
simply sets the limit to the capacity and the position back to 0, as in Figure 2-2. This
leaves the buffer ready to be filled again. See Example 2-1.

Example 2-1. Filling and draining buffers

package com.ronsoft.books.nio.buffers;

import java.nio.CharBuffer;

/**
 * Buffer fill/drain example. This code uses the simplest
 * means of filling and draining a buffer: one element at
 * a time.
 * @author Ron Hitchens (ron@ronsoft.com)
 */
public class BufferFillDrain
{
 public static void main (String [] argv)
 throws Exception
 {
 CharBuffer buffer = CharBuffer.allocate (100);

 while (fillBuffer (buffer)) {
 buffer.flip();
 drainBuffer (buffer);
 buffer.clear();
 }
 }

 private static void drainBuffer (CharBuffer buffer)
 {
 while (buffer.hasRemaining()) {
 System.out.print (buffer.get());
 }

 System.out.println ("");
 }

 private static boolean fillBuffer (CharBuffer buffer)
 {
 if (index >= strings.length) {
 return (false);
 }

 String string = strings [index++];

 for (int i = 0; i < string.length(); i++) {
 buffer.put (string.charAt (i));
 }

 return (true);
 }

 34

 private static int index = 0;

 private static String [] strings = {
 "A random string value",
 "The product of an infinite number of monkeys",
 "Hey hey we're the Monkees",
 "Opening act for the Monkees: Jimi Hendrix",
 "'Scuse me while I kiss this fly", // Sorry Jimi ;-)
 "Help Me! Help Me!",
 };
}

2.1.7 Compacting

public abstract class ByteBuffer
 extends Buffer implements Comparable
{
 // This is a partial API listing

 public abstract ByteBuffer compact();
}

Occasionally, you may wish to drain some, but not all, of the data from a buffer, then
resume filling it. To do this, the unread data elements need to be shifted down so that the
first element is at index zero. While this could be inefficient if done repeatedly, it's
occasionally necessary, and the API provides a method, compact(), to do it for you. The
buffer implementation can potentially copy the data much more efficiently than you
could by using the get() and put() methods. So if you have a need to do this, use
compact(). Figure 2-6 shows a buffer from which we've drained some elements and that
we now want to compact.

Figure 2-6. A partially drained buffer

Doing this:

buffer.compact()

results in the buffer state shown in Figure 2-7.

Figure 2-7. Buffer after compaction

 35

Several things have happened here. You can see that data elements 2-5 were copied to
locations 0-3. Locations 4 and 5 were unaffected but are now at or beyond the current
position and therefore are "dead." They can be overwritten by subsequent calls to put().
Also note that the position has been set to the number of data elements copied. That is,
the buffer is now positioned to insert following the last "live" element in the buffer. And
finally, the limit has been set to the capacity so the buffer can once again be filled fully.
The effect of calling compact() is to drop the data elements already drained, preserve
what hasn't been drained, and make the buffer ready to resume filling to capacity.

You can use a buffer in this way as a First In First Out (FIFO) queue. More efficient
algorithms certainly exist (buffer shifting is not a very efficient way to do queuing), but
compacting may be a convenient way to synchronize a buffer with logical blocks of data
(packets) in a stream you are reading from a socket.

If you want to drain the buffer contents after compaction, the buffer will need to be
flipped as discussed earlier. This is true whether you have subsequently added any new
data elements to the buffer or not.

2.1.8 Marking

We've covered three of the four buffer attributes mentioned at the beginning of this
section. The fourth, mark, allows a buffer to remember a position and return to it later. A
buffer's mark is undefined until the mark() method is called, at which time the mark is set
to the current position. The reset() method sets the position to the current mark. If the
mark is undefined, calling reset() will result in an InvalidMarkException. Some buffer
methods will discard the mark if one is set (rewind(), clear(), and flip() always discard
the mark). Calling the versions of limit() or position() that take index arguments will
discard the mark if the new value being set is less than the current mark.

Be careful not to confuse reset() and clear(). The clear() method
makes a buffer empty, while reset() returns the position to a
previously set mark.

 Let's see how this works. Executing the following code on the buffer of Figure 2-5
results in the buffer state shown in Figure 2-8:

buffer.position(2).mark().position(4);

Figure 2-8. A buffer with a mark set

 36

If this buffer were passed to a channel now, two bytes would be sent ("ow"), and the
position would advance to 6. If we then call reset(), the position would be set to the mark
as shown in Figure 2-9. Passing the buffer to the channel again would result in four bytes
("llow") being sent.

Figure 2-9. A buffer position reset to its mark

The output may not say anything sensible (owllow would be written down the channel),
but you get the idea.

2.1.9 Comparing

It's occasionally necessary to compare the data contained in one buffer with that in
another buffer. All buffers provide a custom equals() method for testing the equality of
two buffers and a compareTo() method for comparing buffers:

public abstract class ByteBuffer
 extends Buffer implements Comparable
{
 // This is a partial API listing

 public boolean equals (Object ob)
 public int compareTo (Object ob)
}

Two buffers can be tested for equality with code like this:

if (buffer1.equals (buffer2)) {
 doSomething();
}

The equals() method returns true if the remaining content of each buffer is identical;
otherwise, it returns false. Because the test is for exact equality and is commutative. The
names of the buffers in the previous listing could be reversed and produce the same
result.

 37

Two buffers are considered to be equal if and only if:

• Both objects are the same type. Buffers containing different data types are never
equal, and no Buffer is ever equal to a non-Buffer object.

• Both buffers have the same number of remaining elements. The buffer capacities
need not be the same, and the indexes of the data remaining in the buffers need
not be the same. But the count of elements remaining (from position to limit) in
each buffer must be the same.

• The sequence of remaining data elements, which would be returned from get(),
must be identical in each buffer.

If any of these conditions do not hold, false is returned.

Figure 2-10 illustrates two buffers with different attributes that would compare as equal.
Figure 2-11 shows two similar buffers, possibly views of the same underlying buffer,
which would test as unequal.

Figure 2-10. Two buffers considered to be equal

Figure 2-11. Two buffers considered to be unequal

 38

Buffers also support lexicographic comparisons with the compareTo() method. This
method returns an integer that is negative, zero, or positive if the buffer argument is less
than, equal to or greater than, respectively, the object instance on which compareTo() was
invoked. These are the semantics of the java.lang.Comparable interface, which all typed
buffers implement. This means that arrays of buffers can be sorted according to their
content by invoking java.util.Arrays.sort().

Like equals(), compareTo() does not allow comparisons between dissimilar objects. But
compareTo() is more strict: it will throw ClassCastException if you pass in an object of
the incorrect type, whereas equals() would simply return false.

Comparisons are performed on the remaining elements of each buffer, in the same way as
they are for equals(), until an inequality is found or the limit of either buffer is reached. If
one buffer is exhausted before an inequality is found, the shorter buffer is considered to
be less than the longer buffer. Unlike equals(), compareTo() is not commutative: the
order matters. In this example, a result less than 0 would indicate that buffer2 is less
than buffer1, and the expression would evaluate to true.

if (buffer1.compareTo (buffer2) < 0) {
 doSomething();
}

If the preceding code was applied to the buffers shown in Figure 2-10, the result would
be 0, and the if statement would do nothing. The same test applied to the buffers of
Figure 2-11 would return a positive number (to indicate that buffer2 is greater than
buffer1), and the expression would also evaluate as false.

2.1.10 Bulk Moves

The design goal of buffers is to enable efficient data transfer. Moving data elements one
at a time, such as the loops in Example 2-1, is not very efficient. As you can see in the
following listing, the Buffer API provides methods to do bulk moves of data elements in
or out of a buffer.

public abstract class CharBuffer
 extends Buffer implements CharSequence, Comparable
{
 // This is a partial API listing

 public CharBuffer get (char [] dst)
 public CharBuffer get (char [] dst, int offset, int length)

 public final CharBuffer put (char[] src)
 public CharBuffer put (char [] src, int offset, int length)
 public CharBuffer put (CharBuffer src)

 public final CharBuffer put (String src)
 public CharBuffer put (String src, int start, int end)
}

 39

There are two forms of get() for copying data from buffers to arrays. The first, which
takes only an array as argument, drains a buffer to the given array. The second takes
offset and length arguments to specify a subrange of the target array. The net effect of
these bulk moves is identical to the loops discussed earlier but can potentially be much
more efficient since the buffer implementation may take advantage of native code or
other optimizations to move the data.

Bulk moves are always of a specified length. That is, you always request that a specific
number of data elements be moved. It's not obvious when looking at the method
signatures, but this invocation of get():

buffer.get (myArray);

is equivalent to:

buffer.get (myArray, 0, myArray.length);

Bulk transfers are always of a fixed size. Omitting the length means
that the entire array will be filled.

If the number of elements you ask for cannot be transferred, no data is transferred, the
buffer state is left unchanged, and a BufferUnderflowException is thrown. So when you
pass in an array and don't specify the length, you're asking for the entire array to be filled.
If the buffer does not contain at least enough elements to completely fill the array, you'll
get an exception. This means that if you want to transfer a small buffer into a large array,
you need to explicitly specify the length of the data remaining in the buffer. The first
example above will not, as you might conclude at first glance, copy the remaining data
elements of the buffer into the bottom of the array. To drain a buffer into a larger array,
do this:

char [] bigArray = new char [1000];

// Get count of chars remaining in the buffer
int length = buffer.remaining();

// Buffer is known to contain < 1,000 chars
buffer.get (bigArrray, 0, length);

// Do something useful with the data
processData (bigArray, length);

Note that it's necessary to query the buffer for the number of elements before calling get()
(because we need to tell processData() the number of chars that were placed in
bigArray). Calling get() advances the buffer's position, so calling remaining() afterwards
returns 0. The bulk versions of get() return the buffer reference to facilitate invocation
chaining, not a count of transferred data elements.

 40

On the other hand, if the buffer holds more data than will fit in your array, you can iterate
and pull it out in chunks with code like this:

char [] smallArray = new char [10];

while (buffer.hasRemaining()) {
 int length = Math.min (buffer.remaining(), smallArray.length);

 buffer.get (smallArray, 0, length);
 processData (smallArray, length);
}

The bulk versions of put() behave similarly but move data in the opposite direction, from
arrays into buffers. They have similar semantics regarding the size of transfers:

buffer.put (myArray);

is equivalent to:

buffer.put (myArray, 0, myArray.length);

If the buffer has room to accept the data in the array (buffer.remaining() >=
myArray.length), the data will be copied into the buffer starting at the current position,
and the buffer position will be advanced by the number of data elements added. If there is
not sufficient room in the buffer, no data will be transferred, and a
BufferOverflowException will be thrown.

It's also possible to do bulk moves of data from one buffer to another by calling put()
with a buffer reference as argument:

dstBuffer.put (srcBuffer);

This is equivalent to (assuming dstBuffer has sufficient space):

while (srcBuffer.hasRemaining()) {
 dstBuffer.put (srcBuffer.get());
}

The positions of both buffers will be advanced by the number of data elements
transferred. Range checks are done as they are for arrays. Specifically, if
srcBuffer.remaining() is greater than dstBuffer.remaining(), then no data will be
transferred, and BufferOverflowException will be thrown. In case you're wondering, if
you pass a buffer to itself, you'll receive a big, fat java.lang.IllegalArgumentException
for your hubris.

I've been using CharBuffer for examples in this section, and so far, the discussion has
also applied to other typed buffers, such as FloatBuffer, LongBuffer, etc. But the last two
methods in the following API listing contain two bulk move methods unique to
CharBuffer:

 41

public abstract class CharBuffer
 extends Buffer implements CharSequence, Comparable
{
 // This is a partial API listing

 public final CharBuffer put (String src)
 public CharBuffer put (String src, int start, int end)
}

These take Strings as arguments and are similar to the bulk move methods that operate on
char arrays. As all Java programmers know, Strings are not the same as arrays of chars.
But Strings do contain sequences of chars, and we humans do tend to conceptualize them
as char arrays (especially those of us who were or are C or C++ programmers). For these
reasons, the CharBuffer class provides convenience methods to copy Strings into
CharBuffers.

String moves are similar to char array moves, with the exception that subsequences are
specified by the start and end-plus-one indexes (similar to String.subString()) rather
than the start index and length. So this:

buffer.put (myString);

is equivalent to:

buffer.put (myString, 0, myString.length());

And this is how you'd copy characters 5-8, a total of four characters, from myString into
buffer:

buffer.put (myString, 5, 9);

A String bulk move is the equivalent of doing this:

for (int i = start; i < end; i++) }
 buffer.put (myString.charAt (i));
}

The same range checking is done for Strings as for char arrays. A
BufferOverflowEx-ception is thrown if all the characters do not fit into the buffer.

2.2 Creating Buffers

As we saw in Figure 2-1, there are seven primary buffer classes, one for each of the
nonboolean primitive data types in the Java language. (An eighth is shown there,
MappedByteBuffer, which is a specialization of ByteBuffer used for memory mapped files.
We'll discuss memory mapping in Chapter 3.) None of these classes can be instantiated
directly. They are all abstract classes, but each contains static factory methods to create
new instances of the appropriate class.

 42

For this discussion, we'll use the CharBuffer class as an example, but the same applies to
the other six primary buffer classes: IntBuffer, DoubleBuffer, ShortBuffer, LongBuffer,
FloatBuffer, and ByteBuffer. Here are the key methods for creating buffers, common to
all of the buffer classes (substitute class names as appropriate):

public abstract class CharBuffer
 extends Buffer implements CharSequence, Comparable
{
 // This is a partial API listing

 public static CharBuffer allocate (int capacity)

 public static CharBuffer wrap (char [] array)
 public static CharBuffer wrap (char [] array, int offset, int length)

 public final boolean hasArray()
 public final char [] array()
 public final int arrayOffset()
}

New buffers are created by either allocation or wrapping. Allocation creates a buffer
object and allocates private space to hold capacity data elements. Wrapping creates a
buffer object but does not allocate any space to hold the data elements. It uses the array
you provide as backing storage to hold the data elements of the buffer.

To allocate a CharBuffer capable of holding 100 chars:

CharBuffer charBuffer = CharBuffer.allocate (100);

This implicitly allocates a char array from the heap to act as backing store for the 100
chars.

If you want to provide your own array to be used as the buffer's backing store, call the
wrap() method:

char [] myArray = new char [100];
CharBuffer charbuffer = CharBuffer.wrap (myArray);

This constructs a new buffer object, but the data elements will live in the array. This
implies that changes made to the buffer by invoking put() will be reflected in the array,
and any changes made directly to the array will be visible to the buffer object. The
version of wrap() that takes offset and length arguments will construct a buffer with
the position and limit set according to the offset and length values you provide. Doing
this:

CharBuffer charbuffer = CharBuffer.wrap (myArray, 12, 42);

creates a CharBuffer with a position of 12, a limit of 54, and a capacity of
myArray.length.

 43

This method does not, as you might expect, create a buffer that occupies only a subrange
of the array. The buffer will have access to the full extent of the array; the offset and
length arguments only set the initial state. Calling clear() on a buffer created this way
and then filling it to its limit will overwrite all elements of the array. The slice() method
(discussed in Section 2.3) can produce a buffer that occupies only part of a backing array.

Buffers created by either allocate() or wrap() are always nondirect (direct buffers are
discussed in Section 2.4.2). Nondirect buffers have backing arrays, as we just discussed,
and you can gain access to those arrays with the remaining API methods listed above.
The boolean method hasArray() tells you if the buffer has an accessible backing array or
not. If it returns true, the array() method returns a reference to the array storage used by
the buffer object.

If hasArray() returns false, do not call array() or arrayOffset(). You'll be rewarded with
an UnsupportedOperationException if you do. If a buffer is read-only, its backing array
is off-limits, even if an array was provided to wrap(). Invoking array() or arrayOffset()
will throw a ReadOnlyBufferException in such a case to prevent you from gaining access
to and modifying the data content of the read-only buffer. If you have access to the
backing array by other means, changes made to the array will be reflected in the
read-only buffer. Read-only buffers are discussed in more detail in Section 2.3.

The final method, arrayOffset(), returns the offset into the array where the buffer's data
elements are stored. If you create a buffer with the three-argument version of wrap(),
arrayOffset() will always return 0 for that buffer, as we just discussed. However, if you
slice a buffer backed by an array, the resulting buffer may have a nonzero array offset.
The array offset and capacity of a buffer will tell you which elements of an array are used
by a given buffer. Buffer slicing is discussed in Section 2.3.

Up to this point, the discussion in this section has applied to all buffer types. CharBuffer,
which we've been using as an example, provides a couple of useful convenience methods
not provided by the other buffer classes:

public abstract class CharBuffer
 extends Buffer implements CharSequence, Comparable
{
 // This is a partial API listing

 public static CharBuffer wrap (CharSequence csq)
 public static CharBuffer wrap (CharSequence csq, int start, int end)
}

These versions of wrap() create read-only view buffers whose backing store is the
CharSequence object, or a subsequence of that object. (The CharSequence object is
described in detail in Chapter 5.) CharSequence describes a readable sequence of
characters. As of JDK 1.4, three standard classes implement CharSequence: String,
StringBuffer, and CharBuffer. This version of wrap() can be useful to "bufferize" existing
character data to access their content through the Buffer API. This can be handy for
character set encoding (Chapter 6) and regular expression processing (Chapter 5).

 44

CharBuffer charBuffer = CharBuffer.wrap ("Hello World");

The three-argument form takes start and end index positions describing a subsequence
of the given CharSequence. This is a convenience pass-through to
CharSequence.subsequence(). The start argument is the first character in the sequence
to use; end is the last position of the character plus one.

2.3 Duplicating Buffers

As we just discussed, buffer objects can be created that describe data elements stored
externally in an array. But buffers are not limited to managing external data in arrays.
They can also manage data externally in other buffers. When a buffer that manages data
elements contained in another buffer is created, it's known as a view buffer. Most view
buffers are views of ByteBuffers (see Section 2.4.3). Before moving on to the specifics of
byte buffers, we'll concentrate on the views that are common to all buffer types.

View buffers are always created by calling methods on an existing buffer instance. Using
a factory method on an existing buffer instance means that the view object will be privy
to internal implementation details of the original buffer. It will be able to access the data
elements directly, whether they are stored in an array or by some other means, rather than
going through the get()/put() API of the original buffer object. If the original buffer is
direct, views of that buffer will have the same efficiency advantages. Likewise for
mapped buffers (discussed in Chapter 3).

In this section, we'll again use CharBuffer as an example, but the same operations can be
done on any of the primary buffer types (see Figure 2-1).

public abstract class CharBuffer
 extends Buffer implements CharSequence, Comparable
{
 // This is a partial API listing

 public abstract CharBuffer duplicate();
 public abstract CharBuffer asReadOnlyBuffer();
 public abstract CharBuffer slice();
}

The duplicate() method creates a new buffer that is just like the original. Both buffers
share the data elements and have the same capacity, but each buffer will have its own
position, limit, and mark. Changes made to data elements in one buffer will be reflected
in the other. The duplicate buffer has the same view of the data as the original buffer. If
the original buffer is read-only, or direct, the new buffer will inherit those attributes.
Direct buffers are discussed in Section 2.4.2.

Duplicating a buffer creates a new Buffer object but does not make a
copy of the data. Both the original buffer and the copy will act upon
the same data elements.

 45

 The relationship between a buffer and its duplicate is illustrated in Figure 2-12. This
results from code such as the following:

CharBuffer buffer = CharBuffer.allocate (8);
buffer.position (3).limit (6).mark().position (5);
CharBuffer dupeBuffer = buffer.duplicate();
buffer.clear();

Figure 2-12. Duplicating a buffer

You can make a read-only view of a buffer with the asReadOnlyBuffer() method. This is
the same as duplicate(), except that the new buffer will disallow put()s, and its
isReadOnly() method will return true. Attempting a call to put() on the read-only buffer
will throw a ReadOnlyBufferException.

If a read-only buffer is sharing data elements with a writable buffer,
or is backed by a wrapped array, changes made to the writable buffer
or directly to the array will be reflected in all associated buffers,
including the read-only buffer.

 Slicing a buffer is similar to duplicating, but slice() creates a new buffer that starts at the
original buffer's current position and whose capacity is the number of elements remaining
in the original buffer (limit - position). The new buffer shares a subsequence of the
data elements of the original buffer. The slice buffer will also inherit read-only and direct
attributes. Figure 2-13 illustrates a slice buffer created with code similar to this:

CharBuffer buffer = CharBuffer.allocate (8);
buffer.position (3).limit (5);
CharBuffer sliceBuffer = buffer.slice();

Figure 2-13. Creating a slice buffer

 46

To create a buffer that maps to positions 12-20 (nine elements) of a preexisting array,
code like this does the trick:

char [] myBuffer = new char [100];
CharBuffer cb = CharBuffer.wrap (myBuffer);
cb.position(12).limit(21);
CharBuffer sliced = cb.slice();

A more complete discussion of view buffers can be found in Section 2.4.3.

2.4 Byte Buffers

In this section, we'll take a closer look at byte buffers. There are buffer classes for all the
primitive data types (except boolean), but byte buffers have characteristics not shared by
the others. Bytes are the fundamental data unit used by the operating system and its I/O
facilities. When moving data between the JVM and the operating system, it's necessary to
break down the other data types into their constituent bytes. As we'll see in the following
sections, the byte-oriented nature of system-level I/O can be felt throughout the design of
buffers and the services with which they interact.

For reference, here is the complete API of ByteBuffer. Some of these methods have
been discussed in previous sections and are simply type-specific versions. The new
methods will be covered in this and following sections.

package java.nio;

public abstract class ByteBuffer extends Buffer
 implements Comparable
{
 public static ByteBuffer allocate (int capacity)
 public static ByteBuffer allocateDirect (int capacity)
 public abstract boolean isDirect();
 public static ByteBuffer wrap (byte[] array, int offset, int length)
 public static ByteBuffer wrap (byte[] array)

 public abstract ByteBuffer duplicate();
 public abstract ByteBuffer asReadOnlyBuffer();
 public abstract ByteBuffer slice();
 public final boolean hasArray()
 public final byte [] array()
 public final int arrayOffset()

 47

 public abstract byte get();
 public abstract byte get (int index);
 public ByteBuffer get (byte[] dst, int offset, int length)
 public ByteBuffer get (byte[] dst, int offset, int length)

 public abstract ByteBuffer put (byte b);
 public abstract ByteBuffer put (int index, byte b);
 public ByteBuffer put (ByteBuffer src)
 public ByteBuffer put (byte[] src, int offset, int length)
 public final ByteBuffer put (byte[] src)

 public final ByteOrder order()
 public final ByteBuffer order (ByteOrder bo)

 public abstract CharBuffer asCharBuffer();
 public abstract ShortBuffer asShortBuffer();
 public abstract IntBuffer asIntBuffer();
 public abstract LongBuffer asLongBuffer();
 public abstract FloatBuffer asFloatBuffer();
 public abstract DoubleBuffer asDoubleBuffer();

 public abstract char getChar();
 public abstract char getChar (int index);
 public abstract ByteBuffer putChar (char value);
 public abstract ByteBuffer putChar (int index, char value);

 public abstract short getShort();
 public abstract short getShort (int index);
 public abstract ByteBuffer putShort (short value);
 public abstract ByteBuffer putShort (int index, short value);

 public abstract int getInt();
 public abstract int getInt (int index);
 public abstract ByteBuffer putInt (int value);
 public abstract ByteBuffer putInt (int index, int value);

 public abstract long getLong();
 public abstract long getLong (int index);
 public abstract ByteBuffer putLong (long value);
 public abstract ByteBuffer putLong (int index, long value);

 public abstract float getFloat();
 public abstract float getFloat (int index);
 public abstract ByteBuffer putFloat (float value);
 public abstract ByteBuffer putFloat (int index, float value);

 public abstract double getDouble();
 public abstract double getDouble (int index);
 public abstract ByteBuffer putDouble (double value);
 public abstract ByteBuffer putDouble (int index, double value);

 public abstract ByteBuffer compact();
 public boolean equals (Object ob) {
 public int compareTo (Object ob) {
 public String toString()
 public int hashCode()

 48

}

Bytes Are Always Eight Bits, Right?

These days, bytes are almost universally recognized as being eight bits. But this
wasn't always the case. In ages past, bytes ranged anywhere from 3 to 12 or
more bits each, with the most common being 6 to 9 bits. The eight-bit byte was
arrived at through a combination of practicality and market forces. It's practical
because eight bits are enough to represent a usable character set (English
characters anyway), eight is a power of two (which makes hardware design
simpler), eight neatly holds two hexadecimal digits, and multiples of eight
provide enough combined bits to store useful numeric values. The market force
was IBM. The IBM 360 mainframe, first introduced in the 1960s, used eight-bit
bytes. That pretty much settled the matter. For further background, consult the
man himself, Bob Bemer of IBM, at http://www.bobbemer.com/BYTE.HTM.

2.4.1 Byte Ordering

The nonbyte primitive types, except for boolean,[2] are composed of several bytes grouped
together. The data types and their sizes are summarized in Table 2-1.

[2] Booleans represent one of two values: true or false. A byte can take on 256
unique values, so a boolean cannot be unambiguously mapped to one or several bytes.
Bytes are the building blocks from which all buffers are constructed. The NIO architects
determined that implementation of boolean buffers would be problematic, and the need
for such a buffer type was debatable anyway.

Table 2-1. Primitive data types and sizes
Data type Size (in bytes)

Byte 1
Char 2
Short 2
Int 4
Long 8
Float 4
Double 8

Each of the primitive data types is stored in memory as a contiguous sequence of bytes.
For example, the 32-bit int value 0x037FB4C7 (decimal 58,700,999) might be packed
into memory bytes as illustrated in Figure 2-14 (memory addresses increasing left to
right). Notice the word "might" in the previous sentence. Although the size of a byte has
been settled, the issue of byte order has not been universally agreed upon. The bytes
representing an integer value might just as easily be organized in memory as shown in
Figure 2-15.

Figure 2-14. Big-endian byte order

http://www.bobbemer.com/BYTE.HTM

 49

Figure 2-15. Little-endian byte order

The way multibyte numeric values are stored in memory is commonly referred to as
endian-ness. If the numerically most-significant byte of the number, the big end, is at the
lower address, then the system is big-endian (Figure 2-14). If the least-significant byte
comes first, it's little-endian (Figure 2-15).

Endian-ness is rarely a choice for software designers; it's usually dictated by the hardware
design. Both types of endian-ness, sometimes known as byte sex, are in wide-spread use
today. There are good arguments for both approaches. Intel processors use the
little-endian design. The Motorola CPU family, Sun Sparc, and PowerPC CPU
architectures are all big-endian.

The question of byte order even transcends CPU hardware design. When the architects of
the Internet were designing the Internet Protocol (IP) suite to interconnect all types of
computers, they recognized the problem of exchanging numeric data between systems
with differing internal byte orders. Therefore, the IPs define a notion of network byte
order,[3] which is big-endian. All multibyte numeric values used within the protocol
portions of IP packets must be converted between the local host byte order and the
common network byte order.

[3] Internet terminology refers to bytes as octets. As mentioned in the sidebar, the size of
a byte can be ambiguous. By using the term "octet," the IP specifications explicitly
mandate that bytes consist of eight bits.

In java.nio, byte order is encapsulated by the ByteOrder class:

package java.nio;

public final class ByteOrder
{
 public static final ByteOrder BIG_ENDIAN
 public static final ByteOrder LITTLE_ENDIAN

 public static ByteOrder nativeOrder()
 public String toString()
}

The ByteOrder class defines the constants that determine which byte order to use when
storing or retrieving multibyte values from a buffer. The class acts as a type-safe

 50

enumeration. It defines two public fields that are preinitialized with instances of itself.
Only these two instances of ByteOrder ever exist in the JVM, so they can be compared
using the == operator. If you need to know the native byte order of the hardware platform
the JVM is running on, invoke the nativeOrder() static class method. It will return one of
the two defined constants. Calling toString() returns a String containing one of the two
literal strings BIG_ENDIAN or LITTLE_ENDIAN.

Every buffer class has a current byte-order setting that can be queried by calling order():

public abstract class CharBuffer extends Buffer
 implements Comparable, CharSequence
{
 // This is a partial API listing

 public final ByteOrder order()
}

This method returns one of the two constants from ByteOrder. For buffer classes other
than ByteBuffer, the byte order is a read-only property and may take on different values
depending on how the buffer was created. Except for ByteBuffer, buffers created by
allocation or by wrapping an array will return the same value from order(), as does
ByteOrder.nativeOrder(). This is because the elements contained in the buffer are
directly accessed as primitive data within the JVM.

The ByteBuffer class is different: the default byte order is always
ByteOrder.BIG_ENDIAN regardless of the native byte order of the system. Java's default
byte order is big-endian, which allows things such as class files and serialized objects to
work with any JVM. This can have performance implications if the native hardware byte
order is little-endian. Accessing ByteBuffer content as other data types (to be discussed
shortly) can potentially be much more efficient when using the native hardware byte
order.

Hopefully, you're a little puzzled at this point as to why the ByteBuffer class would need a
byte order setting at all. Bytes are bytes, right? Sure, but as you'll soon see in Section
2.4.4, ByteBuffer objects possess a host of convenience methods for getting and putting
the buffer content as other primitive data types. The way these methods encode or decode
the bytes is dependent on the ByteBuffer's current byte-order setting.

The byte-order setting of a ByteBuffer can be changed at any time by invoking order()
with either ByteOrder.BIG_ENDIAN or ByteOrder.LITTLE_ENDIAN as an argument:

public abstract class ByteBuffer extends Buffer
 implements Comparable
{
 // This is a partial API listing

 public final ByteOrder order()
 public final ByteBuffer order (ByteOrder bo)
}

 51

If a buffer was created as a view of a ByteBuffer object (see Section 2.4.3), then the value
returned by the order() method is the byte-order setting of the originating ByteBuffer at
the time the view was created. The byte-order setting of the view cannot be changed after
it's created and will not be affected if the original byte buffer's byte order is changed later.

2.4.2 Direct Buffers

The most significant way in which byte buffers are distinguished from other buffer types
is that they can be the sources and/or targets of I/O performed by Channels. If you were
to skip ahead to Chapter 3 (hey! hey!), you'd see that channels accept only ByteBuffers as
arguments.

As we saw in Chapter 1, operating systems perform I/O operations on memory areas.
These memory areas, as far as the operating system is concerned, are contiguous
sequences of bytes. It's no surprise then that only byte buffers are eligible to participate in
I/O operations. Also recall that the operating system will directly access the address space
of the process, in this case the JVM process, to transfer the data. This means that memory
areas that are targets of I/O operations must be contiguous sequences of bytes. In the
JVM, an array of bytes may not be stored contiguously in memory, or the Garbage
Collector could move it at any time. Arrays are objects in Java, and the way data is stored
inside that object could vary from one JVM implementation to another.

For this reason, the notion of a direct buffer was introduced. Direct buffers are intended
for interaction with channels and native I/O routines. They make a best effort to store the
byte elements in a memory area that a channel can use for direct, or raw, access by using
native code to tell the operating system to drain or fill the memory area directly.

Direct byte buffers are usually the best choice for I/O operations. By design, they support
the most efficient I/O mechanism available to the JVM. Nondirect byte buffers can be
passed to channels, but doing so may incur a performance penalty. It's usually not
possible for a nondirect buffer to be the target of a native I/O operation. If you pass a
nondirect ByteBuffer object to a channel for write, the channel may implicitly do the
following on each call:

1. Create a temporary direct ByteBuffer object.
2. Copy the content of the nondirect buffer to the temporary buffer.
3. Perform the low-level I/O operation using the temporary buffer.
4. The temporary buffer object goes out of scope and is eventually garbage

collected.

This can potentially result in buffer copying and object churn on every I/O, which are
exactly the sorts of things we'd like to avoid. However, depending on the implementation,
things may not be this bad. The runtime will likely cache and reuse direct buffers or
perform other clever tricks to boost throughput. If you're simply creating a buffer for
one-time use, the difference is not significant. On the other hand, if you will be using the

 52

buffer repeatedly in a high-performance scenario, you're better off allocating direct
buffers and reusing them.

Direct buffers are optimal for I/O, but they may be more expensive to create than
nondirect byte buffers. The memory used by direct buffers is allocated by calling through
to native, operating system-specific code, bypassing the standard JVM heap. Setting up
and tearing down direct buffers could be significantly more expensive than heap-resident
buffers, depending on the host operating system and JVM implementation. The
memory-storage areas of direct buffers are not subject to garbage collection because they
are outside the standard JVM heap.

The performance tradeoffs of using direct versus nondirect buffers can vary widely by
JVM, operating system, and code design. By allocating memory outside the heap, you
may subject your application to additional forces of which the JVM is unaware. When
bringing additional moving parts into play, make sure that you're achieving the desired
effect. I recommend the old software maxim: first make it work, then make it fast. Don't
worry too much about optimization up front; concentrate first on correctness. The JVM
implementation may be able to perform buffer caching or other optimizations that will
give you the performance you need without a lot of unnecessary effort on your part.[4]

[4] "We should forget about small efficiencies, say about 97% of the time: premature
optimization is the root of all evil." — Donald Knuth

A direct ByteBuffer is created by calling ByteBuffer.allocateDirect() with the desired
capacity, just like the allocate() method we covered earlier. Note that wrapped buffers,
those created with one of the wrap() methods, are always non-direct.

public abstract class ByteBuffer
 extends Buffer implements Comparable
{
 // This is a partial API listing

 public static ByteBuffer allocate (int capacity)
 public static ByteBuffer allocateDirect (int capacity)
 public abstract boolean isDirect();
}

All buffers provide a boolean method named isDirect() to test whether a particular
buffer is direct. While ByteBuffer is the only type that can be allocated as direct, isDirect()
could be true for nonbyte view buffers if the underlying buffer is a direct ByteBuffer.
This leads us to...

2.4.3 View Buffers

As we've already discussed, I/O basically boils down to shuttling groups of bytes around.
When doing high-volume I/O, odds are you'll be using ByteBuffers to read in files,
receive data from network connections, etc. Once the data has arrived in your ByteBuffer,

 53

you'll need to look at it to decide what to do or manipulate it before sending it along. The
ByteBuffer class provides a rich API for creating view buffers.

View buffers are created by a factory method on an existing buffer object instance. The
view object maintains its own attributes, capacity, position, limit, and mark, but shares
data elements with the original buffer. We saw the simple form of this in Section 2.3, in
which buffers were duplicated and sliced. But ByteBuffer allows the creation of views to
map the raw bytes of the byte buffer to other primitive data types. For example, the
asLongBuffer() method creates a view buffer that will access groups of eight bytes from
the ByteBuffer as longs.

Each of the factory methods in the following listing create a new buffer that is a view into
the original ByteBuffer object. Invoking one of these methods will create a buffer of the
corresponding type, which is a slice (see Section 2.3) of the underlying byte buffer
corresponding to the byte buffer's current position and limit. The new buffer will have a
capacity equal to the number of elements remaining in the byte buffer (as returned by
remaining()) divided by the number of bytes comprising the view's primitive type (refer
to Table 2-1). Any remaining bytes at the end of the slice will not be visible in the view.
The first element of the view will begin at the position (as returned by position()) of the
ByteBuffer object at the time the view was created. View buffers with data elements that
are aligned on natural modulo boundaries may be eligible for optimization by the
implementation.

public abstract class ByteBuffer
 extends Buffer implements Comparable
{
 // This is a partial API listing

 public abstract CharBuffer asCharBuffer();
 public abstract ShortBuffer asShortBuffer();
 public abstract IntBuffer asIntBuffer();
 public abstract LongBuffer asLongBuffer();
 public abstract FloatBuffer asFloatBuffer();
 public abstract DoubleBuffer asDoubleBuffer();
}

The following code creates a CharBuffer view of a ByteBuffer, as shown in Figure 2-16.
(Example 2-2 puts this fragment into a larger context.)

ByteBuffer byteBuffer = ByteBuffer.allocate (7).order
(ByteOrder.BIG_ENDIAN);
CharBuffer charBuffer = byteBuffer.asCharBuffer();

Figure 2-16. A CharBuffer view of a ByteBuffer

 54

Example 2-2. Creating a char view of a ByteBuffer

package com.ronsoft.books.nio.buffers;

import java.nio.Buffer;
import java.nio.ByteBuffer;
import java.nio.CharBuffer;
import java.nio.ByteOrder;

/**
 * Test asCharBuffer view.
 *
 * Created May 2002
 * @author Ron Hitchens (ron@ronsoft.com)
 */
public class BufferCharView
{
 public static void main (String [] argv)
 throws Exception
 {
 ByteBuffer byteBuffer =
 ByteBuffer.allocate (7).order (ByteOrder.BIG_ENDIAN);
 CharBuffer charBuffer = byteBuffer.asCharBuffer();

 // Load the ByteBuffer with some bytes
 byteBuffer.put (0, (byte)0);
 byteBuffer.put (1, (byte)'H');
 byteBuffer.put (2, (byte)0);
 byteBuffer.put (3, (byte)'i');
 byteBuffer.put (4, (byte)0);
 byteBuffer.put (5, (byte)'!');
 byteBuffer.put (6, (byte)0);

 println (byteBuffer);
 println (charBuffer);
 }

 // Print info about a buffer
 private static void println (Buffer buffer)
 {
 System.out.println ("pos=" + buffer.position()
 + ", limit=" + buffer.limit()
 + ", capacity=" + buffer.capacity()
 + ": '" + buffer.toString() + "'");
 }

 55

}
pos=0, limit=7, capacity=7: 'java.nio.HeapByteBuffer[pos=0 lim=7 cap=7]'
pos=0, limit=3, capacity=3: 'Hi!'

Here's the output from executing BufferCharView:

pos=0, limit=7, capacity=7: 'java.nio.HeapByteBuffer[pos=0 lim=7 cap=7]'
pos=0, limit=3, capacity=3: 'Hi!

Once you've obtained the view buffer, you can create further subviews with duplicate(),
slice(), and asReadOnlyBuffer(), as discussed in Section 2.3.

Whenever a view buffer accesses the underlying bytes of a ByteBuffer, the bytes are
packed to compose a data element according to the view buffer's byte-order setting.
When a view buffer is created, it inherits the byte-order setting of the underlying
ByteBuffer at the time the view is created. The byte-order setting of the view cannot be
changed later. In Figure 2-16, you can see that two bytes of the underlying ByteBuffer
map to each character of the CharBuffer. The ByteOrder setting of the CharBuffer
determines how these byte pairs are combined to form chars. Refer to Section 2.4.1 for
more details.

View buffers can potentially be much more efficient when derived from direct byte
buffers. If the byte order of the view matches the native hardware byte order, the
low-level code may be able to access the data values directly rather than going through
the byte-packing and -unpacking process.

2.4.4 Data Element Views

The ByteBuffer class provides a lightweight mechanism to access groups of bytes as a
multibyte data type. ByteBuffer contains accessor and mutator methods for each of the
primitive data types:

public abstract class ByteBuffer
 extends Buffer implements Comparable
{
 public abstract char getChar();
 public abstract char getChar (int index);
 public abstract short getShort();
 public abstract short getShort (int index);
 public abstract int getInt();
 public abstract int getInt (int index);
 public abstract long getLong();
 public abstract long getLong (int index);
 public abstract float getFloat();
 public abstract float getFloat (int index);
 public abstract double getDouble();
 public abstract double getDouble (int index);

 public abstract ByteBuffer putChar (char value);
 public abstract ByteBuffer putChar (int index, char value);

 56

 public abstract ByteBuffer putShort (short value);
 public abstract ByteBuffer putShort (int index, short value);
 public abstract ByteBuffer putInt (int value);
 public abstract ByteBuffer putInt (int index, int value);
 public abstract ByteBuffer putLong (long value);
 public abstract ByteBuffer putLong (int index, long value);
 public abstract ByteBuffer putFloat (float value);
 public abstract ByteBuffer putFloat (int index, float value);
 public abstract ByteBuffer putDouble (double value);
 public abstract ByteBuffer putDouble (int index, double value);
}

These methods access the bytes of the ByteBuffer, starting at the current position, as if a
data element of that type were stored there. The bytes will be marshaled to or from the
requested primitive data type according to the current byte-order setting in effect for the
buffer. For example, if getInt() is called, the four bytes beginning at the current position
would be packed into an int and returned as the method value. See Section 2.4.1.

Assume that a ByteBuffer named buffer is in the state shown in Figure 2-17.

Figure 2-17. A ByteBuffer containing some data

This code:

int value = buffer.getInt();

would return an int value composed of the byte values in locations 1-4 of the buffer. The
actual value returned would depend on the current ByteOrder setting of the buffer. To be
more specific:

int value = buffer.order (ByteOrder.BIG_ENDIAN).getInt();

returns the numeric value 0x3BC5315E, while:

int value = buffer.order (ByteOrder.LITTLE_ENDIAN).getInt();

returns the value 0x5E31C53B.

If the primitive data type you're trying to get requires more bytes than what remains in
the buffer, a BufferUnderflowException will be thrown. For the buffer in Figure 2-17, this
code would throw an exception because a long is eight bytes, and only five bytes remain
in the buffer:

 57

long value = buffer.getLong();

The elements returned by these methods do not need to be aligned on any specific
modulo boundary.[5] Data values will be fetched and assembled from the byte buffer
beginning at the current position of the buffer, regardless of word alignment. This can be
inefficient, but it allows for arbitrary placement of data in a byte stream. This can be
useful for extracting numeric values from binary file data or packing data into
platform-specific formats for export to external systems.

[5] A modulo considers the remainder when dividing one number by another. Modulo
boundaries are those points on a number line where the remainder for a particular divisor
is zero. For example, any number evenly divisible by 4 is modulo 4: 4, 8, 12, 16, etc. Many
CPU designs require modulo memory alignment of multibyte numeric values.

The put methods perform the inverse operation of the gets. Primitive data values will be
broken into bytes according to the byte order of the buffer and stored. If insufficient
space is available to store all the bytes, a BufferOverflowException will be thrown.

There are relative and absolute forms of each method. The relative forms advance the
position by the number of bytes affected (see Table 2-1). The absolute versions leave the
position unchanged.

2.4.5 Accessing Unsigned Data

The Java programming language does not provide direct support for unsigned numeric
values (other than char). But there are many instances in which you may need to extract
unsigned information from a data stream or file, or pack data to create file headers or
other structured information with unsigned fields. The ByteBuffer API does not provide
direct support for this, but it's not difficult to do. You just need to be careful about
precision. The utility class in Example 2-3 may be useful when you must deal with
unsigned data in buffers.

Example 2-3. Utility routines for getting/putting unsigned values

package com.ronsoft.books.nio.buffers;

import java.nio.ByteBuffer;

/**
 * Utility class to get and put unsigned values to a ByteBuffer object.
 * All methods here are static and take a ByteBuffer argument.
 * Since java does not provide unsigned primitive types, each unsigned
 * value read from the buffer is promoted up to the next bigger primitive
 * data type. getUnsignedByte() returns a short, getUnsignedShort() returns

 * an int and getUnsignedInt() returns a long. There is no getUnsignedLong()

 * since there is no primitive type to hold the value returned. If needed,
 * methods returning BigInteger could be implemented.
 * Likewise, the put methods take a value larger than the type they will

 58

 * be assigning. putUnsignedByte takes a short argument, etc.
 *
 * @author Ron Hitchens (ron@ronsoft.com)
 */
public class Unsigned
{
 public static short getUnsignedByte (ByteBuffer bb)
 {
 return ((short)(bb.get() & 0xff));
 }

 public static void putUnsignedByte (ByteBuffer bb, int value)
 {
 bb.put ((byte)(value & 0xff));
 }

 public static short getUnsignedByte (ByteBuffer bb, int position)
 {
 return ((short)(bb.get (position) & (short)0xff));
 }

 public static void putUnsignedByte (ByteBuffer bb, int position,
 int value)
 {
 bb.put (position, (byte)(value & 0xff));
 }

 // ---

 public static int getUnsignedShort (ByteBuffer bb)
 {
 return (bb.getShort() & 0xffff);
 }

 public static void putUnsignedShort (ByteBuffer bb, int value)
 {
 bb.putShort ((short)(value & 0xffff));
 }

 public static int getUnsignedShort (ByteBuffer bb, int position)
 {
 return (bb.getShort (position) & 0xffff);
 }

 public static void putUnsignedShort (ByteBuffer bb, int position,
 int value)
 {
 bb.putShort (position, (short)(value & 0xffff));
 }

 // ---

 public static long getUnsignedInt (ByteBuffer bb)
 {
 return ((long)bb.getInt() & 0xffffffffL);
 }

 59

 public static void putUnsignedInt (ByteBuffer bb, long value)
 {
 bb.putInt ((int)(value & 0xffffffffL));
 }

 public static long getUnsignedInt (ByteBuffer bb, int position)
 {
 return ((long)bb.getInt (position) & 0xffffffffL);
 }

 public static void putUnsignedInt (ByteBuffer bb, int position,
 long value)
 {
 bb.putInt (position, (int)(value & 0xffffffffL));
 }
}

2.4.6 Memory-Mapped Buffers

Mapped buffers are byte buffers with data elements stored in a file and are accessed via
memory mapping. Mapped buffers are always direct and can be created only from a
FileChannel object. Usage of mapped buffers is similar to direct buffers, but
MappedByteBuffer objects possess many special characteristics unique to file access. For
this reason, I'm deferring discussion of mapped buffers to Section 3.4, which also
discusses file locking.

2.5 Summary

This chapter covered buffers, which live in the java.nio package. Buffer objects enable
the advanced I/O capabilities covered in the remaining chapters. These key buffer topics
were covered in this chapter:

Buffer attributes

Attributes that all buffers posses were covered in Section 2.1.1. These attributes
describe the current state of a buffer and affect how it behaves. In this section, we
also learned how to manipulate the state of buffers and how to add and remove
data elements.

Buffer creation

We learned how buffers are created in Section 2.2 and how to duplicate them in
Section 2.3. There are many types of buffers. The way a buffer is created
determines how and where it should be used.

Byte buffers

 60

While buffers can be created for any primitive data type other than boolean, byte
buffers have special features not shared by the other buffer types. Only byte
buffers can be used with channels (discussed in Chapter 3), and byte buffers offer
views of their content in terms of other data types. We also examined the issues
related to byte ordering. ByteBuffers were discussed in Section 2.4.

This concludes our visit with the menagerie of buffers in java.nio. The next stop on the
tour is java.nio.channels where you will encounter, not surprisingly, channels.
Channels interact with byte buffers and unlock the door to high-performance I/O. Hop
back on the bus, it's a short trip to our next stop.

 61

Chapter 3. Channels

Brilliance! Sheer, unadulterated brilliance!

—Wile E. Coyote, Super Genius

Channels are the second major innovation of java.nio. They are not an extension or
enhancement, but a new, first-class Java I/O paradigm. They provide direct connections
to I/O services. A Channel is a conduit that transports data efficiently between byte
buffers and the entity on the other end of the channel (usually a file or socket).

A good metaphor for a channel is a pneumatic tube, the type used at drive-up bank-teller
windows. Your paycheck would be the information you're sending. The carrier would be
like a buffer. You fill the buffer (place your paycheck in the carrier), "write" the buffer to
the channel (drop the carrier into the tube), and the payload is carried to the I/O service
(bank teller) on the other end of the channel.

The response would be the teller filling the buffer (placing your receipt in the carrier) and
starting a channel transfer in the opposite direction (dropping the carrier back into the
tube). The carrier arrives on your end of the channel (a filled buffer is ready for you to
examine). You then flip the buffer (open the lid) and drain it (remove your receipt). You
drive away and the next object (bank customer) is ready to repeat the process using the
same carrier (Buffer) and tube (Channel) objects.

In most cases, channels have a one-to-one relationship with operating-system file
descriptors, or file handles. Although channels are more generalized than file descriptors,
most channels you will use on a regular basis are connected to open file descriptors. The
channel classes provide the abstraction needed to maintain platform independence but
still model the native I/O capabilities of modern operating systems.

Channels are gateways through which the native I/O services of the operating system can
be accessed with a minimum of overhead, and buffers are the internal endpoints used by
channels to send and receive data. (See Figure 3-1.)

Figure 3-1. Channels act as conduits to I/O services

As you can see from the UML class diagram in Figure 3-2, the inheritance relationships
of the channel classes are a bit more complicated than those of the buffer classes. The
interrelationships are more complex, and there are some dependencies on classes defined

 62

in the java.nio.channels.spi subpackage. In this chapter, we'll make sense of this
tangle. The channels SPI is summarized in Appendix B.

Figure 3-2. The channel family tree

So without further ado, let's explore the exciting world of channels.

3.1 Channel Basics

 63

First, let's take a closer look at the basic Channel interface. This is the full source of the
Channel interface:

package java.nio.channels;

public interface Channel
{
 public boolean isOpen();
 public void close() throws IOException;
}

Unlike buffers, the channel APIs are primarily specified by interfaces. Channel
implementations vary radically between operating systems, so the channel APIs simply
describe what can be done. Channel implementations often use native code, so this is
only natural. The channel interfaces allow you to gain access to low-level I/O services in
a controlled and portable way.

As you can see by the top-level Channel interface, there are only two operations common
to all channels: checking to see if a channel is open (isOpen()) and closing an open
channel (close()). Figure 3-2 shows that all the interesting stuff is in the classes that
implement Channel and its subinterfaces.

The InterruptibleChannel interface is a marker that, when implemented by a channel,
indicates that the channel is interruptible. Interruptible channels behave in specific ways
when a thread accessing them is interrupted, which we will discuss in Section 3.1.3. Most,
but not all, channels are interruptible.

The other interfaces extending Channel are the byte-oriented subinterfaces
Writable-ByteChannel and ReadableByteChannel. This supports what we learned earlier:
channels operate only on byte buffers. The structure of the hierarchy implies that
channels for other data types could also extend from Channel. This is good class design,
but nonbyte implementations are unlikely because operating systems do low-level I/O in
terms of bytes.

You can see in Figure 3-2 that two of the classes in this family tree live in a different
package, java.nio.channels.spi. These classes, AbstractInterruptibleChannel and
AbstractSelectableChannel, provide the common methods needed by channel
implementations that are interruptible or selectable, respectively. Although the interfaces
describing channel behaviors are defined in the java.nio.channels package, the
concrete implementations extend from classes in java.nio.channels.spi. This allows
them access to protected methods that normal users of channels should never invoke.

As a user of channels, you can safely ignore the intermediate classes in the SPI package.
The somewhat convoluted inheritance hierarchy is of interest only to those implementing
new channels. The SPI package allows new channel implementations to be plugged into
the JVM in a controlled and modular way. This means channels optimized for a particular
operating system, filesystem, or application can be dropped in to maximize performance.

 64

3.1.1 Opening Channels

Channels serve as conduits to I/O services. As we discussed in Chapter 1, I/O falls into
two broad categories: file I/O and stream I/O. So it's no surprise that there are two types
of channels: file and socket. If you refer to Figure 3-2, you'll see that there is one
FileChannel class and three socket channel classes: SocketChannel, ServerSocketChannel,
and DatagramChannel.

Channels can be created in several ways. The socket channels have factory methods to
create new socket channels directly. But a FileChannel object can be obtained only by
calling the getChannel() method on an open RandomAccessFile, FileInputStream, or
FileOutputStream object. You cannot create a FileChannel object directly. File and
socket channels are discussed detail in upcoming sections.

