
Chapter 12: Internationalization
Processing Date and Time
– Locale
– Date
– TimeZone
– Calendar and GregorianCalendar
– DateFormat and SimpleDateFormat
Formatting Numbers
Resource Bundles

Java’s International Support

1. Use Unicode

2. Provide the Locale class to encapsulate
information about a specific locale.

3. Use the ResourceBundle class to
separate locale-specific information such as
status messages and the GUI component
labels from the program.

The Locale Class
A Locale object represents a specific
geographical, political, or cultural region. An
operation that requires a Locale to perform its
task is called locale-sensitive. You can use
Locale to tailor information to the user.

Creating a Locale
To create a Locale object, you can use the
following constructor in Locale class:

Locale(String language, String country)

Locale(String language, String country,
String variant)

Example:

new Locale(“en”, “US”);

new Locale(“fr”, “CA”);

The Date Class
The Date class represents a specific instant in time,
with millisecond precision. You can construct a
Date object using one of the following two
constructors in this class:

public Date();

public Date(long time);

The TimeZone Class
The class TimeZone represents a time zone offset;
it also figures out daylight-saving time. Typically,
you can get a TimeZone object using its class
method getDefault(), which creates a TimeZone
object based on the time zone in which the program
is running.

Creating a TimeZone
You can also get a TimeZone object by using the class
method getTimeZone(), along with a time zone ID.
For example, the time zone ID for central standard
time is CST. Therefore, you can get a CST TimeZone
object with the following:

TimeZone tz = TimeZone.getTimeZone("CST");

The Calendar Class
A Date object represents a specific instant in time
with millisecond precision. Calendar is an
abstract base class for converting between a Date
object and a set of integer fields, such as year,
month, day, hour, minute, and second.

The GregorianCalendar Class
Subclasses of Calendar interpret a Date according to
the rules of a specific calendar system. For example:

GregorianCalendar(TimeZone tz, Locale locale)

This constructs a GregorianCalendar object based
on the current time in the given time zone with the
given locale.

The get() Method
public final int get(int field)

This retrieves the value for a given time field. The
parameter field is a constant, such as YEAR, MONTH,
DAY, HOUR, MINUTE, SECOND, DAY_OF_WEEK,
DAY_OF_MONTH, DAY_OF_YEAR, WEEK_OF_MONTH,
WEEK_OF_YEAR, and so on.

GregorianCalendar Example
GregorianCalendar rightNow = new
GregorianCalendar();
System.out.println("week of the year is
"+rightNow.get(GregorianCalendar.WEEK_OF_YEAR));

This displays the week of the year for the current time.

The DateFormat Class
The DateFormat class is an abstract class that
provides many class methods for obtaining default
date and time formatters based on the default or a
given locale and a number of formatting styles,
including FULL, LONG, MEDIUM, and SHORT.

DateFormat Formats
SHORT is completely numeric, such as
12.13.52 or 3:30pm

MEDIUM is longer, such as Jan 12, 1952

LONG is even longer, such as January 12,
1952 or 3:30:32pm

FULL is completely specified, such as
Tuesday, April 12, 1952 AD
or 3:30:42pm PST

Creating a DateFormat
You can use the getDateTimeInstance() method
to obtain a DateFormat object:

public static final DateFormat getDateTimeInstance
(int dateStyle, int timeStyle, Locale aLocale)

This gets the date and time formatter with the given
formatting styles for the given locale.

The SimpleDateFormat Class
The date and time formatting subclass, such as
SimpleDateFormat, enables you to choose any user-
defined patterns for date and time formatting. To
specify the time format, use a time pattern string:

formatter = new SimpleDateFormat("yyyy.MM.dd G
'at' hh:mm:ss Z");

1997.11.12 AD at 04:10:18 PST

Example 12.1
Displaying a Clock

Objective: Display current time based on the
specified locale and time zone. The program can
run as applet or application. The language,
country, and time zone are passed to the program
as command-line arguments like this:

javaw CurrentTimeApplet en US CST

CurrentTimeApplet

Run as Application Run as Applet

Example 12.2
Displaying a Calendar

Objective: Display the calendar based on the
specified locale. The user can specify a
locale from a combo box that consists of a
list of all the available locales supported by
the system.

CalendarApplet

Run as Application Run as Applet

Formatting Numbers
Formatting numbers as currency or percentages
is highly locale dependent.

For example, number 5000.50 is displayed as
$5,000.50 in the US currency, but the same
number is displayed as 5 000,50 F in the
French currency.

The NumberFormat Class

use one of the factory class methods to get a
formatter.
Use getInstance() or getNumberInstance()

to get the normal number format.
Use getCurrencyInstance() to get the
currency number format.
Use getPercentInstance() to get a format
for displaying percentages. With this format, a
fraction like 0.53 is displayed as 53%.

The NumberFormat Class
(cont.)

For example, to display a number in percentages,
you can use the following code to create a
formatter for the given locale.
NumberFormat percForm =
NumberFormat.getPercentInstance(locale);

You can then use percForm to format a number
into a string like this:
String s = percForm.format(0.075);

Example 12.3
Formatting Numbers

Objective: This example creates a mortgage
calculator similar to the one in Example
10.1, "Using Applets." This new mortgage
calculator allows the user to choose locales,
and displays numbers in locale-sensitive
format.

NumberFormattingDemo

Run as Application Run as Applet

Resource Bundles (Optional)
A resource bundle is a Java class file or a text file that
provides locale-specific information. This information
can be accessed by Java programs dynamically.

When your program needs a locale-specific resource,
a message string for example, your program can load
the string from the resource bundle that is appropriate
for the desired locale. In this way, you can write
program code that is largely independent of the user's
locale isolating most, if not all, of the locale-specific
information in resource bundles.

Example 12.4
Using Resource Bundles

Objective: This example modifies the
NumberFormattingDemo program in
Example 12.3 to display messages, title, and
button labels in English and French
languages.
ResourceBundleDemo Res.properties

Run as Application Res_fr.properties

Run as Applet

	Chapter 12: Internationalization
	Java’s International Support
	The Locale Class
	Creating a Locale
	The Date Class
	The TimeZone Class
	Creating a TimeZone
	The Calendar Class
	The GregorianCalendar Class
	The get() Method
	GregorianCalendar Example
	The DateFormat Class
	DateFormat Formats
	Creating a DateFormat
	The SimpleDateFormat Class
	Example 12.1Displaying a Clock
	Example 12.2Displaying a Calendar
	Formatting Numbers
	The NumberFormat Class
	The NumberFormat Class (cont.)
	Example 12.3Formatting Numbers
	Resource Bundles (Optional)
	Example 12.4Using Resource Bundles

