
Chapter 15: Input and Output
Stream Classes
Processing External Files
Data Streams
Print Streams
Buffered Streams
Use JFileChooser
Text Input and Output on the Console
Random Access Files
Parsing Text Files

Streams
A stream is an abstraction of the continuous one-way
flow of data.

Program

Output Stream

File

Input Stream

Stream Classes
The stream classes can be categorized into two types:
byte streams and character streams.

The InputStream/OutputStream class is the
root of all byte stream classes, and the Reader/
Writer class is the root of all character stream
classes. The subclasses of InputStream/
OutputStream are analogous to the
subclasses of Reader/Writer.

Byte Stream Classes

InputStream

OutputStream

RandomAccessFile

Object

PipeOutputStream

SequenceInputStream

StringBufferInputStream

ByteArrayOutputStream

ObjectOutputStream

FilterOutputStream

FileOutputStream

PipedInputStream

PushBackInputStream

BufferedInputStream

LineNumberInputStream

DataInputStream

BufferedOutputStream

DataOutputStream

PrintStream

ObjectInputStream

FilterInputStream

FileInputStream

ByteArrayInputStream
InputData

OutputData

ObjectOutput

ObjectInput

Character Stream Classes

Reader

Writer

StreamTokenizer

Object

PrintWriter

BufferedWriter

CharArrayWriter

PipedWriter

FilterWriter

PipedReader

LineNumberReader

FileReader

PushBackReader

FileWriter

StringWriter

StringReader

InputStreamReader

CharArrayReader

BufferedReader

FilterReader

OutputStreamWriter

InputStream

abstract int read() throws IOException

int read(byte b[]) throws IOException

void close() throws IOException

void available() throws IOException

void skip() throws IOException

Reader

The Reader class is similar to the InputStream
class. The methods in Reader are subject to
character interpretation.

abstract int read() throws IOException

int read(char b[]) throws IOException

void close() throws IOException

void skip() throws IOException

OutputStream

abstract void write(int b) throws
IOException

void write(byte[] b) throws IOException

void close() throws IOException

void flush() throws IOException

Writer

abstract void write(int b) throws
IOException

void write(char[] b) throws
IOException

void close() throws IOException

void flush() throws IOException

Processing External Files
You must use file streams to read from or write
to a disk file. You can use FileInputStream
or FileOutputStream for byte streams, and
you can use FileReader or FileWriter for
character streams.

File I/O Stream Constructors
Constructing instances of FileInputStream,
FileOutputStream, FileReader, and FileWriter
from file names:

FileInputStream infile = new FileInputStream("in.dat");

FileOutputStream outfile = new FileOutputStream("out.dat");

FileReader infile = new FileReader("in.dat");

FileWriter outfile = new FileWriter("out.dat");

Example 15.1
Processing External Files

FileInputStream fis

program
args[1]

args[0]

FileOutputStream fos

CopyFileUsingByteStream

Run
Click the Run button to access the DOS prompt; then type
java CopyFileUsingByteStream ButtonDemo.java
t.java and press Enter. (If working from the CD, add a
path to the hard disk or floppy disk drive for t.java.)

Data Streams
The data streams (DataInputStream and
DataOutputStream) read and write Java
primitive types in a machine-independent fashion,
which enables you to write a data file in one
machine and read it on another machine that has a
different operating system or file structure.

DataInputStream Methods

int readByte() throws IOException

int readShort() throws IOException

int readInt() throws IOException

int readLong() throws IOException

float readFloat() throws IOException

double readDouble() throws IOException

char readChar() throws IOException

boolean readBoolean() throws
IOException

String readUTF() throws IOException

DataOutputStream Methods
void writeByte(byte b) throws IOException

void writeShort(short s) throws IOException

void writeInt(int i) throws IOException

void writeLong(long l) throws IOException

void writeFloat(float f) throws IOException

void writeDouble(double d) throws IOException

void writeChar(char c) throws IOException

void writeBoolean(boolean b) throws IOException

void writeBytes(String l) throws IOException

void writeChars(String l) throws IOException

void writeUTF(String l) throws IOException

Data I/O Stream Constructors
DataInputStream infile = new
DataInputStream(new FileInputStream("in.dat"));

Creates an input file for in.dat.