SocketChannel sc = SocketChannel.open();
sc.connect (new InetSocketAddress ("somehost", someport));

ServerSocketChannel ssc = ServerSocketChannel.open();
ssc.socket().bind (new InetSocketAddress (somelocalport));

DatagramChannel dc = DatagramChannel.open();

RandomAccessFile raf = new RandomAccessFile ("somefile", "r");
FileChannel fc = raf.getChannel();

As you'll see in Section 3.5, the socket classes of java.net have new getChannel()
methods as well. While these methods return a corresponding socket channel object, they
are not sources of new channels as RandomAccessFile.getChannel() is. They return
the channel associated with a socket if one already exists; they never create new
channels.

3.1.2 Using Channels

As we learned in Chapter 2, channels transfer data to and from ByteBuffer objects.

Removing most of the clutter from Figure 3-2 yields the UML class diagram in Figure
3-3. The APIs of the subinterfaces are as follows:

public interface ReadableByteChannel
 extends Channel
{
 public int read (ByteBuffer dst) throws IOException;
}

public interface WritableByteChannel
 extends Channel
{
 public int write (ByteBuffer src) throws IOException;
}

 65

public interface ByteChannel
 extends ReadableByteChannel, WritableByteChannel
{
}

Figure 3-3. The ByteChannel interfaces

Channels can be unidirectional or bidirectional. A given channel class might implement
ReadableByteChannel, which defines the read() method. Another might implement
WritableByteChannel to provide write(). A class implementing one or the other of these
interfaces is unidirectional: it can transfer data in only one direction. If a class
implements both interfaces, it is bidirectional and can transfer data in both directions.

Figure 3-3 shows an interface, ByteChannel, which extends both ReadableByteChannel
and WritableByteChannel. ByteChannel doesn't declare any new API methods; it's a
convenience interface that aggregates the multiple interfaces it inherits under a new name.
By definition, a channel that implements ByteChannel implements both
ReadableByteChannel and WritableByteChannel and is therefore bidirectional. This is
syntactic sugar to simplify class definitions and make it easier to test channel objects with
the instanceof operator.

This is good class design technique, and if you were writing your own Channel
implementation, you would implement these interfaces as appropriate. But it turns out
that they are not of much interest to someone using the standard channel classes of the
java.nio.channels package. If you glance back at Figure 3-2, or skip ahead to the
sections on file and socket channels, you'll see that each of the file and socket channels
implement all three of these interfaces. In terms of class definition, this means that all file
and socket channel objects are bidirectional. This is not a problem for sockets because
they're always bidirectional, but it is an issue for files.

As you know, a given file can be opened with different permissions at different times. A
FileChannel object obtained from the getChannel() method of a FileInputStream object
is read-only but is bidirectional in terms of interface declarations because FileChannel
implements ByteChannel. Invoking write() on such a channel will throw the unchecked

 66

NonWritableChannelException because FileInputStream always opens files with
read-only permission.

It's important to keep in mind that a channel connects to a specific I/O service, and the
capabilities of a given channel instance will be constrained by the characteristics of the
service to which it's connected. A Channel instance connected to a read-only file cannot
write, even though the class to which that channel instance belongs may have a write()
method. It falls to the programmer to know how the channel was opened and not to
attempt an operation the underlying I/O service won't allow.

// A ByteBuffer named buffer contains data to be written

FileInputStream input = new FileInputStream (fileName);
FileChannel channel = input.getChannel();

// This will compile but will throw an IOException
// because the underlying file is read-only

channel.write (buffer);

Channel instances may not allow read() or write(), depending on the
access mode(s) of the underlying file handle.

The read() and write() methods of ByteChannel take ByteBuffer objects as arguments.
Each returns the number of bytes transferred, which can be less than the number of bytes
in the buffer, or even zero. The position of the buffer will have been advanced by the
same amount. If a partial transfer was performed, the buffer can be resubmitted to the
channel to continue transferring data where it left off. Repeat until the buffer's
hasRemaining() method returns false. Example 3-1 shows how to copy data from one
channel to another.

Example 3-1. Copying data between channels

package com.ronsoft.books.nio.channels;

import java.nio.ByteBuffer;
import java.nio.channels.ReadableByteChannel;
import java.nio.channels.WritableByteChannel;
import java.nio.channels.Channels;
import java.io.IOException;

/**
 * Test copying between channels.
 *
 * @author Ron Hitchens (ron@ronsoft.com)
 */
public class ChannelCopy
{
 /**
 * This code copies data from stdin to stdout. Like the 'cat'

 67

 * command, but without any useful options.
 */
 public static void main (String [] argv)
 throws IOException
 {
 ReadableByteChannel source = Channels.newChannel (System.in);
 WritableByteChannel dest = Channels.newChannel (System.out);

 channelCopy1 (source, dest);
 // alternatively, call channelCopy2 (source, dest);

 source.close();
 dest.close();
 }

 /**
 * Channel copy method 1. This method copies data from the src
 * channel and writes it to the dest channel until EOF on src.
 * This implementation makes use of compact() on the temp buffer
 * to pack down the data if the buffer wasn't fully drained. This
 * may result in data copying, but minimizes system calls. It also
 * requires a cleanup loop to make sure all the data gets sent.
 */
 private static void channelCopy1 (ReadableByteChannel src,
 WritableByteChannel dest)
 throws IOException
 {
 ByteBuffer buffer = ByteBuffer.allocateDirect (16 * 1024);

 while (src.read (buffer) != -1) {
 // Prepare the buffer to be drained
 buffer.flip();

 // Write to the channel; may block
 dest.write (buffer);

 // If partial transfer, shift remainder down
 // If buffer is empty, same as doing clear()
 buffer.compact();
 }

 // EOF will leave buffer in fill state
 buffer.flip();

 // Make sure that the buffer is fully drained
 while (buffer.hasRemaining()) {
 dest.write (buffer);
 }
 }

 /**
 * Channel copy method 2. This method performs the same copy, but
 * assures the temp buffer is empty before reading more data. This
 * never requires data copying but may result in more systems calls.
 * No post-loop cleanup is needed because the buffer will be empty
 * when the loop is exited.
 */

 68

 private static void channelCopy2 (ReadableByteChannel src,
 WritableByteChannel dest)
 throws IOException
 {
 ByteBuffer buffer = ByteBuffer.allocateDirect (16 * 1024);

 while (src.read (buffer) != -1) {
 // Prepare the buffer to be drained
 buffer.flip();

 // Make sure that the buffer was fully drained
 while (buffer.hasRemaining()) {
 dest.write (buffer);
 }

 // Make the buffer empty, ready for filling
 buffer.clear();
 }
 }
}

Channels can operate in blocking or nonblocking modes. A channel in nonblocking mode
never puts the invoking thread to sleep. The requested operation either completes
immediately or returns a result indicating that nothing was done. Only stream-oriented
channels, such as sockets and pipes, can be placed in nonblocking mode.

As you can see in Figure 3-2, the socket channel classes extend from SelectableChannel.
Classes extending from SelectableChannel can be used with Selectors, which enable
readiness selection. Combining nonblocking I/O with selectors allows your application to
exploit multiplexed I/O. Selection and multiplexing are discussed in Chapter 4. The
details of how to place sockets in nonblocking mode are covered in Section 3.5.

3.1.3 Closing Channels

Unlike buffers, channels cannot be reused. An open channel represents a specific
connection to a specific I/O service and encapsulates the state of that connection. When a
channel is closed, that connection is lost, and the channel is no longer connected to
anything.

package java.nio.channels;

public interface Channel
{
 public boolean isOpen();
 public void close() throws IOException;
}

Calling a channel's close() method might cause the thread to block briefly[1] while the
channel finalizes the closing of the underlying I/O service, even if the channel is in
nonblocking mode. Blocking behavior when a channel is closed, if any, is highly
operating system- and filesystem-dependent. It's harmless to call close() on a channel

 69

multiple times, but if the first thread has blocked in close(), any additional threads calling
close() block until the first thread has completed closing the channel. Subsequent calls to
close() on the closed channel do nothing and return immediately.

[1] Socket channels could conceivably take a significant amount of time to close
depending on the system's networking implementation. Some network protocol stacks
may block a close while output is drained. Your mileage may vary.

The open state of a channel can be tested with the isOpen() method. If it returns true, the
channel can be used. If false, the channel has been closed and can no longer be used.
Attempting to read, write, or perform any other operation that requires the channel to be
in an open state will result in a ClosedChannelException.

Channels introduce some new behaviors related to closing and interrupts. If a channel
implements the InterruptibleChannel interface (see Figure 3-2), then it's subject to the
following semantics. If a thread is blocked on a channel, and that thread is interrupted (by
another thread calling the blocked thread's interrupt() method), the channel will be closed,
and the blocked thread will be sent a ClosedByInterruptException.

Additionally, if a thread's interrupt status is set, and that thread attempts to access a
channel, the channel will immediately be closed, and the same exception will be thrown.
A thread's interrupt status is set when its interrupt() method is called. A thread's current
interrupt status can be tested with the isInterrupted() method. The interrupt status of the
current thread can be cleared by calling the static Thread.interrupted() method.

Don't confuse interrupting threads sleeping on Channels with those
sleeping on Selectors. The former shuts down the channel; the latter
does not. However, your thread's interrupt status will be set if it is
interrupted while sleeping on a Selector. If that thread then touches a
Channel, that channel will be closed. Selectors are discussed in
Chapter 4.

 It may seem rather draconian to shut down a channel just because a thread sleeping on
that channel was interrupted. But this is an explicit design decision made by the NIO
architects. Experience has shown that it's impossible to reliably handle interrupted I/O
operations consistently across all operating systems. The requirement to provide
deterministic channel behavior on all platforms led to the design choice of always closing
channels when I/O operations are interrupted. This was deemed acceptable, because a
thread is most often interrupted so it can be told to shut down. The java.nio package
mandates this behavior to avoid the quagmire of operating-system peculiarities, which is
especially treacherous in this area. This is a classic trade-off of features for robustness.

Interruptible channels are also asynchronously closable. A channel that implements
InterruptibleChannel can be closed at any time, even if another thread is blocked waiting
for an I/O to complete on that channel. When a channel is closed, any threads sleeping on

 70

that channel will be awakened and receive an AsynchronousCloseException. The channel
will then be closed and will be no longer usable.

The initial NIO release, JDK 1.4.0, contains several serious bugs
related to interrupted channel operations and asynchronous
closability. These problems are expected to be resolved in the 1.4.1
release. In 1.4.0, threads sleeping on a channel I/O operation may not
be reliably awakened if they are interrupted or the channel closed by
another thread. Be careful about depending on this behavior.

 Channels that don't implement InterruptibleChannel are typically special-purpose
channels without low-level, native-code implementations. These may be special-purpose
channels that never block, wrappers around legacy streams, or writer classes for which
these interruptible semantics cannot be implemented (see Section 3.7).

3.2 Scatter/Gather

Channels provide an important new capability known as scatter/gather (referred to in
some circles as vectored I/O). Scatter/gather is a simple yet powerful concept (see
Section 1.4.1.1). It refers to performing a single I/O operation across multiple buffers. For
a write operation, data is gathered (drained) from several buffers in turn and sent along
the channel. The buffers do not need to have the same capcity (and they usually don't).
The effect is the same as if the content of all the buffers was concatenated into one large
buffer before being sent. For reads, the data read from the channel is scattered to multiple
buffers in sequence, filling each to its limit, until the data from the channel or the total
buffer space is exhausted.

Most modern operating systems support native vectored I/O. When you request a
scatter/gather operation on a channel, the request will be translated into appropriate
native calls to fill or drain the buffers directly. This is a big win, because buffer copies
and system calls are reduced or eliminated. Scatter/gather should be used with direct
ByteBuffers to gain the greatest advantage from native I/O, especially if the buffers are
long-lived.

Adding the scatter/gather interfaces to the UML class diagram of Figure 3-3 produces
Figure 3-4. The following code illustrates how scatter is an extension of reading and
gather is built on writing:

public interface ScatteringByteChannel
 extends ReadableByteChannel
{
 public long read (ByteBuffer [] dsts)
 throws IOException;

 public long read (ByteBuffer [] dsts, int offset, int length)
 throws IOException;
}

 71

public interface GatheringByteChannel
 extends WritableByteChannel
{
 public long write(ByteBuffer[] srcs)
 throws IOException;

 public long write(ByteBuffer[] srcs, int offset, int length)
 throws IOException;
}

Figure 3-4. Scatter/gather interfaces

You can see that each interface adds two new methods that take an array of buffers as
arguments. Also, each method provides a form that takes an offset and length. Let's
understand first how to use the simple form. In the code below, let's assume that channel
is connected to a socket that has 48 bytes ready to read:

ByteBuffer header = ByteBuffer.allocateDirect (10);
ByteBuffer body = ByteBuffer.allocateDirect (80);
ByteBuffer [] buffers = { header, body };

int bytesRead = channel.read (buffers);

Upon returning from read(), bytesRead holds the value 48, the header buffer contains
the first 10 bytes read from the channel, and body holds the following 38 bytes. The
channel automatically scattered the data into the two buffers. The buffers have been filled
(although in this case body has room for more) and will need to be flipped to make them
ready for draining. In a case like this, we may not bother flipping the header buffer but
access it randomly with absolute gets to check various header fields. The body buffer can
be flipped and passed to the write() method of another channel to send it on its way. For
example:

switch (header.getShort(0)) {
case TYPE_PING:
 break;

 72

case TYPE_FILE:
 body.flip();
 fileChannel.write (body);
 break;

default:
 logUnknownPacket (header.getShort(0), header.getLong(2), body);
 break;
}

Just as easily, we can assemble data in multiple buffers to be sent in one gather operation.
Using the same buffers, we could put together and send packets on a socket channel like
this:

body.clear();
body.put("FOO".getBytes()).flip(); // "FOO" as bytes

header.clear();
header.putShort (TYPE_FILE).putLong (body.limit()).flip();

long bytesWritten = channel.write (buffers);

This code sends a total of 13 bytes down the channel, gathering them from the buffers
referenced by the buffers array passed to write().

Figure 3-5 is a graphical representation of a gathering write. Data is gathered from each
of the buffers referenced by the array of buffers and assembled into a stream of bytes that
are sent down the channel.

Figure 3-5. A gathering write using four buffers

Figure 3-6 shows a scattering read. Data arriving on the channel is scattered to the list of
buffers, filling each in turn from its position to its limit. The position and limit values
shown here are before the read operation commenced.

Figure 3-6. A scattering read using four buffers

 73

The versions of read() and write() that take offset and length arguments provide a way
to use subsets of the buffers in an array of buffers. The offset value in this case refers to
which buffer to begin using, not an offset into the data. The length argument indicates
the number of buffers to use. For example, if we have a five-element array named
fiveBuffers that has already been initialized with references to five buffers, the
following code would write the content of the second, third, and fourth buffers:

int bytesRead = channel.write (fiveBuffers, 1, 3);

Scatter/gather can be an extraordinarily powerful tool when used properly. It allows you
to delegate to the operating system the grunt work of separating out the data you read into
multiple buckets, or assembling disparate chunks of data into a whole. This can be a huge
win because the operating system is highly optimized for this sort of thing. It saves you
the work of moving things around, thereby avoiding buffer copies, and reduces the
amount of code you need to write and debug. Since you are basically assembling data by
providing references to data containers, the various chunks can be assembled in different
ways by building multiple arrays of buffer references in different combinations, as
Example 3-2 demonstrates.

Example 3-2. Collecting many buffers in a gathering write

package com.ronsoft.books.nio.channels;

import java.nio.ByteBuffer;
import java.nio.channels.GatheringByteChannel;
import java.io.FileOutputStream;
import java.util.Random;
import java.util.List;
import java.util.LinkedList;

/**
 * Demonstrate gathering write using many buffers.
 *
 * @author Ron Hitchens (ron@ronsoft.com)
 */
public class Marketing
{
 private static final String DEMOGRAPHIC = "blahblah.txt";

 // "Leverage frictionless methodologies"

 74

 public static void main (String [] argv)
 throws Exception
 {
 int reps = 10;

 if (argv.length > 0) {
 reps = Integer.parseInt (argv [0]);
 }

 FileOutputStream fos = new FileOutputStream (DEMOGRAPHIC);
 GatheringByteChannel gatherChannel = fos.getChannel();

 // Generate some brilliant marcom, er, repurposed content
 ByteBuffer [] bs = utterBS (reps);

 // Deliver the message to the waiting market
 while (gatherChannel.write (bs) > 0) {
 // Empty body
 // Loop until write() returns zero
 }

 System.out.println ("Mindshare paradigms synergized to "
 + DEMOGRAPHIC);

 fos.close();
 }

 // --
 // These are just representative; add your own

 private static String [] col1 = {
 "Aggregate", "Enable", "Leverage",
 "Facilitate", "Synergize", "Repurpose",
 "Strategize", "Reinvent", "Harness"
 };

 private static String [] col2 = {
 "cross-platform", "best-of-breed", "frictionless",
 "ubiquitous", "extensible", "compelling",
 "mission-critical", "collaborative", "integrated"
 };

 private static String [] col3 = {
 "methodologies", "infomediaries", "platforms",
 "schemas", "mindshare", "paradigms",
 "functionalities", "web services", "infrastructures"
 };

 private static String newline = System.getProperty ("line.separator");

 // The Marcom-atic 9000
 private static ByteBuffer [] utterBS (int howMany)
 throws Exception
 {
 List list = new LinkedList();

 for (int i = 0; i < howMany; i++) {

 75

 list.add (pickRandom (col1, " "));
 list.add (pickRandom (col2, " "));
 list.add (pickRandom (col3, newline));
 }

 ByteBuffer [] bufs = new ByteBuffer [list.size()];
 list.toArray (bufs);

 return (bufs);
 }

 // The communications director
 private static Random rand = new Random();

 // Pick one, make a buffer to hold it and the suffix, load it with
 // the byte equivalent of the strings (will not work properly for
 // non-Latin characters), then flip the loaded buffer so it's ready
 // to be drained
 private static ByteBuffer pickRandom (String [] strings, String suffix)
 throws Exception
 {
 String string = strings [rand.nextInt (strings.length)];
 int total = string.length() + suffix.length();
 ByteBuffer buf = ByteBuffer.allocate (total);

 buf.put (string.getBytes ("US-ASCII"));
 buf.put (suffix.getBytes ("US-ASCII"));
 buf.flip();

 return (buf);
 }
}

Here's the output from executing Marketing. While the output is meaningless, gathering
writes allow us to generate it very efficiently!

Aggregate compelling methodologies
Harness collaborative platforms
Aggregate integrated schemas
Aggregate frictionless platforms
Enable integrated platforms
Leverage cross-platform functionalities
Harness extensible paradigms
Synergize compelling infomediaries
Repurpose cross-platform mindshare
Facilitate cross-platform infomediaries

3.3 File Channels

Up to this point, we've been discussing the channels generically, i.e., discussing those
things common to all channel types. It's time to get specific. In this section, we discuss
file channels (socket channels are covered in an upcoming section). As you can see in
Figure 3-7, the FileChannel class can do normal read and write as well as scatter/gather.

 76

It also provides lots of new methods specific to files. Many of these methods are familiar
file operations; others may be new to you. We'll discuss them all, right here, right now.

Figure 3-7. FileChannel family tree

File channels are always blocking and cannot be placed into nonblocking mode. Modern
operating systems have sophisticated caching and prefetch algorithms that usually give
local disk I/O very low latency. Network filesystems generally have higher latencies but
often benefit from the same optimizations. The nonblocking paradigm of stream-oriented
I/O doesn't make as much sense for file-oriented operations because of the fundamentally
different nature of file I/O. For file I/O, the true winner is asynchronous I/O, which lets a
process request one or more I/O operations from the operating system but does not wait
for them to complete. The process is notified at a later time that the requested I/O has
completed. Asynchronous I/O is an advanced capability not available on many operating
systems. It is under consideration as a future NIO enhancement.

As mentioned in Section 3.1.1, FileChannel objects cannot be created directly. A
FileChannel instance can be obtained only by calling getChannel() on an open file object
(RandomAccessFile, FileInputStream, or FileOutputStream).[2] Calling the getChannel()
method returns a FileChannel object connected to the same file, with the same access

 77

permissions as the file object. You can then use the channel object to make use of the
powerful FileChannel API:

[2] JSR 51 also specified the need for an expanded filesystem interface API. An
implementation of that API didn't make it into the JDK 1.4 release but is expected to be
in 1.5. Once the improved filesystem API is in place, it will probably become the
preferred source of FileChannel objects.

package java.nio.channels;

public abstract class FileChannel
 extends AbstractChannel
 implements ByteChannel, GatheringByteChannel, ScatteringByteChannel

{
 // This is a partial API listing
 // All methods listed here can throw java.io.IOException

 public abstract int read (ByteBuffer dst, long position)
 public abstract int write (ByteBuffer src, long position)
 public abstract long size()
 public abstract long position()
 public abstract void position (long newPosition)
 public abstract void truncate (long size)
 public abstract void force (boolean metaData)

 public final FileLock lock()
 public abstract FileLock lock (long position, long size, boolean
shared)
 public final FileLock tryLock()
 public abstract FileLock tryLock (long position, long size, boolean
shared)

 public abstract MappedByteBuffer map (MapMode mode, long position,
long size)

 public static class MapMode
 {
 public static final MapMode READ_ONLY
 public static final MapMode READ_WRITE
 public static final MapMode PRIVATE
 }

 public abstract long transferTo (long position, long count,
 WritableByteChannel target)
 public abstract long transferFrom (ReadableByteChannel src,
 long position, long count)
}

The previous listing shows the new API methods introduced by FileChannel. All of these
can throw java.io.IOException, but the throws clause is not listed here.

Like most channels, FileChannel attempts to use native I/O services when possible. The
FileChannel class itself is abstract; the actual object you get from getChannel() is an

 78

instance of a concrete subclass that may implement some or all of these methods using
native code.

FileChannel objects are thread-safe. Multiple threads can concurrently call methods on
the same instance without causing any problems, but not all operations are multithreaded.
Operations that affect the channel's position or the file size are single-threaded. Threads
attempting one of these operations will wait if another thread is already executing an
operation that affects the channel position or file size. Concurrency behavior can also be
affected by the underlying operating system or filesystem.

Like most I/O-related classes, FileChannel is an abstraction that reflects a concrete object
external to the JVM. The FileChannel class guarantees that all instances within the same
JVM will see a consistent view of a given file. But the JVM cannot make guarantees
about factors beyond its control. The view of a file seen through a FileChannel instance
may or may not be consistent with the view of that file seen by an external, non-Java
processes. The semantics of concurrent file access by multiple processes is highly
dependent on the underlying operating system and/or filesystem. Concurrent access to the
same file by FileChannel objects running in different JVMs will, generally, be consistent
with concurrent access between non-Java processes.

3.3.1 Accessing Files

Each FileChannel object has a one-to-one relationship with a file descriptor, so it comes
as no surprise that the API methods listed here correspond closely to common file I/O
system calls on your favorite POSIX-compliant operating system. The names may be
different, but the usual suspects have been rounded up. You may also note the similarities
to methods of the RandomAccessFile class from the java.io package.
RandomAccessFile provides essentially the same abstraction. Until the advent of
channels, this was how low-level file operations were performed. FileChannel models the
same services, so its API is naturally similar.

For comparison, Table 3-1 lists the correspondences of FileChannel, RandomAccessFile,
and POSIX I/O system calls.

Table 3-1. File I/O API comparison chart
FileChannel RandomAccessFile POSIX system call

read() read() read()
write() write() write()
size() length() fstat()
position() getFilePointer() lseek()
position (long newPosition) seek() lseek()
truncate() setLength() ftruncate()
force() getFD().sync() fsync()

Let's take a closer look at the basic file access methods (remember that each of these
methods can throw java.io.IOException):

 79

public abstract class FileChannel
 extends AbstractChannel
 implements ByteChannel, GatheringByteChannel, ScatteringByteChannel

{
 // This is a partial API listing

 public abstract long position()
 public abstract void position (long newPosition)

 public abstract int read (ByteBuffer dst)
 public abstract int read (ByteBuffer dst, long position)
 public abstract int write (ByteBuffer src)
 public abstract int write (ByteBuffer src, long position)

 public abstract long size()

 public abstract void truncate (long size)
 public abstract void force (boolean metaData)
}

Like the underlying file descriptor, each FileChannel object has a notion of file position.
The position determines the location in the file where data will next be read or written. In
this respect, the FileChannel class is similar to buffers, and (as we'll see in a later section)
the MappedByteBuffer class makes it possible to access file data through the ByteBuffer
API.

As you can see in the preceding listing, there are two forms of the position() method. The
first, which takes no arguments, returns the current file position. The value returned is a
long and represents the current byte position within the file.[3]

[3] A signed long can represent a file size of 9,223,372,036,854,775,807 bytes. That's
roughly 8.4 million terabytes, or enough data to fill about 90 million 100-GB disk drives
from your local computer store.

The second form of position() takes a long argument and sets the channel position to the
given value. Attempting to set the position to a negative value will result in a
java.lang.IllegalArgumentException, but it's OK to set the position beyond the end of the
file. Doing so sets the position to the requested value but does not change the file size. If
a read() is performed after setting the position beyond the current file size, the end-of-file
condition is returned. Doing a write() with the position set beyond the file size will cause
the file to grow to accommodate the new bytes written. The behavior is identical to that
for an absolute write() and may result in a file hole (see What the Heck Is a File Hole?).

 80

What the Heck Is a File Hole?

A file hole occurs when the space on disk allocated for a file is less than the file
size. Most modern filesystems provide for sparsely populated files, allocating
space on disk only for the data actually written (more properly, allocating only
those filesystem pages to which data was written). If data is written to the file in
noncontiguous locations, this can result in areas of the file that logically contain
no data (holes). For example, the following code might produce a file like the
one in Figure 3-8:

package com.ronsoft.books.nio.channels;

import java.nio.ByteBuffer;

import java.nio.channels.FileChannel;
import java.io.File;
import java.io.RandomAccessFile;
import java.io.IOException;

/**
 * Create a file with holes in it
 *
 * @author Ron Hitchens (ron@ronsoft.com)
 */
public class FileHole
{
 public static void main (String [] argv)
 throws IOException
 {
 // Create a temp file, open for writing, and get a FileChannel
 File temp = File.createTempFile ("holy", null);
 RandomAccessFile file = new RandomAccessFile (temp, "rw");
 FileChannel channel = file.getChannel();
 // Create a working buffer
 ByteBuffer byteBuffer = ByteBuffer.allocateDirect (100);

 putData (0, byteBuffer, channel);
 putData (5000000, byteBuffer, channel);
 putData (50000, byteBuffer, channel);

 // Size will report the largest position written, but
 // there are two holes in this file. This file will
 // not consume 5 MB on disk (unless the filesystem is
 // extremely brain-damaged)
 System.out.println ("Wrote temp file '" + temp.getPath()
 + "', size=" + channel.size());

 channel.close();
 file.close();
 }
 private static void putData (int position, ByteBuffer buffer,
 FileChannel channel)
 throws IOException

 81

 {
 String string = "*<-- location " + position;

 buffer.clear();
 buffer.put (string.getBytes ("US-ASCII"));
 buffer.flip();

 channel.position (position);
 channel.write (buffer);
 }
}

If the file is read sequentially, any holes appear to be filled with zeros but do not
take up space on disk. A process reading this file would see 5,000,021 bytes,
with most of them appearing to be zero. Try running the strings command on
this file and see what you get. Try increasing the values to 50 or 100 MB and
see what happens to your total disk-space consumption (shouldn't change) and
the time it takes to scan the file sequentially (should change considerably).

The FileChannel position is reflected from the underlying file descriptor, which is shared
by the file object from which the channel reference was obtained. This means that
updates made to the position by one object will be seen by the other:

RandomAccessFile randomAccessFile = new RandomAccessFile ("filename", "r");

// Set the file position
randomAccessFile.seek (1000);

// Create a channel from the file
FileChannel fileChannel = randomAccessFile.getChannel();

// This will print "1000"
System.out.println ("file pos: " + fileChannel.position());

// Change the position using the RandomAccessFile object
randomAccessFile.seek (500);

// This will print "500"
System.out.println ("file pos: " + fileChannel.position());

// Change the position using the FileChannel object
fileChannel.position (200);

// This will print "200"
System.out.println ("file pos: " + randomAccessFile.getFilePointer());

Similar to the relative get() and put() methods of buffers, the file position is automatically
updated as bytes are transferred by read() or write(). If the position reaches the file size,
as returned by the size() method, an end-of-file condition (-1) is returned by read().
However, unlike buffers, if the position advances beyond the file size on write(), the file
expands to accommodate the new bytes.

 82

Also like buffers, there are absolute forms of read() and write() that take a position
argument. The absolute versions leave the current file position unchanged upon return.
Absolute reads and writes may be more efficient because the state of the channel does not
need to be updated; the request can pass straight through to native code. Even better,
multiple threads can access the same file concurrently without interfering with each other.
This is because each call is atomic and doesn't rely on any remembered state between
invocations.

Figure 3-8. A disk file with two holes

Attempting an absolute read beyond the end of the file, as returned by size(), will return
end-of-file. Doing an absolute write() at a position beyond the file size will cause the file
to grow to accommodate the new bytes being written. The values of bytes in locations
between the previous end-of-file position and the newly added bytes are unspecified by
the FileChannel class but will in most cases reflect the underlying filesystem semantics.
Depending on the operating-system and/or the filesystem type, this may result in a hole in
the file.

When it's necessary to reduce the size of a file, truncate() chops off any data beyond the
new size you specify. If the current size is greater than the new size, all bytes beyond the
new size are discarded. If the new size provided is greater than or equal to the current file
size, the file is not modified. A side effect of truncate() in either case is that it sets the file
position to the new size provided.

public abstract class FileChannel
 extends AbstractChannel
 implements ByteChannel, GatheringByteChannel, ScatteringByteChannel

{
 // This is a partial API listing

 public abstract void truncate (long size)
 public abstract void force (boolean metaData)
}

The last method listed above is force(). This method tells the channel to force any
pending modifications made to the file out to disk. All modern filesystems cache data and
defer disk updates to boost performance. Calling the force() method requests that all
pending modifications to the file be synchronized to disk immediately.

 83

If the file resides on a local filesystem, then upon returning from force(), it's guaranteed
that all modifications to the file since the channel was created (or the last call to force())
have been written to disk. This is important for critical operations, such as transaction
processing, to insure data integrity and reliable recovery. However, this guarantee of
synchronization to permanent storage cannot be made if the file resides on a remote
filesystem, such as NFS. The same may be true for other filesystems, depending on
implementation. The JVM can't make promises the operating system or filesystem won't
keep. If your application must maintain data integrity in the face of system failures, verify
that the operating system and/or filesystem you're using are dependable in that regard.

For applications in which confidence in data integrity are essential,
verify the capabilities of the operating environment on which you
plan to deploy.

 The boolean argument to force() indicates whether metadata about the file should also
be synchronized to disk before returning. Metadata represents things such as file
ownership, access permissions, last modification time, etc. In most cases, this information
is not critical for data recovery. Passing false to force() indicates that only the file data
need be synchronized before returning. In most cases, synchronizing the metadata will
require at least one additional low-level I/O operation by the operating system. Some
high-volume transactional applications may gain a moderate performance increase
without sacrificing data integrity by not requiring metadata updates on each call to
force().

3.3.2 File Locking

Until 1.4, a feature sorely lacking from the Java I/O model was file locking. While most
modern operating systems have long had file-locking capabilities of one form or another,
file locks have not been available to Java programmers until the JDK 1.4 release. File
locking is essential for integration with many non-Java applications. It can also be
valuable for arbitrating access among multiple Java components of a large system.

As discussed in Chapter 1, locks can be shared or exclusive. The file-locking features
described in this section depend heavily on the native operating-system implementation.
Not all operating systems and filesystems support shared file locks. For those that don't, a
request for a shared lock will be silently promoted to an exclusive-lock request. This
guarantees correctness but may impact performance considerably. For example,
employing only exclusive locks would serialize all the reader processes in Figure 1-7. Be
sure you understand file-locking behavior on the operating system and filesystem(s) on
which you plan to deploy; it could seriously affect your design choices.

Additionally, not all platforms implement basic file locking in the same way. File-locking
semantics may vary between operating systems and even different filesystems on the
same operating system. Some operating systems provide only advisory locking, some
only exclusive locks, and some may provide both. You should always manage file locks
as if they were advisory, which is the safest approach. But it's also wise to be aware of

 84

how locks are implemented in the underlying operating system. For example, if all locks
are mandatory, the locks you obtain may impact other applications running on the same
system if you don't release them in a timely manner.

An important caveat regarding the file-locking model implemented by FileChannel is
that locks are applied per file, not per channel or per thread. This means that file locks are
not appropriate for coordinating access between threads in the same JVM.

If one thread acquires an exclusive lock on a given file, and a second thread requests an
exclusive lock for the same file region using an independently opened channel, the
second thread will be granted access. If the two threads are running in different JVMs,
the second thread would block, because locks are ultimately arbitrated by the operating
system or filesystem almost always at the process rather than thread level. Locks are
associated with a file, not with individual file handles or channels.

Locks are associated with files, not channels. Use locks to coordinate
with external processes, not between threads in the same JVM.

 File locks are intended for arbitrating file access at the process level, such as between
major application components or when integrating with components from other vendors.
If you need to control concurrent access between multiple Java threads, you may need to
implement your own, lightweight locking scheme. Memory-mapped files (described later
in this chapter) may be an appropriate choice for that case.

Let's take a look at the FileChannel API methods related to file locking:

public abstract class FileChannel
 extends AbstractChannel
 implements ByteChannel, GatheringByteChannel, ScatteringByteChannel

{
 // This is a partial API listing

 public final FileLock lock()
 public abstract FileLock lock (long position, long size, boolean
shared)

 public final FileLock tryLock()
 public abstract FileLock tryLock (long position, long size, boolean
shared)
}

This time, let's look first at the form of lock() that takes arguments. Locks are obtained on
regions of files. Calling lock() with arguments specifies the beginning position within
the file where the locked region should begin and the size of the region to lock. The
third argument, shared, indicates whether you want the lock to be shared (true) or
exclusive (false). To obtain a shared lock, you must have opened the file with read

 85

permission. Write permission is required for an exclusive lock. The position and size
you provide must be nonnegative.

The lock region does not need to be constrained to the file size; a lock can extend beyond
the end of the file. Therefore, it is possible to lock an area of a file before writing data
there. It's also possible to lock a region that doesn't even overlap any of the file content,
such as beyond the last byte of the file. If the file grows into that region, then your lock
would cover that new area of the file. Conversely, if you lock a region of a file, and the
file grows beyond your locked area, the new file content would not be protected by your
lock.

The simple form of lock(), which takes no arguments, is a convenience method for
requesting an exclusive lock on an entire file, up to the maximum size it can attain. It's
equivalent to:

fileChannel.lock (0L, Long.MAX_VALUE, false);

The lock() method will block if the lock range you are requesting is valid, but it must wait
for a preexisting lock to be released. If your thread is suspended in this situation, it's
subject to interrupt semantics similar to those discussed in Section 3.1.3. If the channel is
closed by another thread, the suspended thread will resume and receive an
AsynchronousCloseException. If the suspended thread is interrupted directly (by calling
its interrupt() method), it will wake with a FileLockInterruptionException. This
exception will also be thrown immediately if the thread's interrupt status is already set
when lock() is invoked.

In the above API listing, the two methods named tryLock() are nonblocking variants of
lock(). They function the same as lock() but return null if the requested lock cannot be
acquired immediately.

As you can see, lock() and tryLock() return a FileLock object. Here is the complete API
of FileLock:

public abstract class FileLock
{
 public final FileChannel channel()
 public final long position()
 public final long size()
 public final boolean isShared()
 public final boolean overlaps (long position, long size)
 public abstract boolean isValid();
 public abstract void release() throws IOException;
}

The FileLock class encapsulates a locked file region. FileLock objects are created by
FileChannel objects and are always associated with that specific channel instance. You
can query a lock object to determine which channel created it by calling the channel()
method.

 86

A FileLock object is valid when created and remains so until its release() method is
called, the channel it's associated with is closed, or the JVM shuts down. The validity of a
lock can be tested by invoking its isValid() boolean method. A lock's validity may change
over time, but its other properties — position, size, and exclusivity — are set at creation
time and are immutable.

You can test a lock to determine if it is shared or exclusive by invoking isShared(). If
shared locks are not supported by the underlying operating system or filesystem, this
method will always return false, even if you passed true when requesting the lock. If
your application depends on shared-locking behavior, test the returned lock to be sure
you got the type you requested. FileLock objects are thread-safe; multiple threads may
access a lock object concurrently.

Finally, a FileLock object can be queried to determine if it overlaps a given file region by
calling its overlaps() method. This will let you quickly determine if a lock you hold
intersects with a region of interest. A return of false does not guarantee that you can
obtain a lock on the desired region. One or more locks may be held elsewhere in the JVM
or by external processes. Use tryLock() to be sure.

Although a FileLock object is associated with a specific FileChannel instance, the lock it
represents is associated with an underlying file, not the channel. This can cause conflicts,
or possibly deadlocks, if you don't release a lock when you're finished with it. Carefully
manage file locks to avoid such problems. Once you've successfully obtained a file lock,
be sure to release it if subsequent errors occur on the channel. A code pattern similar to
the following is recommended:

FileLock lock = fileChannel.lock()

try {
 <perform read/write/whatever on channel>
} catch (IOException) [
 <handle unexpected exception>
} finally {
 lock.release()
}

The code in Example 3-3 implements reader processes using shared locks and writers
using exclusive locks, as illustrated in Figures Figure 1-7 and Figure 1-8. Because locks
are associated with processes and not with Java threads, you will need to run multiple
copies of this program. Start one writer and two or more readers to see how the different
types of locks interact with each other.

Example 3-3. Shared- and exclusive-lock interaction

package com.ronsoft.books.nio.channels;

import java.nio.ByteBuffer;
import java.nio.IntBuffer;
import java.nio.channels.FileChannel;

 87

import java.nio.channels.FileLock;
import java.io.RandomAccessFile;
import java.util.Random;

/**
 * Test locking with FileChannel.
 * Run one copy of this code with arguments "-w /tmp/locktest.dat"
 * and one or more copies with "-r /tmp/locktest.dat" to see the
 * interactions of exclusive and shared locks. Note how too many
 * readers can starve out the writer.
 * Note: The filename you provide will be overwritten. Substitute
 * an appropriate temp filename for your favorite OS.
 *
 * Created April, 2002
 * @author Ron Hitchens (ron@ronsoft.com)
 */
public class LockTest
{
 private static final int SIZEOF_INT = 4;
 private static final int INDEX_START = 0;
 private static final int INDEX_COUNT = 10;
 private static final int INDEX_SIZE = INDEX_COUNT * SIZEOF_INT;

 private ByteBuffer buffer = ByteBuffer.allocate (INDEX_SIZE);
 private IntBuffer indexBuffer = buffer.asIntBuffer();
 private Random rand = new Random();

 public static void main (String [] argv)
 throws Exception
 {
 boolean writer = false;
 String filename;

 if (argv.length != 2) {
 System.out.println ("Usage: [-r | -w] filename");
 return;
 }

 writer = argv [0].equals ("-w");
 filename = argv [1];

 RandomAccessFile raf = new RandomAccessFile (filename,
 (writer) ? "rw" : "r");
 FileChannel fc = raf.getChannel();

 LockTest lockTest = new LockTest();

 if (writer) {
 lockTest.doUpdates (fc);
 } else {
 lockTest.doQueries (fc);
 }
 }

 // --

 // Simulate a series of read-only queries while

 88

 // holding a shared lock on the index area
 void doQueries (FileChannel fc)
 throws Exception
 {
 while (true) {
 println ("trying for shared lock...");
 FileLock lock = fc.lock (INDEX_START, INDEX_SIZE, true);
 int reps = rand.nextInt (60) + 20;

 for (int i = 0; i < reps; i++) {
 int n = rand.nextInt (INDEX_COUNT);
 int position = INDEX_START + (n * SIZEOF_INT);

 buffer.clear();
 fc.read (buffer, position);

 int value = indexBuffer.get (n);

 println ("Index entry " + n + "=" + value);

 // Pretend to be doing some work
 Thread.sleep (100);
 }

 lock.release();

 println ("<sleeping>");
 Thread.sleep (rand.nextInt (3000) + 500);
 }
 }

 // Simulate a series of updates to the index area
 // while holding an exclusive lock
 void doUpdates (FileChannel fc)
 throws Exception
 {
 while (true) {
 println ("trying for exclusive lock...");

 FileLock lock = fc.lock (INDEX_START,
 INDEX_SIZE, false);

 updateIndex (fc);

 lock.release();

 println ("<sleeping>");
 Thread.sleep (rand.nextInt (2000) + 500);
 }
 }

 // Write new values to the index slots
 private int idxval = 1;

 private void updateIndex (FileChannel fc)
 throws Exception
 {

 89

 // "indexBuffer" is an int view of "buffer"
 indexBuffer.clear();

 for (int i = 0; i < INDEX_COUNT; i++) {
 idxval++;
 println ("Updating index " + i + "=" + idxval);

 indexBuffer.put (idxval);

 // Pretend that this is really hard work
 Thread.sleep (500);
 }

 // leaves position and limit correct for whole buffer
 buffer.clear();
 fc.write (buffer, INDEX_START);
 }

 // --

 private int lastLineLen = 0;

 // Specialized println that repaints the current line
 private void println (String msg)
 {
 System.out.print ("\r ");
 System.out.print (msg);

 for (int i = msg.length(); i < lastLineLen; i++) {
 System.out.print (" ");
 }

 System.out.print ("\r");
 System.out.flush();
 lastLineLen = msg.length();
 }
}

This code blithely ignores the advice I gave about using try/catch/finally to release
locks. It's demo code; don't be so lazy in your real code.

3.4 Memory-Mapped Files

The new FileChannel class provides a method, map(), that establishes a virtual memory
mapping between an open file and a special type of ByteBuffer. (Memory-mapped files
and how they interact with virtual memory were summarized in Chapter 1.) Calling map()
on a FileChannel creates a virtual memory mapping backed by a disk file and wraps a
MappedByteBuffer object around that virtual memory space. (See Figure 1-6.)

The MappedByteBuffer object returned from map() behaves like a memory-based buffer
in most respects, but its data elements are stored in a file on disk. Calling get() will fetch
data from the disk file, and this data reflects the current content of the file, even if the file
has been modified by an external process since the mapping was established. The data

 90

visible through a file mapping is exactly the same as you would see by reading the file
conventionally. Likewise, doing a put() to the mapped buffer will update the file on disk
(assuming you have write permission), and your changes will be visible to other readers
of the file.

Accessing a file through the memory-mapping mechanism can be far more efficient than
reading or writing data by conventional means, even when using channels. No explicit
system calls need to be made, which can be time-consuming. More importantly, the
virtual memory system of the operating system automatically caches memory pages.
These pages will be cached using system memory and will not consume space from the
JVM's memory heap.

Once a memory page has been made valid (brought in from disk), it can be accessed
again at full hardware speed without the need to make another system call to get the data.
Large, structured files that contain indexes or other sections that are referenced or
updated frequently can benefit tremendously from memory mapping. When combined
with file locking to protect critical sections and control transactional atomicity, you begin
to see how memory mapped buffers can be put to good use.

Let's take a look at how to use memory mapping:

public abstract class FileChannel
 extends AbstractChannel
 implements ByteChannel, GatheringByteChannel, ScatteringByteChannel

{
 // This is a partial API listing

 public abstract MappedByteBuffer map (MapMode mode, long position,
long size)

 public static class MapMode
 {
 public static final MapMode READ_ONLY
 public static final MapMode READ_WRITE
 public static final MapMode PRIVATE
 }
}

As you can see, there is only one map() method to establish a file mapping. It takes a
mode, a position and a size. The position and size arguments are the same as lock()'s
(discussed in the previous section). It's possible to create a MappedByteBuffer that
represents a subrange of the bytes in a file. For example, to map bytes 100 through 299
(inclusive), do the following:

buffer = fileChannel.map (FileChannel.MapMode.READ_ONLY, 100, 200);

To map an entire file:

 91

buffer = fileChannel.map (FileChannel.MapMode.READ_ONLY, 0,
fileChannel.size());

Unlike ranges for file locks, mapped file ranges should not extend beyond the actual size
of the file. If you request a mapping larger than the file, the file will be made larger to
match the size of the mapping you request. If you pass Integer.MAX_VALUE for the size
parameter, your file size would balloon to more than 2.1 gigabytes. The map() method
will try to do this even if you request a read-only mapping but will throw an IOException
in most cases because the underlying file cannot be modified. This behavior is consistent
with the behavior of file holes discussed earlier. See Section 3.3.1 for details.

The FileChannel class defines constants to represent the mapping modes and uses the
convention of a type-safe enumeration rather than numeric values to define these
constants. The constants are static fields of an inner class defined inside FileChannel.
Being object references, they can be type-checked at compile time, but you use them as
you would a numeric constant.

Like conventional file handles, file mappings can be writable or read-only. The first two
mapping modes, MapMode.READ_ONLY and MapMode.READ_WRITE, are fairly obvious.
They indicate whether you want the mapping to be read-only or to allow modification of
the mapped file. The requested mapping mode will be constrained by the access
permissions of the FileChannel object on which map() is called. If the channel was
opened as read-only, map() will throw a NonWritableChannelException if you ask for
MapMode.READ_WRITE mode. NonReadableChannelException will be thrown if you
request MapMode.READ_ONLY on a channel without read permission. It is permissible to
request a MapMode.READ_ONLY mapping on a channel opened for read/write. The
mutability of a MappedByteBuffer object can be checked by invoking isReadOnly() on it.

The third mode, MapMode.PRIVATE, indicates that you want a copy-on-write mapping.
This means that any modifications you make via put() will result in a private copy of the
data that only the MappedByteBuffer instance can see. No changes will be made to the
underlying file, and any changes made will be lost when the buffer is garbage collected.
Even though a copy-on-write mapping prevents any changes to the underlying file, you
must have opened the file for read/write to set up a MapMode.PRIVATE mapping. This is
necessary for the returned MappedByteBuffer object to allow put()s.

Copy-on-write is a technique commonly used by operating systems to manage virtual
address spaces when one process spawns another. Using copy-on-write allows the parent
and child processes to share memory pages until one of them actually makes changes.
The same advantages can accrue for multiple mappings of the same file (depending on
underlying operating-system support, of course). If a large file is mapped by several
MappedByteBuffer objects, each using MapMode.PRIVATE, then most of the file can be
shared among all mappings.

Choosing the MapMode.PRIVATE mode does not insulate your buffer from changes made
to the file by other means. Changes made to an area of the file will be reflected in a buffer

 92

created with this mode, unless the buffer has already modified the same area of the file.
As described in Chapter 1, memory and filesystems are segmented into pages. When put()
is invoked on a copy-on-write buffer, the affected page(s) is duplicated, and changes are
made to the copy. The specific page size is implementation-dependent but will usually be
the same as the underlying filesystem page size. If the buffer has not made changes to a
given page, its content will reflect the corresponding location in the mapped file. Once a
page has been copied as a result of a write, the copy will be used thereafter, and that page
cannot be modified by other buffers or updates to the file. See Example 3-5 for code that
illustrates this behavior.

You'll notice that there is no unmap() method. Once established, a mapping remains in
effect until the MappedByteBuffer object is garbage collected. Unlike locks, mapped
buffers are not tied to the channel that created them. Closing the associated FileChannel
does not destroy the mapping; only disposal of the buffer object itself breaks the mapping.
The NIO designers made this decision because destroying a mapping when a channel is
closed raises security concerns, and solving the security problem would have introduced
a performance problem. They recommend using phantom references (see
java.lang.ref.PhantomReference) and a cleanup thread if you need to know positively
when a mapping has been destroyed. Odds are that this will rarely be necessary.

A MemoryMappedBuffer directly reflects the disk file with which it is associated. If the
file is structurally modified while the mapping is in effect, strange behavior can result
(exact behaviors are, of course, operating system- and filesystem-dependent). A
MemoryMappedBuffer has a fixed size, but the file it's mapped to is elastic. Specifically,
if a file's size changes while the mapping is in effect, some or all of the buffer may
become inaccessible, undefined data could be returned, or unchecked exceptions could be
thrown. Be careful about how files are manipulated by other threads or external processes
when they are memory-mapped.

All MappedByteBuffer objects are direct. This means that the memory space they occupy
lives outside the JVM heap (and may not be counted in the JVM's memory footprint,
depending on the operating system's virtual memory model).

Because they're ByteBuffers, MappedByteBuffers can be passed to the read() or write()
method of a channel, such as a SocketChannel, to transfer data efficiently to or from the
mapped file. When combined with scatter/gather, it becomes easy to compose data from
memory buffers and mapped file content. See Example 3-4 for an example of composing
HTTP responses this way. An even more efficient way of transferring file data to and
from other channels is described in Section 3.4.1.

So far, we've been discussing mapped buffers as if they were just like other buffers,
which is how you would use them most of the time. But MappedByteBuffer also defines a
few unique methods of its own:

public abstract class MappedByteBuffer
 extends ByteBuffer
{

 93

 // This is a partial API listing

 public final MappedByteBuffer load()
 public final boolean isLoaded()
 public final MappedByteBuffer force()
}

When a virtual memory mapping is established to a file, it does not usually (depending on
the operating system) cause any of the file data to be read in from disk. It's like opening a
file: the file is located and a handle is established through which you can access the data
when you're ready. For mapped buffers, the virtual memory system will cause chunks of
the file to be brought in, on demand, as you touch them. This page validation, or
faulting-in, takes time because one or more disk accesses are usually required to bring the
data into memory. In some scenarios, you may want to bring all the pages into memory
first to minimize buffer-access latency. If all the pages of the file are memory-resident,
access speed will be identical to a memory-based buffer.

The load() method will attempt to touch the entire file so that all of it is memory-resident.
As discussed in Chapter 1, a memory-mapped buffer establishes a virtual memory
mapping to a file. This mapping enables the low-level virtual memory subsystem of the
operating system to copy chunks of the file into memory on an as-needed basis. The
in-memory, or validated, pages consume real memory and can squeeze out other, less
recently used memory pages as they are brought into RAM.

Calling load() on a mapped buffer can be an expensive operation because it can generate
a large number of page-ins, depending on the size of the mapped area of the file. There is,
however, no guarantee that the file will be fully memory-resident upon return from load()
because of the dynamic nature of demand paging. Results will vary by operating system,
filesystem, available JVM memory, maximum JVM memory, file size relative to JVM
and system memory, garbage-collector implementation, etc. Use load() with care; it may
not yield the result you're hoping for. Its primary use is to pay the penalty of loading a
file up front, so subsequent accesses are as fast as possible.

For applications in which near-realtime access is required, preloading is the way to go.
But remember that there is no guarantee that all those pages will stay in memory, and you
may suffer subsequent page-ins anyway. When and how memory pages are stolen is
influenced by several factors, many of which are not controlled by the JVM. As of JDK
1.4, NIO does not provide an API for pinning pages in physical memory, although some
operating systems support doing so.

For most applications, especially interactive or other event-driven applications, it's not
worth paying the penalty upfront. It's better to amortize the page-in cost across actual
accesses. Letting the operating system bring in pages on demand means that untouched
pages never need be loaded. This can easily result in less total I/O activity than
preloading the mapped file. The operating system has a sophisticated
memory-management system in place. Let it do the job for you.

 94

The isLoaded() method can be called to determine if a mapped file is fully
memory-resident. If it returns true, odds are that the mapped buffer can be accessed with
little or no latency. But again, there is no guarantee. Likewise, a return of false does not
necessarily imply that access to the buffer will be slow or that the file isn't fully
memory-resident. This method is a hint; the asynchronous nature of garbage collection,
the underlying operating system, and the dynamics of the running system make it
impossible to determine the exact state of all the mapped pages at any given point in
time.

