
Chapter 16 Networking
Client/Server Communications
Simple Client/Server Applications
Serve Multiple Clients
Create Applet Clients
Send and Retrieve Obects on the Network
The URL Class
Retrieve Files from the Network
Retrieve Files from Web Servers
View HTML Pages

Client/Server Communications

Server Host

Server socket on port 8000
SeverSocket server =
 new ServerSocket(8000);

A client socket
Socket socket =
 server.accept()

Client

Client socket
Socket socket =
 new Socket(host, serverPort#)

I/O Stream

Coding Client and Server

int port = 8000;
DataInputStream in;
DataOutputStream out;
ServerSocket server;
Socket socket;

server =new ServerSocket(port);
socket=server.accept();
in=new DataInputStream
 (socket.getInputStream());
out=new DataOutStream
 (socket.getOutputStream());
System.out.println(in.readDouble());
out.writeDouble(aNumber);

int port = 8000;
String host="localhost"
DataInputStream in;
DataOutputStream out;
Socket socket;

socket=new Socket(host, port);
in=new DataInputStream
 (socket.getInputStream());
out=new DataOutputStream
 (socket.getOutputStream());
out.writeDouble(aNumber);
System.out.println(in.readDouble());

ClientServer

Connection
Request

I/O
Streams

Example 16.1 A Client/Server
Example

Objective: Write a client to send data to a server.
The server receives the data, uses it to produce a
result, and then sends the result back to the client.
The client displays the result on the console. In
this example, the data sent from the client is the
radius of a circle, and the result produced by
the server is the area of the circle.

Example 16.1, cont.

radius

Server Client

compute area

area

Server Code Run

Client Code Run

Note: Run Server first, then Client. Press Ctrl+C to close the window.

Example 16.2 Serving Multiple
Clients

Server for Multiple Clients

Run Server

Run Client

Server

Client n. . .Client 1

A serve socket
on a port

A socket for a
client

A socket for a
client

Note: Run Server first, then Client. Press Ctrl+C to close the window.

Applet Clients
Due to security constraints, applets can only connect
to the host from which they were loaded. Therefore,
the HTML file must be located on the machine on
which the server is running.

Example 16.3 Creating Applet
Clients

Objective: shows how to use an applet to register
students. The client collects and sends registration
information to the server. The server appends the
information to a data file using a random access
file stream.

Run

Click Run. Type java RegistrationServer and press Enter. Alt+Tab back to
this window and click Run again. Type appletviewer
registrationClient.html in the second DOS window. Display the Applet
Viewer on top of the server window, and enter student information. To end the
server session, press Ctrl+C. (Note: This program cannot be run from the CD.)

Client CodeServer Code

Example 16.4 Passing Objects in
Network Programs

Objective: This example rewrites Example 16.5,
using object streams on the socket. Instead of
passing name, street, state, and zips separately, this
program passes the student object as a whole
object.

Client CodeServer Code Run

Click Run. Type java RegistrationServer and press Enter. Alt+Tab back to
this window and click Run again. Type appletviewer
registrationClient.html in the second DOS window. Display the Applet
Viewer on top of the server window, and enter student information. To end the
server session, press Ctrl+C. (Note: This program cannot be run from the CD.)

Viewing HTML Pages
Given the URL of the page, a Web browser can view an
HTML page—for example, http://www.sun.com.

HTTP (Hypertext Transfer Protocol) is the common
standard used for communication between a Web
server and the Internet. You can open a URL and
view a Web page in a Java applet.

A URL is a description of a resource
location on the Internet. Java provides a
class—java.net.URL—to manipulate
URLs.

Creating a URL Instance
The following statement creates a Java URL object:

try
{ URL location = new URL("http://www.sun.com");
}
catch(MalformedURLException e)
{ }

ViewingWebPages

Run
If necessary, click the Run button to access the DOS prompt.
Using a JDK 1.2-enabled Web browser. This applet cannot run
using the Applet Viewer utility.

Retrieving Files
from Web Servers

The following figure shows the process by which
an applet reads the files on the Web server:

Web Server

Local file

Web Browser Applet reads the fileInternet

Application reads the file

Example 16.6 Retrieving Remote
Files

Objective: Compute and display student exam scores.
The example is similar to Example 15.5. Rather than
reading the file from the local system, this example
reads the file from a Web server.

ViewRemoteFile Run

If necessary, click the Run button to access the DOS prompt.
Using a Web browser (such as the HotJava
Browser), enter the following URL:

http://www.cs.armstrong.edu/liang/intro3e/
ViewRemoteFile.html

The Web Server
You need to place three files on the Web server:
– ViewRemoteFile.class
– ViewRemoteFile.html
– in.dat

For convenience, place them in one directory.

Viewing HTML Files Using the
JEditorPane

JEditorPane can be used to display HTML
files.

WebBrowser

Run Applet Viewer

Distributed TicTacToe Game

Server

Player 2

Session N...

Player 1

Session 1

Player 2Player 1...

Distributed TicTacToe Game
Server

Create a server socket.

Accept connection from the first player and notify the player
is Player 1 with token X.

Accept connection from the second player and notify the
player is Player 2 with token O. Start a thread for the
session.

Player 1

1. Initialize user interface.

2. Request connection to the server and
know which token to use from the server.

3. Get the start signal from the server.

4. Wait for the player to mark a cell, send
the cell's row and column index to the
server.

5. Receive status from the server.

6. If WIN, display the winner; if player 2
wins, receive the last move from player 2.
Break the loop

7. If DRAW, display game is over; break
the loop.

8. If CONTINUE, receive player 2's
selected row and column index and mark
the cell for player 2.

 Player 2

1. Initialize user interface.

2. Request connection to the server and
know which token to use from the server.

3. Receive status from the server.

4. If WIN, display the winner. If player 1
wins, receive player 1's last move, and
break the loop.

5. If DRAW, display game is over, and
receive player 1's last move, and break the
loop.

6. If CONTINUE, receive player 1's
selected row and index and mark the cell
for player 1.

7. Wait for the player to move, and send
the selected row and column to the server.

Handle a session:

1. Tell player 1 to start.

2. Receive row and column of the selected cell from
Player 1.

3. Determine the game status (WIN, DRAW,
CONTINUE). If player 1 wins, or drawn, send the status
(PLAYER1_WON, DRAW) to both players and send
player 1's move to player 2. Exit.
.
4. If CONTINUE, notify player 2 to take the turn, and
send player 1's newly selected row and column index to
player 2.

5. Receive row and column of the selected cell from
player 2.

6. If player 2 wins, send the status (PLAYER2_WON) to
both players, and send player 2's move to player 1. Exit.

7. If CONTINUE, send the status, and send player 2's
newly selected row and column index to Player 1.

	Chapter 16 Networking
	Client/Server Communications
	Coding Client and Server
	Example 16.1 A Client/Server Example
	Example 16.1, cont.
	Example 16.2 Serving Multiple Clients
	Applet Clients
	Example 16.3 Creating Applet Clients
	Example 16.4 Passing Objects in Network Programs
	Viewing HTML Pages
	Creating a URL Instance
	Retrieving Filesfrom Web Servers
	Example 16.6 Retrieving Remote Files
	The Web Server
	Viewing HTML Files Using the JEditorPane
	Distributed TicTacToe Game
	Distributed TicTacToe Game