DataOutputStream outfile = new
DataOutputStream(new FileOutputStream("out.dat"));

Creates an output file for out.dat.

Example 15.2
Using Data Streams
DataInputStream dis

program
mytemp.dat

mytemp.dat

DataOutputStream dos

FileInputStream

FileOutputStream

TestDataStreams

Run
Click the Run button to access the DOS prompt; then type
java TestDataStreams and press Enter. (Note: You
cannot run this from the CD; the program writes to disk.)

Print Streams
The data output stream outputs a binary represen-
tation of data, so you cannot view its contents as
text. In Java, you can use print streams to output
data into files. These files can be viewed as text.
The PrintStream and PrintWriter classes
provide this functionality.

PrintWriter Constructors
PrintWriter(Writer out)

PrintWriter(Writer out, boolean
autoFlush)

PrintWriter(OutputStream out)

PrintWriter(OutputStream out, boolean
autoFlush)

PrintWriter Methods
void print(Object o)
void print(String s)
void println(String s)
void print(char c)
void print(char[] cArray)
void print(int i)
void print(long l)
void print(float f)
void print(double d)
void print(boolean b)

Example 15.3
Using Print Streams

PrintWriter

program args[0]

FileOutputStream

TestPrintWriters

Run

Click the Run button to access the DOS prompt; then type java
TestPrintWriters t.dat and press Enter. (Note: You cannot
run this from the CD; the program writes to disk.)

Buffered Streams
Java introduces buffered streams that speed up
input and output by reducing the number of reads
and writes. In the case of input, a bunch of data is
read all at once instead of one byte at a time. In the
case of output, data are first cached into a buffer,
then written all together to the file.

Using buffered streams is highly
recommended.

Buffered Stream Constructors
BufferedInputStream (InputStream in)

BufferedInputStream (InputStream in, int
bufferSize)

BufferedOutputStream (OutputStream in)

BufferedOutputStream (OutputStream in, int
bufferSize)

BufferedReader(Reader in)

BufferedReader(Reader in, int bufferSize)

BufferedWriter(Writer out)

BufferedWriter(Writer out, int
bufferSize)

Example 15.4
Displaying a File in a Text Area
Objective: View a file in a text area. The user
enters a filename in a text field and clicks the
View button; the file is then displayed in a text
area.

ViewFile

Run

Example 15.5
Using File Dialogs

Objective: Create a simple notepad using
JFileChooser to open and save files. The notepad
enables the user to open an existing file, edit the
file, and save the note into the current file or to a
specified file. You can display and edit the file in a
text area.

FileDialogDemo Run

Note: You cannot run this from the CD; the program
writes to disk.

Text Input and Output on the
Consoles

There are two types of interactive I/O. One
involves simple input from the keyboard and
simple output in a pure text form. The other
involves input from various input devices and
output to a graphical environment on frames
and applets. The former is referred to as text
interactive I/O, and the latter is known as
graphical interactive I/O.

Console Output/Input

To perform console output, you can use any
of the methods for PrintStream in
System.out. However, keyboard input is
not directly supported in Java. In order to get
input from the keyboard, you first use the
following statements to read a string from the
keyboard.

MyInput

Object Streams
Object streams enable you to perform input and
output at the object level.

To enable an object to be read or write, the object's
defining class has to implement the
java.io.Serializable interface or the
java.io.Serializable interface or the
java.io.Externalizable interface.

The Serializable Interface

The Serializable interface is a marker interface. It
has no methods, so you don't need to add
additional code in your class that implements
Serializable.

Implementing this interface enables the Java
serialization mechanism to automate the process of
storing the objects and arrays.

The Object Streams

You need to use the
ObjectOutputStream class for
storing objects and the
ObjectInputStream class for
restoring objects.
These two classes are built upon several
other classes.

The ObjectOutput and
ObjectInput Streams

Object

OutputStream

DataOutput ObjectOutput

ObjectOutputStream

ObjectStreamConstants

InputStream ObjectInputStream

DataIntput ObjectIntput

Example 15.6
Testing Object Streams

Objective: Stores objects of MessagePanel
and Date, and Restores these objects.

ObjectStreamDemo Run

Note: You cannot run this from the CD; the program
writes to disk.