The last method listed above, force(), is similar to the method of the same name in the
FileChannel class (see Section 3.3.1). It forces any changes made to the mapped buffer to
be flushed out to permanent disk storage. When updating a file through a
MappedByteBuffer object, you should always use MappedByteBuffer.force() rather than
FileChannel.force(). The channel object may not be aware of all file updates made
through the mapped buffer. MappedByteBuffer doesn't give you the option of not flushing
file metadata — it's always flushed too. Note that the same considerations regarding
nonlocal filesystems apply here as they do for FileChannel.force(). (See Section 3.3.1.)

If the mapping was established with MapMode.READ_ONLY or MAP_MODE.PRIVATE, then
calling force() has no effect, since there will never be any changes to flush to disk (but
doing so is harmless).

Example 3-4 illustrates the case of memory-mapped buffers and scatter/gather.

Example 3-4. Composing HTTP replies with mapped files and gathering writes

package com.ronsoft.books.nio.channels;

import java.nio.ByteBuffer;
import java.nio.MappedByteBuffer;
import java.nio.channels.FileChannel;
import java.nio.channels.FileChannel.MapMode;
import java.nio.channels.GatheringByteChannel;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.net.URLConnection;

/**
 * Dummy HTTP server using MappedByteBuffers.
 * Given a filename on the command line, pretend to be
 * a web server and generate an HTTP response containing
 * the file content preceded by appropriate headers. The
 * data is sent with a gathering write.
 *
 * @author Ron Hitchens (ron@ronsoft.com)
 */
public class MappedHttp
{
 private static final String OUTPUT_FILE = "MappedHttp.out";

 95

 private static final String LINE_SEP = "\r\n";
 private static final String SERVER_ID = "Server: Ronsoft Dummy Server";
 private static final String HTTP_HDR =
 "HTTP/1.0 200 OK" + LINE_SEP + SERVER_ID + LINE_SEP;
 private static final String HTTP_404_HDR =
 "HTTP/1.0 404 Not Found" + LINE_SEP + SERVER_ID + LINE_SEP;
 private static final String MSG_404 = "Could not open file: ";

 public static void main (String [] argv)
 throws Exception
 {
 if (argv.length < 1) {
 System.err.println ("Usage: filename");
 return;
 }

 String file = argv [0];
 ByteBuffer header = ByteBuffer.wrap (bytes (HTTP_HDR));
 ByteBuffer dynhdrs = ByteBuffer.allocate (128);
 ByteBuffer [] gather = { header, dynhdrs, null };
 String contentType = "unknown/unknown";
 long contentLength = -1;

 try {
 FileInputStream fis = new FileInputStream (file);
 FileChannel fc = fis.getChannel();
 MappedByteBuffer filedata =
 fc.map (MapMode.READ_ONLY, 0, fc.size());

 gather [2] = filedata;

 contentLength = fc.size();
 contentType = URLConnection.guessContentTypeFromName (file);
 } catch (IOException e) {
 // file could not be opened; report problem
 ByteBuffer buf = ByteBuffer.allocate (128);
 String msg = MSG_404 + e + LINE_SEP;

 buf.put (bytes (msg));
 buf.flip();

 // Use the HTTP error response
 gather [0] = ByteBuffer.wrap (bytes (HTTP_404_HDR));
 gather [2] = buf;

 contentLength = msg.length();
 contentType = "text/plain";
 }

 StringBuffer sb = new StringBuffer();
 sb.append ("Content-Length: " + contentLength);
 sb.append (LINE_SEP);
 sb.append ("Content-Type: ").append (contentType);
 sb.append (LINE_SEP).append (LINE_SEP);

 dynhdrs.put (bytes (sb.toString()));
 dynhdrs.flip();

 96

 FileOutputStream fos = new FileOutputStream (OUTPUT_FILE);
 FileChannel out = fos.getChannel();

 // All the buffers have been prepared; write 'em out
 while (out.write (gather) > 0) {
 // Empty body; loop until all buffers are empty
 }

 out.close();

 System.out.println ("output written to " + OUTPUT_FILE);
 }

 // Convert a string to its constituent bytes
 // from the ASCII character set
 private static byte [] bytes (String string)
 throws Exception
 {
 return (string.getBytes ("US-ASCII"));
 }
}

Example 3-5 illustrates how the various modes of memory mapping interact. In particular,
this code illustrates how copy-on-write is page-oriented. When a change is made by
calling put() on a MappedByteBuffer object created with the MAP_MODE.PRIVATE mode,
a copy of the affected page is made. This private copy not only holds local changes, it
also insulates the buffer from external changes to that page. However, changes made to
other areas of the mapped file will be seen.

Example 3-5. Three types of memory-mapped buffers

package com.ronsoft.books.nio.channels;

import java.nio.ByteBuffer;
import java.nio.MappedByteBuffer;
import java.nio.channels.FileChannel;
import java.io.File;
import java.io.RandomAccessFile;

/**
 * Test behavior of Memory mapped buffer types. Create a file, write
 * some data to it, then create three different types of mappings
 * to it. Observe the effects of changes through the buffer APIs
 * and updating the file directly. The data spans page boundaries
 * to illustrate the page-oriented nature of Copy-On-Write mappings.
 *
 * @author Ron Hitchens (ron@ronsoft.com)
 */
public class MapFile
{
 public static void main (String [] argv)
 throws Exception
 {
 // Create a temp file and get a channel connected to it

 97

 File tempFile = File.createTempFile ("mmaptest", null);
 RandomAccessFile file = new RandomAccessFile (tempFile, "rw");
 FileChannel channel = file.getChannel();
 ByteBuffer temp = ByteBuffer.allocate (100);

 // Put something in the file, starting at location 0
 temp.put ("This is the file content".getBytes());
 temp.flip();
 channel.write (temp, 0);

 // Put something else in the file, starting at location 8192.
 // 8192 is 8 KB, almost certainly a different memory/FS page.
 // This may cause a file hole, depending on the
 // filesystem page size.
 temp.clear();
 temp.put ("This is more file content".getBytes());
 temp.flip();
 channel.write (temp, 8192);

 // Create three types of mappings to the same file
 MappedByteBuffer ro = channel.map (
 FileChannel.MapMode.READ_ONLY, 0, channel.size());
 MappedByteBuffer rw = channel.map (
 FileChannel.MapMode.READ_WRITE, 0, channel.size());
 MappedByteBuffer cow = channel.map (
 FileChannel.MapMode.PRIVATE, 0, channel.size());

 // the buffer states before any modifications
 System.out.println ("Begin");
 showBuffers (ro, rw, cow);

 // Modify the copy-on-write buffer
 cow.position (8);
 cow.put ("COW".getBytes());

 System.out.println ("Change to COW buffer");
 showBuffers (ro, rw, cow);

 // Modify the read/write buffer
 rw.position (9);
 rw.put (" R/W ".getBytes());
 rw.position (8194);
 rw.put (" R/W ".getBytes());
 rw.force();

 System.out.println ("Change to R/W buffer");
 showBuffers (ro, rw, cow);

 // Write to the file through the channel; hit both pages
 temp.clear();
 temp.put ("Channel write ".getBytes());
 temp.flip();
 channel.write (temp, 0);
 temp.rewind();
 channel.write (temp, 8202);

 System.out.println ("Write on channel");

 98

 showBuffers (ro, rw, cow);

 // Modify the copy-on-write buffer again
 cow.position (8207);
 cow.put (" COW2 ".getBytes());

 System.out.println ("Second change to COW buffer");
 showBuffers (ro, rw, cow);

 // Modify the read/write buffer
 rw.position (0);
 rw.put (" R/W2 ".getBytes());
 rw.position (8210);
 rw.put (" R/W2 ".getBytes());
 rw.force();

 System.out.println ("Second change to R/W buffer");
 showBuffers (ro, rw, cow);

 // cleanup
 channel.close();
 file.close();
 tempFile.delete();
 }

 // Show the current content of the three buffers
 public static void showBuffers (ByteBuffer ro, ByteBuffer rw,
 ByteBuffer cow)
 throws Exception
 {
 dumpBuffer ("R/O", ro);
 dumpBuffer ("R/W", rw);
 dumpBuffer ("COW", cow);
 System.out.println ("");
 }

 // Dump buffer content, counting and skipping nulls
 public static void dumpBuffer (String prefix, ByteBuffer buffer)
 throws Exception
 {
 System.out.print (prefix + ": '");

 int nulls = 0;
 int limit = buffer.limit();

 for (int i = 0; i < limit; i++) {
 char c = (char) buffer.get (i);

 if (c == '\u0000') {
 nulls++;
 continue;
 }

 if (nulls != 0) {
 System.out.print ("|[" + nulls
 + " nulls]|");
 nulls = 0;

 99

 }

 System.out.print (c);
 }

 System.out.println ("'");
 }
}

Here's the output from running the preceding program:

Begin
R/O: 'This is the file content|[8168 nulls]|This is more file content'
R/W: 'This is the file content|[8168 nulls]|This is more file content'
COW: 'This is the file content|[8168 nulls]|This is more file content'

Change to COW buffer
R/O: 'This is the file content|[8168 nulls]|This is more file content'
R/W: 'This is the file content|[8168 nulls]|This is more file content'
COW: 'This is COW file content|[8168 nulls]|This is more file content'

Change to R/W buffer
R/O: 'This is t R/W le content|[8168 nulls]|Th R/W more file content'
R/W: 'This is t R/W le content|[8168 nulls]|Th R/W more file content'
COW: 'This is COW file content|[8168 nulls]|Th R/W more file content'

Write on channel
R/O: 'Channel write le content|[8168 nulls]|Th R/W moChannel write t'
R/W: 'Channel write le content|[8168 nulls]|Th R/W moChannel write t'
COW: 'This is COW file content|[8168 nulls]|Th R/W moChannel write t'

Second change to COW buffer
R/O: 'Channel write le content|[8168 nulls]|Th R/W moChannel write t'
R/W: 'Channel write le content|[8168 nulls]|Th R/W moChannel write t'
COW: 'This is COW file content|[8168 nulls]|Th R/W moChann COW2 te t'

Second change to R/W buffer
R/O: ' R/W2 l write le content|[8168 nulls]|Th R/W moChannel R/W2 t'
R/W: ' R/W2 l write le content|[8168 nulls]|Th R/W moChannel R/W2 t'
COW: 'This is COW file content|[8168 nulls]|Th R/W moChann COW2 te t'

3.4.1 Channel-to-Channel Transfers

Bulk transfers of file data from one place to another is so common that a couple of
optimization methods have been added to the FileChannel class to make it even more
efficient:

public abstract class FileChannel
 extends AbstractChannel
 implements ByteChannel, GatheringByteChannel, ScatteringByteChannel

{
 // This is a partial API listing

 100

 public abstract long transferTo (long position, long count,
 WritableByteChannel target)

 public abstract long transferFrom (ReadableByteChannel src,
 long position, long count)
}

The transferTo() and transferFrom() methods allow you to cross-connect one channel to
another, eliminating the need to pass data through an intermediate buffer. These methods
exist only on the FileChannel class, so one of the channels involved in a
channel-to-channel transfer must be a FileChannel. You can't do direct transfers between
socket channels, but socket channels implement WritableByteChannel and
ReadableByteChannel, so the content of a file can be transferred to a socket with
transferTo(), or data can be read from a socket directly into a file with transferFrom().

Direct channel transfers do not update the position associated with a FileChannel. The
requested data transfer will begin where indicated by the position argument and will be
at most count bytes. The number of bytes actually transferred is returned, which may be
less than the number you requested.

For transferTo(), where the source of the transfer is a file, if position + count is greater
than the file size, the transfer will stop at the end of the file. If the target is a socket in
nonblocking mode, the transfer may stop when its send queue is filled, possibly sending
nothing if the output queue is already full. Likewise for transferFrom(): if src is another
FileChannel and its end-of-file is reached, the transfer will stop early. If src is a
nonblocking socket, only the data currently queued will be transferred (which may be
none). Sockets in blocking mode may also do partial transfers, depending on the
operating system, because of the nondeterministic nature of network data transfer. Many
socket implementations will provide what they currently have queued rather than waiting
for the full amount you asked for.

Also, keep in mind that these methods may throw java.io.IOException if trouble is
encountered during the transfer.

Channel-to-channel transfers can potentially be extremely fast, especially where the
underlying operating system provides native support. Some operating systems can
perform direct transfers without ever passing the data through user space. This can be a
huge win for high-volume data transfer. (See Example 3-6.)

Example 3-6. File concatenation using channel transfer

package com.ronsoft.books.nio.channels;

import java.nio.channels.FileChannel;
import java.nio.channels.WritableByteChannel;
import java.nio.channels.Channels;
import java.io.FileInputStream;

/**

 101

 * Test channel transfer. This is a very simplistic concatenation
 * program. It takes a list of file names as arguments, opens each
 * in turn and transfers (copies) their content to the given
 * WritableByteChannel (in this case, stdout).
 *
 * Created April 2002
 * @author Ron Hitchens (ron@ronsoft.com)
 */
public class ChannelTransfer
{
 public static void main (String [] argv)
 throws Exception
 {
 if (argv.length == 0) {
 System.err.println ("Usage: filename ...");
 return;
 }

 catFiles (Channels.newChannel (System.out), argv);
 }

 // Concatenate the content of each of the named files to
 // the given channel. A very dumb version of 'cat'.
 private static void catFiles (WritableByteChannel target,
 String [] files)
 throws Exception
 {
 for (int i = 0; i < files.length; i++) {
 FileInputStream fis = new FileInputStream (files [i]);
 FileChannel channel = fis.getChannel();

 channel.transferTo (0, channel.size(), target);

 channel.close();
 fis.close();
 }
 }

}

3.5 Socket Channels

Let's move on to the channel classes that model network sockets. Socket channels have
different characteristics than file channels.

The new socket channels can operate in nonblocking mode and are selectable. These two
capabilities enable tremendous scalability and flexibility in large applications, such as
web servers and middleware components. As we'll see in this section, it's no longer
necessary to dedicate a thread to each socket connection (and suffer the context-switching
overhead of managing large numbers of threads). Using the new NIO classes, one or a
few threads can manage hundreds or even thousands of active socket connections with
little or no performance loss.

 102

You can see in Figure 3-9 that all three of the socket channel classes (DatagramChannel,
SocketChannel, and ServerSocketChannel) extend from AbstractSelectableChannel,
which lives in the java.nio.channels.spi package. This means that it's possible to
perform readiness selection of socket channels using a Selector object. Selection and
multiplexed I/O are discussed in Chapter 4.

Figure 3-9. The socket channel family tree

 103

Notice that DatagramChannel and SocketChannel implement the interfaces that define
read and write capabilities, but ServerSocketChannel does not. ServerSocketChannel
listens for incoming connects and creates new SocketChannel objects. It never transfers
any data itself.

Before discussing the individual types of socket channels, you should understand the
relationship between sockets and socket channels. As described earlier, a channel is a
conduit to an I/O service and provides methods for interacting with that service. In the
case of sockets, the decision was made not to reimplement the socket protocol APIs in the
corresponding channel classes. The preexisting socket channels in java.net are reused
for most protocol operations.

All the socket channels (SocketChannel, ServerSocketChannel, and DatagramChannel)
create a peer socket object when they are instantiated. These are the familiar classes from
java.net (Socket, ServerSocket, and DatagramSocket), which have been updated to be
aware of channels. The peer socket can be obtained from a channel by invoking its
socket() method. Additionally, each of the java.net classes now has a getChannel()
method.

While every socket channel (in java.nio.channels) has an associated java.net socket
object, not all sockets have an associated channel. If you create a Socket object in the
traditional way, by instantiating it directly, it will not have an associated SocketChannel,
and its getChannel() method will always return null.

Socket channels delegate protocol operations to the peer socket object. In cases where
socket methods seem to be duplicated in the channel class, there is some new or different
behavior associated with the method on the channel class.

3.5.1 Nonblocking Mode

Socket channels can operate in nonblocking mode. This is a simple statement, but one
with far-reaching implications. The blocking nature of traditional Java sockets has
traditionally been one of the most significant limitations to Java application scalability.
Nonblocking I/O is the basis upon which many sophisticated, high-performance
applications are built.

To place a socket into nonblocking mode, we look to the common superclass of all the
socket channel classes: SelectableChannel. The following methods are concerned with a
channel's blocking mode:

public abstract class SelectableChannel
 extends AbstractChannel
 implements Channel
{
 // This is a partial API listing

 public abstract void configureBlocking (boolean block) throws
IOException;

 104

 public abstract boolean isBlocking();
 public abstract Object blockingLock();
}

Readiness selection is a mechanism by which a channel can be queried to determine if it's
ready to perform an operation of interest, such as reading or writing. Nonblocking I/O
and selectability are intimately linked. That's why the API methods for managing
blocking mode are defined in the SelectableChannel superclass. The remainder of
SelectableChannel's API will be discussed in Chapter 4.

Setting or resetting a channel's blocking mode is easy. Simply call configureBlocking()
with true to place it in blocking mode, or false for nonblocking mode. It's as simple as
that. You can determine which mode a socket channel is currently in by invoking
isBlocking():

SocketChannel sc = SocketChannel.open();

sc.configureBlocking (false); // nonblocking
 ...
if (! sc.isBlocking()) {
 doSomething (cs);
}

Nonblocking sockets are usually thought of for server-side use because they make it
easier to manage many sockets simultaneously. But there can also be benefits to using
one or a few sockets in nonblocking mode on the client side. For example, with
nonblocking sockets, a GUI application can pay attention to user requests and carry on
conversations with one or more servers simultaneously. Nonblocking mode is useful
across a broad range of applications.

Occasionally, it's necessary to prevent changes to the blocking mode of a socket channel.
The API provides the blockingLock() method, which returns an opaque object reference.
The object returned is the one used internally by the channel implementation when it
makes changes to the blocking mode. Only the thread holding the lock on this object will
be able to change the channel's blocking mode. (An object lock is obtained by using the
synchronized Java keyword. This is different than the lock() method discussed in Section
3.3.) This can be handy to ensure that the blocking mode of a socket doesn't change
during a critical section of code, or to change the mode temporarily without affecting any
other threads.

Socket socket = null;
Object lockObj = serverChannel.blockingLock();
// have a handle to the lock object, but haven't locked it yet

// may block here until lock is acquired
synchronize (lockObj)
{
 // This thread now owns the lock; mode can't be changed
 boolean prevState = serverChannel.isBlocking();

 105

 serverChannel.configureBlocking (false);
 socket = serverChannel.accept();
 serverChannel.configureBlocking (prevState);
}
// lock is now released, mode is allowed to change

if (socket != null) {
 doSomethingWithTheSocket (socket);
}

3.5.2 ServerSocketChannel

Let's begin the discussion of the socket channels classes with the simplest:
ServerSocketChannel. This is the complete API of ServerSocketChannel:

public abstract class ServerSocketChannel
 extends AbstractSelectableChannel
{
 public static ServerSocketChannel open() throws IOException
 public abstract ServerSocket socket();
 public abstract ServerSocket accept() throws IOException;
 public final int validOps()
}

The ServerSocketChannel class is a channel-based socket listener. It performs the same
basic task as the familiar java.net.ServerSocket but adds channel semantics, including the
ability to operate in nonblocking mode.

Create a new ServerSocketChannel object with the static open() factory method, which
returns a channel associated with an unbound java.net.ServerSocket object. This peer
ServerSocket can be obtained by invoking the socket() method on the returned
ServerSocketChannel object. The ServerSocket objects created as peers of
ServerSocketChannels are tied to the channel implementation. They are sockets whose
associated SocketImpl knows about channels. Channels cannot be wrapped around
arbitrary Socket objects.

Because ServerSocketChannel doesn't have a bind() method, it's necessary to fetch the
peer socket and use it to bind to a port to begin listening for connections. Also use the
peer ServerSocket API to set other socket options as needed.

ServerSocketChannel ssc = ServerSocketChannel.open();
ServerSocket serverSocket = ssc.socket();

// Listen on port 1234
serverSocket.bind (new InetSocketAddress (1234));

The ServerSocketChannel has an accept() method, as does its peer java.net.ServerSocket
object. Once you've created a ServerSocketChannel and used the peer socket to bind it,
you can then invoke accept() on either. If you choose to invoke accept() on the
ServerSocket, it will behave the same as any other ServerSocket: always blocking and

 106

returning a java.net.Socket object. On the other hand, the accept() method of
ServerSocketChannel returns objects of type SocketChannel and is capable of operating
in nonblocking mode. If a security manager is in place, both methods perform the same
security checks.

If invoked in nonblocking mode, ServerSocketChannel.accept() will immediately return
null if no incoming connections are currently pending. This ability to check for
connections without getting stuck is what enables scalability and reduces complexity.
Selectability also comes into play. A ServerSocketChannel object can be registered with a
Selector instance to enable notification when new connections arrive. Example 3-7
demonstrates how to use a nonblocking accept().

Example 3-7. A nonblocking accept() with ServerSocketChannel

package com.ronsoft.books.nio.channels;

import java.nio.ByteBuffer;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.net.InetSocketAddress;

/**
 * Test nonblocking accept() using ServerSocketChannel.
 * Start this program, then "telnet localhost 1234" to
 * connect to it.
 *
 * @author Ron Hitchens (ron@ronsoft.com)
 */
public class ChannelAccept
{
 public static final String GREETING = "Hello I must be going.\r\n";

 public static void main (String [] argv)
 throws Exception
 {
 int port = 1234; // default

 if (argv.length > 0) {
 port = Integer.parseInt (argv [0]);
 }

 ByteBuffer buffer = ByteBuffer.wrap (GREETING.getBytes());
 ServerSocketChannel ssc = ServerSocketChannel.open();

 ssc.socket().bind (new InetSocketAddress (port));
 ssc.configureBlocking (false);

 while (true) {
 System.out.println ("Waiting for connections");

 SocketChannel sc = ssc.accept();

 if (sc == null) {
 // no connections, snooze a while

 107

 Thread.sleep (2000);
 } else {
 System.out.println ("Incoming connection from: "
 + sc.socket().getRemoteSocketAddress());

 buffer.rewind();
 sc.write (buffer);
 sc.close();
 }
 }
 }
}

The final method listed previously, validOps(), is used with selectors. Selectors are
discussed in detail in Chapter 4, and validOps() is covered in that discussion.

3.5.3 SocketChannel

Let's move on to SocketChannel, which is the most commonly used socket channel class:

public abstract class SocketChannel
 extends AbstractSelectableChannel
 implements ByteChannel, ScatteringByteChannel, GatheringByteChannel

{
 // This is a partial API listing

 public static SocketChannel open() throws IOException
 public static SocketChannel open (InetSocketAddress remote)
 throws IOException
 public abstract Socket socket();

 public abstract boolean connect (SocketAddress remote) throws
IOException;
 public abstract boolean isConnectionPending();
 public abstract boolean finishConnect() throws IOException;
 public abstract boolean isConnected();

 public final int validOps()
}

The Socket and SocketChannel classes encapsulate point-to-point, ordered network
connections similar to those provided by the familiar TCP/IP connections we all know
and love. A SocketChannel acts as the client, initiating a connection to a listening server.
It cannot receive until connected and then only from the address to which the connection
was made. (As with ServerSocketChannel, discussion of the validOps() method will be
deferred to Chapter 4 when we examine selectors. The common read/write methods are
not listed here either; refer to the section Section 3.1.2 for details.)

Every SocketChannel object is created in tandem with a peer java.net.Socket object. The
static open() method creates a new SocketChannel object. Invoking socket() on the new

 108

SocketChannel will return its peer Socket object. Calling getChannel() on that Socket
returns the original SocketChannel.

Although every SocketChannel object creates a peer Socket object,
the reverse is not true. Socket objects created directly do not have
associated SocketChannel objects, and their getChannel() methods
return null.

 A newly created SocketChannel is open but not connected. Attempting an I/O operation
on an unconnected SocketChannel object will throw a NotYetConnectedException. The
socket can be connected by calling connect() directly on the channel or by calling the
connect() method on the associated Socket object. Once a socket channel is connected, it
remains connected until it closes. You can test whether a particular SocketChannel is
currently connected by invoking the boolean isConnected() method.

The second form of open(), which takes an InetSocketAddress argument, is a convenience
method that connects before returning. This:

SocketChannel socketChannel =
 SocketChannel.open (new InetSocketAddress ("somehost", somePort));

is equivalent to this:

SocketChannel socketChannel = SocketChannel.open();
socketChannel.connect (new InetSocketAddress ("somehost", somePort));

If you choose to make the connection the traditional way — by invoking connect() on the
peer Socket object — the traditional connection semantics apply. The thread will block
until the connection is established, or until the supplied timeout expires. If you choose to
make the connection by calling connect() directly on the channel, and the channel is in
blocking mode (the default), the connection process is effectively the same.

There is no version of connect() on SocketChannel that lets you provide a timeout value.
Instead, SocketChannel provides concurrent connection when connect() is invoked in
nonblocking mode: it initiates a connection to the requested address then returns
immediately. If the return value from connect() is true, the connection was established
immediately (this may happen for local loopback connections). If the connection cannot
be established immediately, connect() will return false, and connection establishment
proceeds concurrently.

Stream-oriented sockets take time to set up because a packet dialog must take place
between the two connecting systems to establish the state information needed to maintain
the stream socket. Connecting to remote systems across the open Internet can be
especially time-consuming. If a concurrent connection is underway on a SocketChannel,
the isConnectPending() method returns true.

 109

Call finishConnect() to complete the connection process. This method can be called
safely at any time. One of the following will happen when invoking finishConnect() on a
SocketChannel object in nonblocking mode:

• The connect() method has not yet been called. A NoConnectionPendingException
is thrown.

• Connection establishment is underway but not yet complete. Nothing happens,
and finishConnect() immediately returns false.

• The SocketChannel has been switched back to blocking mode since calling
connect() in nonblocking mode. If necessary, the invoking thread blocks until
connection establishment is complete. finishConnect() then returns true.

• Connection establishment has completed since the initial invocation of connect()
or the last call to finishConnect(). Internal state is updated in the SocketChannel
object to complete the transition to connected state, and finishConnect() returns
true. The SocketChannel object can then be used to transfer data.

• The connection is already established. Nothing happens, and finishConnect()
returns true.

While in this intermediate connection-pending state, you should invoke only
finishConnect(), isConnectPending(), or isConnected() on the channel. Once connection
establishment has been successfully completed, isConnected() returns true.

InetSocketAddress addr = new InetSocketAddress (host, port);
SocketChannel sc = SocketChannel.open();

sc.configureBlocking (false);
sc.connect (addr);

while (! sc.finishConnect()) {
 doSomethingElse();
}

doSomethingWithChannel (sc);

sc.close();

Example 3-8 illustrates runnable code that manages an asynchronous connection.

Example 3-8. Concurrent-connection establishment

package com.ronsoft.books.nio.channels;

import java.nio.channels.SocketChannel;
import java.net.InetSocketAddress;

/**
 * Demonstrate asynchronous connection of a SocketChannel.
 * @author Ron Hitchens (ron@ronsoft.com)
 */
public class ConnectAsync
{

 110

 public static void main (String [] argv)
 throws Exception
 {
 String host = "localhost";
 int port = 80;

 if (argv.length == 2) {
 host = argv [0];
 port = Integer.parseInt (argv [1]);
 }

 InetSocketAddress addr = new InetSocketAddress (host, port);
 SocketChannel sc = SocketChannel.open();

 sc.configureBlocking (false);

 System.out.println ("initiating connection");

 sc.connect (addr);

 while (! sc.finishConnect()) {
 doSomethingUseful();
 }

 System.out.println ("connection established");

 // Do something with the connected socket
 // The SocketChannel is still nonblocking

 sc.close();
 }

 private static void doSomethingUseful()
 {
 System.out.println ("doing something useless");
 }
}

If an asynchronous-connection attempt fails, the next invocation of finishConnect()
throws an appropriate checked exception to indicate the nature of the problem. The
channel will then be closed and cannot be connected or used again.

The connection-related methods provide ways to poll a channel and determine its status
while a connection is in progress. In Chapter 4, we'll see how to use Selectors to avoid
polling and receive notification when an asynchronous connection has been established.

Socket channels are thread-safe. Multiple threads do not need to take special steps to
protect against concurrent access, but only one read and one write operation will be in
progress at any given time. Keep in mind that sockets are stream-oriented, not
packet-oriented. They guarantee that the bytes sent will arrive in the same order but make
no promises about maintaining groupings. A sender may write 20 bytes to a socket, and
the receiver gets only 3 of those bytes when invoking read(). The remaining 17 bytes

 111

may still be in transit. For this reason, it's rarely a good design choice to have multiple,
noncooperating threads share the same side of a stream socket.

The connect() and finishConnect() methods are mutually synchronized, and any read or
write calls will block while one of these operations is in progress, even in nonblocking
mode. Test the connection state with isConnected() if there's any doubt or if you can't
afford to let a read or write block on a channel in this circumstance.

3.5.4 DatagramChannel

The last of the socket channels is DatagramChannel. Like SocketChannel with Socket
and ServerSocketChannel with ServerSocket, every DatagramChannel object has an
associated DatagramSocket object. The naming pattern doesn't quite hold here:
"DatagramSocketChannel" is a bit unwieldy, so "DatagramChannel" was chosen instead.

Just as SocketChannel models connection-oriented stream protocols such as TCP/IP,
DatagramChannel models connectionless packet-oriented protocols such as UDP/IP:

public abstract class DatagramChannel
 extends AbstractSelectableChannel
 implements ByteChannel, ScatteringByteChannel, GatheringByteChannel

{
 // This is a partial API listing

 public static DatagramChannel open() throws IOException
 public abstract DatagramSocket socket();

 public abstract DatagramChannel connect (SocketAddress remote)
 throws IOException;
 public abstract boolean isConnected();
 public abstract DatagramChannel disconnect() throws IOException;

 public abstract SocketAddress receive (ByteBuffer dst) throws
IOException;
 public abstract int send (ByteBuffer src, SocketAddress target)

 public abstract int read (ByteBuffer dst) throws IOException;
 public abstract long read (ByteBuffer [] dsts) throws IOException;
 public abstract long read (ByteBuffer [] dsts, int offset, int length)

 throws IOException;

 public abstract int write (ByteBuffer src) throws IOException;
 public abstract long write(ByteBuffer[] srcs) throws IOException;
 public abstract long write(ByteBuffer[] srcs, int offset, int length)

 throws IOException;
}

The creation pattern is the same for DatagramChannel as for the other socket channels:
invoke the static open() method to create a new instance. The new DatagramChannel will

 112

have a peer DatagramSocket object that can be obtained by calling the socket() method.
DatagramChannel objects can act both as server (listener) and client (sender). If you
want the newly created channel to listen, it must first be bound to a port or address/port
combination. Binding is no different with DatagramChannel than it is for a conventional
DatagramSocket; it's delegated to the API on the peer socket object:

DatagramChannel channel = DatagramChannel.open();
DatagramSocket socket = channel.socket();

socket.bind (new InetSocketAddress (portNumber));

DatagramChannels are connectionless. Each datagram is a self-contained entity, with its
own destination address and a data payload independent of every other datagram's.
Unlike stream-oriented sockets, a DatagramChannel can send individual datagrams to
different destination addresses. Likewise, a DatagramChannel object can receive packets
from any address. Each datagram arrives with information about where it came from (the
source address).

A DatagramChannel that is not bound can still receive packets. When the underlying
socket is created, a dynamically generated port number is assigned to it. Binding requests
that the channel's associated port be set to a specific value (which may involve security
checks or other validation). Whether the channel is bound or not, any packets sent will
contain the DatagramChannel's source address, which includes the port number.
Unbound DatagramChannels can receive packets addressed to their port, usually in
response to a packet sent previously by that channel. Bound channels receive packets sent
to the well-known port to which they've bound themselves. The actual sending or
receiving of data is done by the send() and receive() methods:

public abstract class DatagramChannel
 extends AbstractSelectableChannel
 implements ByteChannel, ScatteringByteChannel, GatheringByteChannel

{
 // This is a partial API listing

 public abstract SocketAddress receive (ByteBuffer dst) throws
IOException;
 public abstract int send (ByteBuffer src, SocketAddress target)
}

The receive() method copies the data payload of the next incoming datagram into the
provided ByteBuffer and returns a SocketAddress object to indicate where it came from. If
the channel is in blocking mode, receive() may sleep indefinitely until a packet arrives. If
nonblocking, it returns null if no packets are available. If the packet contains more data
than will fit in your buffer, any excess will be silently discarded.

If the ByteBuffer you provide does not have sufficient remaining
space to hold the packet you're receiving any bytes that don't fit will

 113

be silently discarded.

 Invoking send() sends the content of the given ByteBuffer object, from its current
position to its limit, to the destination address and port described by the given
SocketAddress object. If the DatagramChannel object is in blocking mode, the invoking
thread may sleep until the datagram can be queued for transmission. If the channel is
nonblocking, the return value will be either the number of bytes in the byte buffer or 0.
Sending datagrams is an all-or-nothing proposition. If the transmit queue does not have
sufficient room to hold the entire datagram, then nothing at all is sent.

If a security manager is installed, its checkConnect() method will be called on every
invocation of send() or receive() to validate the destination address, unless the channel is
in a connected state (discussed later in this section).

Note that datagram protocols are inherently unreliable; they make no delivery guarantees.
A nonzero return value from send() does not indicate that the datagram arrived at its
destination, only that it was successfully queued to the local networking layer for
transmission. Additionally, transport protocols along the way may fragment the datagram.
Ethernet, for example, cannot transport packets larger than about 1,500 bytes. If your
datagram is large, it runs the risk of being broken into pieces, multiplying the chances of
packet loss in transit. The datagram will be reassembled at the destination, and the
receiver won't see the fragments, but if any fragments fail to arrive in a timely manner,
the entire datagram will be discarded.

The DatagramChannel has a connect() method:

public abstract class DatagramChannel
 extends AbstractSelectableChannel
 implements ByteChannel, ScatteringByteChannel, GatheringByteChannel

{
 // This is a partial API listing

 public abstract DatagramChannel connect (SocketAddress remote)
 throws IOException;
 public abstract boolean isConnected();
 public abstract DatagramChannel disconnect() throws IOException;
}

The connection semantics of a DatagramChannel are different for datagram sockets than
they are for stream sockets. Sometimes it's desirable to restrict the datagram conversation
to two parties. Placing a DatagramChannel into a connected state causes datagrams to be
ignored from any source address other than the one to which the channel is "connected."
This can be helpful because the unwanted packets will be dropped by the networking
layer, relieving your code of the effort required to receive, check, and discard them.

 114

By the same token, when a DatagramChannel is connected, you cannot send to any
destination address except the one given to the connect() method. Attempting to do so
results in a SecurityException.

Connect a DatagramChannel by calling its connect() method with a SocketAddress object
describing the address of the remote peer. If a security manager is installed, it's consulted
to check permission. Thereafter, the security check overhead will not be incurred on each
send/receive because packets to or from any other address are not allowed.

A scenario in which connected channels might be useful is a real-time, client/server game
using UDP communication. Any given client will always be talking to the same server
and wants to ignore packets from any other source. Placing the client's DatagramChannel
instance in a connected state reduces the per-packet overhead (because security checks
are not needed on each packet) and filters out bogus packets from cheating players. The
server may want to do the same thing, but doing so requires a DatagramChannel object
for each client.

Unlike stream sockets, the stateless nature of datagram sockets does not require a dialog
with the remote system to set up connection state. There is no actual connection, just
local state information that designates the allowed remote address. For this reason, there
is no separate finishConnect() method on DatagramChannel. The connected state of a
datagram channel can be tested with the isConnected() method.

Unlike SocketChannel, which must be connected to be useful and can connect only once,
a DatagramChannel object can transition in and out of connected state any number of
times. Each connection can be to a different remote address. Invoking disconnect()
configures the channel so that it can once again receive from, or send to, any remote
address as allowed by the security manager, if one is installed.

While a DatagramChannel is connected, it's not necessary to supply the destination
address when sending, and the source address is known when receiving. This means that
the conventional read() and write() methods can be used on a DatagramChannel while
it's connected, including the scatter/gather versions to assemble or disassemble packet
data:

public abstract class DatagramChannel
 extends AbstractSelectableChannel
 implements ByteChannel, ScatteringByteChannel, GatheringByteChannel

{
 // This is a partial API listing

 public abstract int read (ByteBuffer dst) throws IOException;
 public abstract long read (ByteBuffer [] dsts) throws IOException;
 public abstract long read (ByteBuffer [] dsts, int offset, int length)

 throws IOException;

 public abstract int write (ByteBuffer src) throws IOException;

 115

 public abstract long write(ByteBuffer[] srcs) throws IOException;
 public abstract long write(ByteBuffer[] srcs, int offset, int length)

 throws IOException;
}

The read() method returns the number of bytes read, which may be zero if the channel is
in nonblocking mode. The return value of write() is consistent with send(): either the
number of bytes in your buffer(s) or 0 if the datagram cannot be sent (because the
channel is nonblocking). Either can throw NotYetConnectedException if invoked while
the DatagramChannel is not in a connected state.

Datagram channels are different beasts than stream sockets. Stream sockets are
immensely useful because of their ordered, reliable data-transport characteristics. Most
network connections are stream sockets (predominantly TCP/IP). But stream-oriented
protocols such as TCP/IP necessarily incur significant overhead to maintain the stream
semantics on top of the packet-oriented Internet infrastructure, and the stream metaphor
does not apply to all situations. Datagram throughput can be higher than for stream
protocols, and datagrams can do some things streams can't.

Here are some reasons to choose datagram sockets over stream sockets:

• Your application can tolerate lost or out-of-order data.
• You want to fire and forget and don't need to know if the packets you sent were

received.
• Throughput is more important than reliability.
• You need to send to multiple receivers (multicast or broadcast) simultaneously.
• The packet metaphor fits the task at hand better than the stream metaphor.

If one or more of these characteristics apply to your application, then a datagram design
may be appropriate.

Example 3-9 shows how to use a DatagramChannel to issue requests to time servers at
multiple addresses. It then waits for the replies to arrive. For each reply that comes back,
the remote time is compared to the local time. Because datagram delivery is not
guaranteed, some responses may never arrive. Most Linux and Unix systems provide
time service by default. There are also several public time servers on the Internet, such as
time.nist.gov. Firewalls or your ISP may interfere with datagram delivery. Your mileage
may vary.

Example 3-9. Time-service client using DatagramChannel

package com.ronsoft.books.nio.channels;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.channels.DatagramChannel;
import java.net.InetSocketAddress;
import java.util.Date;

http://safari.oreilly.com/time.nist.gov

 116

import java.util.List;
import java.util.LinkedList;
import java.util.Iterator;

/**
 * Request time service, per RFC 868. RFC 868
 * (http://www.ietf.org/rfc/rfc0868.txt) is a very simple time protocol
 * whereby one system can request the current time from another system.
 * Most Linux, BSD and Solaris systems provide RFC 868 time service
 * on port 37. This simple program will inter-operate with those.
 * The National Institute of Standards and Technology (NIST) operates
 * a public time server at time.nist.gov.
 *
 * The RFC 868 protocol specifies a 32 bit unsigned value be sent,
 * representing the number of seconds since Jan 1, 1900. The Java
 * epoch begins on Jan 1, 1970 (same as unix) so an adjustment is
 * made by adding or subtracting 2,208,988,800 as appropriate. To
 * avoid shifting and masking, a four-byte slice of an
 * eight-byte buffer is used to send/recieve. But getLong()
 * is done on the full eight bytes to get a long value.
 *
 * When run, this program will issue time requests to each hostname
 * given on the command line, then enter a loop to receive packets.
 * Note that some requests or replies may be lost, which means
 * this code could block forever.
 *
 * @author Ron Hitchens (ron@ronsoft.com)
 */
public class TimeClient
{
 private static final int DEFAULT_TIME_PORT = 37;
 private static final long DIFF_1900 = 2208988800L;

 protected int port = DEFAULT_TIME_PORT;
 protected List remoteHosts;
 protected DatagramChannel channel;

 public TimeClient (String [] argv) throws Exception
 {
 if (argv.length == 0) {
 throw new Exception ("Usage: [-p port] host ...");
 }

 parseArgs (argv);

 this.channel = DatagramChannel.open();
 }

 protected InetSocketAddress receivePacket (DatagramChannel channel,
 ByteBuffer buffer)
 throws Exception
 {
 buffer.clear();

 // Receive an unsigned 32-bit, big-endian value
 return ((InetSocketAddress) channel.receive (buffer));
 }

 117

 // Send time requests to all the supplied hosts
 protected void sendRequests()
 throws Exception
 {
 ByteBuffer buffer = ByteBuffer.allocate (1);
 Iterator it = remoteHosts.iterator();

 while (it.hasNext()) {
 InetSocketAddress sa = (InetSocketAddress) it.next();

 System.out.println ("Requesting time from "
 + sa.getHostName() + ":" + sa.getPort());

 // Make it empty (see RFC868)
 buffer.clear().flip();
 // Fire and forget
 channel.send (buffer, sa);
 }
 }

 // Receive any replies that arrive
 public void getReplies() throws Exception
 {
 // Allocate a buffer to hold a long value
 ByteBuffer longBuffer = ByteBuffer.allocate (8);

 // Assure big-endian (network) byte order
 longBuffer.order (ByteOrder.BIG_ENDIAN);
 // Zero the whole buffer to be sure
 longBuffer.putLong (0, 0);
 // Position to first byte of the low-order 32 bits
 longBuffer.position (4);

 // Slice the buffer; gives view of the low-order 32 bits
 ByteBuffer buffer = longBuffer.slice();
 int expect = remoteHosts.size();
 int replies = 0;

 System.out.println ("");
 System.out.println ("Waiting for replies...");

 while (true) {
 InetSocketAddress sa;

 sa = receivePacket (channel, buffer);

 buffer.flip();
 replies++;

 printTime (longBuffer.getLong (0), sa);

 if (replies == expect) {
 System.out.println ("All packets answered");

 break;
 }

 118

 // Some replies haven't shown up yet
 System.out.println ("Received " + replies
 + " of " + expect + " replies");
 }
 }

 // Print info about a received time reply
 protected void printTime (long remote1900, InetSocketAddress sa)
 {
 // local time as seconds since Jan 1, 1970
 long local = System.currentTimeMillis() / 1000;
 // remote time as seconds since Jan 1, 1970
 long remote = remote1900 - DIFF_1900;
 Date remoteDate = new Date (remote * 1000);
 Date localDate = new Date (local * 1000);
 long skew = remote - local;

 System.out.println ("Reply from "
 + sa.getHostName() + ":" + sa.getPort());
 System.out.println (" there: " + remoteDate);
 System.out.println (" here: " + localDate);
 System.out.print (" skew: ");

 if (skew == 0) {
 System.out.println ("none");
 } else if (skew > 0) {
 System.out.println (skew + " seconds ahead");
 } else {
 System.out.println ((-skew) + " seconds behind");
 }
 }

 protected void parseArgs (String [] argv)
 {
 remoteHosts = new LinkedList();

 for (int i = 0; i < argv.length; i++) {
 String arg = argv [i];

 // Send client requests to the given port
 if (arg.equals ("-p")) {
 i++;
 this.port = Integer.parseInt (argv [i]);
 continue;
 }

 // Create an address object for the hostname
 InetSocketAddress sa = new InetSocketAddress (arg, port);

 // Validate that it has an address
 if (sa.getAddress() == null) {
 System.out.println ("Cannot resolve address: "
 + arg);

 continue;
 }

 119

 remoteHosts.add (sa);
 }
 }

 // --

 public static void main (String [] argv)
 throws Exception
 {
 TimeClient client = new TimeClient (argv);

 client.sendRequests();
 client.getReplies();
 }
}

The program in Example 3-10 is an RFC 868 time server. This code answers requests
from the client in Example 3-9 and shows how a DatagramChannel binds to a
well-known port and then listens for requests from clients. This time server listens only
for datagram (UDP) requests. The rdate command available on most Unix and Linux
systems uses TCP to connect to an RFC 868 time service.

Example 3-10. DatagramChannel time server

package com.ronsoft.books.nio.channels;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.channels.DatagramChannel;
import java.net.SocketAddress;
import java.net.InetSocketAddress;
import java.net.SocketException;

/**
 * Provide RFC 868 time service (http://www.ietf.org/rfc/rfc0868.txt).
 * This code implements an RFC 868 listener to provide time
 * service. The defined port for time service is 37. On most
 * unix systems, root privilege is required to bind to ports
 * below 1024. You can either run this code as root or
 * provide another port number on the command line. Use
 * "-p port#" with TimeClient if you choose an alternate port.
 *
 * Note: The familiar rdate command on unix will probably not work
 * with this server. Most versions of rdate use TCP rather than UDP
 * to request the time.
 *
 * @author Ron Hitchens (ron@ronsoft.com)
 */
public class TimeServer
{
 private static final int DEFAULT_TIME_PORT = 37;
 private static final long DIFF_1900 = 2208988800L;

 protected DatagramChannel channel;

 120

 public TimeServer (int port)
 throws Exception
 {
 this.channel = DatagramChannel.open();
 this.channel.socket().bind (new InetSocketAddress (port));

 System.out.println ("Listening on port " + port
 + " for time requests");
 }

 public void listen() throws Exception
 {
 // Allocate a buffer to hold a long value
 ByteBuffer longBuffer = ByteBuffer.allocate (8);

 // Assure big-endian (network) byte order
 longBuffer.order (ByteOrder.BIG_ENDIAN);
 // Zero the whole buffer to be sure
 longBuffer.putLong (0, 0);
 // Position to first byte of the low-order 32 bits
 longBuffer.position (4);

 // Slice the buffer; gives view of the low-order 32 bits
 ByteBuffer buffer = longBuffer.slice();

 while (true) {
 buffer.clear();

 SocketAddress sa = this.channel.receive (buffer);

 if (sa == null) {
 continue; // defensive programming
 }
 // Ignore content of received datagram per RFC 868

 System.out.println ("Time request from " + sa);

 buffer.clear(); // sets pos/limit correctly

 // Set 64-bit value; slice buffer sees low 32 bits
 longBuffer.putLong (0,
 (System.currentTimeMillis() / 1000) + DIFF_1900);

 this.channel.send (buffer, sa);
 }
 }

 // --

 public static void main (String [] argv)
 throws Exception
 {
 int port = DEFAULT_TIME_PORT;

 if (argv.length > 0) {
 port = Integer.parseInt (argv [0]);

 121

 }

 try {
 TimeServer server = new TimeServer (port);

 server.listen();
 } catch (SocketException e) {
 System.out.println ("Can't bind to port " + port
 + ", try a different one");

 }
 }
}

3.6 Pipes

The java.nio.channels package includes a class named Pipe. A pipe, in the general
sense, is a conduit through which data can be passed in a single direction between two
entities. The notion of a pipe has long been familiar to users of Unix (and Unix-like)
operating systems. Pipes are used on Unix systems to connect the output of one process
to the input of another. The Pipe class implements a pipe paradigm, but the pipes it
creates are intraprocess (within the JVM process) rather than interprocess (between
processes). See Figure 3-10.

Figure 3-10. The Pipe family tree

 122

The Pipe class creates a pair of Channel objects that provide a loopback mechanism. The
two channels' far ends are connected so that whatever is written down the SinkChannel
appears on the SourceChannel. Figure 3-11 shows the class hierarchy for Pipe.

package java.nio.channels;

public abstract class Pipe
{
 public static Pipe open() throws IOException
 public abstract SourceChannel source();
 public abstract SinkChannel sink();

 123

 public static abstract class SourceChannel
 extends AbstractSelectableChannel
 implements ReadableByteChannel, ScatteringByteChannel

 public static abstract class SinkChannel
 extends AbstractSelectableChannel
 implements WritableByteChannel, GatheringByteChannel
}

Figure 3-11. A pipe is a pair of looped channels

An instance of Pipe is created by invoking the Pipe.open() factory method with no
arguments. The Pipe class defines two nested channel classes to implement the pipeline.
These classes are Pipe.SourceChannel (the read end of the pipe) and Pipe.SinkChannel
(the write end of the pipe). These Channel instances are created when the Pipe object is
created and can be fetched by calling the source() and sink() methods, respectively, on
the Pipe object.

At this point, you may be wondering what pipes are useful for. You can't use Pipe to set
up a Unix-like pipe between operating system-level processes (you can use
SocketChannel for that). The source and sink channels of Pipe provide functionality
similar to java.io.PipedInputStream and java.io.PipedOutputStream but with full channel
semantics. Notice that SinkChannel and SourceChannel both extend from
AbstractSelectableChannel (and thus SelectableChannel), which means that pipe
channels can be used with selectors (see Chapter 4).

Pipes can be used only to pass data within the same JVM. There are far more efficient
ways of passing data between threads, but the advantage of using pipes is encapsulation.
Producer and consumer threads can be written to the common Channel API. The same
code can be used to write data to a file, socket, or pipe, depending on the type of channel
it's given. Selectors can be used to check for data availability on pipes just as easily as on
socket channels. This might allow a single consumer thread to efficiently collect data
from multiple channels, in any combination of network connections or local worker
threads, using a single Selector. The implications for scalability, redundancy, and
reusability are significant.

Another useful application of Pipes is for testing. A unit-testing framework can connect a
class to be tested to the write end of a pipe and check the data that comes out the read end.
It can also set up the class being tested on the read end of the pipe and write controlled
test data to it. Both scenarios can be very useful for regression testing.

 124

The amount of data the pipeline holds is implementation-dependent. The only guarantee
is that the bytes written to the SinkChannel will reappear on the SourceChannel in the
same order. Example 3-11 demonstrates how pipes are used.

Example 3-11. Worker thread writing to a pipe

package com.ronsoft.books.nio.channels;

import java.nio.ByteBuffer;
import java.nio.channels.ReadableByteChannel;
import java.nio.channels.WritableByteChannel;
import java.nio.channels.Pipe;
import java.nio.channels.Channels;
import java.util.Random;

/**
 * Test Pipe objects using a worker thread.
 *
 * Created April, 2002
 * @author Ron Hitchens (ron@ronsoft.com)
 */
public class PipeTest
{
 public static void main (String [] argv)
 throws Exception
 {
 // Wrap a channel around stdout
 WritableByteChannel out = Channels.newChannel (System.out);
 // Start worker and get read end of channel
 ReadableByteChannel workerChannel = startWorker (10);
 ByteBuffer buffer = ByteBuffer.allocate (100);

 while (workerChannel.read (buffer) >= 0) {
 buffer.flip();
 out.write (buffer);
 buffer.clear();
 }
 }

 // This method could return a SocketChannel or
 // FileChannel instance just as easily
 private static ReadableByteChannel startWorker (int reps)
 throws Exception
 {
 Pipe pipe = Pipe.open();
 Worker worker = new Worker (pipe.sink(), reps);

 worker.start();

 return (pipe.source());
 }

 // ---

 /**
 * A worker thread object which writes data down a channel.

 125

 * Note: this object knows nothing about Pipe, uses only a
 * generic WritableByteChannel.
 */
 private static class Worker extends Thread
 {
 WritableByteChannel channel;
 private int reps;

 Worker (WritableByteChannel channel, int reps)
 {
 this.channel = channel;
 this.reps = reps;
 }

 // Thread execution begins here
 public void run()
 {
 ByteBuffer buffer = ByteBuffer.allocate (100);

 try {
 for (int i = 0; i < this.reps; i++) {
 doSomeWork (buffer);

 // channel may not take it all at once
 while (channel.write (buffer) > 0) {
 // empty
 }
 }

 this.channel.close();
 } catch (Exception e) {
 // easy way out; this is demo code
 e.printStackTrace();
 }
 }

 private String [] products = {
 "No good deed goes unpunished",
 "To be, or what?",
 "No matter where you go, there you are",
 "Just say \"Yo\"",
 "My karma ran over my dogma"
 };

 private Random rand = new Random();

 private void doSomeWork (ByteBuffer buffer)
 {
 int product = rand.nextInt (products.length);

 buffer.clear();
 buffer.put (products [product].getBytes());
 buffer.put ("\r\n".getBytes());
 buffer.flip();
 }
 }
}

 126

3.7 The Channels Utility Class

NIO channels provide a new, stream-like I/O metaphor, but the familiar byte stream and
character reader/writer classes are still around and widely used. Channels may eventually
be retrofitted into the java.io classes (an implementation detail), but the APIs presented
by java.io streams and reader/writers will not be going away anytime soon (nor should
they).

A utility class, with the slightly repetitive name of java.nio.channels.Channels,
defines several static factory methods to make it easier for channels to interconnect with
streams and readers/writers. Table 3-2 summarizes these methods.

Table 3-2. Summary of java.nio.channels.Channels utility methods
Method Returns Description

newChannel (InputStream in) ReadableByteChannel Returns a channel that will read bytes from the
provided input stream.

newChannel (OutputStream out) WritableByteChannel Returns a channel that will write bytes to the
provided output stream.

newInputStream
(ReadableByteChannel ch) InputStream Returns a stream that will read bytes from the

provided channel.
newOutputStream
(WritableByteChannel ch) OutputStream Returns a stream that will write bytes to the given

channel.
newReader
(ReadableByteChannel ch,
CharsetDecoder dec, int
minBufferCap)

Reader

Returns a reader that will read bytes from the
provided channel and decode them according to
the given CharsetDecoder. Charset
encoding/decoding is discussed in Chapter 6.

newReader
(ReadableByteChannel ch, String
csName)

Reader
Returns a reader that will read bytes from the
provided channel and decode them into
characters according to the given charset name.

newWriter (WritableByteChannel
ch, CharsetEncoder dec, int
minBufferCap)

Writer
Returns a writer that will encode characters with
the provided CharsetEncoder object and write
them to the given channel.

newWriter (WritableByteChannel
ch, String csName) Writer

Returns a writer that will encode characters
according to the provided charset name and write
them to the given channel.

Recall that conventional streams transfer bytes and that readers and writers work with
character data. The first four rows of Table 3-2 describe methods for interconnecting
streams and channels. Since both operate on byte streams, these four methods do
straightforward wrapping of streams around channels and vice versa.

Readers and writers operate on characters, which in the Java world are not at all the same
as bytes. To hook up a channel (which knows only about bytes) to a reader or writer
requires an intermediate conversion to handle the byte/char impedance mismatch. The
factory methods described in the second half of Table 3-2 use character set encoders and
decoders for this purpose. Charsets and character set transcoding are discussed in detail in
Chapter 6.

 127

The wrapper Channel objects returned by these methods may or may not implement the
InterruptibleChannel interface. Also, they might not extend from SelectableChannel.
Therefore, it may not be possible to use these wrapper channels interchangeably with the
other channel types defined in the java.nio.channels package. The specifics are
implementation-dependent. If your application relies on these semantics, test the returned
channel object with the instanceof operator.

3.8 Summary

We covered a lot of ground in this chapter. Channels make up the infrastructure, or the
plumbing, which carries data between ByteBuffers and I/O services of the operating
system (or whatever the channel is connected to). The key concepts discussed in this
chapter were:

Basic channel operations

In Section 3.1, we learned the basic operations of channels. These included how
to open a channel using the API calls common to all channels and how to close a
channel when finished.

Scatter/gather channels

The topic of scatter/gather I/O using channels was introduced in Section 3.2.
Vectored I/O enables you to perform one I/O operation across multiple buffers
automatically.

File channels

The multifaceted FileChannel class was discussed in Section 3.3. This powerful
new channel provides access to advanced file operations not previously available
to Java programs. Among these new capabilities are file locking, memory-mapped
files, and channel-to-channel transfers.

Socket channels

The several types of socket channels were covered in Section 3.5. Also discussed
was nonblocking mode, an important new feature supported by socket channels.

Pipes

In Section 3.6, we looked at the Pipe class, a useful new loopback mechanism
using specialized channel implementations.

Channels utility class

 128

The Channels class contains utility methods that provide for cross-connecting
channels with conventional byte streams and character reader/writer objects. See
Section 3.7.

There are many channels on your NIO dial, and we've surfed them all. The material in
this chapter was a lot to absorb. Channels are the key abstraction of NIO. Now that we
understand what channels are and how to use them effectively to access the I/O services
of the native operating system, it's time to move on to the next major innovation of NIO.
In the next chapter, we'll learn how to manage many of these powerful new channels
easily and efficiently.

Take a bathroom break, visit the gift shop, and then please reboard the bus. Next stop:
selectors.

 129

Chapter 4. Selectors

Life is a series of rude awakenings.

—R. Van Winkle

In this chapter, we'll explore selectors. Selectors provide the ability to do readiness
selection, which enables multiplexed I/O. As described in Chapter 1, readiness selection
and multiplexing make it possible for a single thread to efficiently manage many I/O
channels simultaneously. C/C++ coders have had the POSIX select() and/or poll() system
calls in their toolbox for many years. Most other operating systems provide similar
functionality. But readiness selection was never available to Java programmers until JDK
1.4. Programmers whose primary body of experience is in the Java environment may not
have encountered this I/O model before.

For an illustration of readiness selection, let's return to the drive-through bank example of
Chapter 3. Imagine a bank with three drive-through lanes. In the traditional (nonselector)
scenario, imagine that each drive-through lane has a pneumatic tube that runs to its own
teller station inside the bank, and each station is walled off from the others. This means
that each tube (channel) requires a dedicated teller (worker thread). This approach doesn't
scale well and is wasteful. For each new tube (channel) added, a new teller is required,
along with associated overhead such as tables, chairs, paper clips (memory, CPU cycles,
context switching), etc. And when things are slow, these resources (which have
associated costs) tend to sit idle.

Now imagine a different scenario in which each pneumatic tube (channel) is connected to
a single teller station inside the bank. The station has three slots where the carriers (data
buffers) arrive, each with an indicator (selection key) that lights up when the carrier is in
the slot. Also imagine that the teller (worker thread) has a sick cat and spends as much
time as possible reading Do It Yourself Taxidermy.[1] At the end of each paragraph, the
teller glances up at the indicator lights (invokes select()) to determine if any of the
channels are ready (readiness selection). The teller (worker thread) can perform another
task while the drive-through lanes (channels) are idle yet still respond to them in a timely
manner when they require attention.

[1] Not currently in the O'Reilly catalog.

While this analogy is not exact, it illustrates the paradigm of quickly checking to see if
attention is required by any of a set of resources, without being forced to wait if
something isn't ready to go. This ability to check and continue is key to scalability. A
single thread can monitor large numbers of channels with readiness selection. The
Selector and related classes provide the APIs to do readiness selection on channels.

4.1 Selector Basics

 130

Getting a handle on the topics discussed in this chapter will be somewhat tougher than
understanding the relatively straightforward buffer and channel classes. It's trickier,
because there are three main classes, all of which come into play at the same time. If you
find yourself confused, back up and take another run at it. Once you see how the pieces
fit together and their individual roles, it should all make sense.

We'll begin with the executive summary, then break down the details. You register one or
more previously created selectable channels with a selector object. A key that represents
the relationship between one channel and one selector is returned. Selection keys
remember what you are interested in for each channel. They also track the operations of
interest that their channel is currently ready to perform. When you invoke select() on a
selector object, the associated keys are updated by checking all the channels registered
with that selector. You can obtain a set of the keys whose channels were found to be
ready at that point. By iterating over these keys, you can service each channel that has
become ready since the last time you invoked select().

That's the 30,000-foot view. Now let's swoop in low and see what happens at ground
level (or below).

At this point, you may want to skip ahead to Example 4-1 and take a quick look at the
code. Between here and there, you'll learn the specifics of how these new classes work,
but armed with just the high-level information in the preceding paragraph, you should be
able to see how the selection model works in practice.

At the most fundamental level, selectors provide the capability to ask a channel if it's
ready to perform an I/O operation of interest to you. For example, a SocketChannel object
could be asked if it has any bytes ready to read, or we may want to know if a
ServerSocketChannel has any incoming connections ready to accept.

Selectors provide this service when used in conjunction with SelectableChannel objects,
but there's more to the story than that. The real power of readiness selection is that a
potentially large number of channels can be checked for readiness simultaneously. The
caller can easily determine which of several channels are ready to go. Optionally, the
invoking thread can ask to be put to sleep until one or more of the channels registered
with the Selector is ready, or it can periodically poll the selector to see if anything has
become ready since the last check. If you think of a web server, which must manage large
numbers of concurrent connections, it's easy to imagine how these capabilities can be put
to good use.

At first blush, it may seem possible to emulate readiness selection with nonblocking
mode alone, but it really isn't. Nonblocking mode will either do what you request or
indicate that it can't. This is semantically different from determining if it's possible to do
a certain type of operation. For example, if you attempt a nonblocking read and it
succeeds, you not only discovered that a read() is possible, you also read some data. You
must then do something with that data.

 131

This effectively prevents you from separating the code that checks for readiness from the
code that processes the data, at least without significant complexity. And even if it was
possible simply to ask each channel if it's ready, this would still be problematic because
your code, or some code in a library package, would need to iterate through all the
candidate channels and check each in turn. This would result in at least one system call
per channel to test its readiness, which could be expensive, but the main problem is that
the check would not be atomic. A channel early in the list could become ready after it's
been checked, but you wouldn't know it until the next time you poll. Worst of all, you'd
have no choice but to continually poll the list. You wouldn't have a way of being notified
when a channel you're interested in becomes ready.

This is why the traditional Java solution to monitoring multiple sockets has been to create
a thread for each and allow the thread to block in a read() until data is available. This
effectively makes each blocked thread a socket monitor and the JVM's thread scheduler
becomes the notification mechanism. Neither was designed for these purposes. The
complexity and performance cost of managing all these threads, for the programmer and
for the JVM, quickly get out of hand as the number of threads grows.

True readiness selection must be done by the operating system. One of the most
important functions performed by an operating system is to handle I/O requests and
notify processes when their data is ready. So it only makes sense to delegate this function
down to the operating system. The Selector class provides the abstraction by which Java
code can request readiness selection service from the underlying operating system in a
portable way.

Let's take a look at the specific classes that deal with readiness selection in the
java.nio.channels package.

4.1.1 The Selector, SelectableChannel, and SelectionKey Classes

At this point, you may be confused about how all this selection stuff works in Java. Let's
identify the moving parts and how they interact. The UML diagram in Figure 4-1 makes
the situation look more complicated than it really is. Refer to Figure 4-2 and you'll see
that there are really only three pertinent class APIs when doing readiness selection:

Selector

The Selector class manages information about a set of registered channels and
their readiness states. Channels are registered with selectors, and a selector can be
asked to update the readiness states of the channels currently registered with it.
When doing so, the invoking thread can optionally indicate that it would prefer to
be suspended until one of the registered channels is ready.

SelectableChannel

 132

This abstract class provides the common methods needed to implement channel
selectability. It's the superclass of all channel classes that support readiness
selection. FileChannel objects are not selectable because they don't extend from
SelectableChannel (see Figure 4-2). All the socket channel classes are selectable,
as well as the channels obtained from a Pipe object. SelectableChannel objects
can be registered with Selector objects, along with an indication of which
operations on that channel are of interest for that selector. A channel can be
registered with multiple selectors, but only once per selector.

SelectionKey

A SelectionKey encapsulates the registration relationship between a specific
channel and a specific selector. A SelectionKey object is returned from
SelectableChannel.register() and serves as a token representing the registration.
SelectionKey objects contain two bit sets (encoded as integers) indicating which
channel operations the registrant has an interest in and which operations the
channel is ready to perform.

Figure 4-1. Selection class family tree

 133

Let's take a look at the relevant API methods of SelectableChannel:

public abstract class SelectableChannel
 extends AbstractChannel
 implements Channel
{
 // This is a partial API listing

 public abstract SelectionKey register (Selector sel, int ops)
 throws ClosedChannelException;
 public abstract SelectionKey register (Selector sel, int ops, Object
att)
 throws ClosedChannelException;

 public abstract boolean isRegistered();
 public abstract SelectionKey keyFor (Selector sel);
 public abstract int validOps();

 public abstract void configureBlocking (boolean block)
 throws IOException;

 134

 public abstract boolean isBlocking();
 public abstract Object blockingLock();
}

Nonblocking and multiplexing go hand-in-hand — so much so that the architects of
java.nio placed the APIs for both in the same class.

We've already discussed how to configure and check a channel's blocking mode with the
last three methods of SelectableChannel, which are listed above. (Refer to Section 3.5.1
for a detailed discussion.) A channel must first be placed in nonblocking mode (by
calling configureBlocking(false)) before it can be registered with a selector.

Figure 4-2. Relationships of the selection classes

Invoking the selectable channel's register() method registers it with a selector. If you
attempt to register a channel that is in blocking mode, register() will throw an unchecked
IllegalBlockingModeException. Also, a channel cannot be returned to blocking mode
while registered. Attempting to do so will throw IllegalBlocking-ModeException from the
configureBlocking() method.

And, of course, attempting to register a SelectableChannel instance that has been closed
will throw ClosedChannelException, as indicated by the method signature.

Before we take a closer look at register() and the other methods of SelectableChannel,
let's look at the API of the Selector class so we can better understand the relationship:

public abstract class Selector
{
 public static Selector open() throws IOException
 public abstract boolean isOpen();
 public abstract void close() throws IOException;
 public abstract SelectionProvider provider();

 public abstract int select() throws IOException;
 public abstract int select (long timeout) throws IOException;
 public abstract int selectNow() throws IOException;
 public abstract void wakeup();

 135

 public abstract Set keys();
 public abstract Set selectedKeys();
}

Although the register() method is defined on the SelectableChannel class, channels are
registered with selectors, not the other way around. A selector maintains a set of channels
to monitor. A given channel can be registered with more than one selector and has no
idea which Selector objects it's currently registered with. The choice to put the register()
method in SelectableChannel rather than in Selector was somewhat arbitrary. It returns a
SelectionKey object that encapsulates a relationship between the two objects. The
important thing is to remember that the Selector object controls the selection process for
the channels registered with it.

public abstract class SelectionKey
{
 public static final int OP_READ
 public static final int OP_WRITE
 public static final int OP_CONNECT
 public static final int OP_ACCEPT

 public abstract SelectableChannel channel();
 public abstract Selector selector();

 public abstract void cancel();
 public abstract boolean isValid();

 public abstract int interestOps();
 public abstract void interestOps (int ops);
 public abstract int readyOps();

 public final boolean isReadable()
 public final boolean isWritable()
 public final boolean isConnectable()
 public final boolean isAcceptable()

 public final Object attach (Object ob)
 public final Object attachment()

}

Selectors are the managing objects, not the selectable channel
objects. The Selector object performs readiness selection of channels
registered with it and manages selection keys.

The interpretation of a key's interest and readiness sets is channel-specific. Each channel
implementation typically defines its own specialized SelectionKey class, constructs it
within the register() method, and passes it to the provided Selector object.

In the following sections, we'll cover all the methods of these three classes in more detail.

 136

4.1.2 Setting Up Selectors

At this point, you may still be confused. You see a bunch of methods in the three
preceding listings and can't tell what they do or what they mean. Before drilling into the
details of all this, let's take a look at a typical usage example. It should help to put things
into context.

To set up a Selector to monitor three Socket channels, you'd do something like this (refer
to Figure 4-2):

Selector selector = Selector.open();

channel1.register (selector, SelectionKey.OP_READ);
channel2.register (selector, SelectionKey.OP_WRITE);
channel3.register (selector, SelectionKey.OP_READ |
SelectionKey.OP_WRITE);

// Wait up to 10 seconds for a channel to become ready
readyCount = selector.select (10000);

This code creates a new selector, then registers three (preexisting) socket channels with
that selector, each with a different set of interests. The select() method is then called to
put the thread to sleep until one of these interesting things happens or the 10-second timer
expires.

Now let's start looking at the Selector API in detail:

public abstract class Selector
{
 // This is a partial API listing

 public static Selector open() throws IOException
 public abstract boolean isOpen();
 public abstract void close() throws IOException;
 public abstract SelectionProvider provider();
}

Selector objects are instantiated by calling the static factory method open(). Selectors are
not primary I/O objects like channels or streams: data never passes through them. The
open() class method interfaces to the SPI to request a new instance from the default
SelectorProvider object. It's also possible to create a new Selector instance by calling the
openSelector() method of a custom SelectorProvider object. You can determine which
SelectorProvider object created a given Selector instance by calling its provider() method.
In most cases, you do not need to be concerned about the SPI; just call open() to create a
new Selector object. For those rare circumstances when you must deal with it, the
channel SPI package is summarized in Appendix B.

Continuing the convention of treating a Selector as an I/O object: when you're finished
with it, call close() to release any resources it may be holding and to invalidate any
associated selection keys. Once a Selector has been closed, attempting to invoke most

 137

methods on it will result in a ClosedSelectorException. Note that
ClosedSelectorException is an unchecked (runtime) exception. You can test a Selector to
determine if it's currently open with the isOpen() method.

We'll finish with the Selector API in a bit, but right now let's take a look at registering
channels with selectors. Here's an abbreviated version of the SelectableChannel API from
earlier in this chapter:

public abstract class SelectableChannel
 extends AbstractChannel
 implements Channel
{
 // This is a partial API listing

 public abstract SelectionKey register (Selector sel, int ops)
 throws ClosedChannelException;
 public abstract SelectionKey register (Selector sel, int ops, Object
att)
 throws ClosedChannelException;

 public abstract boolean isRegistered();
 public abstract SelectionKey keyFor (Selector sel);
 public abstract int validOps();
}

As mentioned earlier, the register() method lives in the SelectableChannel class, although
channels are actually registered with selectors. You can see that register() takes a
Selector object as an argument, as well as an integer parameter named ops. This second
argument represents the operation interest set for which the channel is being registered.
This is a bit mask that represents the I/O operations that the selector should test for when
checking the readiness of that channel. The specific operation bits are defined as public
static fields in the SelectionKey class.

As of JDK 1.4, there are four defined selectable operations: read, write, connect, and
accept. Not all operations are supported on all selectable channels. A SocketChannel
cannot do an accept, for example. Attempting to register interest in an unsupported
operation will result in the unchecked IllegalArgumentException being thrown. You can
discover the set of operations a particular channel object supports by calling its validOps()
method. We saw this method on the socket channel classes discussed in Chapter 3.

Selectors contain sets of channels currently registered with them. Only one registration of
a given channel with a given selector can be in effect at any given time. However, it is
permissible to register a given channel with a given selector more than once. Doing so
returns the same SelectionKey object after updating its operation interest set to the given
value. In effect, subsequent registrations simply update the key associated with the
preexisting registration (see Section 4.2).

An exceptional situation is when you attempt to reregister a channel with a selector for
which the associated key has been cancelled, but the channel is still registered. Channels

 138

are not immediately deregistered when the associated key is cancelled. They remain
registered until the next selection operation occurs (see Section 4.3). In this case, the
unchecked CancelledKeyException will be thrown. Test the state of the SelectionKey
object if there is a chance the key may have been cancelled.

In the previous listing, you'll notice a second version of register() that takes a generic
object argument. This is a convenience method that passes the object reference you
provide to the attach() method of the new selection key before returning it to you. We'll
take a closer look at the API for SelectionKey in the next section.

A single channel object can be registered with multiple selectors. A channel can be
queried to see if it is currently registered with any selectors by calling the isRegistered()
method. This method does not provide information about which selectors the channel is
registered with, only that it is registered with at least one. Additionally, there can be a
delay between the time a registration key is cancelled and the time a channel is
deregistered. This method is a hint, not a definitive answer.

Each registration of a channel with a selector is encapsulated by a SelectionKey object.
The keyFor() method returns the key associated with this channel and the given selector.
If the channel is currently registered with the given selector, the associated key is
returned. If no current registration relationship exists for this channel with the given
selector, null is returned.

4.2 Using Selection Keys

Let's look again at the API of the SelectionKey class:

package java.nio.channels;

public abstract class SelectionKey
{
 public static final int OP_READ
 public static final int OP_WRITE
 public static final int OP_CONNECT
 public static final int OP_ACCEPT

 public abstract SelectableChannel channel();
 public abstract Selector selector();

 public abstract void cancel();
 public abstract boolean isValid();

 public abstract int interestOps();
 public abstract void interestOps (int ops);
 public abstract int readyOps();

 public final boolean isReadable()
 public final boolean isWritable()
 public final boolean isConnectable()
 public final boolean isAcceptable()

 139

 public final Object attach (Object ob)
 public final Object attachment()
}

As mentioned earlier, a key represents the registration of a particular channel object with
a particular selector object. You can see that relationship reflected in the first two
methods above. The channel() method returns the SelectableChannel object associated
with the key, and selector() returns the associated Selector object. Nothing surprising
there.

Key objects represent a specific registration relationship. When it's time to terminate that
relationship, call the cancel() method on the SelectionKey object. A key can be checked
to see if it still represents a valid registration by calling its isValid() method. When a key
is cancelled, it's placed in the cancelled set of the associated selector. The registration is
not immediately terminated, but the key is immediately invalidated (see Section 4.3).
Upon the next invocation of select() (or upon completion of an in-progress select()
invocation), any cancelled keys will be cleared from the cancelled key set, and the
corresponding deregistrations will be completed. The channel can be reregistered, and a
new SelectionKey object will be returned.

When a channel is closed, all keys associated with it are automatically cancelled
(remember, a channel can be registered with many selectors). When a selector is closed,
all channels registered with that selector are deregistered, and the associated keys are
invalidated (cancelled). Once a key has been invalidated, calling any of its methods
related to selection will throw a CancelledKeyException.

A SelectionKey object contains two sets encoded as integer bit masks: one for those
operations of interest to the channel/selector combination (the interest set) and one
representing operations the channel is currently ready to perform (the ready set). The
current interest set can be retrieved from the key object by invoking its interestOps()
method. Initially, this will be the value passed in when the channel was registered. This
interest set will never be changed by the selector, but you can change it by calling
interestOps() with a new bit mask argument. The interest set can also be modified by
reregistering the channel with the selector (which is effectively a roundabout way of
invoking interestOps()), as described in Section 4.1.2. Changes made to the interest set of
a key while a select() is in progress on the associated Selector will not affect that
selection operation. Any changes will be seen on the next invocation of select().

The set of operations that are ready on the channel associated with a key can be retrieved
by calling the key's readyOps() method. The ready set is a subset of the interest set and
represents those operations from the interest set which were determined to be ready on
the channel by the last invocation of select(). For example, the following code tests to see
if the channel associated with a key is ready for reading. If so, it reads data from it into a
buffer and sends it along to a consumer method.

if ((key.readyOps() & SelectionKey.OP_READ) != 0)
{

 140

 myBuffer.clear();
 key.channel().read (myBuffer);
 doSomethingWithBuffer (myBuffer.flip());
}

As noted earlier, there are currently four channel operations that can be tested for
readiness. You can check these by testing the bit mask as shown in the code above, but
the SelectionKey class defines four boolean convenience methods to test the bits for you:
isReadable(), isWritable(), isConnectable(), and isAcceptable(). Each of these is
equivalent to checking the result of readyOps() against the appropriate operation bit value.
For example:

if (key.isWritable())

is equivalent to:

if ((key.readyOps() & SelectionKey.OP_WRITE) != 0)

All four of these methods are safe to call on any SelectionKey object. Recall that a
channel cannot be registered for interest in an operation it doesn't support. Since an
unsupported operation will never be in a channel's interest set, it can never appear in its
ready set. Therefore, calling one of these methods for an unsupported operation will
always return false because that operation will never be ready on that channel.

It's important to note that the readiness indication associated with a selection key as
returned by readyOps() is a hint, not an iron-clad guarantee. The state of the underlying
channel can change at any time. Other threads may perform operations on the channel
that affect its readiness state. And, as always, operating system-specific idiosyncrasies
may come into play.

The ready set contained by a SelectionKey object is as of the time the
selector last checked the states of the registered channels. The
readiness of individual channels could have changed in the
meantime.

 You may have noticed from the SelectionKey API that although there is a way to get the
operation ready set, there is no API method to set or reset the members of that set. You
cannot, in fact, directly modify a key's ready set. In the next section, which describes the
selection process, we'll see how selectors and keys interact to provide up-to-date
readiness indication.

Let's examine the remaining two methods of the SelectionKey API:

public abstract class SelectionKey
{
 // This is a partial API listing

 public final Object attach (Object ob)

 141

 public final Object attachment()
}

These two methods allow you to place an attachment on a key and retrieve it later. This is
a convenience that allows you to associate an arbitrary object with a key. This object can
be a reference to anything meaningful to you, such as a business object, session handle,
another channel, etc. This allows you to iterate through the keys associated with a
selector, using the attached object handle on each as a reference to retrieve the associated
context.

The attach() method stores the provided object reference in the key object. The
SelectionKey class does not use the object except to store it. Any previous attachment
reference stored in the key will be replaced. The null value may be given to clear the
attachment. The attachment handle associated with a key can be fetched by calling the
attachment() method. This method could return null if no attachment was set or if null
was explicitly given.

If the selection key is long-lived, but the object you attach should not
be, remember to clear the attachment when you're done. Otherwise,
your attached object will not be garbage collected, and you may have
a memory leak.

 An overloaded version of the register() method on the SelectableChannel class takes an
Object argument. This is a convenience that lets you attach an object to the new key
during registration. This:

SelectionKey key = channel.register (selector, SelectionKey.OP_READ,
myObject);

is equivalent to this:

SelectionKey key = channel.register (selector, SelectionKey.OP_READ);
key.attach (myObject);

One last thing to note about the SelectionKey class relates to concurrency. Generally,
SelectionKey objects are thread-safe, but it's important to know that operations that
modify the interest set are synchronized by Selector objects. This could cause calls to the
interestOps() method to block for an indeterminate amount of time. The specific locking
policy used by a selector, such as whether the locks are held throughout the selection
process, is implementation-dependent. Luckily, this multiplexing capability is
specifically designed to enable a single thread to manage many channels. Using selectors
by multiple threads should be an issue in only the most complex of applications. Frankly,
if you're sharing selectors among many threads and encountering synchronization issues,
your design probably needs a rethink.

 142

We've covered the API for the SelectionKey class, but we're not finished with selection
keys — not by a long shot. Let's take a look at how to manage keys when using them
with selectors.

4.3 Using Selectors

Now that we have a pretty good handle on the various classes and how they relate to one
another, let's take a closer look at the Selector class, the heart of readiness selection. Here
is the abbreviated API of the Selector class we saw earlier. In Section 4.1.2, we saw how
to create new selectors, so those methods have been left out:

public abstract class Selector
{
 // This is a partial API listing

 public abstract Set keys();
 public abstract Set selectedKeys();

 public abstract int select() throws IOException;
 public abstract int select (long timeout) throws IOException;
 public abstract int selectNow() throws IOException;

 public abstract void wakeup();
}

4.3.1 The Selection Process

Before getting into the details of the API, you should know a little about the inner
workings of Selector. As previously discussed, a selector maintains a set of registered
channels, and each of these registrations is encapsulated in a SelectionKey object. Each
Selector object maintains three sets of keys:

Registered key set

The set of currently registered keys associated with the selector. Not every
registered key is necessarily still valid. This set is returned by the keys() method
and may be empty. The registered key set is not directly modifiable; attempting to
do so yields a java.lang.UnsupportedOperationException.

Selected key set

A subset of the registered key set. Each member of this set is a key whose
associated channel was determined by the selector (during a prior selection
operation) to be ready for at least one of the operations in the key's interest set.
This set is returned by the selectedKeys() method (and may be empty).

Don't confuse the selected key set with the ready set. This is a set of keys, each with an
associated channel that is ready for at least one operation. Each key has an embedded
ready set that indicates the set of operations the associated channel is ready to perform.

 143

Keys can be directly removed from this set, but not added. Attempting to add to the
selected key set throws java.lang.UnsupportedOperationException.

Cancelled key set

A subset of the registered key set, this set contains keys whose cancel() methods
have been called (the key has been invalidated), but they have not been
deregistered. This set is private to the selector object and cannot be accessed
directly.

All three of these sets are empty in a newly instantiated Selector object.

The core of the Selector class is the selection process. You've seen several references to it
already — now it's time to explain it. Essentially, selectors are a wrapper for a native call
to select(), poll(), or a similar operating system-specific system call. But the Selector does
more than a simple pass-through to native code. It applies a specific process on each
selection operation. An understanding of this process is essential to properly managing
keys and the state information they represent.

A selection operation is performed by a selector when one of the three forms of select() is
invoked. Whichever is called, the following three steps are performed:

1. The cancelled key set is checked. If it's nonempty, each key in the cancelled set is
removed from the other two sets, and the channel associated with the cancelled
key is deregistered. When this step is complete, the cancelled key set is empty.

2. The operation interest sets of each key in the registered key set are examined.
Changes made to the interest sets after they've been examined in this step will not
be seen during the remainder of the selection operation.

Once readiness criteria have been determined, the underlying operating system is
queried to determine the actual readiness state of each channel for its operations
of interest. Depending on the specific select() method called, the thread may block
at this point if no channels are currently ready, possibly with a timeout value.

Upon completion of the system calls, which may have caused the invoking thread
to be put to sleep for a while, the current readiness status of each channel will
have been determined. Nothing further happens to any channel not found to be
currently ready. For each channel that the operating system indicates is ready for
at least one of the operations in its interest set, one of the following two things
happens:

a. If the key for the channel is not already in the selected key set, the key's
ready set is cleared, and the bits representing the operations determined to
be currently ready on the channel are set.

b. Otherwise, the key is already in the selected key set. The key's ready set is
updated by setting bits representing the operations found to be currently

 144

ready. Any previously set bits representing operations that are no longer
ready are not cleared. In fact, no bits are cleared. The ready set as
determined by the operating system is bitwise-disjoined into the previous
ready set.[2] Once a key has been placed in the selected key set of the
selector, its ready set is cumulative. Bits are set but never cleared.

[2] A fancy way of saying the bits are logically ORed together.

3. Step 2 can potentially take a long time, especially if the invoking thread sleeps.
Keys associated with this selector could have been cancelled in the meantime.
When Step 2 completes, the actions taken in Step 1 are repeated to complete
deregistration of any channels whose keys were cancelled while the selection
operation was in progress.

4. The value returned by the select operation is the number of keys whose operation
ready sets were modified in Step 2, not the total number of channels in the
selection key set. The return value is not a count of ready channels, but the
number of channels that became ready since the last invocation of select(). A
channel ready on a previous call and still ready on this call won't be counted, nor
will a channel that was ready on a previous call but is no longer ready. These
channels could still be in the selection key set but will not be counted in the return
value. The return value could be 0.

Using the internal cancelled key set to defer deregistration is an optimization to prevent
threads from blocking when they cancel a key and to prevent collisions with in-progress
selection operations. Deregistering a channel is a potentially expensive operation that
may require deallocation of resources (remember that keys are channel-specific and may
have complex interactions with their associated channel objects). Cleaning up cancelled
keys and deregistering channels immediately before or after a selection operation
eliminates the potentially thorny problem of deregistering channels while they're in the
middle of selection. This is another good example of compromise in favor of robustness.

The Selector class's select() method comes in three different forms:

public abstract class Selector
{
 // This is a partial API listing

 public abstract int select() throws IOException;
 public abstract int select (long timeout) throws IOException;
 public abstract int selectNow() throws IOException;

 public abstract void wakeup();
}

The three forms of select differ only in whether they block if none of the registered
channels are currently ready. The simplest form takes no argument and is invoked like
this:

 145

int n = selector.select();

This call blocks indefinitely if no channels are ready. As soon as at least one of the
registered channels is ready, the selection key set of the selector is updated, and the ready
sets for each ready channel will be updated. The return value will be the number of
channels determined to be ready. Normally, this method returns a nonzero value since it
blocks until a channel is ready. But it can return 0 if the wakeup() method of the selector
is invoked by another thread.

Sometimes you want to limit the amount of time a thread will wait for a channel to
become ready. For those situations, an overloaded form of select() that takes a timeout
argument is available:

int n = selector.select (10000);

This call behaves exactly the same as the previous example, except that it returns a value
of 0 if no channels have become ready within the timeout period you provide (specified
in milliseconds). If one or more channels become ready before the time limit expires, the
status of the keys will be updated, and the method will return at that point. Specifying a
timeout value of 0 indicates to wait indefinitely and is identical in all respects to the
no-argument version of select().

The third and final form of selection is totally nonblocking:

int n = selector.selectNow();

The selectNow() method performs the readiness selection process but will never block. If
no channels are currently ready, it immediately returns 0.

4.3.2 Stopping the Selection Process

The last of the Selector API methods, wakeup(), provides the capability to gracefully
break out a thread from a blocked select() invocation:

public abstract class Selector
{
 // This is a partial API listing

 public abstract void wakeup();
}

There are three ways to wake up a thread sleeping in select():

Call wakeup()

Calling wakeup() on a Selector object causes the first selection operation on that
selector that has not yet returned to return immediately. If no selection is currently
underway, then the next invocation of one of the select() methods will return

 146

immediately. Subsequent selection operations will behave normally. Invoking
wakeup() multiple times between selection operations is no different than
invoking it once.

Sometimes this deferred wakeup behavior may not be what you want. You may want to
wake only a sleeping thread but allow subsequent selections to proceed normally. You
can work around this problem by invoking selectNow() after calling wakeup(). However,
if you structure your code to pay attention to the return codes and process the selection
set properly, it shouldn't make any difference if the next select() returns immediately with
nothing ready. You should be prepared for this eventuality anyway.

Call close()

If a selector's close() method is called, any thread blocked in a selection operation
will be awakened as if the wakeup() method had been called. Channels associated
with the selector will then be deregistered and the keys cancelled.

Call interrupt()

If the sleeping thread's interrupt() method is called, its interrupt status is set. If
the awakened thread then attempts an I/O operation on a channel, the channel is
closed immediately, and the thread catches an exception. This is because of the
interruption semantics of channels discussed in Chapter 3. Use wakeup() to
gracefully awaken a thread sleeping in select(). Take steps to clear the interrupt
status if you want a sleeping thread to continue after being directly interrupted
(see the documentation for Thread.interrupted()).

The Selector object catches the InterruptedException exception and call wakeup().

Note that none of these methods automatically close any of the channels involved.
Interrupting a selector is not the same as interrupting a channel (see Section 3.1.3).
Selection does not change the state of any of the channels involved, it only tests their
state. There is no ambiguity regarding channel state when a thread sleeping in a selector
is interrupted.

4.3.3 Managing Selection Keys

Now that we understand how the various pieces of the puzzle fit together, it's time see
how they interoperate in normal use. To use the information provided by selectors and
keys effectively, it's important to properly manage the keys.

Selections are cumulative. Once a selector adds a key to the selected key set, it never
removes it. And once a key is in the selected key set, ready indications in the ready set of
that key are set but never cleared. At first blush, this seems troublesome because a
selection operation may not give a true representation of the current state of the registered
channels. This is an intentional design decision. It provides a great deal of flexibility but

 147

assigns responsibility to the programmer to properly manage the keys to ensure that the
state information they represent does not become stale.

The secret to using selectors properly is to understand the role of the selected key set
maintained by the selector. (See Section 4.3.1, specifically Step 2 of the selection
process.) The important part is what happens when a key is not already in the selected set.
When at least one operation of interest becomes ready on the channel, the ready set of the
key is cleared, and the currently ready operations are added to the ready set. The key is
then added to the selected key set.

The way to clear the ready set of a SelectionKey is to remove the key itself from the set
of selected keys. The ready set of a selection key is modified only by the Selector object
during a selection operation. The idea is that only keys in the selected set are considered
to have legitimate readiness information. That information persists in the key until the
key is removed from the selected key set, which indicates to the selector that you have
seen and dealt with it. The next time something of interest happens on the channel, the
key will be set to reflect the state of the channel at that point and once again be added to
the selected key set.

This scheme provides a lot of flexibility. The conventional approach is to perform a
select() call on the selector (which updates the selected key set) then iterate over the set
of keys returned by selectedKeys(). As each key is examined in turn, the associated
channel is dealt with according to the key's ready set. The key is then removed from the
selected key set (by calling remove() on the Iterator object), and the next key is examined.
When complete, the cycle repeats by calling select() again. The code in Example 4-1 is a
typical server example.

Example 4-1. Using select() to service multiple channels

package com.ronsoft.books.nio.channels;

import java.nio.ByteBuffer;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.nio.channels.Selector;
import java.nio.channels.SelectionKey;
import java.nio.channels.SelectableChannel;

import java.net.Socket;
import java.net.ServerSocket;
import java.net.InetSocketAddress;
import java.util.Iterator;

/**
 * Simple echo-back server which listens for incoming stream connections
 * and echoes back whatever it reads. A single Selector object is used to
 * listen to the server socket (to accept new connections) and all the
 * active socket channels.
 *
 * @author Ron Hitchens (ron@ronsoft.com)

 148

 */
public class SelectSockets
{
 public static int PORT_NUMBER = 1234;

 public static void main (String [] argv)
 throws Exception
 {
 new SelectSockets().go (argv);
 }

 public void go (String [] argv)
 throws Exception
 {
 int port = PORT_NUMBER;

 if (argv.length > 0) { // Override default listen port
 port = Integer.parseInt (argv [0]);
 }

 System.out.println ("Listening on port " + port);

 // Allocate an unbound server socket channel
 ServerSocketChannel serverChannel = ServerSocketChannel.open();
 // Get the associated ServerSocket to bind it with
 ServerSocket serverSocket = serverChannel.socket();
 // Create a new Selector for use below
 Selector selector = Selector.open();

 // Set the port the server channel will listen to
 serverSocket.bind (new InetSocketAddress (port));

 // Set nonblocking mode for the listening socket
 serverChannel.configureBlocking (false);

 // Register the ServerSocketChannel with the Selector
 serverChannel.register (selector, SelectionKey.OP_ACCEPT);

 while (true) {
 // This may block for a long time. Upon returning, the
 // selected set contains keys of the ready channels.
 int n = selector.select();

 if (n == 0) {
 continue; // nothing to do
 }

 // Get an iterator over the set of selected keys
 Iterator it = selector.selectedKeys().iterator();

 // Look at each key in the selected set
 while (it.hasNext()) {
 SelectionKey key = (SelectionKey) it.next();

 // Is a new connection coming in?
 if (key.isAcceptable()) {
 ServerSocketChannel server =

 149

 (ServerSocketChannel) key.channel();
 SocketChannel channel = server.accept();

 registerChannel (selector, channel,
 SelectionKey.OP_READ);

 sayHello (channel);
 }

 // Is there data to read on this channel?
 if (key.isReadable()) {
 readDataFromSocket (key);
 }

 // Remove key from selected set; it's been handled
 it.remove();
 }
 }
 }

 // --

 /**
 * Register the given channel with the given selector for
 * the given operations of interest
 */
 protected void registerChannel (Selector selector,
 SelectableChannel channel, int ops)
 throws Exception
 {
 if (channel == null) {
 return; // could happen
 }

 // Set the new channel nonblocking
 channel.configureBlocking (false);

 // Register it with the selector
 channel.register (selector, ops);
 }

 // --

 // Use the same byte buffer for all channels. A single thread is
 // servicing all the channels, so no danger of concurrent acccess.
 private ByteBuffer buffer = ByteBuffer.allocateDirect (1024);

 /**
 * Sample data handler method for a channel with data ready to read.
 * @param key A SelectionKey object associated with a channel
 * determined by the selector to be ready for reading. If the
 * channel returns an EOF condition, it is closed here, which
 * automatically invalidates the associated key. The selector
 * will then de-register the channel on the next select call.
 */
 protected void readDataFromSocket (SelectionKey key)
 throws Exception

 150

 {
 SocketChannel socketChannel = (SocketChannel) key.channel();
 int count;

 buffer.clear(); // Empty buffer

 // Loop while data is available; channel is nonblocking
 while ((count = socketChannel.read (buffer)) > 0) {
 buffer.flip(); // Make buffer readable

 // Send the data; don't assume it goes all at once
 while (buffer.hasRemaining()) {
 socketChannel.write (buffer);
 }
 // WARNING: the above loop is evil. Because
 // it's writing back to the same nonblocking
 // channel it read the data from, this code can
 // potentially spin in a busy loop. In real life
 // you'd do something more useful than this.

 buffer.clear(); // Empty buffer
 }

 if (count < 0) {
 // Close channel on EOF, invalidates the key
 socketChannel.close();
 }
 }

 // --

 /**
 * Spew a greeting to the incoming client connection.
 * @param channel The newly connected SocketChannel to say hello to.
 */
 private void sayHello (SocketChannel channel)
 throws Exception
 {
 buffer.clear();
 buffer.put ("Hi there!\r\n".getBytes());
 buffer.flip();

 channel.write (buffer);
 }

}

Example 4-1 implements a simple server. It creates ServerSocketChannel and Selector
objects and registers the channel with the selector. We don't bother saving a reference to
the registration key for the server socket because it will never be deregistered. The
infinite loop calls select() at the top, which may block indefinitely. When selection is
complete, the selected key set is iterated to check for ready channels.

If a key indicates that its channel is ready to do an accept(), we obtain the channel
associated with the key and cast it to a ServerSocketChannel object. We know it's safe to

 151

do this because only ServerSocketChannel objects support the OP_ACCEPT operation. We
also know our code registers only a single ServerSocketChannel object with interest in
OP_ACCEPT. With a reference to the server socket channel, we invoke accept() on it to
obtain a handle to the incoming socket. The object returned is of type SocketChannel,
which is also a selectable type of channel. At this point, rather than spawning a new
thread to read data from the new connection, we simply register the socket channel with
the selector. We tell the selector we're interested in knowing when the new socket
channel is ready for reading by passing in the OP_READ flag.

If the key did not indicate that the channel was ready for accept, we check to see if it's
ready for read. Any socket channels indicating so will be one of the SocketChannel
objects previously created by the ServerSocketChannel and registered for interest in
reading. For each socket channel with data to read, we invoke a common routine to read
and process the data socket. Note that this routine should be prepared to deal with
incomplete data on the socket, which is in nonblocking mode. It should return promptly
so that other channels with pending input can be serviced in a timely manner. Example
4-1 simply echoes the data back down the socket to the sender.

At the bottom of the loop, we remove the key from the selected key set by calling
remove() on the Iterator object. Keys can be removed directly from the Set returned by
selectedKeys(), but when examining the set with an Iterator, you should use the iterator's
remove() method to avoid corrupting the iterator's internal state.

4.3.4 Concurrency

Selector objects are thread-safe, but the key sets they contain are not. The key sets
returned by the keys() and selectedKeys() methods are direct references to private Set
objects inside the Selector object. These sets can change at any time. The registered key
set is read-only. If you attempt to modify it, your reward will be a
java.lang.UnsupportedOperationException, but you can still run into trouble if it's
changed while you're looking at it. Iterator objects are fail-fast: they will throw
java.util.ConcurrentModificationException if the underlying Set is modified, so be
prepared for this if you expect to share selectors and/or key sets among threads. You're
allowed to modify the selection key set directly, but be aware that you could clobber
some other thread's Iterator by doing so.

If there is any question of multiple threads accessing the key sets of a selector
concurrently, you must take steps to properly synchronize access. When performing a
selection operation, selectors synchronize on the Selector object, the registered key set,
and the selected key set objects, in that order. They also synchronize on the cancelled key
set during Steps 1 and 3 of the selection process (when it deregisters channels associated
with cancelled keys).

In a multithread scenario, if you need to make changes to any of the key sets, either
directly or as a side effect of another operation, you should first synchronize on the same
objects, in the same order. The locking order is vitally important. If competing threads do

 152

not request the same locks in the same order, there is a potential for deadlock. If you are
certain that no other threads will be accessing the selector at the same time, then
synchronization is not necessary.

The close() method of Selector synchronizes in the same way as select(), so there is a
potential for blocking there. A thread calling close() will block until an in-progress
selection is complete or the thread doing the selection goes to sleep. In the latter case, the
selecting thread will awaken as soon as the closing thread acquires the locks and closes
the selector (see Section 4.3.2).

4.4 Asynchronous Closability

It's possible to close a channel or cancel a selection key at any time. Unless you take
steps to synchronize, the states of the keys and associated channels could change
unexpectedly. The presence of a key in a particular key set does not guarantee that the
key is still valid or that its associated channel is still open.

Closing channels should not be a time-consuming operation. The designers of NIO
specifically wanted to prevent the possibility of a thread closing a channel being blocked
in an indefinite wait if the channel is involved in a select operation. When a channel is
closed, its associated keys are cancelled. This does not directly affect an in-process
select(), but it does mean that a selection key that was valid when you called select()
could be invalid upon return. You should always use the selected key set returned by the
selector's selectedKeys() method; do not maintain your own set of keys. Understanding
the selection process as outlined in Section 4.3.1 is important to avoid running into
trouble.

Refer to Section 4.3.2 for the details of how a thread can be awakened when blocked in
select().

If you attempt to use a key that's been invalidated, a CancelledKeyException will be
thrown by most methods. You can, however, safely retrieve the channel handle from a
cancelled key. If the channel has also been closed, attempting to use it will yield a
ClosedChannelException in most cases.

4.5 Selection Scaling

I've mentioned several times that selectors make it easy for a single thread to multiplex
large numbers of selectable channels. Using one thread to service all the channels reduces
complexity and can potentially boost performance by eliminating the overhead of
managing many threads. But is it a good idea to use just one thread to service all
selectable channels? As always, it depends.

It could be argued that on a single CPU system it's a good idea because only one thread
can be running at a time anyway. By eliminating the overhead of context switching
between threads, total throughput could be higher. But what about a multi-CPU system?

 153

On a system with n CPUs, n-1 could be idling while the single thread trundles along
servicing each channel sequentially.

Or what about the case in which different channels require different classes of service?
Suppose an application logs information from a large number of distributed sensors. Any
given sensor could wait several seconds while the servicing thread iterates through each
ready channel. This is OK if response time is not critical. But higher-priority connections
(such as operator commands) would have to wait in the queue as well if only one thread
services all channels. Every application's requirements are different. The solutions you
apply are affected by what you're trying to accomplish.

For the first scenario, in which you want to bring more threads into play to service
channels, resist the urge to use multiple selectors. Performing readiness selection on large
numbers of channels is not expensive; most of the work is done by the underlying
operating system. Maintaining multiple selectors and randomly assigning channels to one
of them is not a satisfactory solution to this problem. It simply makes smaller versions of
the same scenario.

A better approach is to use one selector for all selectable channels and delegate the
servicing of ready channels to other threads. You have a single point to monitor channel
readiness and a decoupled pool of worker threads to handle the incoming data. The thread
pool size can be tuned (or tune itself, dynamically) according to deployment conditions.
Management of selectable channels remains simple, and simple is good.

The second scenario, in which some channels demand greater responsiveness than others,
can be addressed by using two selectors: one for the command connections and another
for the normal connections. But this scenario can be easily addressed in much the same
way as the first. Rather than dispatching all ready channels to the same thread pool,
channels can be handed off to different classes of worker threads according to function.
There may be a logging thread pool, a command/control pool, a status request pool, etc.

The code in Example 4-2 is an extension of the generic selection loop code in Example
4-1. It overrides the readDataFromSocket() method and uses a thread pool to service
channels with data to read. Rather than reading the data synchronously in the main thread,
this version passes the SelectionKey object to a worker thread for servicing.

Example 4-2. Servicing channels with a thread pool

package com.ronsoft.books.nio.channels;

import java.nio.ByteBuffer;
import java.nio.channels.SocketChannel;
import java.nio.channels.SelectionKey;
import java.util.List;
import java.util.LinkedList;
import java.io.IOException;

/**

 154

 * Specialization of the SelectSockets class which uses a thread pool
 * to service channels. The thread pool is an ad-hoc implementation
 * quicky lashed togther in a few hours for demonstration purposes.
 * It's definitely not production quality.
 *
 * @author Ron Hitchens (ron@ronsoft.com)
 */
public class SelectSocketsThreadPool extends SelectSockets
{
 private static final int MAX_THREADS = 5;

 private ThreadPool pool = new ThreadPool (MAX_THREADS);

 // ---

 public static void main (String [] argv)
 throws Exception
 {
 new SelectSocketsThreadPool().go (argv);
 }

 // ---

 /**
 * Sample data handler method for a channel with data ready to read.
 * This method is invoked from the go() method in the parent class.
 * This handler delegates to a worker thread in a thread pool to
 * service the channel, then returns immediately.
 * @param key A SelectionKey object representing a channel
 * determined by the selector to be ready for reading. If the
 * channel returns an EOF condition, it is closed here, which
 * automatically invalidates the associated key. The selector
 * will then de-register the channel on the next select call.
 */
 protected void readDataFromSocket (SelectionKey key)
 throws Exception
 {
 WorkerThread worker = pool.getWorker();

 if (worker == null) {
 // No threads available. Do nothing. The selection
 // loop will keep calling this method until a
 // thread becomes available. This design could
 // be improved.
 return;
 }

 // Invoking this wakes up the worker thread, then returns
 worker.serviceChannel (key);
 }

 // ---

 /**
 * A very simple thread pool class. The pool size is set at
 * construction time and remains fixed. Threads are cycled
 * through a FIFO idle queue.