Random Access Files
Java provides the RandomAccessFile class to
allow a file to be read and updated at the same
time.

The RandomAccessFile class extends Object
and implements DataInput and DataOutput
interfaces.

RandomAccessFile Methods
Many methods in RandomAccessFile are the
same as those in DataInputStream and
DataOutputStream. For example, readInt(),
readLong(), writeDouble(), readLine(),
writeInt(), and writeLong() can be used in
data input stream or data output stream as well as in
RandomAccessFile streams.

RandomAccessFile Methods, cont.

void seek(long pos) throws IOException;

Sets the offset from the beginning of the
RandomAccessFile stream to where the next read
or write occurs.

long getFilePointer() IOException;

Returns the current offset, in bytes, from the
beginning of the file to where the next read
or write occurs.

RandomAccessFile Methods, cont.

long length()IOException

Returns the length of the file.

final void writeChar(int v) throws
IOException

Writes a character to the file as a two-byte Unicode,
with the high byte written first.

final void writeChars(String s)
throws IOException

Writes a string to the file as a sequence of
characters.

RandomAccessFile Constructor
RandomAccessFile raf =
new RandomAccessFile("test.dat",
"rw"); //allows read and write

RandomAccessFile raf =
new RandomAccessFile("test.dat",
"r"); //read only

Example 15. 7 Using Random
Access Files

Objective: Create a program that registers students
and displays student information.

TestRandomAccessFile

Run

Note: You cannot run this from the CD; the program
writes to disk.

Parsing Text Files (Optional)
The StreamTokenizer class lets you take an
input stream and parse it into words, which are
known as tokens. The tokens are read one at a
time. The following is the StreamTokenizer
constructor:

StreamTokenizer st =
StreamTokenizer(Reader is)

StreamTokenizer Constants
TT_WORD

The token is a word.

TT_NUMBER

The token is a number.

TT_EOL

The end of the line has been read.

TT_EOF

The end of the file has been read.

StreamTokenizer Variables
int ttype
Contains the current token type, which matches
one of the constants listed on the preceding slide.
double nval
Contains the value of the current token if that
token is a number.
String sval
Contains a string that gives the
characters of the current token if that
token is a word.

StreamTokenizer Methods
public int nextToken() throws

IOException

Parses the next token from the input stream of this
StreamTokenizer.

The type of the next token is returned in the ttype
field. If ttype == TT_WORD, the token is stored
in sval; if ttype == TT_NUMBER, the
token is stored in nval.

Example 15.8
Using StreamTokenizer

ParsingTextFile

in.dat

 James 32 60 30
 George 100 100 100
 John 90 94 100

out.dat

 James 39.6
 George 100.0
 John 95.2

+

30%

30%

40%

Run
Click the Run button to access the DOS prompt; then type
java ParsingTextFile and press Enter. (Note: You cannot
run this from the CD; the program writes to disk.)

	Chapter 15: Input and Output
	Streams
	Stream Classes
	Byte Stream Classes
	Character Stream Classes
	InputStream
	Reader
	OutputStream
	Writer
	Processing External Files
	File I/O Stream Constructors
	Example 15.1Processing External Files
	Data Streams
	DataInputStream Methods
	DataOutputStream Methods
	Data I/O Stream Constructors
	Example 15.2Using Data Streams
	Print Streams
	PrintWriter Constructors
	PrintWriter Methods
	Example 15.3Using Print Streams
	Buffered Streams
	Buffered Stream Constructors
	Example 15.4Displaying a File in a Text Area
	Example 15.5Using File Dialogs
	Text Input and Output on the Consoles
	Console Output/Input
	Object Streams
	The Serializable Interface
	The Object Streams
	The ObjectOutput and ObjectInput Streams
	Example 15.6Testing Object Streams
	Random Access Files
	RandomAccessFile Methods
	RandomAccessFile Methods, cont.
	RandomAccessFile Methods, cont.
	RandomAccessFile Constructor
	Example 15. 7 Using Random Access Files
	Parsing Text Files (Optional)
	StreamTokenizer Constants
	StreamTokenizer Variables
	StreamTokenizer Methods
	Example 15.8Using StreamTokenizer