 155

 */
 private class ThreadPool
 {
 List idle = new LinkedList();

 ThreadPool (int poolSize)
 {
 // Fill up the pool with worker threads
 for (int i = 0; i < poolSize; i++) {
 WorkerThread thread = new WorkerThread (this);

 // Set thread name for debugging. Start it.
 thread.setName ("Worker" + (i + 1));
 thread.start();

 idle.add (thread);
 }
 }

 /**
 * Find an idle worker thread, if any. Could return null.
 */
 WorkerThread getWorker()
 {
 WorkerThread worker = null;

 synchronized (idle) {
 if (idle.size() > 0) {
 worker = (WorkerThread) idle.remove (0);
 }
 }

 return (worker);
 }

 /**
 * Called by the worker thread to return itself to the
 * idle pool.
 */
 void returnWorker (WorkerThread worker)
 {
 synchronized (idle) {
 idle.add (worker);
 }
 }
 }

 /**
 * A worker thread class which can drain channels and echo-back
 * the input. Each instance is constructed with a reference to
 * the owning thread pool object. When started, the thread loops
 * forever waiting to be awakened to service the channel associated
 * with a SelectionKey object.
 * The worker is tasked by calling its serviceChannel() method
 * with a SelectionKey object. The serviceChannel() method stores
 * the key reference in the thread object then calls notify()
 * to wake it up. When the channel has been drained, the worker

 156

 * thread returns itself to its parent pool.
 */
 private class WorkerThread extends Thread
 {
 private ByteBuffer buffer = ByteBuffer.allocate (1024);
 private ThreadPool pool;
 private SelectionKey key;

 WorkerThread (ThreadPool pool)
 {
 this.pool = pool;
 }

 // Loop forever waiting for work to do
 public synchronized void run()
 {
 System.out.println (this.getName() + " is ready");

 while (true) {
 try {
 // Sleep and release object lock
 this.wait();
 } catch (InterruptedException e) {
 e.printStackTrace();
 // Clear interrupt status
 this.interrupted();
 }

 if (key == null) {
 continue; // just in case
 }

 System.out.println (this.getName()
 + " has been awakened");

 try {
 drainChannel (key);
 } catch (Exception e) {
 System.out.println ("Caught '"
 + e + "' closing channel");

 // Close channel and nudge selector
 try {
 key.channel().close();
 } catch (IOException ex) {
 ex.printStackTrace();
 }

 key.selector().wakeup();
 }

 key = null;

 // Done. Ready for more. Return to pool
 this.pool.returnWorker (this);
 }
 }

 157

 /**
 * Called to initiate a unit of work by this worker thread
 * on the provided SelectionKey object. This method is
 * synchronized, as is the run() method, so only one key
 * can be serviced at a given time.
 * Before waking the worker thread, and before returning
 * to the main selection loop, this key's interest set is
 * updated to remove OP_READ. This will cause the selector
 * to ignore read-readiness for this channel while the
 * worker thread is servicing it.
 */
 synchronized void serviceChannel (SelectionKey key)
 {
 this.key = key;

 key.interestOps (key.interestOps() & (~SelectionKey.OP_READ));

 this.notify(); // Awaken the thread
 }

 /**
 * The actual code which drains the channel associated with
 * the given key. This method assumes the key has been
 * modified prior to invocation to turn off selection
 * interest in OP_READ. When this method completes it
 * re-enables OP_READ and calls wakeup() on the selector
 * so the selector will resume watching this channel.
 */
 void drainChannel (SelectionKey key)
 throws Exception
 {
 SocketChannel channel = (SocketChannel) key.channel();
 int count;

 buffer.clear(); // Empty buffer

 // Loop while data is available; channel is nonblocking
 while ((count = channel.read (buffer)) > 0) {
 buffer.flip(); // make buffer readable

 // Send the data; may not go all at once
 while (buffer.hasRemaining()) {
 channel.write (buffer);
 }
 // WARNING: the above loop is evil.
 // See comments in superclass.

 buffer.clear(); // Empty buffer
 }

 if (count < 0) {
 // Close channel on EOF; invalidates the key
 channel.close();
 return;
 }

 158

 // Resume interest in OP_READ
 key.interestOps (key.interestOps() | SelectionKey.OP_READ);

 // Cycle the selector so this key is active again
 key.selector().wakeup();
 }
 }
}

Because the thread doing the selection will loop back and call select() again almost
immediately, the interest set in the key is modified to remove interest in read-readiness.
This prevents the selector from repeatedly invoking readDataFromSocket() (because the
channel will remain ready to read until the worker thread can drain the data from it).
When a worker thread has finished servicing the channel, it will again update the key's
interest set to reassert an interest in read-readiness. It also does an explicit wakeup() on
the selector. If the main thread is blocked in select(), this causes it to resume. The
selection loop will then cycle (possibly doing nothing) and reenter select() with the
updated key.

4.6 Summary

In this chapter, we covered the most powerful aspect of NIO. Readiness selection is
essential to large-scale, high-volume server-side applications. The addition of this
capability to the Java platform means that enterprise-class Java applications can now slug
it out toe-to-toe with comparable applications written in any language. The key concepts
covered in this chapter were:

Selector classes

The Selector, SelectableChannel, and SelectionKey classes form the triumvirate
that makes readiness selection possible on the Java platform. In Section 4.1, we
saw how these classes relate to each other and what they represent.

Selection keys

In Section 4.2, we learned more about selection keys and how they are used. The
SelectionKey class encapsulates the relationship between a SelectableChannel
object and a Selector with which it's registered.

Selectors

Selection requests that the operating system determine which channels registered
with a given selector are ready for I/O operation(s) of interest. We learned about
the selection process in Section 4.3 and how to manage the key set returned from
a call to select(). We also discussed some of the concurrency issues relating to
selection.

 159

Asynchronous closability

Issues relating to closing selectors and channels asynchronously were touched on
in Section 4.1.

Multithreading

In Section 4.5, we discussed how multiple threads can be put to work to service
selectable channels without resorting to multiple Selector objects.

Selectors hold great promise for Java server applications. As this powerful new capability
is integrated into commercial application servers, server-side applications will gain even
greater scalability, reliability, and responsiveness.

OK, we've completed the main tour of java.nio and its subpackages. But don't put your
camera away. We have a couple of bonus highlights thrown in at no extra charge. Watch
your step reboarding the bus. Next stop is the enchanted land of regular expressions.

 160

Chapter 5. Regular Expressions

Hey, it's a kind of magic.

—The Highlander

In this chapter, we'll discuss the API of the classes in the new java.util.regex package
(see Figure 5-1). JSR 51, the Java Specification Request defining the new I/O capabilities,
also specifies the addition of regular expression processing to the Java platform. While
regular expressions, strictly speaking, are not I/O, they are most commonly used to scan
text data read from files or streams.

Figure 5-1. The regular expression classes

You'll learn how to use the new Java APIs to do the same powerful pattern matching that
has been available to users of perl, egrep, and other text-processing tools. A detailed
exploration of regular expression syntax is beyond the scope of this book, but a working
familiarity with regular expressions is assumed. If you're new to regular expressions,
want to improve your skills, or are baffled by this chapter, I recommend you pick up a
good reference. O'Reilly publishes an authoritative regular expression book (it's even
cited in the JDK documentation): Mastering Regular Expressions, by Jeffrey E. F. Friedl
(http://www.oreilly.com/catalog/regex/).

5.1 Regular Expression Basics

A regular expression is a sequence of characters that describe, or express, a pattern of
characters you are interested in matching within a target character sequence. Regular
expressions have been widely available in the Unix world for many years by means of
standard commands such as sed, grep, awk, etc. Because of its long history, the regular
expression grammar used on the Unix platforms has been the basis for most regular
expression processors. The Open Group, a Unix standards body, specifies regular
expression syntax as a part of the Single Unix Specification
(http://www.opengroup.org/onlinepubs/7908799/xbd/re.html).

http://www.oreilly.com/catalog/regex/
http://www.opengroup.org/onlinepubs/7908799/xbd/re.html

 161

The popular Perl[1] scripting language incorporates regular expression processing directly
into its language syntax. As Perl has evolved and grown in popularity, it has added more
sophisticated features and has extended the regular expression syntax. Because of its
power and flexibility, Perl has become almost ubiquitous and has consequently
established a de facto standard for regular expression processing.

[1] Practical Extraction and Reporting Language (or Pathologically Eclectic Rubbish
Lister, depending on how long you've been debugging).

The regular expression capabilities provided by the java.util.regex classes track those
provided by Perl 5. There are minor differences confined mostly to arcane areas that
typical users will rarely encounter. The specifics are detailed in Section 5.4, in Table 5-7,
and in the Javadoc API documentation for the java.util.regex.Pattern class.

In a Perl script, regular expressions are used inline to match against variable values. This
tight integration of regular expression evaluation into the language has made Perl popular
for scripting applications in which text files are processed. Until now, Java has been at
the other end of the spectrum. Processing text files with Java has been rather cumbersome
because of the shortage of built-in tools to process nontrivial patterns in text files.

While Java will never reach the level of regular expression integration that Perl enjoys,
the new java.util.regex package brings the same level of expressive power to Java.
The usage model is necessarily different between Perl (a procedural scripting language)
and Java (a compiled, object-oriented[2] language), but the Java regular expression API is
easy to use and should now allow Java to easily take on the text-processing tasks
traditionally "outsourced" to Perl.

[2] Some would argue that Perl is also object-oriented. Perl's own documentation makes
it clear that Perl "objects" are little more than a syntactic illusion. If you want to argue
about it, frankly, you're probably reading the wrong book.

 162

What Is a Regular Expression?

Regular expressions derive from a mathematical notation devised by Stephen
Kleene in the 1950s for describing regular sets. Regular expressions remained
in the realm of mathematics until 1968 when Ken Thompson, a Bell Labs
researcher and Unix pioneer, developed a regular expression-based search
algorithm eventually integrated into the Unix ed text editor.

The g/Regular Expression/p (Global Regular Expression Print) command
in ed was so useful, it spawned the standalone grep command. Other
regex-based commands followed: sed, awk, lex, egrep, etc. As the uses of
regular expressions proliferated and new features were added, the syntax of
regular expressions used for text searches diverged from its mathematical
origins.

Over time, many cooks boiled many pots, and soon there were many flavors of
regular expressions. The POSIX (Portable Operating System Interface) standard
was first introduced in 1986 and attempts to standardize a broad range of
operating-system characteristics. POSIX defines two classes of regular
expressions: basic regular expressions (BREs) and extended regular expressions
(EREs).

Larry Wall released the first version of perl in 1987. Perl was useful because it
brought together many powerful features in a single scripting language, not the
least of which was regular expression processing woven into the fabric of the
language syntax. The first version of Perl used regular expression code derived
from James Gosling's version of the emacs editor. Perl is now at Version 5,
which has been universally deployed for about eight years now and has become
the benchmark against which most regular expression processors are measured.

Regular expression-matching engines fall into two categories: Deterministic
Finite Automaton (DFA) and Nondeterministic Finite Automaton (NFA). Their
differences have to do with how expressions are compiled and how they are
matched against the target. DFA is usually faster because it does more work up
front to build a matching tree from which unreachable branches are pruned as
matching progresses. NFA can be slower because it performs a more exhaustive
search and often needs to backtrack. Although DFA is faster, NFA is more
full-featured. It can capture subexpressions, for example, while DFA processors
cannot. The java.util.regex engine is NFA and similar in syntax to Perl 5.

While regular expressions became an official part of the Java platform with JDK
1.4, by no means is java.util.regex the first regular expression package
available for Java. The Apache organization has two open source, regular
expression packages: Jakarta-ORO and Jakarta-Regexp, which have been
around for quite a while. Jakarta-ORO is the successor to OROMatcher, which

 163

was donated to Apache and further enhanced. It has many features and is highly
customizable. Jakarta-Regexp was also contributed to Apache but is smaller in
scope. The GNU folks offer a regular expression package, gnu.regexp, with
some Perl-like features. And IBM has a commercial package known as
com.ibm.regex. It also provides many Perl-like features and good Unicode
support.

For all the details you can stand about the history of regular expressions, types
of regex processors, available implementations, and everything you ever wanted
to know about regular expression syntax and usage, consult Jeffrey E.F. Friedl's
book Mastering Regular Expressions (O'Reilly).

5.2 The Java Regular Expression API

The java.util.regex package contains only two classes for implementing Java regular
expression processing. These classes are named Pattern and Matcher. This is only natural
when you recall that regular expression processing consists of pattern matching. There is
also a new interface defined in java.lang that underpins these new classes. Before
looking at Pattern and Matcher, we'll take a quick look at the new CharSequence
abstraction.

Additionally, as a convenience, the String class provides some new methods as shortcuts
to performing regular expression matching. These are discussed in Section 5.3.

5.2.1 The CharSequence Interface

Regular expressions do pattern matching on sequences of characters. While String objects
encapsulate character sequences, they are not the only objects capable of doing so.

The JDK 1.4 release defines a new interface named CharSequence, which describes a
specific, immutable sequence of characters. This new interface is an abstraction to
separate the concept of a sequence of characters from specific implementations
containing those characters. The venerable String and StringBuffer classes have been
retrofitted in JDK 1.4 to implement the CharSequence interface. The new CharBuffer
class (introduced in Chapter 2) also implements CharSequence. The CharSequence
interface also comes into play in character set mapping (see Chapter 6).

The API defined by CharSequence is very simple. It doesn't take a lot to describe a
sequence of characters, after all.

package java.lang;

public interface CharSequence
{
 int length();
 char charAt (int index);

 164

 public String toString();
 CharSequence subSequence (int start, int end);
}

Every character sequence described by CharSequence has a specific length returned by
the length() method. Individual characters of the sequence can be fetched by calling
charAt() with the index of the desired character position. Character positions start at zero
and range to one less than the length, exactly like the familiar String.charAt().

The toString() method returns a String object containing the described sequence of
characters. This may be useful, for example, to print the character sequence. As noted
earlier, String now implements CharSequence. Both String and CharSequence are
immutable, so if CharSequence describes a complete String, the toString() method of
CharSequence returns the underlying String object, not a copy. If the backing object is a
StringBuffer or a CharBuffer, a new String will be created to hold a copy of the character
sequence.

Finally, a new CharSequence describing a subrange can be created by calling the
subSequence() method. The start and end values are specified in the same way as they
are for String.substring(): start must be a valid index of the sequence, end must be
greater than start and denotes the index of the last character plus one. In other words,
start is the beginning index (inclusive), and end is the ending index (exclusive).

The CharSequence interface appears to be immutable because it has no mutator methods,
but the underlying implementing object may not be immutable. The CharSequence
methods reflect the current state of the underlying object. If that state changes, the
information returned by the CharSequence methods will also change (see Example 5-1).
If you depend on a CharSequence remaining stable and are unsure of the underlying
implementation, invoke the toString() method to make a truly immutable snapshot of the
character sequence.

Example 5-1. CharSequence interface examples

package com.ronsoft.books.nio.regex;

import java.nio.CharBuffer;

/**
 * Demonstrate behavior of java.lang.CharSequence as implemented
 * by String, StringBuffer and CharBuffer.
 *
 * @author Ron Hitchens (ron@ronsoft.com)
 */
public class CharSeq
{
 public static void main (String [] argv)
 {
 StringBuffer stringBuffer = new StringBuffer ("Hello World");
 CharBuffer charBuffer = CharBuffer.allocate (20);
 CharSequence charSequence = "Hello World";

 165

 // derived directly from a String
 printCharSequence (charSequence);

 // derived from a StringBuffer
 charSequence = stringBuffer;
 printCharSequence (charSequence);

 // Change StringBuffer
 stringBuffer.setLength (0);
 stringBuffer.append ("Goodbye cruel world");
 // same "immutable" CharSequence yields different result
 printCharSequence (charSequence);

 // Derive CharSequence from CharBuffer
 charSequence = charBuffer;
 charBuffer.put ("xxxxxxxxxxxxxxxxxxxx");
 charBuffer.clear();

 charBuffer.put ("Hello World");
 charBuffer.flip();
 printCharSequence (charSequence);

 charBuffer.mark();
 charBuffer.put ("Seeya");
 charBuffer.reset();
 printCharSequence (charSequence);

 charBuffer.clear();
 printCharSequence (charSequence);
 // Changing underlying CharBuffer is reflected in the
 // read-only CharSequnce interface
 }

 private static void printCharSequence (CharSequence cs)
 {
 System.out.println ("length=" + cs.length()
 + ", content='" + cs.toString() + "'");
 }
}

Here's the result of executing CharSequence:

length=11, content='Hello World'
length=11, content='Hello World'
length=19, content='Goodbye cruel world'
length=11, content='Hello World'
length=11, content='Seeya World'
length=20, content='Seeya Worldxxxxxxxxx'

5.2.2 The Pattern Class

The Pattern class encapsulates a regular expression, which is a pattern you want to search
for in a target character sequence. Matching regular expressions can be expensive
because of the huge number of possible permutations, especially if the pattern will be

 166

applied repeatedly. Most regular expression processors (including Perl, under the covers)
compile expressions first, then use this compiled representation to perform pattern
detection in the input.

The Java regular expression package is no different. Instances of the Pattern class
encapsulate a single, compiled regular expression. Let's take a look at the complete API
of Pattern to see how it's used. Remember, this is not a syntactically complete class file,
just the method signatures with the class bodies left out.

package java.util.regex;

public final class Pattern implements java.io.Serializable
{
 public static final int UNIX_LINES
 public static final int CASE_INSENSITIVE
 public static final int COMMENTS
 public static final int MULTILINE
 public static final int DOTALL
 public static final int UNICODE_CASE
 public static final int CANON_EQ

 public static boolean matches (String regex, CharSequence input)

 public static Pattern compile (String regex)
 public static Pattern compile (String regex, int flags)

 public String pattern()
 public int flags()

 public String[] split (CharSequence input, int limit)
 public String[] split (CharSequence input)

 public Matcher matcher (CharSequence input)
}

The first method listed above, matches(), is a convenience method that does a complete
matching operation and returns a boolean indication of whether the regular expression
matches the entire input sequence. This is handy because you don't need to keep track of
any objects; just call a simple static method and test the result.

public boolean goodAnswer (String answer)
{
 return (Pattern.matches ("[Yy]es|[Yy]|[Tt]rue", answer));
}

This is appropriate for cases in which default settings are acceptable and the test need to
be done only once. If you will be checking for the same pattern repeatedly, if you want to
find patterns that are subsequences of the input, or if you need to set nondefault options,
you should create a Pattern object and make use of its API methods.

Note that there are no public constructors for the Pattern class. New instances can be
created only by invoking one of the static factory methods. Both forms of compile() take

 167

a regular expression String argument. The returned Pattern object contains that regular
expression translated to a compiled internal form. The compile() factory methods may
throw the java.util.regex.PatternSyntaxException if the regular expression you provide is
malformed. This is an unchecked exception, so if you're not confident that the expression
you're using will work (because it's a variable passed to you, for example), wrap the call
to compile() in a try/catch block.

The second form of compile() accepts a bit mask of flags that affect the default
compilation of the regular expression. These flags enable optional behaviors of the
compiled pattern, such as how line boundaries are handled or case insensitivity. Each of
these flags (except CANON_EQ) can also be enabled by an embedded sub-expression within
the expression itself. Flags can be combined in a boolean OR expression, like this:

Pattern pattern = Pattern.compile ("[A-Z][a-zA-Z]*",
 Pattern.CASE_INSENSITIVE | Pattern.UNIX_LINES);

All flags are off by default. The meaning of each compile-time option is summarized in
Table 5-1.

Table 5-1. Flag values affecting regular expression compilation

Flag name Embedded
expression Description

UNIX_LINES (?d)

Enables Unix lines mode.

In this mode, only the newline character (\n) is recognized as the
line terminator. This affects the behavior of ., ^, and $. If this flag is
not set (the default), then all of the following are considered to be
line terminators: \n, \r, \r\n, \u0085 (next line), \u2028 (line
separator), and \u2029 (paragraph separator).

Unix line mode can also be specified by the embedded expression
(?d).

CASE_INSENSITIVE (?i)

Enables case-insensitive pattern matching and may incur a small
performance penalty.

Use of this flag presupposes that only characters from the US-ASCII
character set are being matched. If you're working with character
sets of other languages, specify the UNICODE_CASE flag as well to
enable Unicode-aware case folding.

UNICODE_CASE (?iu)

Unicode-aware, case-folding mode.

When used in conjunction with the CASE_INSENSITIVE flag,
case-insensitive character matching is done in accordance with the
Unicode standard. This ensures that upper- and lowercase characters
are treated equally in all the languages encoded by the Unicode
charset.

This option may incur a performance penalty.

 168

COMMENTS (?x)

Permits whitespace and comments in the pattern.

When this mode is in effect, any whitespace in the pattern is
ignored, and comments beginning with the # character are ignored
to end-of-line.

MULTILINE (?m)

Turns on multiline mode.

In multiline mode, the ^ and $ expressions match just after or just
before (respectively) a line separator or the beginning or end of the
character sequence. In normal mode, these expressions match only
the beginning or end of the entire character sequence.

DOTALL (?s)

Dot (.) character matches any character, even line separators.

By default, the dot expression does not match line separators. This
option is equivalent to Perl's single-line mode, hence the (?s)
embedded flag name.

CANON_EQ None

Enables canonical equivalence.

When this flag is specified, characters will be considered a match if
and only if their canonical decompositions match.

For example, the two-character sequence a\u030A (Unicode
symbol "LATIN SMALL LETTER A" followed by symbol
"COMBINING RING ABOVE") will match the single character
\u00E5 ("LATIN SMALL LETTER A WITH RING") when this
flag is given.

Canonical equivalence is not evaluated by default. See the character
map definitions at http://www.unicode.org for canonical-equivalence
details.

This flag may incur a significant performance penalty. There is no
embedded flag expression to enable canonical equivalence.

Instances of the Pattern class are immutable; each is tied to a specific regular expression
and cannot be modified. Pattern objects are also thread-safe and can be used concurrently
by multiple threads.

So, once you have a Pattern, what can you do with it?

package java.util.regex;

public final class Pattern implements java.io.Serializable
{
 // This is a partial API listing

 public String pattern()
 public int flags()

 public String[] split (CharSequence input, int limit)
 public String[] split (CharSequence input)

http://www.unicode.org/

 169

 public Matcher matcher (CharSequence input)
}

The next two methods of the Pattern class API return information about the encapsulated
expression. The pattern() method returns the String used to initially create the Pattern
instance (the string passed to compile() when the object was created). The next, flags(),
returns the flag bit mask provided when the pattern was compiled. If the Pattern object
was created by the no-argument version of compile(), flags() will return 0. The returned
value reflects only the explicit flag values provided to compile(); it does not include the
equivalent of any flags set by embedded expressions within the regular expression pattern,
as listed in the second column of Table 5-1.

The instance method split() is a convenience that tokenizes a character sequence using
the pattern as delimiter. This is reminiscent of the StringTokenizer class but is more
powerful because the delimiter can be a multicharacter sequence matched by the regular
expression. Also, the split() method is stateless, returning an array of string tokens rather
than requiring multiple invocations to iterate through them:

Pattern spacePat = Pattern.compile ("\\s+");
String [] tokens = spacePat.split (input);

Invoking split() with only one argument is equivalent to invoking the two-argument
version with zero as the second argument. The second argument for split() denotes a limit
on the number of times the input sequence will be split by the regular expression. The
meaning of the limit argument is overloaded. Nonpositive values have special meanings.

If the limit value provided for split() is negative (any negative number), the character
sequence will be split indefinitely until the input is exhausted. The returned array could
have any length. If the limit is given as zero, the input will be split indefinitely, but
trailing empty strings will not be included in the result array. If the limit is positive, it sets
the maximum size of the returned String array. For a limit value of n, the regular
expression will be applied at most n-1 times. These combinations are summarized in
Table 5-2, and the code that generated the table is listed in Example 5-2.

Table 5-2. Matrix of split() behavior
Input: poodle zoo Regex = " " Regex = "d" Regex="o"
Limit = 1 "poodle zoo" "poodle zoo" "poodle zoo"
Limit = 2 "poodle", "zoo" "poo", "le zoo" "p", "odle zoo"
Limit = 5 "poodle", "zoo" "poo", "le ", "oo" "p", , "dle z", ,
Limit = -2 "poodle", "zoo" "poo", "le ", "oo" "p", , "dle z", ,
Limit = 0 "poodle", "zoo" "poo", "le ", "oo" "p", , "dle z"

Finally, matcher() is a factory method that creates a Matcher object for the compiled
pattern. A matcher is a stateful matching engine that knows how to match a pattern (the
Pattern object it was created from) against a target character sequence. You must provide

 170

an initial input target when creating a Matcher, but different input can be provided later
(discussed in Section 5.2.3).

5.2.2.1 Splitting strings with the Pattern class

Example 5-2 generates a matrix of the result of splitting the same input string with
several different regular expression patterns and limit values.

Example 5-2. Splitting strings with Pattern

package com.ronsoft.books.nio.regex;

import java.util.regex.Pattern;
import java.util.List;
import java.util.LinkedList;

/**
 * Demonstrate behavior of splitting strings. The XML output created
 * here can be styled into HTML or some other useful form.
 * See poodle.xsl.
 *
 * @author Ron Hitchens (ron@ronsoft.com)
 */
public class Poodle
{
 /**
 * Generate a matrix table of how Pattern.split() behaves with
 * various regex patterns and limit values.
 */
 public static void main (String [] argv)
 throws Exception
 {
 String input = "poodle zoo";
 Pattern space = Pattern.compile (" ");
 Pattern d = Pattern.compile ("d");
 Pattern o = Pattern.compile ("o");
 Pattern [] patterns = { space, d, o };
 int limits [] = { 1, 2, 5, -2, 0 };

 // Use supplied args, if any. Assume that args are good.
 // Usage: input pattern [pattern ...]
 // Don't forget to quote the args.
 if (argv.length != 0) {
 input = argv [0];
 patterns = collectPatterns (argv);
 }

 generateTable (input, patterns, limits);
 }

 /**
 * Output a simple XML document with the results of applying
 * the list of regex patterns to the input with each of the
 * limit values provided. I should probably use the JAX APIs
 * to do this, but I want to keep the code simple.

 171

 */
 private static void generateTable (String input,
 Pattern [] patterns, int [] limits)
 {
 System.out.println ("<?xml version='1.0'?>");
 System.out.println ("<table>");
 System.out.println ("\t<row>");
 System.out.println ("\t\t<head>Input: "
 + input + "</head>");

 for (int i = 0; i < patterns.length; i++) {
 Pattern pattern = patterns [i];

 System.out.println ("\t\t<head>Regex: <value>"
 + pattern.pattern() + "</value></head>");
 }

 System.out.println ("\t</row>");

 for (int i = 0; i < limits.length; i++) {
 int limit = limits [i];

 System.out.println ("\t<row>");
 System.out.println ("\t\t<entry>Limit: "
 + limit + "</entry>");

 for (int j = 0; j < patterns.length; j++) {
 Pattern pattern = patterns [j];
 String [] tokens = pattern.split (input, limit);

 System.out.print ("\t\t<entry>");

 for (int k = 0; k < tokens.length; k++) {
 System.out.print ("<value>"
 + tokens [k] + "</value>");
 }

 System.out.println ("</entry>");
 }

 System.out.println ("\t</row>");
 }

 System.out.println ("</table>");
 }

 /**
 * If command line args were given, compile all args after the
 * first as a Pattern. Return an array of Pattern objects.
 */
 private static Pattern [] collectPatterns (String [] argv)
 {
 List list = new LinkedList();

 for (int i = 1; i < argv.length; i++) {
 list.add (Pattern.compile (argv [i]));
 }

 172

 Pattern [] patterns = new Pattern [list.size()];

 list.toArray (patterns);

 return (patterns);
 }
}

Example 5-2 outputs an XML document describing the result matrix. The XSL stylesheet
in Example 5-3 converts the XML to HTML for display in a web browser.

Example 5-3. Split matrix styelsheet

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<!--
 XSL stylesheet to transform the simple XML output of Poodle.java
 to HTML for display in a browser. Use an XSL processor such as
 xalan with this stylesheet to convert the XML to HTML.

 @author Ron Hitchens (ron@ronsoft.com)
 -->

<xsl:output method="html"/>

<xsl:template match="/">
 <html><head><title>Poodle Zoo</title></head><body>
 <xsl:apply-templates/>
 </body></html>
</xsl:template>

<xsl:template match="table">
 <table align="center" border="1" cellpadding="5">
 <xsl:apply-templates/>
 </table>
</xsl:template>

<xsl:template match="row">
 <tr>
 <xsl:apply-templates/>
 </tr>
</xsl:template>

<xsl:template match="entry">
 <td>
 <xsl:apply-templates/>
 </td>
</xsl:template>

<xsl:template match="head">
 <th>
 <xsl:apply-templates/>
 </th>

 173

</xsl:template>

<xsl:template match="entry/value">
 <xsl:if test="position() != 1">
 <xsl:text>, </xsl:text>
 </xsl:if>
 <xsl:call-template name="simplequote"/>
</xsl:template>

<xsl:template name="simplequote" match="value">
 <code>
 <xsl:text>"</xsl:text>
 <xsl:apply-templates/>
 <xsl:text>"</xsl:text>
 </code>
</xsl:template>

</xsl:stylesheet>

5.2.3 The Matcher Class

The Matcher class provides a rich API for matching regular expression patterns against
character sequences. A Matcher instance is always created by invoking the matcher()
method of a Pattern object, and it always applies the regular expression pattern
encapsulated by that Pattern:

package java.util.regex;

public final class Matcher
{
 public Pattern pattern()

 public Matcher reset()
 public Matcher reset (CharSequence input)

 public boolean matches()
 public boolean lookingAt()
 public boolean find()
 public boolean find (int start)

 public int start()
 public int start (int group)
 public int end()
 public int end (int group)

 public int groupCount()
 public String group()
 public String group (int group)

 public String replaceFirst (String replacement)
 public String replaceAll (String replacement)
 public StringBuffer appendTail (StringBuffer sb)

 174

 public Matcher appendReplacement (StringBuffer sb, String
replacement)
}

Instances of the Matcher class are stateful objects that encapsulate the matching of a
specific regular expression against a specific input character sequence. Matcher objects
are not thread-safe because they hold internal state between method invocations.

Every Matcher instance is derived from a Pattern instance, and the pattern() method of
Matcher returns a back reference to the Pattern object that created it.

Matcher objects can be used repeatedly, but because of their stateful nature, they must be
placed in a known state to begin a new series of matching operations. This is done by
calling the reset() method, which prepares the object for pattern matching at the
beginning of the CharSequence associated with the matcher. The no-argument version of
reset() will reuse the last CharSequence given to the Matcher. If you want to perform
matching against a new sequence of characters, pass a new CharSequence to reset(), and
subsequent matching will be done against that target. For example, as you read each line
of a file, you could pass it to reset(). See Example 5-4.

Example 5-4. Simple file grep

package com.ronsoft.books.nio.regex;

import java.util.regex.Pattern;
import java.util.regex.Matcher;
import java.io.FileReader;
import java.io.BufferedReader;
import java.io.IOException;

/**
 * Simple implementation of the ubiquitous grep command.
 * First argument is the regular expression to search for (remember to
 * quote and/or escape as appropriate). All following arguments are
 * filenames to read and search for the regular expression.
 *
 * @author Ron Hitchens (ron@ronsoft.com)
 */
public class SimpleGrep
{
 public static void main (String [] argv)
 throws Exception
 {
 if (argv.length < 2) {
 System.out.println ("Usage: regex file [...]");
 return;
 }

 Pattern pattern = Pattern.compile (argv [0]);
 Matcher matcher = pattern.matcher ("");

 for (int i = 1; i < argv.length; i++) {
 String file = argv [i];

 175

 BufferedReader br = null;
 String line;

 try {
 br = new BufferedReader (new FileReader (file));
 } catch (IOException e) {
 System.err.println ("Cannot read '" + file
 + "': " + e.getMessage());
 continue;
 }

 while ((line = br.readLine()) != null) {
 matcher.reset (line);

 if (matcher.find()) {
 System.out.println (file + ": " + line);
 }
 }

 br.close();
 }
 }
}

Example 5-5 demonstrates a more sophisticated use of the reset() method to allow a
Matcher to work on several different character sequences.

Example 5-5. Extracting matched expressions

package com.ronsoft.books.nio.regex;

import java.util.regex.Pattern;
import java.util.regex.Matcher;

/**
 * Validates email addresses.
 *
 * Regular expression found in the Regular Expression Library
 * at regxlib.com. Quoting from the site,
 * "Email validator that adheres directly to the specification
 * for email address naming. It allows for everything from
 * ipaddress and country-code domains, to very rare characters
 * in the username."
 *
 * @author Michael Daudel (mgd@ronsoft.com) (original)
 * @author Ron Hitchens (ron@ronsoft.com) (hacked)
 */
public class EmailAddressFinder
{
 public static void main (String[] argv)
 {
 if (argv.length < 1) {
 System.out.println ("usage: emailaddress ...");
 }

 176

 // Compile the email address detector pattern
 Pattern pattern = Pattern.compile (
 "([a-zA-Z0-9_\\-\\.]+)@((\\[[0-9]{1,3}\\.[0-9]"
 + "{1,3}\\.[0-9]{1,3}\\.)|(([a-zA-Z0-9\\-]+\\.)+))"
 + "([a-zA-Z]{2,4}|[0-9]{1,3})(\\]?)",
 Pattern.MULTILINE);

 // Make a Matcher object for the pattern
 Matcher matcher = pattern.matcher ("");

 // Loop through the args and find the addrs in each one
 for (int i = 0; i < argv.length; i++) {
 boolean matched = false;

 System.out.println ("");
 System.out.println ("Looking at " + argv [i] + " ...");

 // Reset the Matcher to look at the current arg string
 matcher.reset (argv [i]);

 // Loop while matches are encountered
 while (matcher.find())
 {
 // found one
 System.out.println ("\t" + matcher.group());

 matched = true;
 }

 if (! matched) {
 System.out.println ("\tNo email addresses found");
 }
 }
 }
}

Here's the output from EmailAddressFinder when run on some typical addresses:

Looking at Ron Hitchens ,ron@ronsoft.com., fred@bedrock.com,
barney@rubble.org, Wilma
<wflintstone@rockvegas.com> ...
ron@ronsoft.com
fred@bedrock.com
barney@rubble.org
wflintstone@rockvegas.com

The next group of methods return boolean indications of how the regular expression
applies to the target character sequence. The first, matches(), returns true if the entire
character sequence is matched by the regular expression pattern. If the pattern matches
only a subsequence, false is returned. This can be useful to select lines in a file that fit a
certain pattern exactly. This behavior is identical to the convenience method matches() on
the Pattern class.

 177

The lookingAt() method is similar to matches() but does not require that the entire
sequence be matched by the pattern. If the regular expression pattern matches the
beginning of the character sequence, then lookingAt() returns true. The lookingAt()
method always begins scanning at the beginning of the sequence. The name of this
method is intended to indicate if the matcher is currently "looking at" a target that starts
with the pattern. If it returns true, then the start(), end(), and group() methods can be
called to determine the extent of the matched subsequence (more about those methods
shortly).

The find() method performs the same sort of matching operation as lookingAt(), but
remembers the position of the previous match and resumes scanning after it. This allows
successive calls to find() to step through the input and find embedded matches. On the
first call following a reset, scanning begins at the first character of the input sequence. On
subsequent calls, it resumes scanning at the first character following the previously
matched subsequence. For each invocation, true is returned if the pattern was found;
otherwise, false is returned. Typically, you'll use find() to iterate over some text to find
all the matching patterns within it.

The version of find() that takes a positional argument does an implicit reset and begins
scanning the input at the provided index position. Afterwards, no-argument find() calls
can be made to scan the remainder of the input sequence if needed.

Once a match has been detected, you can determine where in the character sequence the
match is located by calling start() and end(). The start() method returns the index of the
first character of the matched sequence; end() returns the index of the last character of the
match plus one. These values are consistent with CharSequence.subsequence() and can
be used directly to extract the matched subsequence.

CharSequence subseq;

if (matcher.find()) {
 subseq = input.subSequence (matcher.start(), matcher.end());
}

Some regular expressions can match the empty string, in which case start() and end() will
return the same value. The start() and end() methods return only meaningful values only
if a match has previously been detected by matches(), lookingAt(), or find(). If no match
has been made, or the last matching attempt returned false, then invoking start() or end()
will result in a java.lang.IllegalStateException.

To understand the forms of start() and end() that take a group argument, we first need to
understand expression capture groups. (See Figure 5-2.)

Figure 5-2. start(), end(), and group() values

 178

Regular expressions may contain subexpressions, known as capture groups, enclosed in
parentheses. During the evaluation of the regular expression, the subsequences of the
input matching these capture group expressions are saved and can be referenced later in
the expression. Once the full matching operation is complete, these saved snippets can be
retrieved from the Matcher object by specifying a corresponding group number.

Capture groups can be nested and are numbered by counting their opening parens from
left to right. The entire expression, whether or not it has any subgroups, is always counted
as capture group zero. For example, the regular expression A((B)(C(D))) would have
capture groups numbered as in Table 5-3.

Table 5-3. Regular expression capture groups of A((B)(C(D)))
Group number Expression group

0 A((B)(C(D)))
1 ((B)(C(D)))
2 (B)
3 (C(D))
4 (D)

There are exceptions to this grouping syntax. A group beginning with (? is a pure, or
noncapturing, group. Its value is not saved, and it's not counted for purposes of
numbering capture groups. (See Table 5-7 for syntax details.)

Let's look in more detail at the methods for working with capture groups:

package java.util.regex;

public final class Matcher
{
 // This is a partial API listing

 public int start()
 public int start (int group)
 public int end()
 public int end (int group)

 public int groupCount()
 public String group()
 public String group (int group)
}

 179

The number of capture groups in the regular expression pattern is returned by the
groupCount() method. This value derives from the original Pattern object and is
immutable. Group numbers must be positive and less than the value returned by
groupCount(). Passing a group number out of range will result in a
java.lang.IndexOutOfBoundsException.

A capture group number can be passed to start() and end() to determine the subsequence
matching the given capture group subexpression. It's possible for the overall expression
to successfully match but one or more capture groups not to have matched. The start()
and end() methods will return a value of -1 if the requested capture group is not currently
set. As mentioned earlier, the entire regular expression is considered to be group zero.
Invoking start() or end() with no argument is equivalent to passing an argument of zero.
Invoking start() or end() for group zero will never return -1.

You can extract a matching subsequence from the input CharSequence using the values
returned by start() and end() (as shown previously), but the group() methods provide an
easier way to do this. Invoking group() with a numeric argument returns a String that is
the matching subsequence for that particular capture group. If you call the version of
group() that takes no argument, the subsequence matched by the entire regular expression
(group zero) is returned. This code:

String match0 = input.subSequence (matcher.start(),
matcher.end()).toString();
String match2 = input.subSequence (matcher.start (2), matcher.end
(2)).toString();

is equivalent to this:

String match0 = matcher.group();
String match2 = matcher.group(2);

Finally, let's look at the methods of the Matcher object that deal with modifying a
character sequence. One of the most common applications of regular expressions is to do
a search-and-replace. The replaceFirst() and replaceAll() methods make this very easy to
do. They behave identically except that replaceFirst() stops after the first match it finds,
while replaceAll() iterates until all matches have been replaced. Both take a String
argument that is the replacement value to substitute for the matched pattern in the input
character sequence.

package java.util.regex;

public final class Matcher
{
 // This is a partial API listing

 public String replaceFirst (String replacement)
 public String replaceAll (String replacement)
}

 180

As mentioned earlier, capture groups can be back-referenced within the regular
expression. They can also be referenced from the replacement string you provide to
replaceFirst() or replaceAll(). Capture group numbers can be embedded in the
replacement string by preceding them with a dollar sign character. When the replacement
string is substituted into the result string, each occurrence of $g is replaced by the value
that would be returned by group(g). If you want to use a literal dollar sign in the
replacement string, you must precede it with a backslash character (\$). To pass through
a backslash, you must double it (\\). If you want to concatenate literal numeric digits
following a capture group reference, separate them from the group number with a
backslash, like this: 123$2\456. See Table 5-4 for some examples. See also Example 5-6
for sample code.

Table 5-4. Replacement of matched patterns
Regex pattern Input Replacement replaceFirst() replaceAll()

a*b aabfooaabfooabfoob - -fooaabfooabfoob -foo-foo-foo-
\p{Blank} fee fie foe fum _ fee_fie foe fum fee_fie_foe_fum
([bB])yte Byte for byte $1ite Bite for byte Bite for bite

\d\d\d\d([-]) card
#1234-5678-1234 xxxx$1 card

#xxxx-5678-1234
card
#xxxx-xxxx-1234

(up|left)(*)(right|down) left right, up down $3$2$1 right left, up
down

right left, down
up

([CcPp][hl]e[ea]se) I want cheese.
Please.

 $1

I want cheese
. Please.

I want
cheese .
Please .

Example 5-6. Regular expression replacement

package com.ronsoft.books.nio.regex;

import java.util.regex.Pattern;
import java.util.regex.Matcher;

/**
 * Exercise the replacement capabilities of the java.util.regex.Matcher
class.
 * Run this code from the command line with three or more arguments.
 * 1) First argument is a regular expression
 * 2) Second argument is a replacement string, optionally with capture group
 * references ($1, $2, etc)
 * 3) Any remaining arguments are treated as input strings to which the
 * regular expression and replacement strings will be applied.
 * The effect of calling replaceFirst() and replaceAll() for each input string

 * will be listed.
 *
 * Be careful to quote the commandline arguments if they contain spaces or
 * special characters.
 *
 * @author Ron Hitchens (ron@ronsoft.com)
 */
public class RegexReplace

 181

{
 public static void main (String [] argv)
 {
 // sanity check, need at least three args
 if (argv.length < 3) {
 System.out.println ("usage: regex replacement input ...");
 return;
 }

 // Save the regex and replacment strings with mnemonic names
 String regex = argv [0];
 String replace = argv [1];

 // Compile the expression; needs to be done only once
 Pattern pattern = Pattern.compile (regex);
 // Get a Matcher instance and use a dummy input string for now
 Matcher matcher = pattern.matcher ("");

 // print out for reference
 System.out.println (" regex: '" + regex + "'");
 System.out.println (" replacement: '" + replace + "'");

 // For each remaining arg string, apply the regex/replacment
 for (int i = 2; i < argv.length; i++) {
 System.out.println ("------------------------");

 matcher.reset (argv [i]);

 System.out.println (" input: '"
 + argv [i] + "'");
 System.out.println ("replaceFirst(): '"
 + matcher.replaceFirst (replace) + "'");
 System.out.println (" replaceAll(): '"
 + matcher.replaceAll (replace) + "'");
 }

 }
}

And here's the output from running RegexReplace:

 regex: '([bB])yte'
 replacement: '$1ite'

 input: 'Bytes is bytes'
replaceFirst(): 'Bites is bytes'
 replaceAll(): 'Bites is bites'

Remember that regular expressions interpret backslashes in the strings you provide. Also
remember that the Java compiler expects two backslashes for each one in a literal String.
This means that if you want to escape a backslash in the regex, you'll need two
backslashes in the compiled String. To get two backslashes in a row in the compiled
regex string, you'll need four backslashes in a row in the Java source code.

 182

To generate a replacement sequence of a\b, the String literal argument to replaceAll()
must be a\\\\b (see Example 5-7). Be careful when counting those backslashes!

Example 5-7. Backslashes in regular expressions

package com.ronsoft.books.nio.regex;

import java.util.regex.Pattern;
import java.util.regex.Matcher;

/**
 * Demonstrate behavior of backslashes in regex patterns.
 *
 * @author Ron Hitchens (ron@ronsoft.com)
 */
public class BackSlashes
{
 public static void main (String [] argv)
 {
 // Substitute "a\b" for XYZ or ABC in input
 String rep = "a\\\\b";
 String input = "> XYZ <=> ABC <";
 Pattern pattern = Pattern.compile ("ABC|XYZ");
 Matcher matcher = pattern.matcher (input);

 System.out.println (matcher.replaceFirst (rep));
 System.out.println (matcher.replaceAll (rep));

 // Change all newlines in input to escaped, DOS-like CR/LF
 rep = "\\\\r\\\\n";
 input = "line 1\nline 2\nline 3\n";
 pattern = Pattern.compile ("\\n");
 matcher = pattern.matcher (input);

 System.out.println ("");
 System.out.println ("Before:");
 System.out.println (input);

 System.out.println ("After (dos-ified, escaped):");
 System.out.println (matcher.replaceAll (rep));
 }
}

Here's the output from running BackSlashes:

> a\b <=> ABC <
> a\b <=> a\b <

Before:
line 1
line 2
line 3

After (dos-ified, escaped):
line 1\r\nline 2\r\nline 3\r\n

 183

The two append methods listed in the Matcher API are useful when iterating though an
input character sequence, repeatedly invoking find():

package java.util.regex;

public final class Matcher
{
 // This is a partial API listing

 public StringBuffer appendTail (StringBuffer sb)
 public Matcher appendReplacement (StringBuffer sb, String
replacement)
}

Rather than returning a new String with the replacement already performed, the append
methods append to a StringBuffer object you provide. This allows you to make decisions
about the replacement at each point a match is found or to accumulate the result of
matching against multiple input strings. Using appendReplacement() and appendTail()
gives you total control of the search-and-replace process.

One of the bits of state information remembered by Matcher objects is an append position.
The append position is used to remember the amount of the input character sequence that
has already been copied out by previous invocations of appendReplacement(). When
appendReplacement() is invoked, the following process takes place:

1. Characters are read from the input starting at the current append position and
appended to the provided StringBuffer. The last character copied is the one just
before the first character of the matched pattern. This is the character at the index
returned by start() minus one.

2. The replacement string is appended to the StringBuffer and substitutes any
embedded capture group references as described earlier.

3. The append position is updated to be the index of the character following the
matched pattern, which is the value returned by end().

The appendReplacement() method works properly only if a previous match operation was
successful (usually a call to find()). You will be rewarded with a delightful
java.lang.IllegalStateException if the last match returned false or if the method is called
immediately following a reset.

But don't forget that there may be remaining characters in the input beyond the last match
of the pattern. You probably don't want to lose those, but appendReplace-ment() will not
have copied them otherwise, and end() won't return a useful value after find() fails to find
any more matches. The appendTail() method is there to copy the remainder of your input
in this situation. It simply copies any characters from the current append position to the
end of the input and appends them to the given StringBuffer. The following code is a
typical usage scenario for appendReplacement() and appendTail():

Pattern pattern = Pattern.compile ("([Tt])hanks");

 184

Matcher matcher = pattern.matcher ("Thanks, thanks very much");
StringBuffer sb = new StringBuffer();

while (matcher.find()) {
 if (matcher.group(1).equals ("T")) {
 matcher.appendReplacement (sb, "Thank you");
 } else {
 matcher.appendReplacement (sb, "thank you");
 }
}

matcher.appendTail (sb);

Table 5-5 shows the sequence of changes applied to the StringBuffer by the above
code.

Table 5-5. Using appendReplacement() and appendTail()
Append
position Execute Resulting StringBuffer

0 appendReplacement (sb, "Thank
you") Thank you

6 appendReplacement (sb, "thank
you") Thank you, thank you

14 appendTail (sb) Thank you, thank you very
much

This sequence of append operations results in the StringBuffer object sb containing the
string "Thank you, thank you very much". Example 5-8 is a complete code example
showing this type of replacement, as well as alternate ways of performing the same
substitution. In this simple case, the value of a capture group can be used because the first
letter of the matched pattern is the same as that of the replacement. In a more complex
case, there may not be an overlap between the input and the replacement values. Using
Matcher.find() and Matcher.appendReplacement() allows you to programmatically
mediate each replacement, possibly injecting different replacement values at each point
along the way.

Example 5-8. Regular expression append/replace

package com.ronsoft.books.nio.regex;

import java.util.regex.Pattern;
import java.util.regex.Matcher;

/**
 * Test the appendReplacement() and appendTail() methods of the
 * java.util.regex.Matcher class.
 *
 * @author Ron Hitchens (ron@ronsoft.com)
 */
public class RegexAppend
{

 185

 public static void main (String [] argv)
 {
 String input = "Thanks, thanks very much";
 String regex = "([Tt])hanks";
 Pattern pattern = Pattern.compile (regex);
 Matcher matcher = pattern.matcher (input);
 StringBuffer sb = new StringBuffer();

 // Loop while matches are encountered
 while (matcher.find()) {
 if (matcher.group(1).equals ("T")) {
 matcher.appendReplacement (sb, "Thank you");
 } else {
 matcher.appendReplacement (sb, "thank you");
 }
 }

 // Complete the transfer to the StringBuffer
 matcher.appendTail (sb);

 // Print the result
 System.out.println (sb.toString());

 // Let's try that again using the $n escape in the replacement
 sb.setLength (0);
 matcher.reset();

 String replacement = "$1hank you";

 // Loop while matches are encountered
 while (matcher.find()) {
 matcher.appendReplacement (sb, replacement);
 }

 // Complete the transfer to the StringBuffer
 matcher.appendTail (sb);

 // Print the result
 System.out.println (sb.toString());

 // and once more, the easy way (because this example is simple)
 System.out.println (matcher.replaceAll (replacement));

 // one last time, using only the String
 System.out.println (input.replaceAll (regex, replacement));

 }
}

5.3 Regular Expression Methods of the String Class

It should be pretty obvious from the preceding sections that strings and regular
expressions go hand in hand. It's only natural then that our old friend the String class has
added some convenience methods to do common regular expression operations:

 186

package java.lang;

public final class String
 implements java.io.Serializable, Comparable, CharSequence
{
 // This is a partial API listing

 public boolean matches (String regex)
 public String [] split (String regex)
 public String [] split (String regex, int limit)
 public String replaceFirst (String regex, String replacement)
 public String replaceAll (String regex, String replacement)
}

All the new String methods are pass-through calls to methods of the Pattern or Matcher
classes. Now that you know how Pattern and Matcher are used and inter-operate, using
these String convenience methods should be a no brainer. Instead of describing each
method, they are summarized in Table 5-6.

Table 5-6. Regular expression methods of the String class
String method signature java.util.regex equivalent

input.matches (String regex) Pattern.matches (String regex, CharSequence input)
input.split (String regex) pat.split (CharSequence input)
input.split (String regex, int limit) pat.split (CharSequence input, int limit)
input.replaceFirst (String regex, String replacement) match.replaceFirst (String replacement)
input.replaceAll (String regex, String replacement) match.replaceAll (String replacement)

In Table 5-6, assume that there is a String named input, a Pattern object named pat, and
a Matcher named match:

String input = "Mary had a little lamb";
String [] tokens = input.split ("\\s+"); // split on whitespace

As of JDK 1.4, none of these regular expression convenience methods cache any
expressions or do any other optimizations. Some JVM implementations may choose to
cache and reuse pattern objects, but you should not rely on them. If you expect to apply
the same pattern-matching operations repeatedly, it will be more efficient to use the
classes in java.util.regex.

5.4 Java Regular Expression Syntax

Following is a summary of the regular expression syntax supported by the
java.util.regex package, as released in JDK 1.4. Things change quickly in the Java
world, so you should always check the current documentation provided with the Java
implementation you're using. The information provided here is a quick reference to get
you started.

 187

The java.util.regex classes are fully Unicode-aware and follow the guidelines in
Unicode Technical Report #18: Unicode Regular Expression Guidelines, found at
http://www.unicode.org/unicode/reports/tr18.

As mentioned previously, the syntax is similar to Perl, but not exactly the same. The main
feature missing in java.util.regex is the ability to embed Perl code in an expression
(which would require dragging in a full Perl interpreter). The primary addition to the Java
syntax is possessive quantifiers, which are greedier than regular greedy quantifiers.
Possessive quantifiers match as much of the target as possible even if it means that the
remainder of the expression would fail to match. Java regular expressions also support
some Unicode escape sequences not supported by Perl. Consult the Javadoc page for
java.util.regex.Pattern for complete details.

Table 5-7 is a regular expression quick reference. It is reproduced from Java In A
Nutshell, Fourth Edition (O'Reilly).

Table 5-7. Java regular expression syntax quick reference
Syntax Matches

Single characters
x The character x, as long as x is not a punctuation character with special

meaning in the regular expression syntax.
\p The punctuation character p.
\\ The backslash character.
\n The newline character \u000A.
\t The tab character \u0009.
\r The carriage return character \u000D.
\f The form feed character \u000C.
\e The escape character \u001B.
\a The bell (alert) character \u0007.
\uhhhh The Unicode character with hexadecimal code hhhh.
\xhh The character with hexadecimal code hh.
\0n The character with octal code n.
\0nn The character with octal code nn.
\0nnn Character with octal code nnn, in which nnn <= 377.
\cx The control character ^x.
Character classes

[...]

One of the characters between the brackets. Characters may be specified
literally, and the syntax also allows the specification of character ranges,
with intersection, union and subtraction operators. See specific examples
that follow.

[^...] Any one character not between the brackets.
[a-z0-9] The character range: a character between (inclusive) a and z or 0 and 9.
[0-9[a-fA-F]] The union of classes: same as [0-9a-fA-F].
[a-z&&[aeiou]] The intersection of classes: same as [aeiou].
[a-z&&[^aeiou]] Subtraction: the characters a through z, except for the vowels.

http://www.unicode.org/unicode/reports/tr18

 188

. Any character, except a line terminator. If the DOTALL flag is set, it
matches any character, including line terminators.

\d An ASCII digit: [0-9].
\D Anything but an ASCII digit: [^\d].
\s ASCII whitespace: [\t\n\f\r\x0B].
\S Anything but ASCII whitespace: [^\s].
\w An ASCII word character: [a-zA-Z0-9_].
\W Anything but an ASCII word character: [^\w].

\p{group}
Any character in the named group. See the following group names. Many
of the group names are from POSIX, which is why p is used for this
character class.

\P{group} Any character not in the named group.
\p{Lower} An ASCII lowercase letter: [a-z].
\p{Upper} An ASCII uppercase letter: [A-Z].
\p{ASCII} Any ASCII character: [\x00-\x7f].
\p{Alpha} An ASCII letter: [a-zA-Z].
\p{Digit} An ASCII digit: [0-9]
\p{XDigit} A hexadecimal digit: [0-9a-fA-F].
\p{Alnum} ASCII letter or digit: [\p{Alpha}\p{Digit}].

\p{Punct} ASCII punctuation: one
of !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~].

\p{Graph} A visible ASCII character: [\p{Alnum}\p{Punct}].
\p{Print} A visible ASCII character: same as \p{Graph}.
\p{Blank} An ASCII space or tab: [\t].
\p{Space} ASCII whitespace: [\t\n\f\r\x0b].
\p{Cntrl} An ASCII control character: [\x00-\x1f\x7f].

\p{category}

Any character in the named Unicode category. Category names are one- or
two-letter codes defined by the Unicode standard. One-letter codes include
L for letter, N for number, S for symbol, Z for separator, and P for
punctuation. Two-letter codes represent subcategories, such as Lu for
uppercase letter, Nd for decimal digit, Sc for currency symbol, Sm for
math symbol, and Zs for space separator. See java.lang.Character
for a set of constants that correspond to these subcategories, and note that
the full set of one- and two-letter codes is not documented in this book.

\p{block}

Any character in the named Unicode block. In Java regular expressions,
block names begin with "In", followed by mixed-case capitalization of the
Unicode block name, without spaces or underscores. For example:
\p{InOgham} or \p{InMathematicalOperators}. See
java.lang.Character.UnicodeBlock for a list of Unicode block
names.

Sequences, alternatives,
groups, and references
xy Match x followed by y.
x|y Match x or y.

(...) Grouping. Group subexpression within parentheses into a single unit that
can be used with *, +, ?, |, and so on. Also "capture" the characters that

 189

match this group for later use.

(?:...) Grouping only. Group subexpression as with (), but do not capture the
text that matched.

\n
Match the same characters that were matched when capturing group
number n was first matched. Be careful when n is followed by another
digit: the largest number that is a valid group number will be used.

Repetition[3]
x? Zero or one occurrence of x; i.e., x is optional.
x* Zero or more occurrences of x.
x+ One or more occurrences of x.
x{n} Exactly n occurrences of x.
x{n,} n or more occurrences of x.
x{n,m} At least n, and at most m occurrences of x.
Anchors[4]
^ The beginning of the input string or, if the MULTILINE flag is specified,

the beginning of the string or of any new line.

$ The end of the input string or, if the MULTILINE flag is specified, the end
of the string or of line within the string.

\b A word boundary: a position in the string between a word and a non-word
character.

\B A position in the string that is not a word boundary.

\A The beginning of the input string. Like ^, but never matches the beginning
of a new line, regardless of what flags are set.

\Z The end of the input string, ignoring any trailing line terminator.
\z The end of the input string, including any line terminator.
\G The end of the previous match.

(?=x) A positive look-ahead assertion. Require that the following characters
match x, but do not include those characters in the match.

(?!x) A negative look-ahead assertion. Require that the following characters do
not match the pattern x.

(?<=x)
A positive look-behind assertion. Require that the characters immediately
before the position match x, but do not include those characters in the
match. x must be a pattern with a fixed number of characters.

(?<!x)
A negative look-behind assertion. Require that the characters immediately
before the position do not match x. x must be a pattern with a fixed
number of characters.

Miscellaneous

(?>x)

Match x independently of the rest of the expression, without considering
whether the match causes the rest of the expression to fail to match. Useful
to optimize certain complex regular expressions. A group of this form does
not capture the matched text.

(?onflags-offflags)

Don't match anything, but turn on the flags specified by onflags, and
turn off the flags specified by offflags. These two strings are
combinations in any order of the following letters and correspond to the
following Pattern constants: i (CASE_INSENSITIVE), d
(UNIX_LINES), m (MULTILINE), s (DOTALL), u (UNICODE_CASE),
and x (COMMENTS). Flag settings specified in this way take effect at the

 190

point that they appear in the expression and persist until the end of the
expression, or until the end of the parenthesized group of which they are a
part, or until overridden by another flag setting expression.

(?onflags-offflags:x) Match x, applying the specified flags to this subexpression only. This is a
noncapturing group, such as (?:...), with the addition of flags.

\Q
Don't match anything, but quote all subsequent pattern text until \E. All
characters within such a quoted section are interpreted as literal characters
to match, and none (except \E) have special meanings.

\E Don't match anything; terminate a quote started with \Q.

#comment If the COMMENT flag is set, pattern text between a # and the end of the line
is considered a comment and is ignored.

[3] These repetition characters are known as greedy quantifiers because they match as
many occurrences of x as possible while still allowing the rest of the regular expression to
match. If you want a "reluctant quantifier," which matches as few occurrences as possible
while still allowing the rest of the regular expression to match, follow the previous
quantifiers with a question mark. For example, use *? instead of *, and {2,}? instead of
{2,}. Or, if you follow a quantifier with a plus sign instead of a question mark, then you
specify a "possessive quantifier," which matches as many occurrences as possible, even if
it means that the rest of the regular expression will not match. Possessive quantifiers can
be useful when you are sure that they will not adversely affect the rest of the match,
because they can be implemented more efficiently than regular greedy quantifiers.

[4] Anchors do not match characters but instead match the zero-width positions between
characters, "anchoring" the match to a position at which a specific condition holds.

5.5 An Object-Oriented File Grep

Example 5-9 implements an object oriented form of the familiar grep command.
Instances of the Grep class are constructed with a regular expression and can be used to
scan different files for the same pattern. The result of the Grep.grep() method is a
type-safe array of Grep.MatchedLine objects. The MatchedLine class is a contained class
within Grep. You must refer to it as Grep.MatchedLine or import it separately.

Example 5-9. Object-oriented grep

package com.ronsoft.books.nio.regex;

import java.io.File;
import java.io.FileReader;
import java.io.LineNumberReader;
import java.io.IOException;
import java.util.List;
import java.util.LinkedList;
import java.util.Iterator;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

/**

 191

 * A file searching class, similar to grep, which returns information
 * about lines matched in the specified files. Instances of this class * are
tied to a specific regular expression pattern and may be applied * repeatedly
to multiple files. Instances of Grep are thread safe,
 * they may be shared.
 *
 * @author Michael Daudel (mgd@ronsoft.com) (original)
 * @author Ron Hitchens (ron@ronsoft.com) (hacked)
 */
public class Grep
{
 // the pattern to use for this instance
 private Pattern pattern;

 /**
 * Instantiate a Grep object for the given pre-compiled Pattern

* object.
 * @param pattern A java.util.regex.Pattern object specifying the
 * pattern to search for.
 */
 public Grep (Pattern pattern)
 {
 this.pattern = pattern;
 }

 /**
 * Instantiate a Grep object and compile the given regular

* expression string.
 * @param regex The regular expression string to compile into a
 * Pattern for internal use.
 * @param ignoreCase If true, pass Pattern.CASE_INSENSITIVE to the
 * Pattern constuctor so that seaches will be done without regard
 * to alphabetic case. Note, this only applies to the ASCII
 * character set. Use embedded expressions to set other options.
 */
 public Grep (String regex, boolean ignoreCase)
 {
 this.pattern = Pattern.compile (regex,
 (ignoreCase) ? Pattern.CASE_INSENSITIVE : 0);

 }

 /**
 * Instantiate a Grep object with the given regular expression

* string, with default options.
 */
 public Grep (String regex)
 {
 this (regex, false);
 }

 // ---

 /**
 * Perform a grep on the given file.
 * @param file A File object denoting the file to scan for the
 * regex given when this Grep instance was constructed.

 192

 * @return A type-safe array of Grep.MatchedLine objects describing
 * the lines of the file matched by the pattern.
 * @exception IOException If there is a problem reading the file.
 */
 public MatchedLine [] grep (File file)
 throws IOException
 {
 List list = grepList (file);
 MatchedLine matches [] = new MatchedLine [list.size()];

 list.toArray (matches);

 return (matches);
 }

 /**
 * Perform a grep on the given file.
 * @param file A String filename denoting the file to scan for the
 * regex given when this Grep instance was constructed.
 * @return A type-safe array of Grep.MatchedLine objects describing
 * the lines of the file matched by the pattern.
 * @exception IOException If there is a problem reading the file.
 */
 public MatchedLine [] grep (String fileName)
 throws IOException
 {
 return (grep (new File (fileName)));
 }

 /**
 * Perform a grep on the given list of files. If a given file

* cannot be read, it will be ignored as if empty.
 * @param files An array of File objects to scan.
 * @return A type-safe array of Grep.MatchedLine objects describing
 * the lines of the file matched by the pattern.
 */
 public MatchedLine [] grep (File [] files)
 {
 List aggregate = new LinkedList();

 for (int i = 0; i < files.length; i++) {
 try {
 List temp = grepList (files [i]);

 aggregate.addAll (temp);
 } catch (IOException e) {
 // ignore I/O exceptions
 }
 }

 MatchedLine matches [] = new MatchedLine [aggregate.size()];

 aggregate.toArray (matches);

 return (matches);
 }

 193

 // ---

 /**
 * Encapsulation of a matched line from a file. This immutable
 * object has five read-only properties:
 * getFile(): The File this match pertains to.
 * getLineNumber(): The line number (1-relative) within the
 * file where the match was found.
 * getLineText(): The text of the matching line
 * start(): The index within the line where the matching
 * pattern begins.
 * end(): The index, plus one, of the end of the matched
 * character sequence.
 *
 */
 public static class MatchedLine
 {
 private File file;
 private int lineNumber;
 private String lineText;
 private int start;
 private int end;

 MatchedLine (File file, int lineNumber, String lineText,
 int start, int end)
 {
 this.file = file;
 this.lineNumber = lineNumber;
 this.lineText = lineText;
 this.start = start;
 this.end = end;
 }

 public File getFile()
 {
 return (this.file);
 }

 public int getLineNumber()
 {
 return (this.lineNumber);
 }

 public String getLineText()
 {
 return (this.lineText);
 }

 public int start()
 {
 return (this.start);
 }

 public int end()
 {
 return (this.end);
 }

 194

 }

 // ---

 /**
 * Run the grepper on the given File.
 * @return A (non-type-safe) List of MatchedLine objects.
 */
 private List grepList (File file)
 throws IOException
 {
 if (! file.exists()) {
 throw new IOException ("Does not exist: " + file);
 }

 if (! file.isFile()) {
 throw new IOException ("Not a regular file: " + file);
 }

 if (! file.canRead()) {
 throw new IOException ("Unreadable file: " + file);
 }

 LinkedList list = new LinkedList();
 FileReader fr = new FileReader (file);
 LineNumberReader lnr = new LineNumberReader (fr);
 Matcher matcher = this.pattern.matcher ("");
 String line;

 while ((line = lnr.readLine()) != null) {
 matcher.reset (line);

 if (matcher.find()) {
 list.add (new MatchedLine (file,
 lnr.getLineNumber(), line,
 matcher.start(), matcher.end()));
 }
 }

 lnr.close();

 return (list);
 }

 // ---

 /**
 * Test code to run grep operations. Accepts two command-line
 * options: -i or --ignore-case, compile the given pattern so
 * that case of alpha characters is ignored. Or -1, which runs
 * the grep operation on each individual file, rather that passing
 * them all to one invocation. This is just to test the different
 * methods. The printed ouptut is slightly different when -1 is
 * specified.
 */
 public static void main (String [] argv)
 {

 195

 // Set defaults
 boolean ignoreCase = false;
 boolean onebyone = false;
 List argList = new LinkedList(); // to gather args

 // Loop through the args, looking for switches and saving
 // the patterns and filenames
 for (int i = 0; i < argv.length; i++) {
 if (argv [i].startsWith ("-")) {
 if (argv [i].equals ("-i")
 || argv [i].equals ("--ignore-case"))
 {
 ignoreCase = true;
 }

 if (argv [i].equals ("-1")) {
 onebyone = true;
 }

 continue;
 }

 // not a switch, add it to the list
 argList.add (argv [i]);
 }

 // Enough args to run?
 if (argList.size() < 2) {
 System.err.println ("usage: [options] pattern filename ...");
 return;
 }

 // First arg on the list will be taken as the regex pattern.
 // Pass the pattern to the new Grep object, along with the
 // current value of the ignore case flag.
 Grep grepper = new Grep ((String) argList.remove (0),
 ignoreCase);

 // somewhat arbitrarily split into two ways of calling the
 // grepper and printing out the results
 if (onebyone) {
 Iterator it = argList.iterator();

 // Loop through the filenames and grep them
 while (it.hasNext()) {
 String fileName = (String) it.next();

 // Print the filename once before each grep
 System.out.println (fileName + ":");

 MatchedLine [] matches = null;

 // Catch exceptions
 try {
 matches = grepper.grep (fileName);
 } catch (IOException e) {
 System.err.println ("\t*** " + e);

 196

 continue;
 }

 // Print out info about the matched lines
 for (int i = 0; i < matches.length; i++) {
 MatchedLine match = matches [i];

 System.out.println (" "
 + match.getLineNumber()
 + " [" + match.start()
 + "-" + (match.end() - 1)
 + "]: "
 + match.getLineText());
 }
 }
 } else {
 // Convert the filename list to an array of File
 File [] files = new File [argList.size()];

 for (int i = 0; i < files.length; i++) {
 files [i] = new File ((String) argList.get (i));
 }

 // Run the grepper; unreadable files are ignored
 MatchedLine [] matches = grepper.grep (files);

 // Print out info about the matched lines
 for (int i = 0; i < matches.length; i++) {
 MatchedLine match = matches [i];

 System.out.println (match.getFile().getName()
 + ", " + match.getLineNumber() + ": "
 + match.getLineText());
 }
 }
 }
}

5.6 Summary

In this chapter, we discussed the long-awaited regular expression classes added to the
J2SE platform in the 1.4 release:

CharSequence

We were introduced to the new CharSequence interface in Section 5.2.1 and
learned that it is implemented by several classes to describe sequences of
characters in an abstract way.

Pattern

 197

The Pattern class encapsulates a regular expression in an immutable object
instance. In Section 5.2.2, we saw the API of Pattern and learned how to create
instances by compiling expression strings. We also saw some static utility
methods for doing one-time matches.

Matcher

The Matcher class is a state machine object that applies a Pattern object to an
input character sequence to find matching patterns in that input. Section 5.2.3
described the Matcher API, including how to create new Matcher instances from
a Pattern object and how to perform various types of matching operations.

String

The String class has had new regular expression convenience methods added in
1.4. These were summarized in Section 5.3.

The syntax of the regular expressions supported by java.util.regex.Pattern is listed
in Table 5-7. The syntax closely matches that of Perl 5.

Now we add a little international flavor to the tour. In the next chapter, you'll be
introduced to the exotic and sometimes mysterious world of character sets.

 198

Chapter 6. Character Sets

Here, put this fish in your ear.

—Ford Prefect

We live in a diverse and ever-changing universe. Even on this rather mundane M-class
planet we call Earth, we speak hundreds of different languages. In The Hitchhikers Guide
to the Galaxy, Arthur Dent solved his language problem by placing a Babelfish in his ear.
He could then understand the languages spoken by the diverse (to say the least)
characters he encountered along his involuntary journey through the galaxy.[1]

[1] He didn't manage to prevent Earth being blown up, but that's beside the point.

On the Java platform, we don't have the luxury of Babelfish technology (at least not yet).[2]
We must still deal with multiple languages and the many characters that comprise those
languages. Luckily, Java was the first widely used programming language to use Unicode
internally to represent characters. Compared to byte-oriented programming languages
such as C or C++, native support of Unicode greatly simplifies character data handling,
but it by no means makes character handling automatic. You still need to understand how
character mapping works and how to handle multiple character sets.

[2] Though http://babelfish.altavista.com is getting there.

6.1 Character Set Basics

Before discussing the details of the new classes in java.nio.charsets, let's define some
terms related to character sets and character transcoding. The new character set classes
present a more standardized approach to this realm, so it's important to be clear on the
terminology used.

Character set

A set of characters, i.e., symbols with specific semantic meanings. The letter "A"
is a character. So is "%". Neither has any intrinsic numeric value, nor any direct
relationship to ASCII, Unicode, or even computers. Both symbols existed long
before the first computer was invented.

Coded character set

A assignment of numeric values to a set of characters. Assigning codes to
characters so they can be represented digitally results in a specific set of character
codings. Other coded character sets might assign a different numeric value to the
same character. Character set mappings are usually determined by standards
bodies, such as US-ASCII, ISO 8859-1, Unicode (ISO 10646-1), and JIS X0201.

http://babelfish.altavista.com/

 199

Character-encoding scheme

A mapping of the members of a coded character set to a sequence of octets (eight
bit bytes). The encoding scheme defines how a sequence of character encodings
will be represented as a sequence of bytes. The numeric values of the character
encodings do not need to be the same as the encoded bytes, nor even a one-to-one
or one-to-many relationship. Think of character set encoding and decoding as
similar in principle to object serialization and deserialization.

Character data is usually encoded for transmission over a network or for storage in a file.
An encoding scheme is not a character set, it's a mapping; but because of the close
relationship between them, most encodings are associated with a single character set.
UTF-8, for example, is used only to encode the Unicode character set. However, it's
possible for one encoding scheme to handle more than one character set. For example,
EUC can encode characters from several Asian languages.

Figure 6-1 is a graphical representation of encoding a Unicode character sequence to a
sequence of bytes using the UTF-8 encoding scheme. UTF-8 encodes character code
values less than 0x80 as a single-byte value (standard ASCII). All other Unicode
characters are encoded as multibyte sequences of two to six bytes
(http://www.ietf.org/rfc/rfc2279.txt).

Charset

The term charset is defined in RFC2278 (http://ietf.org/rfc/rfc2278.txt). It's the
combination of a coded character set and a character-encoding scheme. The
anchor class of the java.nio.charset package is Charset, which encapsulates
the charset abstraction.

Figure 6-1. Characters encoded as UTF-8

Unicode is a 16-bit character encoding.[3] It attempts to unify the character sets of all the
languages around the world into a single, comprehensive mapping. It's gaining ground,
but there are still many other character encodings in wide use today. Most operating
systems are still byte-oriented in terms of I/O and file storage, so whatever encoding is

http://www.ietf.org/rfc/rfc2279.txt
http://ietf.org/rfc/rfc2278.txt

 200

used, be it Unicode or something else, there is still a need to translate between byte
sequences and character set encodings.

[3] Or so it seems. Unicode now defines character codings larger than 16 bits. These new, expanded codings are not expected to be supported by
Java until at least the 1.5 release.

The classes comprising the java.nio.charset package address this need. This is not the
first time the Java platform has addressed character set encoding, but it's the most
systematic, comprehensive, and flexible solution. The java.nio.charset.spi package
provides a Server Provider Interface (SPI), which allows new encoders and decoders to
be plugged in as needed.

6.2 Charsets

As of JDK 1.4, every JVM implementation is required to support a standard set of
charsets, listed in Table 6-1. JVM implementations are free to support additional charsets
but must provide this minimum set. (Consult your JVM's release documentation for
information on whether additional charsets are available.) Note that although all JVMs
must support at least this list of charsets, the default charset is not specified and is not
required to be one of these standard charsets. The default is determined at JVM startup
and depends on the underlying operating-system environment, locale setting, and/or the
JVM configuration. If you need a specific charset, it's safest to name it explicitly. Don't
assume that the deployment default is the same as it is for your development
environment.

Table 6-1. Required charsets
Charset

name Description

US-ASCII Seven-bit ASCII, ISO 646-US. The basic Latin block of the Unicode character set. This is the
familiar American-English character set.

ISO-8859-1

ISO-LATIN-1. The character set used for most European languages. This is a superset of
US-ASCII and includes most non-English European characters. (See
http://www.unicode.org/charts/.) The characters of ISO-LATIN-1 are encoded within eight
bits.

UTF-8

Eight-bit UCS Transformation Format. Specified by RFC 2279 and by the Unicode Standard
3.0 (amended). This is a byte-oriented character encoding. The ASCII characters, those less
than 0x80, are encoded as single bytes. Other characters are encoded as two or more bytes.
For multiple sequences, if the high-order bits of the first byte encode the number of following
bytes. (See http://www.ietf.org/rfc/rfc2279.txt.) UTF-8 interoperates well with ASCII because
a simple ASCII file is a well-formed UTF-8 encoding, and a UTF-8 encoding of characters
less than 0x80 is an ASCII file.

UTF-16BE 16-bit UCS Transformation Format, big-endian byte order. Every Unicode character is
encoded as a two-byte sequence, with the high-order eight bits written first.

UTF-16LE 16-bit UCS Transformation Format, little-endian byte order. Every Unicode character is
encoded as a two-byte sequence, with the low-order eight bits written first.

UTF-16

16-bit UCS Transformation Format. Byte order is determined by an optional byte-order mark.
The UTF-16 charsets are specified in RFC 2781. The UTF-16BE and UTF-16BE formats
encode into 16-bit quantities and are thus byte order-dependent. UTF-16 is a portability
encoding that uses a leading byte mark to indicate whether the remainder of the encoded byte

http://www.unicode.org/charts/
http://www.ietf.org/rfc/rfc2279.txt

 201

stream is UTF-16BE or UTF-16LE. See Table 6-2.

Charset names are case-insensitive, i.e., upper- and lowercase letters are considered to be
equivalent when comparing charset names.

The Internet Assigned Names Authority (IANA) maintains the official registry of charset
names, and all the names listed in Table 6-1 are standardized names registered with the
IANA.

UTF-16BE and UTF-16LE encode each character as a two-byte numeric value. The
decoder of such an encoding must therefore have prior knowledge of how the data was
encoded or a means of determining the byte order from the encoded data stream itself.
The UTF-16 encoding recognizes a byte-order mark: the Unicode character \uFEFF. The
byte-order mark has special meaning only when it occurs at the beginning of an encoded
stream. If this value is encountered later, it is mapped according to its defined Unicode
value (zero width, nonbreaking space). Foreign, little-endian systems might prepend
\uFFFE and encode the stream as UTF-16LE. Using the UTF-16 encoding to prepend and
recognize the byte-order mark allows systems with different internal byte orders to
exchange Unicode data.

Table 6-2 illustrates the actions taken by the Java platform for the various combinations.

Table 6-2. UTF-16 charset encode/decode
 UTF-16 UTF-16BE UTF-16LE

Encode
Prepend byte mark
\uFEFF, encode
as UTF-16BE.

No byte mark, encode big-endian
byte order.

No byte mark, encode little-endian
byte order.

Decode: no
byte mark

Decode as
UTF-16BE (Java's
native byte order).

Decode, assuming big-endian byte
order.

Decode, assuming little-endian byte
order.

Decode:
mark =
\uFEFF

Discard mark.
Decode as
UTF-16BE.

Discard mark. Decode as big-endian
byte order.

Discard mark. Decode as
little-endian byte order. Note that
decoding will be byte-swapped,
which may result in a runtime
exception.

Decode:
mark =
\uFFFE

Discard mark.
Decode as
UTF-16LE.

Discard mark. Decode as big-endian
byte order. Note that decoding will
be byte-swapped, which may result
in runtime exception.

Discard mark. Decode as
little-endian byte order.

Example 6-1 demonstrates how characters are translated to byte sequences by various
Charset implementations.

Example 6-1. Encoding with the standard charsets

package com.ronsoft.books.nio.charset;

import java.nio.charset.Charset;

 202

import java.nio.ByteBuffer;

/**
 * Charset encoding test. Run the same input string, which contains
 * some non-ascii characters, through several Charset encoders and dump out
 * the hex values of the resulting byte sequences.
 *
 * @author Ron Hitchens (ron@ronsoft.com)
 */
public class EncodeTest
{
 public static void main (String [] argv)
 throws Exception
 {
 // This is the character sequence to encode
 String input = "\u00bfMa\u00f1ana?";

 // the list of charsets to encode with
 String [] charsetNames = {
 "US-ASCII", "ISO-8859-1", "UTF-8", "UTF-16BE",
 "UTF-16LE", "UTF-16" // , "X-ROT13"
 };

 for (int i = 0; i < charsetNames.length; i++) {
 doEncode (Charset.forName (charsetNames [i]), input);
 }
 }

 /**
 * For a given Charset and input string, encode the chars
 * and print out the resulting byte encoding in a readable form.
 */
 private static void doEncode (Charset cs, String input)
 {
 ByteBuffer bb = cs.encode (input);

 System.out.println ("Charset: " + cs.name());
 System.out.println (" Input: " + input);
 System.out.println ("Encoded: ");

 for (int i = 0; bb.hasRemaining(); i++) {
 int b = bb.get();
 int ival = ((int) b) & 0xff;
 char c = (char) ival;

 // Keep tabular alignment pretty
 if (i < 10) System.out.print (" ");

 // Print index number
 System.out.print (" " + i + ": ");

 // Better formatted output is coming someday...
 if (ival < 16) System.out.print ("0");

 // Print the hex value of the byte
 System.out.print (Integer.toHexString (ival));

 203

 // If the byte seems to be the value of a
 // printable character, print it. No guarantee
 // it will be.
 if (Character.isWhitespace (c) ||
 Character.isISOControl (c))
 {
 System.out.println ("");
 } else {
 System.out.println (" (" + c + ")");
 }
 }

 System.out.println ("");
 }
}

Here is the output from running EncodeTest:

Charset: US-ASCII
 Input: ¿Mañana?
Encoded:
 0: 3f (?)
 1: 4d (M)
 2: 61 (a)
 3: 3f (?)
 4: 61 (a)
 5: 6e (n)
 6: 61 (a)
 7: 3f (?)

Charset: ISO-8859-1
 Input: ¿Mañana?
Encoded:
 0: bf (¿)
 1: 4d (M)
 2: 61 (a)
 3: f1 (ñ)
 4: 61 (a)
 5: 6e (n)
 6: 61 (a)
 7: 3f (?)

Charset: UTF-8
 Input: ¿Mañana?
Encoded:
 0: c2 (¯)
 1: bf (¿)
 2: 4d (M)
 3: 61 (a)
 4: c3 (Ã)
 5: b1 (±)
 6: 61 (a)
 7: 6e (n)
 8: 61 (a)
 9: 3f (?)

 204

Charset: UTF-16BE
 Input: ¿Mañana?
Encoded:
 0: 00
 1: bf (¿)
 2: 00
 3: 4d (M)
 4: 00
 5: 61 (a)
 6: 00
 7: f1 (ñ)
 8: 00
 9: 61 (a)
 10: 00
 11: 6e (n)
 12: 00
 13: 61 (a)
 14: 00
 15: 3f (?)

Charset: UTF-16LE
 Input: ¿Mañana?
Encoded:
 0: bf (¿)
 1: 00
 2: 4d (M)
 3: 00
 4: 61 (a)
 5: 00
 6: f1 (ñ)
 7: 00
 8: 61 (a)
 9: 00
 10: 6e (n)
 11: 00
 12: 61 (a)
 13: 00
 14: 3f (?)
 15: 00

Charset: UTF-16
 Input: ¿Mañana?
Encoded:
 0: fe (æ)
 1: ff (ÿ)
 2: 00
 3: bf (¿)
 4: 00
 5: 4d (M)
 6: 00
 7: 61 (a)
 8: 00
 9: f1 (ñ)
 10: 00
 11: 61 (a)
 12: 00
 13: 6e (n)

 205

 14: 00
 15: 61 (a)
 16: 00

17: 3f (?)

6.2.1 The Charset Class

Let's dig into the Charset class API (summarized in Figure 6-2):

package java.nio.charset;

public abstract class Charset implements Comparable
{
 public static boolean isSupported (String charsetName)
 public static Charset forName (String charsetName)
 public static SortedMap availableCharsets()

 public final String name()
 public final Set aliases()
 public String displayName()
 public String displayName (Locale locale)

 public final boolean isRegistered()

 public boolean canEncode()
 public abstract CharsetEncoder newEncoder();
 public final ByteBuffer encode (CharBuffer cb)
 public final ByteBuffer encode (String str)

 public abstract CharsetDecoder newDecoder();
 public final CharBuffer decode (ByteBuffer bb)

 public abstract boolean contains (Charset cs);
 public final boolean equals (Object ob)
 public final int compareTo (Object ob)

 public final int hashCode()
 public final String toString()
}

Figure 6-2. The charset classes

 206

The Charset class encapsulates immutable information about a specific charset. Charset
is abstract. Concrete instances are obtained by invoking the static factory method
forName(), passing in the name of the desired charset. All the Charset methods are
thread-safe; a single instance can be shared among multiple threads.

The boolean class method isSupported() can be called to determine if a particular charset
is currently available in the running JVM. New charsets can be installed dynamically
through the Charset SPI mechanism, so the answer for a given charset name can change
over time. The Charset SPI is discussed in Section 6.3.

A charset can have multiple names. It always has a canonical name but can also have
zero or more aliases. The canonical name or any of the aliases can be used with forName()
and isSupported().

 207

Some charsets also have historical names, which are used in previous Java platform
releases and are retained for backward compatibility. Historical charset names are
returned by the getEncoding() method of the InputStreamReader and
OutputStream-Writer classes. If a charset has an historical name, it will be the canonical
name or one of the aliases of the Charset. The Charset class does not provide an
indication of which names are historical.

The last of the static class methods, availableCharsets(), will return a
java.util.SortedMap of all the charsets currently active in the JVM. As with isSupported(),
the values returned could change over time if new charsets are installed. The members of
the returned map will be Charset objects with their canonical names as keys. When
iterated, the map will be traversed in alphanumeric order by canonical name.

The availableCharsets() method is potentially slow. Although many charsets can be
supported, they are typically not created until explicitly requested. Invoking
availableCharsets() requires that all known Charset objects be instantiated. Instantiating
a Charset may require that libraries be loaded, network resources accessed, translation
tables computed, etc. If you know the name of the charset you want to use, use the
forName() method. Use availableCharsets() when you need to enumerate all available
charsets — for example, to present a selection to an interactive user. Assuming that no
new charsets are installed in the interim, the Map returned by availableCharsets()
contains exactly the same charsets that are returnable by forName().

Once a reference to a Charset instance has been obtained, the name() method will return
the canonical name of the charset, and aliases() will give you a Set containing the aliases.
The Set returned by aliases() will never be null, but may be empty.

Each Charset object has two displayName() methods as well. The default
implementations of these methods simply return the canonical charset name. These
methods can provide a localized display name to use in a menu or selection box, for
example. The displayName() method can take a Locale argument to specify a locale for
localization. The no-argument version uses the default locale setting.

As mentioned at the beginning of this section, the IANA maintains the definitive registry
of charset names. If a given Charset object represents a charset registered with the IANA,
then the isRegistered() method will return true. If this is the case, then the Charset
object is expected to comply with several requirements:

• Its canonical name should match the name in the IANA registry for the charset.
• If the IANA registry has multiple names for the charset, the canonical name

returned by the object should match the MIME-preferred name denoted in the
IANA registry.

• If the charset name is removed from the registry, the current canonical name
should be retained as an alias.

• If the charset is not registered with the IANA, its canonical name must begin with
either "X-" or "x-".

 208

For the most part, only JVM vendors are concerned with these rules. However, if you
plan to supply your own charsets as part of an application, it's good to know what you
shouldn't do. You should return false for isRegistered() and name your charset with a
leading "X-". See Section 6.3.

6.2.2 Comparing Charsets

The following contains the API methods of Charset that we'll discuss in this section:

public abstract class Charset implements Comparable
{
 // This is a partial API listing

 public abstract boolean contains (Charset cs);
 public final boolean equals (Object ob)
 public final int compareTo (Object ob)

 public final int hashCode()
 public final String toString()
}

Recall that a charset is the combination of a coded set of characters and the encoding
scheme for that character set. Like any set, it's possible for one charset to be a subset of
another charset. One charset (C1) is said to contain another (C2), if every character that
can be represented in C2 can also be represented identically in C1. Every charset is
considered to contain itself. If this containment relationship holds, then any string you
can encode in C2 (the contained subcharset) is guaranteed to be encodable in C1 without
the need for any substitutions.

The contains() instance method indicates whether the Charset object passed as an
argument is known to be contained by the charset encapsulated by that Charset object.
This method does not do a runtime comparison of the charsets; it returns true only if the
concrete Charset class knows that the given charset is contained. If contains() returns
false, it indicates either that a containment relationship is known not to exist or that
nothing is known about the containment relationship.

If a charset is contained by another, this does not imply that the encoded byte sequences
generated will be identical for a given input character sequence.

The Charset class explicitly overrides the Object.equals() method. Instances of Charset
are considered to be equal if they have the same canonical name (as returned by name()).
In the JDK 1.4.0 release, the comparison performed by equals() is a simple comparison
of the canonical name strings, which means that the test is case-sensitive. This is a bug
that should be corrected in future releases. Since the Charset.equals() method overrides
the default method in the Object class, it must declare a parameter of type Object rather
than Charset. A Charset object is never equal to any other class of object.

 209

The implementation of Charset in JDK 1.4 returns the same object
handle for all invocations of forName() that map to the same charset.
This means that comparing Charset object references with the ==
operator appears to work as well as using the equals() method.
Always use the equals() method to test equality. The implementation
could change in the future, and if it does, your code will break.

 You probably noticed in the previous listing that Charset implements the Comparable
interface, which implies that it provides a compareTo() method. Like equals(),
compareTo() returns a result based on a the canonical name of the Charset object. The
compareTo() method of Charset ignores case when doing comparisons. If a set of
Charset objects are sorted, they will be ordered by their canonical names, ignoring case.
Again, because the compareTo() method defined in Comparable takes an Object as the
argument type, the one defined here does too. If you pass a non-Charset object to the
compareTo() method you will generate a ClassCastException. compareTo() cannot
compare dissimilar object instances.

Continuing the theme of identifying Charset objects by their canonical names, the
hashCode() method returns the hash code of the String returned by the name() method
(which means that the hash code is case-sensitive). The toString() method of Charset
returns the canonical name. Most of the time, the implementation of the hashCode() and
toString() methods are not of much interest. They are mentioned here because the
Charset class overrides them, which could affect how they behave if used in hash maps
or how they appear in a debugger.

Now that we've covered the simple API methods, let's take a look at character set coders.
This is where the conversion between characters and byte streams is actually done.

6.2.3 Charset Encoders

Charsets are composed of a coded character set and a related encoding scheme. The
CharsetEncoder and CharsetDecoder classes implement the transcoding scheme. (See
Figure 6-1.)

public abstract class Charset implements Comparable
{
 // This is a partial API listing

 public boolean canEncode()
 public abstract CharsetEncoder newEncoder();
 public final ByteBuffer encode (CharBuffer cb)
 public final ByteBuffer encode (String str)
}

The first API method of interest here is canEncode(). This method indicates whether
encoding is allowed by this charset. Nearly all charsets support encoding. The main
exceptions are charsets with decoders that are capable of autodetecting how a byte

 210

sequence was encoded and then selecting an appropriate decoding scheme. These
charsets typically only support decoding and do not create encodings of their own.

The canEncode() method returns true if this Charset object is capable of encoding a
sequence of characters. If false, the other three methods listed above should not be
called on that object. Doing so results in an UnsupportedOperationException.

Calling newEncoder() returns a CharsetEncoder object capable of converting character
sequences to byte sequences using the encoding scheme associated with the charset. We'll
look at the API of the CharsetEncoder class later in this section, but we'll first take a
quick look at the two remaining methods of Charset.

The two encode() methods of Charset are conveniences that perform encodings using
default values for the encoder associated with the charset. Both return new ByteBuffer
objects containing an encoded byte sequence corresponding to the characters of the given
String or CharBuffer. Encoders always operate on CharBuffer objects. The form of
encode() that takes a String argument creates a temporary CharBuffer for you
automatically that is equivalent to this:

charset.encode (CharBuffer.wrap (string));

Invoking encode() on a Charset object uses default settings for the encoder and is
equivalent to the following code:

charset.newEncoder()
 .onMalformedInput (CodingErrorAction.REPLACE)
 .onUnmappableCharacter (CodingErrorAction.REPLACE)
 .encode (charBuffer);

As we'll learn in a later discussion, this runs an encoder that replaces any unrecognized or
invalid input characters with a default byte sequence.

Let's look at the API for CharsetEncoder to more fully understand the process of
character encoding:

package java.nio.charset;

public abstract class CharsetEncoder
{
 public final Charset charset()
 public final float averageBytesPerChar()
 public final float maxBytesPerChar()

 public final CharsetEncoder reset()
 public final ByteBuffer encode (CharBuffer in) throws
 CharacterCodingException
 public final CoderResult encode (CharBuffer in, ByteBuffer out,
 boolean endOfInput)
 public final CoderResult flush (ByteBuffer out)

 211

 public boolean canEncode (char c)
 public boolean canEncode (CharSequence cs)

 public CodingErrorAction malformedInputAction()
 public final CharsetEncoder onMalformedInput (CodingErrorAction
newAction)
 public CodingErrorAction unmappableCharacterAction()
 public final CharsetEncoder onUnmappableCharacter (
 CodingErrorAction newAction)

 public final byte [] replacement()
 public boolean isLegalReplacement (byte[] repl)
 public final CharsetEncoder replaceWith (byte[] newReplacement)
}

A CharsetEncoder object is a stateful transformation engine: characters go in and bytes
come out. Several calls to the encoder may be required to complete a transformation. The
encoder remembers the state of the transformation between calls.

The first group of methods listed here provide immutable information about the
CharsetEncoder object. Every encoder is associated with a Charset object, and the
charset() method returns a back reference.

The averageBytesPerChar() method returns a floating-point value representing the
average number of bytes needed to encode a character of the set. Note that this can be a
fractional value. An encoding algorithm may choose to span byte boundaries when
encoding characters, or some characters may encode into more bytes than others (UTF-8
works in this way). This method is useful as a heuristic to determine the approximate size
of the ByteBuffer needed to contain the encoded bytes of a given sequence of characters.

Finally, the maxBytesPerChar() method indicates the largest number of bytes needed to
encode a single character in the set. This is also a float value. Like
averageBytesPerChar(), this method can be used to size a ByteBuffer. Multiplying the
value returned from maxBytesPerChar() by the number of characters to be encoded will
yield a worst-case output buffer size.

Before we get into the nitty gritty of encoding, a note about the CharsetEncoder API: the
first, simpler form of encode() is a convenience form that does an all-in-one encoding of
the CharBuffer you provide in a newly allocated ByteBuffer. This is the method
ultimately invoked when you call encode() directly on the Charset class.

When using the CharsetEncoder object, you have the option of setting error-handling
preferences before or during encoding. (We'll discuss handling encoding errors later in
this section.) Invoking the single-argument form of encode() performs a complete
encoding cycle (reset, encode, and flush), so any prior internal state of the encoder will be
lost.

Let's look closer at how the encoding process works. The CharsetEncoder class is a
stateful encoding engine. The fact that encoders are stateful implies that they are not

 212

thread-safe; CharsetEncoder objects should not be shared among threads. Encoding can
be done in a single step, as in the first form of encode() described above, or by calling the
second form of encode() repeatedly. The process of encoding occurs as follows:

1. Reset the state of the encoder by calling the reset() method. This prepares the
encoding engine to begin generating an encoded byte stream. A newly created
CharsetEncoder object does not need to be reset, but it doesn't hurt to do so.

2. Invoke encode() zero or more times to supply characters to the encoder, with the
endOfInput argument false to indicate that more characters may follow.
Characters will be consumed from the given CharBuffer, and the encoded byte
sequence will be appended to the provided ByteBuffer.

Upon return, the input CharBuffer may not be fully empty. The output ByteBuffer
may have filled up, or the encoder may require more input to complete a
multicharacter translation. The encoder itself may also be holding state that could
affect how subsequent translations are performed. Compact the input buffer
before refilling it.

3. Call encode() a final time, passing true for the endOfInput argument. The
provided CharBuffer may contain additional characters to be encoded or may be
empty. The important thing is that endOfInput is true on the last invocation.
This lets the encoding engine know that no more input is coming, which allows it
to detect malformed input.

4. Invoke the flush() method to complete any unfinished encoding and output all
remaining bytes. If there is insufficient room in the output ByteBuffer, it may be
necessary to call this method multiple times.

The encode() method returns when it has consumed all the input, when the output
ByteBuffer is full, or when a coding error has been detected. In any case, a CoderResult
object will be returned to indicate what happened. The result object can indicate one of
the following result conditions:

Underflow

This is normal and indicates that more input is required. Either the input
CharBuffer content has been exhausted or, if it's not empty, the remaining
characters cannot be processed without additional input. The position of the
CharBuffer is updated to account for any characters consumed by the encoder.

Fill the CharBuffer with more characters to be encoded (calling compact() on the
buffer first, if nonempty) and call encode() again to continue. If you're finished,
call encode() with the empty CharBuffer and true for endOfInput, then call
flush() to make sure that all bytes have been sent to the ByteBuffer.

 213

An underflow condition always returns the same object instance: a static class
variable named CharsetEncoder.UNDERFLOW. This allows you to use the equality
operator (==) on the returned object handle to test for underflow.

Overflow

This indicates that the encoder has filled the output ByteBuffer and needs to
generate more encoded output. The input CharBuffer object may or may not be
exhausted. This is a normal condition and does not indicate an error. You should
drain the ByteBuffer but not disturb the CharBuffer, which will have had its
position updated, then invoke encode() again. Repeat until you get an underflow
result.

Like underflow, overflow returns a unity instance, CharsetEncoder.OVERFLOW,
which can be used directly in equality comparisons.

Malformed input

When encoding, this usually means that a character contains a 16-bit numeric
value that is not a valid Unicode character. For decode, this means that the
decoder encountered a sequence of bytes it doesn't recognize.

The returned CoderResult instance will not be a singleton reference as it is for
underflow and overflow. See the API of CoderResult in Section 6.2.3.1.

Unmappable character

This indicates that the encoder is unable to map a character or sequence of
characters to bytes — for example, if you're using the ISO-8859-1 encoding but
your input CharBuffer contains non-Latin Unicode characters. For decode, the
decoder understands the input byte sequence but does not know how to create
corresponding characters.

While encoding, the encoder returns result objects if it encounters malformed or
unmappable input. You can also test individual characters, or sequences of characters, to
determine if they can be encoded. Here are the methods for testing whether encoding is
possible:

package java.nio.charset;

public abstract class CharsetEncoder
{
 // This is a partial API listing

 public boolean canEncode (char c)
 public boolean canEncode (CharSequence cs)
}

 214

The two forms of canEncode() return a boolean result indicating whether the encoder is
capable of encoding the given input. Both methods perform an encoding of the input into
a temporary buffer. This will cause changes to the encoder's internal state, so these
methods should not be called while the encoding process is underway. Use these methods
to check your input prior to starting the encoding process.

The second form of canEncode() takes an argument of type CharSequence, which was
introduced in Chapter 5. Any object that implements CharSequence (currently
CharBuffer, String, or StringBuffer) can be passed to canEncode().

The remaining methods of CharsetEncoder are involved with handling encoding errors:

public abstract class CharsetEncoder
{
 // This is a partial API listing

 public CodingErrorAction malformedInputAction()
 public final CharsetEncoder onMalformedInput (CodingErrorAction
newAction)

 public CodingErrorAction unmappableCharacterAction()
 public final CharsetEncoder onUnmappableCharacter (
 CodingErrorAction newAction)

 public final byte [] replacement()
 public boolean isLegalReplacement (byte[] repl)
 public final CharsetEncoder replaceWith (byte[] newReplacement)
}

As mentioned earlier, a CoderResult object can be returned from encode() indicating
problems with encoding a character sequence. There are two defined coding-error
conditions: malformed and unmappable. An encoder instance can be configured to take
different actions on each of these error conditions. The CodingErrorAction class
encapsulates the possible actions to take when one of these conditions occurs.
CodingErrorAction is a trivial class with no useful methods. It's a simple, type-safe
enumeration that contains static, named instances of itself. The CodingErrorAction class
defines three public fields:

REPORT

The default action when a CharsetEncoder is created. This action indicates that
coding errors should be reported by returning a CoderResult object, as described
earlier.

IGNORE

Indicates that coding errors should be ignored and any erroneous input dropped as
if it wasn't there.

 215

REPLACE

Handles coding errors by dropping the erroneous input and outputting the
replacement byte sequence currently defined for this CharsetEncoder.

Now that we know the possible error actions, how to use the first four methods in the
previous API listing should be fairly obvious. The malformedInputAction() method
returns the action in effect for malformed input. Calling onMalformedInput() sets the
CodingErrorAction value to be used from then on. A similar pair of methods for
unmappable characters sets error actions and returns the CharsetEncoder object handle.
By returning the CharsetEncoder, these methods allow invocation chaining. For
example:

CharsetEncoder encoder = charset.newEncoder()
 .onMalformedInput (CodingErrorAction.REPLACE)
 .onUnmappableCharacter (CodingErrorAction.IGNORE);

The final group of methods on CharsetEncoder deal with managing the replacement
sequence to be used when the action is CodingErrorAction.REPLACE.

The current replacement byte sequence can be retrieved by calling the replacement()
method. If you haven't set your own replacement sequence, this will return the default.

You can test the legality of a replacement sequence by calling the isLegalReplacement()
method with the byte array you'd like to use. The replacement byte sequence must be a
valid encoding for the charset. Remember, character set encoding transforms characters
into byte sequences for later decoding. If the replacement sequence cannot be decoded
into a valid character sequence, the encoded byte sequence becomes invalid.

Finally, you can set a new replacement sequence by calling replaceWith() and passing in
a byte array. The given byte sequence will be output when a coding error occurs and the
corresponding error action is set to CodingErrorAction.REPLACE. The byte sequence in
the array must be a legal replacement value; java.lang.IllegalArgumentException will be
thrown if it is not. The return value is the CharsetEncoder object itself.

6.2.3.1 The CoderResult class

Let's take a look at the CoderResult class mentioned earlier. CoderResult objects are
returned by CharsetEncoder and CharsetDecoder objects:

package java.nio.charset;

public class CoderResult {
 public static final CoderResult OVERFLOW
 public static final CoderResult UNDERFLOW

 public boolean isUnderflow()
 public boolean isOverflow()
 public boolean isError()

 216

 public boolean isMalformed()
 public boolean isUnmappable()

 public int length()

 public static CoderResult malformedForLength (int length)
 public static CoderResult unmappableForLength (int length)
 public void throwException() throws CharacterCodingException
}

As mentioned earlier, unity instances of CoderResult are returned for every underflow
and overflow condition. You can see these defined above as public static fields in the
CoderResult class. These instances can make it easier to test for the common cases. You
can directly compare a CoderResult object against these public fields using the ==
operator (see Example 6-2). Regardless of which CoderResult object you have, you can
always use the API to determine the meaning of the returned result.

The first two methods, isUnderflow() and isOverflow(), are not considered errors. If
either of these methods return true, then no further information can be obtained from the
CoderResult object. The CoderResult.UNDERFLOW instance always returns true for
isUnderflow(), and CoderResult.OVERFLOW always returns true for isOverflow().

The other two boolean functions, isMalformed() and isUnmappable(), are error
conditions. The isError() method is a convenience method that returns true if either of
these methods would return true.

If the CoderResult instance represents an error condition, the length() method tells you
the length of the erroneous input sequence. For normal underflow/overflow conditions,
there is no associated length (which is why a single instance can be shared). If you invoke
length() on an instance of CoderResult that doesn't represent an error (isError() returns
false), it throws the unchecked java.lang.UnsupportedOperation-Exception, so be
careful. For instances with a length, the input CharBuffer would have been positioned to
the first erroneous character.

The CoderResult class also includes three convenience methods to make life easier for
developers of custom encoders and decoders (which you'll see how to do in Section 6.3).
The CoderResult constructor is private: you can't instantiate it directly or subclass it to
make your own. We've already seen that CoderResult instances representing overflow
and underflow are singletons. For instances representing errors, the only unique bit of
information they contain is the value returned by length(). The two factory methods
malformedForLength() and unmappableForLength() return an instance of CoderResult
returns true from isMalformed() or isUnmappable(), respectively, and whose length()
method returns the value you provide. These factory methods always return the same
CoderResult instance for a given length.

In some contexts, it's more appropriate to throw an exception than to pass along a
CoderResult object. For example, the all-in-one encode() method of the CharsetEncoder
class throws an exception if it encounters a coding error. The throwException() method is

 217

a convenience that throws an appropriate subclass of CharacterCodingException, as
summarized in Table 6-3.

Table 6-3. Exceptions thrown by CoderResult.throwException()
Result type Exception

isUnderflow() BufferUnderflowException
isOverflow() BufferOverflowException
isMalformed() MalformedInputException
isUnmappable() UnmappableCharacterException

6.2.4 Charset Decoders

A charset decoder is the inverse of an encoder. It transforms a sequence of bytes encoded
by a particular encoding scheme into a sequence of 16-bit Unicode characters. Like
CharsetEncoder, CharsetDecoder is a stateful transformation engine. Neither is
thread-safe because state is remembered across calls to their methods.

package java.nio.charset;

public abstract class CharsetDecoder
{
 public final Charset charset()
 public final float averageCharsPerByte()
 public final float maxCharsPerByte()

 public boolean isAutoDetecting()
 public boolean isCharsetDetected()
 public Charset detectedCharset()

 public final CharsetDecoder reset()
 public final CharBuffer decode (ByteBuffer in)
 throws CharacterCodingException
 public final CoderResult decode (ByteBuffer in, CharBuffer out,
 boolean endOfInput)
 public final CoderResult flush (CharBuffer out)

 public CodingErrorAction malformedInputAction()
 public final CharsetDecoder onMalformedInput (CodingErrorAction
newAction)
 public CodingErrorAction unmappableCharacterAction()
 public final CharsetDecoder onUnmappableCharacter (
 CodingErrorAction newAction)

 public final String replacement()
 public final CharsetDecoder replaceWith (String newReplacement)
}

As you can see, the API of CharsetDecoder is nearly a mirror image of CharsetEncoder.
In this section, we'll concentrate on the differences, proceeding with the assumption that
you've already read Section 6.2.3.

 218

The first group of methods in the previous listing is self-evident. The associated Charset
object can be obtained by calling charset(). The average and maximum number of
characters decoded from each byte in this encoding are returned by
averageCharsPerByte() and maxCharsPerByte(), respectively. These values can be used
to size a CharBuffer object to receive decoded characters.

The CharsetDecoder class has its own set of methods that are unique to it. In the previous
listing, these methods have to do with charset autodetection. The first method,
isAutoDetecting(), returns a boolean value indicating whether this decoder is capable of
autodetecting the encoding scheme used by an encoded byte sequence.

If isAutoDetecting() returns true, then the two methods following it in the previous
listing are meaningful. The isCharsetDetected() method will return true if the decoder
has read enough bytes from the input byte sequence to determine the type of encoding
used. This method is useful only when the decoding process has begun (because it must
read some of the bytes and examine them). Following a call to reset(), it will always
return false. This method is optional and meaningful only for autodetecting charsets.
The default implementation always throws a java.lang.UnsupportedOperationException.

If a charset has been detected (indicated by isCharsetDetected() returning true), then a
Charset object representing that charset can be obtained by calling detectedCharset().
You shouldn't call this method unless you know that a charset has actually been detected.
If the decoder has not yet read enough input to determine the charset represented by the
encoding, a java.lang.IllegalStateException will be thrown. The detectedCharset()
method is also optional and will throw the same
java.lang.UnsupportedOperationException if the charset is not autodetecting. Use
isAutoDetecting() and isCharsetDetected() sensibly, and you shouldn't have any problem.

Now, let's turn to the methods that actually do the decoding:

package java.nio.charset;

public abstract class CharsetDecoder
{
 // This is a partial API listing

 public final CharsetDecoder reset()
 public final CharBuffer decode (ByteBuffer in)
 throws CharacterCodingException
 public final CoderResult decode (ByteBuffer in, CharBuffer out,
 boolean endOfInput)
 public final CoderResult flush (CharBuffer out)
}

The decoding process is similar to encoding. It includes the same basic steps:

1. Reset the decoder, by invoking reset(), to place the decoder in a known state
ready to accept input.

 219

2. Invoke decode() zero or more times with endOfInput set to false to feed bytes
into the decoding engine. Characters will be added to the given CharBuffer as
decoding progresses.

3. Invoke decode() one time with endOfInput set to true to let the decoder know
that all input has been provided.

4. Call flush() to ensure that all decoded characters have been sent to the output.

This is essentially the same process as for encoding (refer to Section 6.2.3 for more
details). The decode() method also returns CoderResult objects to indicate what happened.
The meaning of these result objects is identical to those returned by
CharsetEncoder.encode(). Input and output buffers should be managed in the same way
as for encoding when underflow or overflow indications are returned.

And now, the methods for handling errors:

package java.nio.charset;

public abstract class CharsetDecoder
{
 // This is a partial API listing

 public CodingErrorAction malformedInputAction()
 public final CharsetDecoder onMalformedInput (CodingErrorAction
newAction)
 public CodingErrorAction unmappableCharacterAction()
 public final CharsetDecoder onUnmappableCharacter (
 CodingErrorAction newAction)

 public final String replacement()
 public final CharsetDecoder replaceWith (String newReplacement)
}

The API methods dealing with replacement sequences operate on Strings rather than on
byte arrays. When decoding, byte sequences are converted to character sequences, so the
replacement sequence for a decode operation is specified as a String containing
characters to be inserted in the output CharBuffer on an error condition. Note that there is
no isLegalReplacement() method to test the replacement sequence. Any string you can
construct is a legal replacement sequence, unless it's longer than the value returned by
maxCharsPerByte(). Invoking replaceWith() with a string that's too long will result in a
java.lang.IllegalArgumentException.

This section is intentionally terse. For more detailed information, flip back a few pages to
Section 6.2.3.

Example 6-2 illustrates how to decode a stream of bytes representing a character set
encoding.

Example 6-2. Charset decoding

 220

package com.ronsoft.books.nio.charset;

import java.nio.*;
import java.nio.charset.*;
import java.nio.channels.*;
import java.io.*;

/**
 * Test charset decoding.
 * @author Ron Hitchens (ron@ronsoft.com)
 */
public class CharsetDecode
{
 /**
 * Test charset decoding in the general case, detecting and handling
 * buffer under/overflow and flushing the decoder state at end of
 * input.
 * This code reads from stdin and decodes the ASCII-encoded byte
 * stream to chars. The decoded chars are written to stdout. This
 * is effectively a 'cat' for input ascii files, but another charset
 * encoding could be used by simply specifying it on the command line.
 */
 public static void main (String [] argv)
 throws IOException
 {
 // Default charset is standard ASCII
 String charsetName = "ISO-8859-1";

 // Charset name can be specified on the command line
 if (argv.length > 0) {
 charsetName = argv [0];
 }

 // Wrap a Channel around stdin, wrap a channel around stdout,
 // find the named Charset and pass them to the decode method.
 // If the named charset is not valid, an exception of type
 // UnsupportedCharsetException will be thrown.
 decodeChannel (Channels.newChannel (System.in),
 new OutputStreamWriter (System.out),
 Charset.forName (charsetName));
 }

 /**
 * General purpose static method which reads bytes from a Channel,
 * decodes them according
 * @param source A ReadableByteChannel object which will be read to
 * EOF as a source of encoded bytes.
 * @param writer A Writer object to which decoded chars will be written.
 * @param charset A Charset object, whose CharsetDecoder will be used
 * to do the character set decoding.
 */
 public static void decodeChannel (ReadableByteChannel source,
 Writer writer, Charset charset)
 throws UnsupportedCharsetException, IOException
 {
 // Get a decoder instance from the Charset
 CharsetDecoder decoder = charset.newDecoder();

 221

 // Tell decoder to replace bad chars with default mark
 decoder.onMalformedInput (CodingErrorAction.REPLACE);
 decoder.onUnmappableCharacter (CodingErrorAction.REPLACE);

 // Allocate radically different input and output buffer sizes
 // for testing purposes
 ByteBuffer bb = ByteBuffer.allocateDirect (16 * 1024);
 CharBuffer cb = CharBuffer.allocate (57);

 // Buffer starts empty; indicate input is needed
 CoderResult result = CoderResult.UNDERFLOW;
 boolean eof = false;

 while (! eof) {
 // Input buffer underflow; decoder wants more input
 if (result == CoderResult.UNDERFLOW) {
 // decoder consumed all input, prepare to refill
 bb.clear();

 // Fill the input buffer; watch for EOF
 eof = (source.read (bb) == -1);

 // Prepare the buffer for reading by decoder
 bb.flip();
 }

 // Decode input bytes to output chars; pass EOF flag
 result = decoder.decode (bb, cb, eof);

 // If output buffer is full, drain output
 if (result == CoderResult.OVERFLOW) {
 drainCharBuf (cb, writer);
 }
 }

 // Flush any remaining state from the decoder, being careful
 // to detect output buffer overflow(s)
 while (decoder.flush (cb) == CoderResult.OVERFLOW) {
 drainCharBuf (cb, writer);
 }

 // Drain any chars remaining in the output buffer
 drainCharBuf (cb, writer);

 // Close the channel; push out any buffered data to stdout
 source.close();
 writer.flush();
 }

 /**
 * Helper method to drain the char buffer and write its content to
 * the given Writer object. Upon return, the buffer is empty and
 * ready to be refilled.
 * @param cb A CharBuffer containing chars to be written.
 * @param writer A Writer object to consume the chars in cb.
 */

 222

 static void drainCharBuf (CharBuffer cb, Writer writer)
 throws IOException
 {
 cb.flip(); // Prepare buffer for draining

 // This writes the chars contained in the CharBuffer but
 // doesn't actually modify the state of the buffer.
 // If the char buffer was being drained by calls to get(),
 // a loop might be needed here.
 if (cb.hasRemaining()) {
 writer.write (cb.toString());
 }

 cb.clear(); // Prepare buffer to be filled again
 }
}

That pretty much wraps up charsets and their related encoders and decoders. The next
section will cover the Charset SPI.

6.3 The Charset Service Provider Interface

The Charset SPI provides a mechanism for developers to add new Charset
implementations to the running JVM environment. If you have a need to create your own
charsets, or port a charset not provided on the JVM platform you're using, the charset SPI
is what you'll use.

The pluggable SPI architecture is used throughout the Java environment in many
different contexts. There are eight packages in the 1.4 JDK named spi and several others
that go by other names. Pluggability is a powerful design technique, one of the
cornerstones upon which Java's portability and adaptability are built.

Charsets are formally defined by the IANA, and standardized charsets are registered there.
Charset handling in Java as of 1.4 is based solidly upon the conventions and standards
promulgated by the IANA. The IANA not only registers names, but also has rules about
the structure and content of those names (RFC 2278). If you create new Charset
implementations, you should follow the conventions for charset names. The Charset class
enforces the same rules. For example, the name of a charset must be composed from the
set of characters listed in Table 6-4, and the first character must be a letter or a digit.

Table 6-4. Legal characters for charset names
Character(s) Unicode value(s) RFC 2278 name

A-Z \u0041-\u005a
a-z \u0061-\u007a
0-9 \u0030-\u0039
- (dash) \u002d HYPHEN-MINUS
. (period) \u002e FULLSTOP
: (colon) \u003a COLON

 223

_ (underscore) \u005f LOWLINE

Before looking at the API, a little explanation of how the Charset SPI works is needed.
The java.nio.charset.spi package contains only one abstract class, CharsetProvider.
Concrete implementations of this class supply information about Charset objects they
provide. To define a custom charset, you must first create concrete implementations of
Charset, CharsetEncoder, and CharsetDecoder from the java.nio.charset package.
You then create a custom subclass of CharsetProvider, which will provide those classes
to the JVM.

A complete sample implementation of a custom charset and provider is listed in Section
6.3.2.

6.3.1 Creating Custom Charsets

Before looking at the one and only class in the java.nio.charset.spi package, let's
linger a bit longer in java.nio.charset and discuss what's needed to implement a
custom charset. You need to create a Charset object before you can make it available in a
running JVM. Let's take another look at the Charset API, adding the constructor and
noting the abstract methods:

package java.nio.charset;

public abstract class Charset implements Comparable
{
 protected Charset (String canonicalName, String [] aliases)

 public static SortedMap availableCharsets()
 public static boolean isSupported (String charsetName)
 public static Charset forName (String charsetName)

 public final String name()
 public final Set aliases()
 public String displayName()
 public String displayName (Locale locale)

 public final boolean isRegistered()

 public boolean canEncode()
 public abstract CharsetEncoder newEncoder();
 public final ByteBuffer encode (CharBuffer cb)
 public final ByteBuffer encode (String str)

 public abstract CharsetDecoder newDecoder();
 public final CharBuffer decode (ByteBuffer bb)

 public abstract boolean contains (Charset cs);
 public final boolean equals (Object ob)
 public final int compareTo (Object ob)

 public final int hashCode()
 public final String toString()

 224

}

The minimum you'll need to do is create a subclass of java.nio.charset.Charset and
provide concrete implementations of the three abstract methods and a constructor. The
Charset class does not have a default, no-argument constructor. This means that your
custom charset class must have a constructor, even if it doesn't take arguments. This is
because you must invoke Charset's constructor at instantiation time (by calling super() at
the beginning of your constructor) to provide it with your charset's canonical name and
aliases. Doing this lets methods in the Charset class handle the name-related stuff for you,
so it's a good thing.

Two of the three abstract methods are simple factories by which your custom encoder and
decoder classes will be obtained. You'll also need to implement the boolean method
contains(), but you can punt this by always returning false, which indicates that you
don't know if your charset contains the given charset. All the other Charset methods have
default implementations that will work in most cases. If your charset has special needs,
override the default methods as appropriate.

You'll also need to provide concrete implementations of CharsetEncoder and
Charset-Decoder. Recall that a charset is a set of coded characters and an encode/decode
scheme. As we've seen in previous sections, encoding and decoding are nearly
symmetrical at the API level. A brief discussion of what's needed to implement an
encoder is given here; the same applies to building a decoder. This is the listing for the
CharsetEncoder class, with its constructors and protected and abstract methods added:

package java.nio.charset;

public abstract class CharsetEncoder
{
 protected CharsetEncoder (Charset cs,
 float averageBytesPerChar, float maxBytesPerChar)

 protected CharsetEncoder (Charset cs,
 float averageBytesPerChar, float maxBytesPerChar,
 byte [] replacement)

 public final Charset charset()
 public final float averageBytesPerChar()
 public final float maxBytesPerChar()

 public final CharsetEncoder reset()
 protected void implReset()
 public final ByteBuffer encode (CharBuffer in)
 throws CharacterCodingException
 public final CoderResult encode (CharBuffer in, ByteBuffer out,
 boolean endOfInput)
 public final CoderResult flush (ByteBuffer out)
 protected CoderResult implFlush(ByteBuffer out)

 public boolean canEncode (char c)
 public boolean canEncode (CharSequence cs)

 225

 public CodingErrorAction malformedInputAction()
 public final CharsetEncoder onMalformedInput (CodingErrorAction
newAction)
 protected void implOnMalformedInput (CodingErrorAction newAction)

 public CodingErrorAction unmappableCharacterAction()
 public final CharsetEncoder onUnmappableCharacter (
 CodingErrorAction newAction)
 protected void implOnUnmappableCharacter (CodingErrorAction
newAction)

 public final byte [] replacement()
 public boolean isLegalReplacement (byte[] repl)
 public final CharsetEncoder replaceWith (byte[] newReplacement)
 protected void implReplaceWith (byte[] newReplacement)

 protected abstract CoderResult encodeLoop (CharBuffer in,
 ByteBuffer out);
}

Like Charset, CharsetEncoder does not have a default constructor, so you'll need to call
super() in your concrete class constructor to provide the needed parameters.

Take a look at the last method first. To provide your own CharsetEncoder
implementation, the minimum you need to do is provide a concrete encodeLoop() method.
For a simple encoding algorithm, the default implementations of the other methods
should work fine. Note that encodeLoop() takes arguments similar to encode()'s,
excluding the boolean flag. The encode() method delegates the actual encoding to
encodeLoop(), which only needs to be concerned about consuming characters from the
CharBuffer argument and outputting the encoded bytes to the provided ByteBuffer.

The main encode() method takes care of remembering state across invocations and
handling coding errors. Like encode(), the encodeLoop() method returns CoderResult
objects to indicate what happened while processing the buffers. If your encodeLoop() fills
the output ByteBuffer, it should return CoderResult.OVERFLOW. If the input CharBuffer
is exhausted, CoderResult.UNDERFLOW should be returned. If your encoder requires
more input than what is in the input buffer to make a coding decision, you can perform a
look-ahead by returning UNDERFLOW until sufficient input is present in the CharBuffer to
continue.

The remaining protected methods listed above — those beginning with impl — are status
change callback hooks that notify the implementation (your code) when changes are
made to the state of the encoder. The default implementations of all these methods are
stubs that do nothing. For example, if you maintain additional state in your encoder, you
may need to know when the encoder is being reset. You can't override the reset() method
itself becase it's declared as final. The implReset() method is provided to call you when
reset() is invoked on CharsetEncoder to let you know what happened in a cleanly
decoupled way. The other impl classes play the same role for the other events of interest.

 226

For reference, this is the equivalent API listing for CharsetDecoder:

package java.nio.charset;

public abstract class CharsetDecoder
{
 protected CharsetDecoder (Charset cs, float averageCharsPerByte,
 float maxCharsPerByte)

 public final Charset charset()
 public final float averageCharsPerByte()
 public final float maxCharsPerByte()

 public boolean isAutoDetecting()
 public boolean isCharsetDetected()
 public Charset detectedCharset()

 public final CharsetDecoder reset()
 protected void implReset()
 public final CharBuffer decode (ByteBuffer in)
 throws CharacterCodingException
 public final CoderResult decode (ByteBuffer in, CharBuffer out,
 boolean endOfInput)
 public final CoderResult flush (CharBuffer out)
 protected CoderResult implFlush (CharBuffer out)

 public CodingErrorAction malformedInputAction()
 public final CharsetDecoder onMalformedInput (CodingErrorAction
newAction)
 protected void implOnMalformedInput (CodingErrorAction newAction)

 public CodingErrorAction unmappableCharacterAction()
 public final CharsetDecoder onUnmappableCharacter (
 CodingErrorAction newAction)
 protected void implOnUnmappableCharacter (CodingErrorAction
newAction)

 public final String replacement()
 public final CharsetDecoder replaceWith (String newReplacement)
 protected void implReplaceWith (String newReplacement)

 protected abstract CoderResult decodeLoop (ByteBuffer in, CharBuffer
out);
}

Now that we've seen how to implement custom charsets, including the associated
encoders and decoders, let's see how to hook them into the JVM so that running code can
make use of them.

6.3.2 Providing Your Custom Charsets

To provide your own Charset implementation to the JVM runtime environment, you
must create a concrete subclass of the CharsetProvider class in java.nio.charsets.spi,
one with a no-argument constructor. The no-argument constructor is important because

 227

your CharsetProvider class will be located by reading its fully qualified name from a
configuration file. This class name string will then be passed to Class.newInstance() to
instantiate your provider, which works only for objects with no-argument constructors.

The configuration file read by the JVM to locate charset providers is named
java.nio.charset.spi.CharsetProvider. It is located in a resource directory
(META-INF/services) in the JVM classpath. Every Java Archive (JAR) file has a
META-INF directory that can contain information about the classes and resources in that
JAR. A directory named META-INF can be placed at the top of a regular directory
hierarchy in the JVM classpath as well.

Each file in the META-INF/services directory has the name of a fully qualified service
provider class. The content of each file is a list of fully qualified class names that are
concrete implementations of that class (so each of the classes named within a file must be
an instanceof the class represented by the name of the file). See the JAR specification
at http://java.sun.com/j2se/1.4/docs/guide/jar/jar.html for full details.

If a META-INF/services directory exists when a classpath component (either a JAR or a
directory) is first examined by the class loader, then each of the files that it contains will
be processed. Each is read and all the classes listed are instantiated and registered as
service providers for the class identified by the name of the file. By placing the fully
qualified name of your CharsetProvider class in a file named
java.nio.charset.spi.CharsetProvider, you are registering it as a provider of charsets.

The format of the configuration file is a simple list of fully qualified class names, one per
line. The comment character is the hash sign (#, \u0023). The file must be encoded in
UTF-8 (standard text file). The classes named in this services list do not need to reside in
the same JAR, but the classes must be visible to the same context class loader (i.e., be in
the same classpath). If the same CharsetProvider class is named in more than one
services file, or more than once in the same file, it will be added only once as a service
provider.

This mechanism makes it easy to install a new CharsetProvider and the Charset
implementation(s) it provides. The JAR containing your charset implementation, and the
services file naming it, only needs to be in the classpath of the JVM. You can also install
it as an extension to your JVM by placing a JAR in the defined extension directory for
your operating system (jre/lib/ext in most cases). Your custom charset would then be
available every time the JVM runs.

There is no specified API mechanism to add new charsets to the JVM programmatically.
Individual JVM implementations can provide an API, but JDK 1.4 does not provide a
means to do so.

Now that we know how the CharsetProvider class is used to add charsets, let's look at the
code. The API of CharsetProvider is almost trivial. The real work of providing custom
charsets is in creating your custom Charset, CharsetEncoder, and CharsetDecoder

http://java.sun.com/j2se/1.4/docs/guide/jar/jar.html

 228

classes. CharsetProvider is merely a facilitator that connects your charset to the runtime
environment.

package java.nio.charset.spi;

public abstract class CharsetProvider
{
 protected CharsetProvider() throws SecurityException

 public abstract Iterator charsets();
 public abstract Charset charsetForName (String charsetName);
}

Note the protected constructor. CharsetProvider should not be instantiated directly by
your code. CharsetProvider objects will be instantiated by the low-level service provider
facility. Define a default constructor in your CharsetProvider class if you need to set up
the charsets your provider will make available. This could involve loading charset
mapping information from an external resource, algorithmically generating translation
maps, etc. Also note that the constructor for CharsetProvider can throw a
java.lang.SecurityException.

Instantiation of CharsetProvider objects is checked by the SecurityManager (if one is
installed). The security manager must allow
java.lang.RuntimePermission("charset-Provider"), or no new charset providers can
be installed. Charsets can be involved in security-sensitive operations, such as encoding
URLs and other data content. The potential for mischief is significant. You may want to
install a security manager that disallows new charsets if there is a potential for untrusted
code running within your application. You may also want to examine untrusted JARs to
see if they contain service configuration files under META-INF/service to install custom
charset providers (or custom service providers of any sort).

The two methods defined on CharsetProvider are called by consumers of the Charset
implementations you're providing. In most cases, your provider will be called by the
static methods of the Charset class to discover information about available charsets, but
other classes can call these methods as well.

The charsets() method is called to obtain a list of the Charset classes your provider class
makes available. It should return a java.util.Iterator, enumerating references to the
provided Charset instances. The map returned by the Charset.availableCharsets()
method is an aggregate of invoking the charsets() method on each currently installed
CharsetProvider instance.

The other method, charsetForName(), is called to map a charset name, either canonical or
an alias, to a Charset object. This method should return null if your provider does not
provide a charset by the requested name.

That's all there is to it. You now have all the necessary tools to create your own custom
charsets and their associated encoders and decoders, and to plug them into a live, running

 229

JVM. Implementation of a custom Charset and CharsetProvider is presented in Example
6-3, which contains sample code illustrating the use of character sets, encoding and
decoding, and the Charset SPI. Example 6-3 implements a custom Charset.

Example 6-3. The custom Rot13 charset

package com.ronsoft.books.nio.charset;

import java.nio.CharBuffer;
import java.nio.ByteBuffer;
import java.nio.charset.Charset;
import java.nio.charset.CharsetEncoder;
import java.nio.charset.CharsetDecoder;
import java.nio.charset.CoderResult;
import java.util.Map;
import java.util.Iterator;
import java.io.Writer;
import java.io.PrintStream;
import java.io.PrintWriter;
import java.io.OutputStreamWriter;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.FileReader;

/**
 * A Charset implementation which performs Rot13 encoding. Rot-13 encoding
 * is a simple text obfuscation algorithm which shifts alphabetical
characters
 * by 13 so that 'a' becomes 'n', 'o' becomes 'b', etc. This algorithm
 * was popularized by the Usenet discussion forums many years ago to mask
 * naughty words, hide answers to questions, and so on. The Rot13 algorithm
 * is symmetrical, applying it to text that has been scrambled by Rot13 will
 * give you the original unscrambled text.
 *
 * Applying this Charset encoding to an output stream will cause everything
 * you write to that stream to be Rot13 scrambled as it's written out. And
 * appying it to an input stream causes data read to be Rot13 descrambled
 * as it's read.
 *
 * @author Ron Hitchens (ron@ronsoft.com)
 */
public class Rot13Charset extends Charset
{
 // the name of the base charset encoding we delegate to
 private static final String BASE_CHARSET_NAME = "UTF-8";

 // Handle to the real charset we'll use for transcoding between
 // characters and bytes. Doing this allows us to apply the Rot13
 // algorithm to multibyte charset encodings. But only the
 // ASCII alpha chars will be rotated, regardless of the base encoding.
 Charset baseCharset;

 /**
 * Constructor for the Rot13 charset. Call the superclass
 * constructor to pass along the name(s) we'll be known by.
 * Then save a reference to the delegate Charset.

 230

 */
 protected Rot13Charset (String canonical, String [] aliases)
 {
 super (canonical, aliases);

 // Save the base charset we're delegating to
 baseCharset = Charset.forName (BASE_CHARSET_NAME);
 }

 // --

 /**
 * Called by users of this Charset to obtain an encoder.
 * This implementation instantiates an instance of a private class
 * (defined below) and passes it an encoder from the base Charset.
 */
 public CharsetEncoder newEncoder()
 {
 return new Rot13Encoder (this, baseCharset.newEncoder());
 }

 /**
 * Called by users of this Charset to obtain a decoder.
 * This implementation instantiates an instance of a private class
 * (defined below) and passes it a decoder from the base Charset.
 */
 public CharsetDecoder newDecoder()
 {
 return new Rot13Decoder (this, baseCharset.newDecoder());
 }

 /**
 * This method must be implemented by concrete Charsets. We always
 * say no, which is safe.
 */
 public boolean contains (Charset cs)
 {
 return (false);
 }

 /**
 * Common routine to rotate all the ASCII alpha chars in the given
 * CharBuffer by 13. Note that this code explicitly compares for
 * upper and lower case ASCII chars rather than using the methods
 * Character.isLowerCase and Character.isUpperCase. This is because
 * the rotate-by-13 scheme only works properly for the alphabetic
 * characters of the ASCII charset and those methods can return
 * true for non-ASCII Unicode chars.
 */
 private void rot13 (CharBuffer cb)
 {
 for (int pos = cb.position(); pos < cb.limit(); pos++) {
 char c = cb.get (pos);
 char a = '\u0000';

 // Is it lowercase alpha?
 if ((c >= 'a') && (c <= 'z')) {

 231

 a = 'a';
 }

 // Is it uppercase alpha?
 if ((c >= 'A') && (c <= 'Z')) {
 a = 'A';
 }

 // If either, roll it by 13
 if (a != '\u0000') {
 c = (char)((((c - a) + 13) % 26) + a);
 cb.put (pos, c);
 }
 }
 }

 // --

 /**
 * The encoder implementation for the Rot13 Charset.
 * This class, and the matching decoder class below, should also
 * override the "impl" methods, such as implOnMalformedInput() and
 * make passthrough calls to the baseEncoder object. That is left
 * as an exercise for the hacker.
 */
 private class Rot13Encoder extends CharsetEncoder
 {
 private CharsetEncoder baseEncoder;

 /**
 * Constructor, call the superclass constructor with the
 * Charset object and the encodings sizes from the
 * delegate encoder.
 */
 Rot13Encoder (Charset cs, CharsetEncoder baseEncoder)
 {
 super (cs, baseEncoder.averageBytesPerChar(),
 baseEncoder.maxBytesPerChar());

 this.baseEncoder = baseEncoder;
 }

 /**
 * Implementation of the encoding loop. First, we apply
 * the Rot13 scrambling algorithm to the CharBuffer, then
 * reset the encoder for the base Charset and call it's
 * encode() method to do the actual encoding. This may not
 * work properly for non-Latin charsets. The CharBuffer
 * passed in may be read-only or re-used by the caller for
 * other purposes so we duplicate it and apply the Rot13
 * encoding to the copy. We DO want to advance the position
 * of the input buffer to reflect the chars consumed.
 */
 protected CoderResult encodeLoop (CharBuffer cb, ByteBuffer bb)
 {
 CharBuffer tmpcb = CharBuffer.allocate (cb.remaining());

 232

 while (cb.hasRemaining()) {
 tmpcb.put (cb.get());
 }

 tmpcb.rewind();

 rot13 (tmpcb);

 baseEncoder.reset();

 CoderResult cr = baseEncoder.encode (tmpcb, bb, true);

 // If error or output overflow, we need to adjust
 // the position of the input buffer to match what
 // was really consumed from the temp buffer. If
 // underflow (all input consumed), this is a no-op.
 cb.position (cb.position() - tmpcb.remaining());

 return (cr);
 }
 }

 // --

 /**
 * The decoder implementation for the Rot13 Charset.
 */
 private class Rot13Decoder extends CharsetDecoder
 {
 private CharsetDecoder baseDecoder;

 /**
 * Constructor, call the superclass constructor with the
 * Charset object and pass alon the chars/byte values
 * from the delegate decoder.
 */
 Rot13Decoder (Charset cs, CharsetDecoder baseDecoder)
 {
 super (cs, baseDecoder.averageCharsPerByte(),
 baseDecoder.maxCharsPerByte());

 this.baseDecoder = baseDecoder;
 }

 /**
 * Implementation of the decoding loop. First, we reset
 * the decoder for the base charset, then call it to decode
 * the bytes into characters, saving the result code. The
 * CharBuffer is then de-scrambled with the Rot13 algorithm
 * and the result code is returned. This may not
 * work properly for non-Latin charsets.
 */
 protected CoderResult decodeLoop (ByteBuffer bb, CharBuffer cb)
 {
 baseDecoder.reset();

 CoderResult result = baseDecoder.decode (bb, cb, true);

 233

 rot13 (cb);

 return (result);
 }
 }

 // --

 /**
 * Unit test for the Rot13 Charset. This main() will open and read
 * an input file if named on the command line, or stdin if no args
 * are provided, and write the contents to stdout via the X-ROT13
 * charset encoding.
 * The "encryption" implemented by the Rot13 algorithm is

* symmetrical. Feeding in a plain-text file, such as Java source
* code for example, will output a scrambled version. Feeding the
* scrambled version back in will yield the original plain-text
* document.

 */
 public static void main (String [] argv)
 throws Exception
 {
 BufferedReader in;

 if (argv.length > 0) {
 // Open the named file
 in = new BufferedReader (new FileReader (argv [0]));
 } else {
 // Wrap a BufferedReader around stdin
 in = new BufferedReader (new InputStreamReader (System.in));
 }

 // Create a PrintStream that uses the Rot13 encoding
 PrintStream out =

new PrintStream (System.out, false, "X-ROT13");

 String s = null;

 // Read all input and write it to the output.
 // As the data passes through the PrintStream,
 // it will be Rot13-encoded.
 while ((s = in.readLine()) != null) {
 out.println (s);
 }

 out.flush();
 }
}

To use this Charset and its encoder and decoder, it must be made available to the Java
runtime environment. This is done with the CharsetProvider class (Example 6-4).

Example 6-4. Custom charset provider

 234

package com.ronsoft.books.nio.charset;

import java.nio.charset.Charset;
import java.nio.charset.spi.CharsetProvider;
import java.util.Set;
import java.util.HashSet;
import java.util.Iterator;

/**
 * A CharsetProvider class which makes available the charsets
 * provided by Ronsoft. Currently there is only one, namely the
* X-ROT13 charset. This is not a registered IANA charset, so it's
 * name begins with "X-" to avoid name clashes with offical charsets.
 *
 * To activate this CharsetProvider, it's necessary to add a file to
 * the classpath of the JVM runtime at the following location:
 * META-INF/services/java.nio.charsets.spi.CharsetProvider
 *
 * That file must contain a line with the fully qualified name of
 * this class on a line by itself:
 * com.ronsoft.books.nio.charset.RonsoftCharsetProvider
 *
 * See the javadoc page for java.nio.charsets.spi.CharsetProvider
 * for full details.
 *
 * @author Ron Hitchens (ron@ronsoft.com)
 */
public class RonsoftCharsetProvider extends CharsetProvider
{
 // the name of the charset we provide
 private static final String CHARSET_NAME = "X-ROT13";

 // a handle to the Charset object
 private Charset rot13 = null;

 /**
 * Constructor, instantiate a Charset object and save the reference.
 */
 public RonsoftCharsetProvider()
 {
 this.rot13 = new Rot13Charset (CHARSET_NAME, new String [0]);
 }

 /**
 * Called by Charset static methods to find a particular named
 * Charset. If it's the name of this charset (we don't have
 * any aliases) then return the Rot13 Charset, else return null.
 */
 public Charset charsetForName (String charsetName)
 {
 if (charsetName.equalsIgnoreCase (CHARSET_NAME)) {
 return (rot13);
 }

 return (null);
 }

 235

 /**
 * Return an Iterator over the set of Charset objects we provide.
 * @return An Iterator object containing references to all the
 * Charset objects provided by this class.
 */
 public Iterator charsets()
 {
 HashSet set = new HashSet (1);

 set.add (rot13);

 return (set.iterator());
 }
}

For this charset provider to be seen by the JVM runtime environment, a file named
META_INF/services/java.nio.charset.spi.CharsetProvider must exist in one of the JARs
or directories of the classpath. The content of that file must be:

com.ronsoft.books.nio.charset.RonsoftCharsetProvider

Adding X-ROT13 to the list of charsets in Example 6-1 produces this additional output:

Charset: X-ROT13
 Input: ¿Mañana?
Encoded:
 0: c2 (¯)
 1: bf (¿)
 2: 5a (Z)
 3: 6e (n)
 4: c3 (Ã)
 5: b1 (±)
 6: 6e (n)
 7: 61 (a)
 8: 6e (n)
 9: 3f (?)

The letters a and n are coincidentally 13 letters apart, so they appear to switch places in
this particular word. Note how the non-ASCII and nonalphabetic characters remain
unchanged from UTF-8 encoding.

6.4 Summary

Many Java programmers will never need to deal with character set transcoding issues,
and most will never need to create custom charsets. But for those who do, the suite of
classes in java.nio.charset and java.nio.charset.spi provide powerful and
flexible machinery for character handling.

In this chapter, we learned about the new character-coding features of JDK 1.4. The
important points covered were:

 236

The Charset class

Encapsulates a coded character set and the encoding scheme used to represent a
sequence of characters from that character set as a byte sequence.

The CharsetEncoder class

An encoding engine that converts a sequence of characters into a sequence of
bytes. The byte sequence can later be decoded to reconstitute the original
character sequence.

The CharsetDecoder class

A decoding engine that converts an encoded byte sequence into a sequence of
characters.

The CharsetProvider SPI

Used by the service provider mechanism to locate and make Charset
implementations available to use within the runtime environment.

And that pretty much wraps up our magical mystery tour of NIO. Check around your seat
and in the overhead compartments for any personal belongings you may have left behind.
Thank you very much for your kind attention. Be sure to visit us on the Web at
http://www.javanio.info/. Bye now, bubye, bye, bye now.

http://www.javanio.info/

 237

Appendix A. NIO and the JNI

The Street finds its own uses for technology.

—William Gibson

As discussed in Chapter 2, direct buffers provide a means by which a Java buffer object
can encapsulate system, or "raw," memory and use that memory as its backing store. In
the Java realm, you do this by invoking ByteBuffer.allocateDirect(), which allocates the
system memory and wraps a Java object around it.

This approach — allocating system memory and constructing a Java object to encapsulate
it — is new in JDK 1.4. In previous releases, it was not possible for the Java side to use
memory allocated by native code. It's possible for native code invoked through the Java
Native Interface (JNI) to call back to the JVM and request that memory be allocated from
the JVM heap, but not the other way around. Memory allocated in this way can be used
by Java code, but there are severe restrictions on how the memory can be accessed by
native code. This made it awkward for Java and native code to share memory spaces.

In JDK 1.2, things got a little better with the introduction of GetPrimitiveArrayCrit-ical()
and ReleasePrimitiveArrayCritical(). These new JNI functions gave native code better
control of the memory area. For example, you could be confident that the garbage
collector would leave it alone during a critical section. However, these methods also have
serious restrictions, and the allocated memory still comes from the JVM heap.

Enhancements in JDK 1.4 brought three new JNI functions that invert this
memory-allocation model. The JNI function NewDirectByteBuffer() takes a system
memory address and size as arguments and constructs and returns a ByteBuffer object that
uses the memory area as its backing store. This is a powerful capability that makes the
following possible:

• Memory can be allocated by native code, then wrapped in a buffer object to be
used by pure Java code.

• Full Java semantics apply to the wrapping buffer object (e.g., bounds checking,
scoping, garbage collection, etc.).

• The wrapping object is a ByteBuffer. Views of it can be created, it can be sliced,
its byte order can be set, and it can participate in I/O operations on channels
(providing the underlying memory space is eligible for I/O).

• The natively allocated memory does not need to lie within the JVM heap or even
within the JVM process space. This makes it possible to wrap a ByteBuffer around
specialized memory spaces, such as video memory or a device controller.

The other two new JNI functions make it easy for JNI code to interact with direct buffers
created on the Java side. GetDirectBufferAddress() and GetDirectBufferCapacity() let
native code discover the location and size of the backing memory of a direct byte buffer.
Direct ByteBuffer objects created by ByteBuffer.allocateDirect() allocates system

 238

memory and wrap it in an object (as described above), but these objects also take steps to
deallocate the system memory when the Java object is garbage collected.

This means that you can instantiate a byte buffer object with ByteBuffer.allocateDirect(),
then pass that object to a native method that can use the system memory space without
worrying that it might be disturbed by the garbage collector. Upon return, Java code can
examine the buffer to get the result and ultimately allow the buffer to be garbage
collected when finished (which will automatically release the associated system memory).
This reduces complexity, eliminates buffer copying, maintains object semantics
(including garbage collection), prevents memory leaks, and requires less coding on your
part. For situations in which native code must do the memory allocation, such as gaining
access to video memory, you'll need to make sure that the native code releases memory
properly when you're finished with the buffer object.

If you plan to share direct byte buffers with native code, you should explicitly set the byte
order of the buffer to the native byte order. The byte order of the underlying system may
not be the same as Java's. This is a good idea even if you won't be viewing the buffer
content as other data types. It may enable more efficient access to the underlying
memory.

buffer.order (ByteOrder.nativeOrder());

For details of the JNI API, consult the JNI spec on Sun's web site at
http://java.sun.com/j2se/1.4/docs/guide/jni/.

Probably the best known, and most dramatic, example of the NIO/JNI interface's power is
OpenGL For Java (a.k.a. GL4Java) from Jausoft (www.jausoft.com/). This OpenGL
binding uses native OpenGL libraries, without modification, and provides a pure Java
API to OpenGL. It consists mostly of (script-generated) glue code that passes buffer
references to the OpenGL library with little or no buffer copying involved.

This allows for sophisticated, real-time 3D applications to be written entirely in Java
without a single line of native code. Sun created an application using OpenGL For Java
called JCanyon, which they demonstrated at JavaOne 2001 and JavaOne 2002. It's a
real-time, interactive F16 flight simulator that uses satellite imagery of the Grand Canyon
for the terrain. It even models fog. JCanyon also takes full advantage of NIO channels
and memory mapping to prefetch the terrain data. The entire application — F16
simulation, terrain management, fog, everything — is 100% Java. The OpenGL library is
accessed through the GL4Java API — no system-specific native code is needed at all —
and it runs on a typical laptop.

In the nine months between JavaOne 2001 and 2002, as NIO matured from
work-in-progress to final release, the frame-rate of JCanyon roughly doubled.

The JCanyon code is open source and can be downloaded from Sun's web site at
http://java.sun.com/products/jfc/tsc/articles/jcanyon/. The Jausoft OpenGL binding, also

http://java.sun.com/j2se/1.4/docs/guide/jni/
http://safari.oreilly.com/www.jausoft.com/
http://java.sun.com/products/jfc/tsc/articles/jcanyon/

 239

open source, is bundled with the JCanyon code, or you can get it directly from
www.jausoft.com/. The Jausoft site also has many smaller-scale OpenGL demos.

http://www.jausoft.com/

 240

Appendix B. Selectable Channels SPI

If you build it, he will come.

—An Iowa Cornfield

The selectable-channel architecture, like several other components of the Java platform,
is pluggable by means of a Service Provider Interface (SPI). Chapter 6 showed how to
use the pluggable Charset SPI, and the Channel SPI works essentially the same way.
Channel, Selector, and even SelectionKey implementations can be quite complex and are
necessarily operating system-dependent. A sample channel implementation is beyond the
scope of this book. This appendix only summarizes the SPI at a high level. If you are
setting out to create your own custom channel implementation, you will require more
detailed information than can be presented here.

As we saw in Section 6.3, services are facilitated by a provider class instantiated by the
low-level services mechanism. For channels, the base provider class is
java.nio.channels.spi.SelectorProvider. Note that this isn't named ChannelProvider. This
SPI applies only to selectable channels, not all channel types. There's a tight dependency
between selectable channels and related selectors (and selection keys, which associate
one with the other). Channels and selectors from different providers will not work
together.

package java.nio.channels.spi;

public abstract class SelectorProvider
{
 public static SelectorProvider provider()

 // The following methods all throw IOException

 public abstract AbstractSelector openSelector()
 public abstract ServerSocketChannel openServerSocketChannel()
 public abstract SocketChannel openSocketChannel()
 public abstract DatagramChannel openDatagramChannel()
 public abstract Pipe openPipe()
}

A SelectorProvider instance exposes factory methods to create concrete Selector objects,
the three types of socket channel objects, and Pipe objects. The Selector objects produced
must interoperate with socket channel objects from the same provider (and the channels
produced by a Pipe object from that provider). Channels, selectors, and selection keys
from a given provider can have access to each other's internal implementation details.

The API of SelectorProvider is pretty obvious, with the possible exception of the first
method listed above. The provider() method is a class method on SelectorProvider that
returns a reference to the default system provider. The default provider is determined at
JVM startup in the same manner as CharsetProvider objects (see the javadoc for
SelectorProvider for details). You can obtain a SelectorProvider by other means if you

 241

choose (such as by instantiating it directly, if that's allowed), then invoke the instance
factory methods directly on the provider object. The default factory methods of the
channel classes, such as SocketChannel.open(), pass through to the corresponding factory
methods on the default SelectorProvider object.

There are four other classes in the java.nio.channels.spi package:
AbstractInter-ruptibleChannel, AbstractSelectableChannel, AbstractSelectionKey, and
Abstract-Selector. You may remember from Figure 3-2 that AbstractSelectableChannel
extends AbstractInterruptibleChannel by way of java.nio.channels.Selectable-Channel.
AbstractInterruptibleChannel provides a common framework for managing channels that
can be interrupted, and AbstractSelectableChannel provides similar support for selectable
channels. Because AbstractInterruptibleChannel is the ancestor of
AbstractSelectableChannel, all selectable channels are interruptible.

package java.nio.channels.spi;

public abstract class AbstractInterruptibleChannel
 implements Channel, InterruptibleChannel
{
 protected AbstractInterruptibleChannel()

 public final void close() throws IOException
 public final boolean isOpen()

 protected final void begin()
 protected final void end (boolean completed)
 protected abstract void implCloseChannel() throws IOException;
}

public abstract class AbstractSelectableChannel
 extends java.nio.channels.SelectableChannel
{
 protected AbstractSelectableChannel (SelectorProvider provider)

 public final SelectorProvider provider()
 public final boolean isRegistered()
 public final SelectionKey keyFor (Selector sel)
 public final SelectionKey register (Selector sel,
 int ops, Object att)
 public final boolean isBlocking()
 public final Object blockingLock()
 public final SelectableChannel configureBlocking (boolean block)
 throws IOException

 protected final void implCloseChannel()
 throws IOException
 protected abstract void implCloseSelectableChannel()
 throws IOException;
 protected abstract void implConfigureBlocking (boolean block)
 throws IOException;
}

 242

Any channel implementation that wants to support selection must extend
AbstractSelectableChannel. Most of the methods provided by the two classes listed above
are default implementations that you've already seen in the APIs of the channel classes in
Chapter 3. Each has a small number of protected methods that subclasses can (or must)
implement to create a new selectable channel class.

The other two classes, AbstractSelector and AbstractSelectionKey, provide similar
templates from which concrete implementation classes must extend:

package java.nio.channels.spi;

public abstract class AbstractSelector
 extends Selector
{
 protected AbstractSelector(SelectorProvider provider)
 public final void close() throws IOException
 public final boolean isOpen()
 public final SelectorProvider provider()

 protected abstract SelectionKey register (
 AbstractSelectableChannel ch, int ops, Object att);
 protected final void deregister (AbstractSelectionKey key)
 protected final Set cancelledKeys()
 protected final void begin()
 protected final void end()
 protected abstract void implCloseSelector() throws IOException;
}

public abstract class AbstractSelectionKey
 extends SelectionKey
{
 protected AbstractSelectionKey()

 public final boolean isValid()
 public final void cancel()
}

Again, you can see the default implementations of public methods and protected methods
used only by subclasses. In AbstractSelector, you can see the internal hooks for the
cancelled key set and explicit channel deregistration.

Few "civilian" Java programmers will ever need to concern themselves with the channels
SPI. This is a realm primarily inhabited by JVM vendors and/or vendors of high-end
products such as application servers. Creating a new selectable-channel implementation
is a nontrivial undertaking that requires specialized skills and significant resources.

 243

Appendix C. NIO Quick Reference

I still haven't found what I'm looking for.

—U2

This appendix is a quick reference to the NIO classes and interfaces. Packages, classes,
and methods are sorted alphabetically to make things easier to find. The API listings were
created programmatically using the Java Reflection API to extract information directly
from the compiled class files of the JDK. Regular expressions (autogenerated from the
class information) were used to retrieve parameter names from the source. Descriptive
text (such as this) was composed in XML then processed by an XSL stylesheet to merge
with the API information (by invoking the Java code as an extension function) for each
class.

The same convention is used here as in the main text. A missing semicolon at the end of a
method signature implies that the method body follows in the source. Abstract methods
end with a semicolon because they have no concrete body. The values to which constants
are initialized are not listed.

This reference was generated against the J2SE 1.4.0 release.

C.1 Package java.nio

The java.nio package contains Buffer classes used by classes in the
java.nio.channels and java.nio.charset subpackages.

C.1.1 Buffer

Buffer is the base class from which all other buffer classes extend. It contains generic
methods common to all buffer types.

public abstract class Buffer
{
 public final int capacity()
 public final Buffer clear()
 public final Buffer flip()
 public final boolean hasRemaining()
 public abstract boolean isReadOnly();
 public final int limit()
 public final Buffer limit (int newLimit)
 public final Buffer mark()
 public final int position()
 public final Buffer position (int newPosition)
 public final int remaining()
 public final Buffer reset()
 public final Buffer rewind()
}

 244

See also: Section C.1.4

C.1.2 BufferOverflowException

BufferOverflowException (unchecked) is thrown when a simple relative put() is
attempted with a buffer's position equal to its limit, or when a bulk put() would cause the
position to exceed the limit.

public class BufferOverflowException
 extends RuntimeException
{
 public BufferOverflowException()
}

See also: Section C.1.1

C.1.3 BufferUnderflowException

BufferUnderflowException (unchecked) is thrown when a simple relative get() is
attempted with a buffer's position equal to its limit, or when a bulk get() would cause the
position to exceed the limit.

public class BufferUnderflowException
 extends RuntimeException
{
 public BufferUnderflowException()
}

See also: Section C.1.1

C.1.4 ByteBuffer

ByteBuffer is the most complex and versatile of all the buffer classes. Only byte buffers
can participate in I/O operations on channels to send and receive data.

public abstract class ByteBuffer
 extends Buffer
 implements Comparable
{
 public static ByteBuffer allocate (int capacity)
 public static ByteBuffer allocateDirect (int capacity)
 public final byte [] array()
 public final int arrayOffset()
 public abstract CharBuffer asCharBuffer();
 public abstract DoubleBuffer asDoubleBuffer();
 public abstract FloatBuffer asFloatBuffer();
 public abstract IntBuffer asIntBuffer();
 public abstract LongBuffer asLongBuffer();
 public abstract ByteBuffer asReadOnlyBuffer();
 public abstract ShortBuffer asShortBuffer();
 public abstract ByteBuffer compact();

 245

 public int compareTo (Object ob)
 public abstract ByteBuffer duplicate();
 public boolean equals (Object ob)
 public abstract byte get();
 public ByteBuffer get (byte [] dst)
 public abstract byte get (int index);
 public ByteBuffer get (byte [] dst, int offset, int length)
 public abstract char getChar();
 public abstract char getChar (int index);
 public abstract double getDouble();
 public abstract double getDouble (int index);
 public abstract float getFloat();
 public abstract float getFloat (int index);
 public abstract int getInt();
 public abstract int getInt (int index);
 public abstract long getLong();
 public abstract long getLong (int index);
 public abstract short getShort();
 public abstract short getShort (int index);
 public final boolean hasArray()
 public int hashCode()
 public abstract boolean isDirect();
 public final ByteOrder order()
 public final ByteBuffer order (ByteOrder bo)
 public abstract ByteBuffer put (byte b);
 public final ByteBuffer put (byte [] src)
 public ByteBuffer put (ByteBuffer src)
 public abstract ByteBuffer put (int index, byte b);
 public ByteBuffer put (byte [] src, int offset, int length)
 public abstract ByteBuffer putChar (char value);
 public abstract ByteBuffer putChar (int index, char value);
 public abstract ByteBuffer putDouble (double value);
 public abstract ByteBuffer putDouble (int index, double value);
 public abstract ByteBuffer putFloat (float value);
 public abstract ByteBuffer putFloat (int index, float value);
 public abstract ByteBuffer putInt (int value);
 public abstract ByteBuffer putInt (int index, int value);
 public abstract ByteBuffer putLong (long value);
 public abstract ByteBuffer putLong (int index, long value);
 public abstract ByteBuffer putShort (short value);
 public abstract ByteBuffer putShort (int index, short value);
 public abstract ByteBuffer slice();
 public String toString()
 public static ByteBuffer wrap (byte [] array)
 public static ByteBuffer wrap (byte [] array, int offset, int length)
}

See also: Section C.1.1, Section C.1.5

C.1.5 ByteOrder

ByteOrder is a type-safe enumeration that cannot be instantiated directly. Two publicly
accessible instances of ByteOrder are visible as static class fields. A class method is
provided to determine the native byte order of the underlying operating system, which
may not be the same as the Java platform default.

 246

public final class ByteOrder
{
 public static final ByteOrder BIG_ENDIAN
 public static final ByteOrder LITTLE_ENDIAN

 public static ByteOrder nativeOrder()
 public String toString()
}

See also: Section C.1.4

C.1.6 CharBuffer

CharBuffer manages data elements of type char and implements the CharSequence
interface that allows it to participate in character-oriented operations such as regular
expression matching. CharBuffer is also used by classes in the java.nio.charset
package.

public abstract class CharBuffer
 extends Buffer
 implements Comparable, CharSequence
{
 public static CharBuffer allocate (int capacity)
 public final char [] array()
 public final int arrayOffset()
 public abstract CharBuffer asReadOnlyBuffer();
 public final char charAt (int index)
 public abstract CharBuffer compact();
 public int compareTo (Object ob)
 public abstract CharBuffer duplicate();
 public boolean equals (Object ob)
 public abstract char get();
 public CharBuffer get (char [] dst)
 public abstract char get (int index);
 public CharBuffer get (char [] dst, int offset, int length)
 public final boolean hasArray()
 public int hashCode()
 public abstract boolean isDirect();
 public final int length()
 public abstract ByteOrder order();
 public abstract CharBuffer put (char c);
 public final CharBuffer put (char [] src)
 public final CharBuffer put (String src)
 public CharBuffer put (CharBuffer src)
 public abstract CharBuffer put (int index, char c);
 public CharBuffer put (char [] src, int offset, int length)
 public CharBuffer put (String src, int start, int end)
 public abstract CharBuffer slice();
 public abstract CharSequence subSequence (int start, int end);
 public String toString()
 public static CharBuffer wrap (char [] array)
 public static CharBuffer wrap (CharSequence csq)
 public static CharBuffer wrap (char [] array, int offset, int length)
 public static CharBuffer wrap (CharSequence csq, int start, int end)

 247

}

See also: Section C.1.1, java.lang.CharSequence, java.util.regex.Matcher

C.1.7 DoubleBuffer

DoubleBuffer manages data elements of type double.

public abstract class DoubleBuffer
 extends Buffer
 implements Comparable
{
 public static DoubleBuffer allocate (int capacity)
 public final double [] array()
 public final int arrayOffset()
 public abstract DoubleBuffer asReadOnlyBuffer();
 public abstract DoubleBuffer compact();
 public int compareTo (Object ob)
 public abstract DoubleBuffer duplicate();
 public boolean equals (Object ob)
 public abstract double get();
 public DoubleBuffer get (double [] dst)
 public abstract double get (int index);
 public DoubleBuffer get (double [] dst, int offset, int length)
 public final boolean hasArray()
 public int hashCode()
 public abstract boolean isDirect();
 public abstract ByteOrder order();
 public abstract DoubleBuffer put (double d);
 public final DoubleBuffer put (double [] src)
 public DoubleBuffer put (DoubleBuffer src)
 public abstract DoubleBuffer put (int index, double d);
 public DoubleBuffer put (double [] src, int offset, int length)
 public abstract DoubleBuffer slice();
 public String toString()
 public static DoubleBuffer wrap (double [] array)
 public static DoubleBuffer wrap (double [] array, int offset, int length)

}

See also: Section C.1.1

C.1.8 FloatBuffer

FloatBuffer manages data elements of type float.

public abstract class FloatBuffer
 extends Buffer
 implements Comparable
{
 public static FloatBuffer allocate (int capacity)
 public final float [] array()
 public final int arrayOffset()

 248

 public abstract FloatBuffer asReadOnlyBuffer();
 public abstract FloatBuffer compact();
 public int compareTo (Object ob)
 public abstract FloatBuffer duplicate();
 public boolean equals (Object ob)
 public abstract float get();
 public FloatBuffer get (float [] dst)
 public abstract float get (int index);
 public FloatBuffer get (float [] dst, int offset, int length)
 public final boolean hasArray()
 public int hashCode()
 public abstract boolean isDirect();
 public abstract ByteOrder order();
 public abstract FloatBuffer put (float f);
 public final FloatBuffer put (float [] src)
 public FloatBuffer put (FloatBuffer src)
 public abstract FloatBuffer put (int index, float f);
 public FloatBuffer put (float [] src, int offset, int length)
 public abstract FloatBuffer slice();
 public String toString()
 public static FloatBuffer wrap (float [] array)
 public static FloatBuffer wrap (float [] array, int offset, int length)
}

See also: Section C.1.1

C.1.9 IntBuffer

IntBuffer manages data elements of type int.

public abstract class IntBuffer
 extends Buffer
 implements Comparable
{
 public static IntBuffer allocate (int capacity)
 public final int [] array()
 public final int arrayOffset()
 public abstract IntBuffer asReadOnlyBuffer();
 public abstract IntBuffer compact();
 public int compareTo (Object ob)
 public abstract IntBuffer duplicate();
 public boolean equals (Object ob)
 public abstract int get();
 public abstract int get (int index);
 public IntBuffer get (int [] dst)
 public IntBuffer get (int [] dst, int offset, int length)
 public final boolean hasArray()
 public int hashCode()
 public abstract boolean isDirect();
 public abstract ByteOrder order();
 public abstract IntBuffer put (int i);
 public final IntBuffer put (int [] src)
 public IntBuffer put (IntBuffer src)
 public abstract IntBuffer put (int index, int i);
 public IntBuffer put (int [] src, int offset, int length)

 249

 public abstract IntBuffer slice();
 public String toString()
 public static IntBuffer wrap (int [] array)
 public static IntBuffer wrap (int [] array, int offset, int length)
}

See also: Section C.1.1

C.1.10 InvalidMarkException

InvalidMarkException (unchecked) is thrown when reset() is invoked on a buffer that
does not have a mark set.

public class InvalidMarkException
 extends IllegalStateException
{
 public InvalidMarkException()
}

See also: Section C.1.1

C.1.11 LongBuffer

LongBuffer manages data elements of type long.

public abstract class LongBuffer
 extends Buffer
 implements Comparable
{
 public static LongBuffer allocate (int capacity)
 public final long [] array()
 public final int arrayOffset()
 public abstract LongBuffer asReadOnlyBuffer();
 public abstract LongBuffer compact();
 public int compareTo (Object ob)
 public abstract LongBuffer duplicate();
 public boolean equals (Object ob)
 public abstract long get();
 public abstract long get (int index);
 public LongBuffer get (long [] dst)
 public LongBuffer get (long [] dst, int offset, int length)
 public final boolean hasArray()
 public int hashCode()
 public abstract boolean isDirect();
 public abstract ByteOrder order();
 public LongBuffer put (LongBuffer src)
 public abstract LongBuffer put (long l);
 public final LongBuffer put (long [] src)
 public abstract LongBuffer put (int index, long l);
 public LongBuffer put (long [] src, int offset, int length)
 public abstract LongBuffer slice();
 public String toString()
 public static LongBuffer wrap (long [] array)

 250

 public static LongBuffer wrap (long [] array, int offset, int length)
}

See also: Section C.1.1

C.1.12 MappedByteBuffer

MappedByteBuffer is a special type of ByteBuffer whose data elements are the content
of a disk file. MappedByteBuffer objects can be created only by invoking the map()
method of a FileChannel object.

public abstract class MappedByteBuffer
 extends ByteBuffer
{
 public final MappedByteBuffer force()
 public final boolean isLoaded()
 public final MappedByteBuffer load()
}

See also: Section C.1.1, Section C.2.12

C.1.13 ReadOnlyBufferException

ReadOnlyBufferException (unchecked) is thrown when a method that would modify
the buffer content, such as put() or compact(), is invoked on a read-only buffer.

public class ReadOnlyBufferException
 extends UnsupportedOperationException
{
 public ReadOnlyBufferException()
}

See also: Section C.1.1

C.1.14 ShortBuffer

ShortBuffer manages data elements of type short.

public abstract class ShortBuffer
 extends Buffer
 implements Comparable
{
 public static ShortBuffer allocate (int capacity)
 public final short [] array()
 public final int arrayOffset()
 public abstract ShortBuffer asReadOnlyBuffer();
 public abstract ShortBuffer compact();
 public int compareTo (Object ob)
 public abstract ShortBuffer duplicate();
 public boolean equals (Object ob)
 public abstract short get();

 251

 public abstract short get (int index);
 public ShortBuffer get (short [] dst)
 public ShortBuffer get (short [] dst, int offset, int length)
 public final boolean hasArray()
 public int hashCode()
 public abstract boolean isDirect();
 public abstract ByteOrder order();
 public ShortBuffer put (ShortBuffer src)
 public abstract ShortBuffer put (short s);
 public final ShortBuffer put (short [] src)
 public abstract ShortBuffer put (int index, short s);
 public ShortBuffer put (short [] src, int offset, int length)
 public abstract ShortBuffer slice();
 public String toString()
 public static ShortBuffer wrap (short [] array)
 public static ShortBuffer wrap (short [] array, int offset, int length)
}

See also: Section C.1.1

C.2 Package java.nio.channels

The java.nio.channels package contains the classes and interfaces related to channels
and selectors.

C.2.1 AlreadyConnectedException

AlreadyConnectedException (unchecked) is thrown when connect() is invoked on a
SocketChannel object that is already connected.

public class AlreadyConnectedException
 extends IllegalStateException
{
 public AlreadyConnectedException()
}

See also: java.net.Socket, Section C.2.32

C.2.2 AsynchronousCloseException

AsynchronousCloseException (subclass of IOException) is thrown when a thread is
blocked on a channel operation, such as read() or write(), and the channel is closed by
another thread.

public class AsynchronousCloseException
 extends ClosedChannelException
{
 public AsynchronousCloseException()
}

See also: Section C.2.7

 252

C.2.3 ByteChannel

ByteChannel is an empty aggregation interface. It combines ReadableByteChannel and
WritableByteChannel into a single interface but doesn't define any new methods.

public interface ByteChannel
 extends ReadableByteChannel, WritableByteChannel
{
}

See also: Section C.2.5, Section C.2.26, Section C.2.35

C.2.4 CancelledKeyException

CancelledKeyException (unchecked) is thrown when something attempts to use a
SelectionKey object that has been invalidated.

public class CancelledKeyException
 extends IllegalStateException
{
 public CancelledKeyException()
}

See also: Section C.2.29, Section C.2.30

C.2.5 Channel

Channel is the superinterface of all other channel interfaces. It defines the methods
common to all concrete channel classes.

public interface Channel
{
 public void close()
 throws java.io.IOException;
 public boolean isOpen();
}

See also: Section C.2.3, Section C.2.15, Section C.2.26, Section C.2.27, Section C.2.35

C.2.6 Channels

Channels is a utility class that makes it possible for channels to interoperate with
traditional byte and character streams. The factory methods return wrapper objects that
adapt channels to streams, or vice versa. The channel objects returned may not be
selectable nor interruptible.

public final class Channels
{
 public static ReadableByteChannel newChannel (java.io.InputStream in)

 253

 public static WritableByteChannel newChannel (java.io.OutputStream out)

 public static java.io.InputStream newInputStream (ReadableByteChannel
ch)
 public static java.io.OutputStream newOutputStream
(WritableByteChannel ch)
 public static java.io.Reader newReader (ReadableByteChannel ch, String
csName)
 public static java.io.Reader newReader (ReadableByteChannel ch,
 java.nio.charset.CharsetDecoder dec, int minBufferCap)
 public static java.io.Writer newWriter (WritableByteChannel ch, String
csName)
 public static java.io.Writer newWriter (WritableByteChannel ch,
 java.nio.charset.CharsetEncoder enc, int minBufferCap)
}

See also: Section C.4.3, Section C.4.4, java.io.InputStream, java.io.OutputStream,
java.io.Reader, java.io.Writer, Section C.2.26, Section C.2.35

C.2.7 ClosedByInterruptException

ClosedByInterruptException (subclass of IOException) is thrown when a thread is
blocked on a channel operation, such as read() or write(), and is interrupted by another
thread. The channel on which the thread was sleeping will be closed as a side effect. This
exception is similar to AsynchronousCloseException but results when the sleeping
thread is directly interrupted.

public class ClosedByInterruptException
 extends AsynchronousCloseException
{
 public ClosedByInterruptException()
}

See also: Section C.2.2, java.lang.Thread

C.2.8 ClosedChannelException

ClosedChannelException (subclass of IOException) is thrown when an operation is
attempted on a channel that has been closed. Some channels, such as SocketChannel,
may be closed for some operations but not for others. For example, each side of a
SocketChannel may be shut down independently while the other continues to work
normally.

public class ClosedChannelException
 extends java.io.IOException
{
 public ClosedChannelException()
}

See also: Section C.2.5

 254

C.2.9 ClosedSelectorException

ClosedSelectorException (unchecked) is thrown when attempting to use a Selector
that has been closed.

public class ClosedSelectorException
 extends IllegalStateException
{
 public ClosedSelectorException()
}

See also: Section C.2.30

C.2.10 ConnectionPendingException

ConnectionPendingException (unchecked) is thrown when connect() is invoked on a
SocketChannel object in nonblocking mode for which a concurrent connection is
already in progress.

public class ConnectionPendingException
 extends IllegalStateException
{
 public ConnectionPendingException()
}

See also: Section C.2.32

C.2.11 DatagramChannel

The DatagramChannel class provides methods to send and receive datagram packets
from and to ByteBuffer objects, respectively.

public abstract class DatagramChannel
 extends java.nio.channels.spi.AbstractSelectableChannel
 implements ByteChannel, ScatteringByteChannel, GatheringByteChannel
{
 public abstract DatagramChannel connect (java.net.SocketAddress remote)

 throws java.io.IOException;
 public abstract DatagramChannel disconnect()
 throws java.io.IOException;
 public abstract boolean isConnected();
 public static DatagramChannel open()
 throws java.io.IOException
 public abstract int read (java.nio.ByteBuffer dst)
 throws java.io.IOException;
 public final long read (java.nio.ByteBuffer [] dsts)
 throws java.io.IOException
 public abstract long read (java.nio.ByteBuffer [] dsts, int offset, int
length)
 throws java.io.IOException;

 255

 public abstract java.net.SocketAddress receive (java.nio.ByteBuffer
dst)
 throws java.io.IOException;
 public abstract int send (java.nio.ByteBuffer src,
java.net.SocketAddress target)
 throws java.io.IOException;
 public abstract java.net.DatagramSocket socket();
 public final int validOps()
 public abstract int write (java.nio.ByteBuffer src)
 throws java.io.IOException;
 public final long write (java.nio.ByteBuffer [] srcs)
 throws java.io.IOException
 public abstract long write (java.nio.ByteBuffer [] srcs, int offset, int
length)
 throws java.io.IOException;
}

See also: java.net.DatagramSocket

C.2.12 FileChannel

The FileChannel class provides a rich set of file-oriented operations. FileChannel
objects can be obtained only by invoking the getChannel() method on a
RandomAccessFile, FileInputStream, or FileOutputStream object.

public abstract class FileChannel
 extends java.nio.channels.spi.AbstractInterruptibleChannel
 implements ByteChannel, GatheringByteChannel, ScatteringByteChannel
{
 public abstract void force (boolean metaData)
 throws java.io.IOException;
 public final FileLock lock()
 throws java.io.IOException
 public abstract FileLock lock (long position, long size, boolean shared)
 throws java.io.IOException;
 public abstract java.nio.MappedByteBuffer map (FileChannel.MapMode
mode,
 long position, long size) throws java.io.IOException;
 public abstract long position()
 throws java.io.IOException;
 public abstract FileChannel position (long newPosition)
 throws java.io.IOException;
 public abstract int read (java.nio.ByteBuffer dst)
 throws java.io.IOException;
 public final long read (java.nio.ByteBuffer [] dsts)
 throws java.io.IOException
 public abstract int read (java.nio.ByteBuffer dst, long position)
 throws java.io.IOException;
 public abstract long read (java.nio.ByteBuffer [] dsts, int offset, int
length)
 throws java.io.IOException;
 public abstract long size()
 throws java.io.IOException;
 public abstract long transferFrom (ReadableByteChannel src, long
position,

 256

 long count) throws java.io.IOException;
 public abstract long transferTo (long position, long count,
 WritableByteChannel target) throws java.io.IOException;
 public abstract FileChannel truncate (long size)
 throws java.io.IOException;
 public final FileLock tryLock()
 throws java.io.IOException
 public abstract FileLock tryLock (long position, long size, boolean
shared)
 throws java.io.IOException;
 public abstract int write (java.nio.ByteBuffer src)
 throws java.io.IOException;
 public final long write (java.nio.ByteBuffer [] srcs)
 throws java.io.IOException
 public abstract int write (java.nio.ByteBuffer src, long position)
 throws java.io.IOException;
 public abstract long write (java.nio.ByteBuffer [] srcs, int offset, int
length)
 throws java.io.IOException;

 public static class FileChannel.MapMode
 {
 public static final FileChannel.MapMode PRIVATE
 public static final FileChannel.MapMode READ_ONLY
 public static final FileChannel.MapMode READ_WRITE

 public String toString()
 }
}

See also: java.io.FileInputStream, java.io.FileOutputStream,
java.io.RandomAc-cessFile, Section C.1.12

C.2.13 FileLock

The FileLock class encapsulates a lock region associated with a FileChannel object.

public abstract class FileLock
{
 public final FileChannel channel()
 public final boolean isShared()
 public abstract boolean isValid();
 public final boolean overlaps (long position, long size)
 public final long position()
 public abstract void release()
 throws java.io.IOException;
 public final long size()
 public final String toString()
}

See also: Section C.2.12

C.2.14 FileLockInterruptionException

 257

FileLockInterruptionException is thrown when a thread blocked waiting for a file
lock to be granted is interrupted by another thread. The FileChannel has not been closed,
but upon catching this exception, the interrupt status of the interrupted thread was set. If
the thread does not clear its interrupt status (by invoking Thread.interrupted()), it will
cause the next channel it touches to close.

public class FileLockInterruptionException
 extends java.io.IOException
{
 public FileLockInterruptionException()
}

See also: Section C.2.12, Section C.2.13, java.lang.Thread

C.2.15 GatheringByteChannel

The GatheringByteChannel interface defines the methods that perform gathering writes
to a channel.

public interface GatheringByteChannel
 extends WritableByteChannel
{
 public long write (java.nio.ByteBuffer [] srcs)
 throws java.io.IOException;
 public long write (java.nio.ByteBuffer [] srcs, int offset, int length)
 throws java.io.IOException;
}

See also: Section C.2.3, Section C.2.26, Section C.2.27, Section C.2.35

C.2.16 IllegalBlockingModeException

IllegalBlockingModeException (unchecked) is thrown when a channel operation that
applies only to a specific blocking mode is attempted, and the channel is not currently in
the required mode.

public class IllegalBlockingModeException
 extends IllegalStateException
{
 public IllegalBlockingModeException()
}

See also: Section C.2.28

C.2.17 IllegalSelectorException

IllegalSelectorException (unchecked) is thrown when an attempt is made to register
a SelectableChannel with a Selector from a different SelectorProvider class.
Selectors work only with channels created by the same provider.

 258

public class IllegalSelectorException
 extends IllegalArgumentException
{
 public IllegalSelectorException()
}

See also: Section C.3.5

C.2.18 InterruptibleChannel

InterruptibleChannel is a marker interface that, if implemented, indicates that a
channel class is interruptible. All selectable channels are interruptible.

public interface InterruptibleChannel
 extends Channel
{
 public void close()
 throws java.io.IOException;
}

See also: Section C.2.28

C.2.19 NoConnectionPendingException

NoConnectionPendingException (unchecked) is thrown when finishConnect() is
invoked on a SocketChannel object in nonblocking mode that has not previously
invoked connect() to begin the concurrent connection process.

public class NoConnectionPendingException
 extends IllegalStateException
{
 public NoConnectionPendingException()
}

See also: Section C.2.32

C.2.20 NonReadableChannelException

NonReadableChannelException (unchecked) is thrown when a read() method is
invoked on a channel that was not opened with read permission.

public class NonReadableChannelException
 extends IllegalStateException
{
 public NonReadableChannelException()
}

See also: Section C.2.26

C.2.21 NonWritableChannelException

 259

NonWritableChannelException (unchecked) is thrown when a write() method is
invoked on a channel that was not opened with write permission.

public class NonWritableChannelException
 extends IllegalStateException
{
 public NonWritableChannelException()
}

See also: Section C.2.35

C.2.22 NotYetBoundException

NotYetBoundException (unchecked) is thrown when attempting to perform an operation,
such as accept(), on a ServerSocketChannel that has not yet been bound to a port.

public class NotYetBoundException
 extends IllegalStateException
{
 public NotYetBoundException()
}

See also: java.net.ServerSocket

C.2.23 NotYetConnectedException

NotYetConnectedException (unchecked) is thrown when attempting to use a
SocketChannel object for I/O before connect() has been called or before a concurrent
connection has successfully completed.

public class NotYetConnectedException
 extends IllegalStateException
{
 public NotYetConnectedException()
}

See also: Section C.2.32

C.2.24 OverlappingFileLockException

OverlappingFileLockException (unchecked) is thrown when attempting to acquire a
lock on a file region already locked by the same JVM, or when another thread is waiting
to lock an overlapping region belonging to the same file.

public class OverlappingFileLockException
 extends IllegalStateException
{
 public OverlappingFileLockException()
}

 260

See also: Section C.2.12, Section C.2.13

C.2.25 Pipe

Pipe is an aggregator class that contains a pair of selectable channels. These channels are
cross-connected to form a loopback. The SinkChannel object is the write end of the pipe;
whatever is written to it is available for reading on the SourceChannel object.

public abstract class Pipe
{
 public static Pipe open()
 throws java.io.IOException
 public abstract Pipe.SinkChannel sink();
 public abstract Pipe.SourceChannel source();

 public abstract static class Pipe.SinkChannel
 extends java.nio.channels.spi.AbstractSelectableChannel
 implements WritableByteChannel, GatheringByteChannel
 {
 public final int validOps()
 }

 public abstract static class Pipe.SourceChannel
 extends java.nio.channels.spi.AbstractSelectableChannel
 implements ReadableByteChannel, ScatteringByteChannel
 {
 public final int validOps()
 }
}

See also: Section C.2.28, Section C.2.30

C.2.26 ReadableByteChannel

The ReadableByteChannel interface defines the read() method, which makes it possible
for a channel to read data from a channel into a ByteBuffer object.

public interface ReadableByteChannel
 extends Channel
{
 public int read (java.nio.ByteBuffer dst)
 throws java.io.IOException;
}

See also: Section C.1.4, Section C.2.3, Section C.2.35

C.2.27 ScatteringByteChannel

The ScatteringByteChannel interface defines the methods that perform scattering
reads from a channel.

 261

public interface ScatteringByteChannel
 extends ReadableByteChannel
{
 public long read (java.nio.ByteBuffer [] dsts)
 throws java.io.IOException;
 public long read (java.nio.ByteBuffer [] dsts, int offset, int length)
 throws java.io.IOException;
}

See also: Section C.2.3, Section C.2.15, Section C.2.26, Section C.2.35

C.2.28 SelectableChannel

SelectableChannel is the common superclass of all channels capable of participating in
selection operations controlled by a Selector object. SelectableChannel objects can
be placed in nonblocking mode and can only be registered with a Selector while in
nonblocking mode. All classes that extend from SelectableChannel also implement
InterruptibleChannel.

public abstract class SelectableChannel
 extends java.nio.channels.spi.AbstractInterruptibleChannel
 implements Channel
{
 public abstract Object blockingLock();
 public abstract SelectableChannel configureBlocking (boolean block)
 throws java.io.IOException;
 public abstract boolean isBlocking();
 public abstract boolean isRegistered();
 public abstract SelectionKey keyFor (Selector sel);
 public abstract java.nio.channels.spi.SelectorProvider provider();
 public final SelectionKey register (Selector sel, int ops)
 throws ClosedChannelException
 public abstract SelectionKey register (Selector sel, int ops, Object att)

 throws ClosedChannelException;
 public abstract int validOps();
}

See also: Section C.2.30

C.2.29 SelectionKey

SelectionKey encapsulates the registration of a SelectableChannel object with a
Selector object.

public abstract class SelectionKey
{
 public static final int OP_ACCEPT
 public static final int OP_CONNECT
 public static final int OP_READ
 public static final int OP_WRITE

 262

 public final Object attach (Object ob)
 public final Object attachment()
 public abstract void cancel();
 public abstract SelectableChannel channel();
 public abstract int interestOps();
 public abstract SelectionKey interestOps (int ops);
 public final boolean isAcceptable()
 public final boolean isConnectable()
 public final boolean isReadable()
 public abstract boolean isValid();
 public final boolean isWritable()
 public abstract int readyOps();
 public abstract Selector selector();
}

See also: Section C.2.28, Section C.2.30

C.2.30 Selector

Selector is the orchestrating class that performs readiness selection of registered
SelectableChannel objects and manages the associated keys and state information.

public abstract class Selector
{
 public abstract void close()
 throws java.io.IOException;
 public abstract boolean isOpen();
 public abstract java.util.Set keys();
 public static Selector open()
 throws java.io.IOException
 public abstract java.nio.channels.spi.SelectorProvider provider();
 public abstract int select()
 throws java.io.IOException;
 public abstract int select (long timeout)
 throws java.io.IOException;
 public abstract int selectNow()
 throws java.io.IOException;
 public abstract java.util.Set selectedKeys();
 public abstract Selector wakeup();
}

See also: Section C.2.28, Section C.2.29

C.2.31 ServerSocketChannel

The ServerSocketChannel class listens for incoming socket connections and creates
new SocketChannel instances.

public abstract class ServerSocketChannel
 extends java.nio.channels.spi.AbstractSelectableChannel
{
 public abstract SocketChannel accept()
 throws java.io.IOException;

 263

 public static ServerSocketChannel open()
 throws java.io.IOException
 public abstract java.net.ServerSocket socket();
 public final int validOps()
}

See also: java.net.InetSocketAddress, java.net.ServerSocket,
java.net.SocketAddress, Section C.2.32

C.2.32 SocketChannel

SocketChannel objects transfer data between byte buffers and network connections.

public abstract class SocketChannel
 extends java.nio.channels.spi.AbstractSelectableChannel
 implements ByteChannel, ScatteringByteChannel, GatheringByteChannel
{
 public abstract boolean connect (java.net.SocketAddress remote)
 throws java.io.IOException;
 public abstract boolean finishConnect()
 throws java.io.IOException;
 public abstract boolean isConnected();
 public abstract boolean isConnectionPending();
 public static SocketChannel open()
 throws java.io.IOException
 public static SocketChannel open (java.net.SocketAddress remote)
 throws java.io.IOException
 public abstract int read (java.nio.ByteBuffer dst)
 throws java.io.IOException;
 public final long read (java.nio.ByteBuffer [] dsts)
 throws java.io.IOException
 public abstract long read (java.nio.ByteBuffer [] dsts, int offset, int
length)
 throws java.io.IOException;
 public abstract java.net.Socket socket();
 public final int validOps()
 public abstract int write (java.nio.ByteBuffer src)
 throws java.io.IOException;
 public final long write (java.nio.ByteBuffer [] srcs)
 throws java.io.IOException
 public abstract long write (java.nio.ByteBuffer [] srcs, int offset, int
length)
 throws java.io.IOException;
}

See also: java.net.InetSocketAddress, java.net.Socket,
java.net.SocketAddress, Section C.2.31

C.2.33 UnresolvedAddressException

UnresolvedAddressException (unchecked) is thrown when attempting to use a
SocketAddress object cannot be resolved to a real network address.

 264

public class UnresolvedAddressException
 extends IllegalArgumentException
{
 public UnresolvedAddressException()
}

See also: java.net.InetSocketAddress, java.net.SocketAddress, Section C.2.32

C.2.34 UnsupportedAddressTypeException

UnsupportedAddressTypeException (unchecked) is thrown when attempting to
connect a socket with a SocketAddress object that represents an address type not
supported by the socket implementation.

public class UnsupportedAddressTypeException
 extends IllegalArgumentException
{
 public UnsupportedAddressTypeException()
}

See also: java.net.InetSocketAddress, java.net.SocketAddress

C.2.35 WritableByteChannel

The WritableByteChannel interface defines the write() method, which makes it possible
to write data to a channel from a ByteBuffer.

public interface WritableByteChannel
 extends Channel
{
 public int write (java.nio.ByteBuffer src)
 throws java.io.IOException;
}

See also: Section C.1.4, Section C.2.3, Section C.2.26

C.3 Package java.nio.channels.spi

The java.nio.channels.spi package contains classes used to create pluggable,
selectable channel implementations. Unlike the other packages listed here, the classes in
this package also list protected methods. These classes provide common methods to be
reused by pluggable implementations, but not all are intended for public consumption.

C.3.1 AbstractInterruptibleChannel

The AbstractInterruptibleChannel class provides methods that implement interrupt
semantics for subclasses.

public abstract class AbstractInterruptibleChannel

 265

 implements java.nio.channels.Channel,
java.nio.channels.InterruptibleChannel
{
 protected final void begin()
 public final void close()
 throws java.io.IOException
 protected final void end (boolean completed)
 throws java.nio.channels.AsynchronousCloseException
 protected abstract void implCloseChannel()
 throws java.io.IOException;
 public final boolean isOpen()
}

C.3.2 AbstractSelectableChannel

The AbstractSelectableChannel is the superclass of all channel implementations
eligible to participate in readiness selection.

public abstract class AbstractSelectableChannel
 extends java.nio.channels.SelectableChannel
{
 public final Object blockingLock()
 public final java.nio.channels.SelectableChannel configureBlocking
 (boolean block) throws java.io.IOException
 protected final void implCloseChannel()
 throws java.io.IOException
 protected abstract void implCloseSelectableChannel()
 throws java.io.IOException;
 protected abstract void implConfigureBlocking (boolean block)
 throws java.io.IOException;
 public final boolean isBlocking()
 public final boolean isRegistered()
 public final java.nio.channels.SelectionKey keyFor
 (java.nio.channels.Selector sel)
 public final SelectorProvider provider()
 public final java.nio.channels.SelectionKey register
 (java.nio.channels.Selector sel, int ops, Object att)
 throws java.nio.channels.ClosedChannelException
}

C.3.3 AbstractSelectionKey

The AbstractSelectionKey class provides common routines used by SelectionKey
implementations.

public abstract class AbstractSelectionKey
 extends java.nio.channels.SelectionKey
{
 public final void cancel()
 public final boolean isValid()
}

C.3.4 AbstractSelector

 266

The AbstractSelector class is the superclass of all Selector implementations.

public abstract class AbstractSelector
 extends java.nio.channels.Selector
{
 protected final void begin()
 protected final java.util.Set cancelledKeys()
 public final void close()
 throws java.io.IOException
 protected final void deregister (AbstractSelectionKey key)
 protected final void end()
 protected abstract void implCloseSelector()
 throws java.io.IOException;
 public final boolean isOpen()
 public final SelectorProvider provider()
 protected abstract java.nio.channels.SelectionKey register(
 AbstractSelectableChannel ch, int ops, Object att);
}

C.3.5 SelectorProvider

The SelectorProvider class is the superclass of all concrete channel provider classes.
This class is instantiated only by the Service Provider Interface facility, never directly.
The fully qualified names of concrete subclasses should be listed in a file named
META-INF/services/java.nio.channels.spi.SelectorProvider in the classloader's classpath.

public abstract class SelectorProvider
{
 public abstract java.nio.channels.DatagramChannel
openDatagramChannel()
 throws java.io.IOException;
 public abstract java.nio.channels.Pipe openPipe()
 throws java.io.IOException;
 public abstract AbstractSelector openSelector()
 throws java.io.IOException;
 public abstract java.nio.channels.ServerSocketChannel
openServerSocketChannel()
 throws java.io.IOException;
 public abstract java.nio.channels.SocketChannel openSocketChannel()
 throws java.io.IOException;
 public static SelectorProvider provider()
}

C.4 Package java.nio.charset

The java.nio.charset package contains classes related to character set manipulation
and transcoding.

C.4.1 CharacterCodingException

CharacterCodingException is thrown to indicate that a character set coding error was
encountered. This is the parent class of the two specific coding-error exceptions defined

 267

in this package. The low-level encoders and decoders do not throw this exception; they
return CoderResult objects to indicate which type of error was encountered. In some
circumstances it's more appropriate to throw an exception to higher-level code. The
CharsetEncoder.encode() and CharsetDecoder.decode() convenience methods may
throw this exception. They're convenience wrappers around the lower-level coder
methods and use the CoderResult.throwException() method.

public class CharacterCodingException
 extends java.io.IOException
{
 public CharacterCodingException()
}

See also: Section C.4.6, Section C.4.9, Section C.4.10

C.4.2 Charset

The Charset class encapsulates a coded character set and associated coding schemes.

public abstract class Charset
 implements Comparable
{
 public final java.util.Set aliases()
 public static java.util.SortedMap availableCharsets()
 public boolean canEncode()
 public final int compareTo (Object ob)
 public abstract boolean contains (Charset cs);
 public final java.nio.CharBuffer decode (java.nio.ByteBuffer bb)
 public String displayName()
 public String displayName (java.util.Locale locale)
 public final java.nio.ByteBuffer encode (String str)
 public final java.nio.ByteBuffer encode (java.nio.CharBuffer cb)
 public final boolean equals (Object ob)
 public static Charset forName (String charsetName)
 public final int hashCode()
 public final boolean isRegistered()
 public static boolean isSupported (String charsetName)
 public final String name()
 public abstract CharsetDecoder newDecoder();
 public abstract CharsetEncoder newEncoder();
 public final String toString()
}

See also: Section C.4.3, Section C.4.4

C.4.3 CharsetDecoder

A CharsetDecoder instance transforms an encoded sequence of bytes into a sequence of
characters. Instances of this class are stateful.

public abstract class CharsetDecoder
{

 268

 public final float averageCharsPerByte()
 public final Charset charset()
 public final java.nio.CharBuffer decode (java.nio.ByteBuffer in)
 throws CharacterCodingException
 public final CoderResult decode (java.nio.ByteBuffer in,
java.nio.CharBuffer out, boolean endOfInput)
 public Charset detectedCharset()
 public final CoderResult flush (java.nio.CharBuffer out)
 public boolean isAutoDetecting()
 public boolean isCharsetDetected()
 public CodingErrorAction malformedInputAction()
 public final float maxCharsPerByte()
 public final CharsetDecoder onMalformedInput (CodingErrorAction
newAction)
 public final CharsetDecoder onUnmappableCharacter (CodingErrorAction
newAction)
 public final CharsetDecoder replaceWith (String newReplacement)
 public final String replacement()
 public final CharsetDecoder reset()
 public CodingErrorAction unmappableCharacterAction()
}

See also: Section C.4.2, Section C.4.4

C.4.4 CharsetEncoder

A CharsetEncoder instance transforms a character sequence to an encoded sequence of
bytes. Instances of this class are stateful.

public abstract class CharsetEncoder
{
 public final float averageBytesPerChar()
 public boolean canEncode (char c)
 public boolean canEncode (CharSequence cs)
 public final Charset charset()
 public final java.nio.ByteBuffer encode (java.nio.CharBuffer in)
 throws CharacterCodingException
 public final CoderResult encode (java.nio.CharBuffer in,
java.nio.ByteBuffer out, boolean endOfInput)
 public final CoderResult flush (java.nio.ByteBuffer out)
 public boolean isLegalReplacement (byte [] repl)
 public CodingErrorAction malformedInputAction()
 public final float maxBytesPerChar()
 public final CharsetEncoder onMalformedInput (CodingErrorAction
newAction)
 public final CharsetEncoder onUnmappableCharacter (CodingErrorAction
newAction)
 public final CharsetEncoder replaceWith (byte [] newReplacement)
 public final byte [] replacement()
 public final CharsetEncoder reset()
 public CodingErrorAction unmappableCharacterAction()
}

See also: Section C.4.2, Section C.4.3

 269

C.4.5 CoderMalfunctionError

CoderMalfunctionError is thrown when the CharsetEncoder.encode() or
CharsetDecoder.decode() methods catch an unexpected exception from the low-level
encodeLoop() or decodeLoop() methods.

public class CoderMalfunctionError
 extends Error
{
 public CoderMalfunctionError (Exception cause)
}

See also: Section C.4.3, Section C.4.4

C.4.6 CoderResult

A CoderResult object is returned by CharsetDecoder.decode() and
CharsetEncoder.encode() to indicate the result of a coding operation.

public class CoderResult
{
 public static final CoderResult OVERFLOW
 public static final CoderResult UNDERFLOW

 public boolean isError()
 public boolean isMalformed()
 public boolean isOverflow()
 public boolean isUnderflow()
 public boolean isUnmappable()
 public int length()
 public static CoderResult malformedForLength (int length)
 public void throwException()
 throws CharacterCodingException
 public String toString()
 public static CoderResult unmappableForLength (int length)
}

See also: Section C.4.1, Section C.4.3, Section C.4.4

C.4.7 CodingErrorAction

The CodingErrorAction class is a type-safe enumeration. The named instances are
passed to CharsetDecoder and CharsetEncoder objects to indicate which action should
be taken when coding errors are encountered.

public class CodingErrorAction
{
 public static final CodingErrorAction IGNORE
 public static final CodingErrorAction REPLACE
 public static final CodingErrorAction REPORT

 270

 public String toString()
}

See also: Section C.4.3, Section C.4.4, Section C.4.6

C.4.8 IllegalCharsetNameException

IllegalCharsetNameException (unchecked) is thrown when a Charset name that does
not comply with the charset naming rules is provided. Charset names must consist of
ASCII letters (upper- or lowercase), numeric digits, hyphens, colons, underscores, and
periods, and the first character must be a letter or a digit.

public class IllegalCharsetNameException
 extends IllegalArgumentException
{
 public IllegalCharsetNameException (String charsetName)

 public String getCharsetName()
}

See also: Section C.4.2

C.4.9 MalformedInputException

MalformedInputException (subclass of IOException) is thrown to indicate that
malformed input was detected during a coding operation. The CoderResult object
provides a convenience method to generate this exception when needed.

public class MalformedInputException
 extends CharacterCodingException
{
 public MalformedInputException (int inputLength)

 public int getInputLength()
 public String getMessage()
}

See also: Section C.4.6, Section C.4.10

C.4.10 UnmappableCharacterException

UnmappableCharacterException (subclass of IOException) is thrown to indicate that
the encoder or decoder cannot map one or more characters from an otherwise valid input
sequence. The CoderResult object provides a convenience method to generate this
exception.

public class UnmappableCharacterException
 extends CharacterCodingException
{
 public UnmappableCharacterException (int inputLength)

 271

 public int getInputLength()
 public String getMessage()
}

See also: Section C.4.6, Section C.4.9

C.4.11 UnsupportedCharsetException

UnsupportedCharsetException (unchecked) is thrown when a requested Charset is
not supported by the current JVM environment.

public class UnsupportedCharsetException
 extends IllegalArgumentException
{
 public UnsupportedCharsetException (String charsetName)

 public String getCharsetName()
}

See also: Section C.4.2

C.5 Package java.nio.charset.spi

The java.nio.charset.spi package contains a single class used by the charset Service
Provider Interface mechanism.

C.5.1 CharsetProvider

CharsetProvider facilitates the installation of Charset implementations into the
running JVM. The fully qualified names of concrete subclasses should be listed in a file
named META-INF/services/java.nio.charset.spi.CharsetProvider in the classloader's
classpath to activate them via the Service Provider Interface mechanism.

public abstract class CharsetProvider
{
 public abstract java.nio.charset.Charset charsetForName (String

charsetName);
 public abstract java.util.Iterator charsets();
}

See also: Section C.4.2

C.6 Package java.util.regex

The java.util.regex package contains classes used for regular expression processing.

C.6.1 Matcher

 272

A Matcher object is a stateful matching engine that examines an input character sequence
to detect regular expression matches and provide information about successful matches.

public final class Matcher
{
 public Matcher appendReplacement (StringBuffer sb, String replacement)
 public StringBuffer appendTail (StringBuffer sb)
 public int end()
 public int end (int group)
 public boolean find()
 public boolean find (int start)
 public String group()
 public String group (int group)
 public int groupCount()
 public boolean lookingAt()
 public boolean matches()
 public Pattern pattern()
 public String replaceAll (String replacement)
 public String replaceFirst (String replacement)
 public Matcher reset()
 public Matcher reset (CharSequence input)
 public int start()
 public int start (int group)
}

See also: java.lang.CharSequence, java.lang.String, Section C.6.2

C.6.2 Pattern

The Pattern class encapsulates a compiled regular expression.

public final class Pattern
 implements java.io.Serializable
{
 public static final int CANON_EQ
 public static final int CASE_INSENSITIVE
 public static final int COMMENTS
 public static final int DOTALL
 public static final int MULTILINE
 public static final int UNICODE_CASE
 public static final int UNIX_LINES

 public static Pattern compile (String regex)
 public static Pattern compile (String regex, int flags)
 public int flags()
 public Matcher matcher (CharSequence input)
 public static boolean matches (String regex, CharSequence input)
 public String pattern()
 public String [] split (CharSequence input)
 public String [] split (CharSequence input, int limit)
}

See also: java.lang.CharSequence, java.lang.String, Section C.6.1

 273

C.6.3 PatternSyntaxException

PatternSyntaxException (unchecked) is thrown by Pattern.compile() (or any of the
convenience methods on Pattern or String that take a regular expression parameter)
when the provided regular expression string contains syntax errors.

public class PatternSyntaxException
 extends IllegalArgumentException
{
 public PatternSyntaxException (String desc, String regex, int index)

 public String getDescription()
 public int getIndex()
 public String getMessage()
 public String getPattern()
}

See also: Section C.6.2

 274

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to
technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Java NIO is a pig-footed bandicoot (Chaeropus ecaudatus).
Though a specimen has not been uncovered since the early 20th century, pig-footed
bandicoots were once found throughout central and south Australia and in Victoria.
These rabbit-like creatures dwelled in many habitats. In the central deserts, they took up
residence in sand dunes. In Victoria, they lived in grassy plains. In other areas, they
preferred open woodland with shrubs and grass.

Pig-footed bandicoots grew to be about 230-260 millimeters in length, with a tail of
100-150 millimeters. They had rough, orange-brown fur on the dorsal side of their bodies
and a lighter color on their undersides. Their long tails ended in a black tuft. Their bodies
were narrow and compact, and they had pointed heads with ears like a rabbit's. Their feet
and legs, however, were much different from other bandicoot species'. Its forelegs and
hindlegs were long and skinny, ending in strangely shaped feet with nails resembling a
pig's hoof. On its hindfeet, the second and third toes were fused, and only the fourth was
used in locomotion.

Pig-footed bandicoots are believed to have been solitary animals. Depending on their
environment, they may have built nests made of grass or dug short tunnels with a nest at
the end. These bandicoots lived on the ground and used their keen sense of smell to find
food. The most well-documented behavior of Chaeropus ecaudatus was its locomotion.
Their movements were often erratic. A slow gait took the form of a bunny hop, while an
intermediate gait was a lumbering quadrepedal run with the hind limbs moving
alternately. However, Aborigines have reported that the pig-footed bandicoot, if pursued,
could reach blazing speeds by breaking into a smooth, galloping sprint.

Little is known about the reproductive cycle of C. ecaudatus, but from studying other
bandicoots, it can be inferred that pig-footed bandicoots did not carry more than four
young per littler. Females had a strong, sturdy pouch that opened on their backsides.
Generally, bandicoots have a short gestation period, around 12 days from conception to
birth. Each young weighs about 0.5 grams. When their time in the pouch has ended, baby
bandicoots are left in the nest, and around 8-10 days later, they leave with their mother to
forage or hunt.

Matt Hutchinson was the production editor and copyeditor for Java NIO. Sarah Sherman
proofread the book, and Sarah Sherman and Jeffrey Holcomb provided quality control.
Angela Howard wrote the index.

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman.
The cover image is a 19th-century engraving from Animal Creation, Vol. II. Emma

 275

Colby produced the cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond
font.

Melanie Wang designed the interior layout, based on a series design by David Futato.
This book was converted to FrameMaker 5.5.6 with a format conversion tool created by
Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML
technologies. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations
that appear in the book were produced by Robert Romano and Jessamyn Read using
Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn
by Christopher Bing. This colophon was written by Matt Hutchinson.

	Table of Content
	Dedication
	Preface
	Organization
	Who Should Read This Book
	Software and Versions
	Conventions Used in This Book
	Font Conventions

	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	1.1 I/O Versus CPU Time
	
	Table?1-1. Throughput rate, processing versus I/O time

	1.2 No Longer CPU Bound
	1.3 Getting to the Good Stuff
	1.4 I/O Concepts
	1.4.1 Buffer Handling
	Figure 1-1. Simplified I/O buffer handling
	1.4.1.1 Scatter/gather
	Figure 1-2. A scattering read to three buffers

	1.4.2 Virtual Memory
	Figure 1-3. Multiply mapped memory space
	Figure 1-4. Memory pages

	1.4.3 Memory Paging
	Figure 1-5. Physical memory as a paging-area cache

	1.4.4 File I/O
	1.4.4.1 Memory-mapped files
	Figure 1-6. User memory mapped to filesystem pages
	1.4.4.2 File locking
	Figure 1-7. Exclusive-lock request blocked by shared locks
	Figure 1-8. Shared-lock requests blocked by exclusive lock

	1.4.5 Stream I/O

	1.5 Summary

	Chapter 2. Buffers
	
	
	Figure 2-1. The Buffer family tree

	2.1 Buffer Basics
	2.1.1 Attributes
	Figure 2-2. A newly created ByteBuffer

	2.1.2 Buffer API
	2.1.3 Accessing
	2.1.4 Filling
	Figure 2-3. Buffer after five put()s
	Figure 2-4. Buffer after modification

	2.1.5 Flipping
	Figure 2-5. Buffer after being flipped

	2.1.6 Draining
	Example 2-1. Filling and draining buffers

	2.1.7 Compacting
	Figure 2-6. A partially drained buffer
	Figure 2-7. Buffer after compaction

	2.1.8 Marking
	Figure 2-8. A buffer with a mark set
	Figure 2-9. A buffer position reset to its mark

	2.1.9 Comparing
	Figure 2-10. Two buffers considered to be equal
	Figure 2-11. Two buffers considered to be unequal

	2.1.10 Bulk Moves

	2.2 Creating Buffers
	2.3 Duplicating Buffers
	
	Figure 2-12. Duplicating a buffer
	Figure 2-13. Creating a slice buffer

	2.4 Byte Buffers
	2.4.1 Byte Ordering
	Table?2-1. Primitive data types and sizes
	Figure 2-14. Big-endian byte order
	Figure 2-15. Little-endian byte order

	2.4.2 Direct Buffers
	2.4.3 View Buffers
	Figure 2-16. A CharBuffer view of a ByteBuffer
	Example 2-2. Creating a char view of a ByteBuffer

	2.4.4 Data Element Views
	Figure 2-17. A ByteBuffer containing some data

	2.4.5 Accessing Unsigned Data
	Example 2-3. Utility routines for getting/putting unsigned values

	2.4.6 Memory-Mapped Buffers

	2.5 Summary

	Chapter 3. Channels
	
	
	Figure 3-1. Channels act as conduits to I/O services
	Figure 3-2. The channel family tree

	3.1 Channel Basics
	3.1.1 Opening Channels
	3.1.2 Using Channels
	Figure 3-3. The ByteChannel interfaces
	Example 3-1. Copying data between channels

	3.1.3 Closing Channels

	3.2 Scatter/Gather
	
	Figure 3-4. Scatter/gather interfaces
	Figure 3-5. A gathering write using four buffers
	Figure 3-6. A scattering read using four buffers
	Example 3-2. Collecting many buffers in a gathering write

	3.3 File Channels
	
	Figure 3-7. FileChannel family tree

	3.3.1 Accessing Files
	Table?3-1. File I/O API comparison chart
	Figure 3-8. A disk file with two holes

	3.3.2 File Locking
	Example 3-3. Shared- and exclusive-lock interaction

	3.4 Memory-Mapped Files
	
	Example 3-4. Composing HTTP replies with mapped files and gathering writes
	Example 3-5. Three types of memory-mapped buffers

	3.4.1 Channel-to-Channel Transfers
	Example 3-6. File concatenation using channel transfer

	3.5 Socket Channels
	
	Figure 3-9. The socket channel family tree

	3.5.1 Nonblocking Mode
	3.5.2 ServerSocketChannel
	Example 3-7. A nonblocking accept() with ServerSocketChannel

	3.5.3 SocketChannel
	Example 3-8. Concurrent-connection establishment

	3.5.4 DatagramChannel
	Example 3-9. Time-service client using DatagramChannel
	Example 3-10. DatagramChannel time server

	3.6 Pipes
	
	Figure 3-10. The Pipe family tree
	Figure 3-11. A pipe is a pair of looped channels
	Example 3-11. Worker thread writing to a pipe

	3.7 The Channels Utility Class
	
	Table?3-2. Summary of java.nio.channels.Channels utility methods

	3.8 Summary

	Chapter 4. Selectors
	4.1 Selector Basics
	4.1.1 The Selector, SelectableChannel, and SelectionKey Classes
	Figure 4-1. Selection class family tree
	Figure 4-2. Relationships of the selection classes

	4.1.2 Setting Up Selectors

	4.2 Using Selection Keys
	4.3 Using Selectors
	4.3.1 The Selection Process
	4.3.2 Stopping the Selection Process
	4.3.3 Managing Selection Keys
	Example 4-1. Using select() to service multiple channels

	4.3.4 Concurrency

	4.4 Asynchronous Closability
	4.5 Selection Scaling
	
	Example 4-2. Servicing channels with a thread pool

	4.6 Summary

	Chapter 5. Regular Expressions
	
	
	Figure 5-1. The regular expression classes

	5.1 Regular Expression Basics
	5.2 The Java Regular Expression API
	5.2.1 The CharSequence Interface
	Example 5-1. CharSequence interface examples

	5.2.2 The Pattern Class
	Table?5-1. Flag values affecting regular expression compilation
	Table?5-2. Matrix of split() behavior
	5.2.2.1 Splitting strings with the Pattern class
	Example 5-2. Splitting strings with Pattern
	Example 5-3. Split matrix styelsheet

	5.2.3 The Matcher Class
	Example 5-4. Simple file grep
	Example 5-5. Extracting matched expressions
	Figure 5-2. start(), end(), and group() values
	Table?5-3. Regular expression capture groups of A((B)(C(D)))
	Table?5-4. Replacement of matched patterns
	Example 5-6. Regular expression replacement
	Example 5-7. Backslashes in regular expressions
	Table?5-5. Using appendReplacement() and appendTail()
	Example 5-8. Regular expression append/replace

	5.3 Regular Expression Methods of the String Class
	
	Table?5-6. Regular expression methods of the String class

	5.4 Java Regular Expression Syntax
	
	Table?5-7. Java regular expression syntax quick reference

	5.5 An Object-Oriented File Grep
	
	Example 5-9. Object-oriented grep

	5.6 Summary

	Chapter 6. Character Sets
	6.1 Character Set Basics
	
	Figure 6-1. Characters encoded as UTF-8

	6.2 Charsets
	
	Table?6-1. Required charsets
	Table?6-2. UTF-16 charset encode/decode
	Example 6-1. Encoding with the standard charsets

	6.2.1 The Charset Class
	Figure 6-2. The charset classes

	6.2.2 Comparing Charsets
	6.2.3 Charset Encoders
	6.2.3.1 The CoderResult class
	Table?6-3. Exceptions thrown by CoderResult.throwException()

	6.2.4 Charset Decoders
	Example 6-2. Charset decoding

	6.3 The Charset Service Provider Interface
	
	Table?6-4. Legal characters for charset names

	6.3.1 Creating Custom Charsets
	6.3.2 Providing Your Custom Charsets
	Example 6-3. The custom Rot13 charset
	Example 6-4. Custom charset provider

	6.4 Summary

	Appendix A. NIO and the JNI
	Appendix B. Selectable Channels SPI
	Appendix C. NIO Quick Reference
	C.1 Package java.nio
	C.1.1 Buffer
	C.1.2 BufferOverflowException
	C.1.3 BufferUnderflowException
	C.1.4 ByteBuffer
	C.1.5 ByteOrder
	C.1.6 CharBuffer
	C.1.7 DoubleBuffer
	C.1.8 FloatBuffer
	C.1.9 IntBuffer
	C.1.10 InvalidMarkException
	C.1.11 LongBuffer
	C.1.12 MappedByteBuffer
	C.1.13 ReadOnlyBufferException
	C.1.14 ShortBuffer

	C.2 Package java.nio.channels
	C.2.1 AlreadyConnectedException
	C.2.2 AsynchronousCloseException
	C.2.3 ByteChannel
	C.2.4 CancelledKeyException
	C.2.5 Channel
	C.2.6 Channels
	C.2.7 ClosedByInterruptException
	C.2.8 ClosedChannelException
	C.2.9 ClosedSelectorException
	C.2.10 ConnectionPendingException
	C.2.11 DatagramChannel
	C.2.12 FileChannel
	C.2.13 FileLock
	C.2.14 FileLockInterruptionException
	C.2.15 GatheringByteChannel
	C.2.16 IllegalBlockingModeException
	C.2.17 IllegalSelectorException
	C.2.18 InterruptibleChannel
	C.2.19 NoConnectionPendingException
	C.2.20 NonReadableChannelException
	C.2.21 NonWritableChannelException
	C.2.22 NotYetBoundException
	C.2.23 NotYetConnectedException
	C.2.24 OverlappingFileLockException
	C.2.25 Pipe
	C.2.26 ReadableByteChannel
	C.2.27 ScatteringByteChannel
	C.2.28 SelectableChannel
	C.2.29 SelectionKey
	C.2.30 Selector
	C.2.31 ServerSocketChannel
	C.2.32 SocketChannel
	C.2.33 UnresolvedAddressException
	C.2.34 UnsupportedAddressTypeException
	C.2.35 WritableByteChannel

	C.3 Package java.nio.channels.spi
	C.3.1 AbstractInterruptibleChannel
	C.3.2 AbstractSelectableChannel
	C.3.3 AbstractSelectionKey
	C.3.4 AbstractSelector
	C.3.5 SelectorProvider

	C.4 Package java.nio.charset
	C.4.1 CharacterCodingException
	C.4.2 Charset
	C.4.3 CharsetDecoder
	C.4.4 CharsetEncoder
	C.4.5 CoderMalfunctionError
	C.4.6 CoderResult
	C.4.7 CodingErrorAction
	C.4.8 IllegalCharsetNameException
	C.4.9 MalformedInputException
	C.4.10 UnmappableCharacterException
	C.4.11 UnsupportedCharsetException

	C.5 Package java.nio.charset.spi
	C.5.1 CharsetProvider

	C.6 Package java.util.regex
	C.6.1 Matcher
	C.6.2 Pattern
	C.6.3 PatternSyntaxException

	Colophon

