
JAVA™ SECURITY OVERVIEW
White Paper
April 2005

Table of Contents

1 Introduction. 1

2 Java Language Security and Bytecode Verification . 2

3 Basic Security Architecture . 3

Security Providers . 3

File Locations . 4

4 Cryptography . 5

5 Public Key Infrastructure . 6

Key and Certificate Storage . 6

PKI Tools . 6

6 Authentication . 8

7 Secure Communication . 10

SSL/TLS . 10

SASL . 10

GSS-API and Kerberos . 11

8 Access Control . 12

Permissions . 12

Policy . 12

Access Control Enforcement . 13

9 For More Information . 15

Appendix A – Classes Summary . 16

Appendix B – Tools Summary . 17

Appendix C – Built-in Providers . 18

Sun Microsystems, Inc. Table of Contents

Chapter 1

Introduction

The Java™ platform was designed with a strong emphasis on security. At its core, the Java language itself is

type-safe and provides automatic garbage collection, enhancing the robustness of application code. A secure

class loading and verification mechanism ensures that only legitimate Java code is executed.

The initial version of the Java platform created a safe environment for running potentially untrusted code, such as

Java applets downloaded from a public network. As the platform has grown and widened its range of deployment,

the Java security architecture has correspondingly evolved to support an expanding set of services. Today the

architecture includes a large set of application programming interfaces (APIs), tools, and implementations of

commonly-used security algorithms, mechanisms, and protocols. This provides the developer a comprehensive

security framework for writing applications, and also provides the user or administrator a set of tools to securely

manage applications.

The Java security APIs span a wide range of areas. Cryptographic and public key infrastructure (PKI) interfaces

provide the underlying basis for developing secure applications. Interfaces for performing authentication and access

control enable applications to guard against unauthorized access to protected resources.

The APIs allow for multiple interoperable implementations of algorithms and other security services. Services are

implemented in providers, which are plugged into the Java platform via a standard interface that makes it easy for

applications to obtain security services without having to know anything about their implementations. This allows

developers to focus on how to integrate security into their applications, rather than on how to implement complex

security mechanisms.

The Java platform includes a number of providers that implement a core set of security services. It also allows for

additional custom providers to be installed. This enables developers to extend the platform with new security

mechanisms.

This paper gives a broad overview of security in the Java platform, from secure language features to the security

APIs, tools, and built-in provider services, highlighting key packages and classes where applicable.

Note – This paper is based on Java™ 2 Platform, Standard Edition (J2SE™), version 5.0.

Sun Microsystems, Inc. Introduction P1

Chapter 2

Java Language Security and Bytecode Verification

The Java language is designed to be type-safe and easy to use. It provides automatic memory management,

garbage collection, and range-checking on arrays. This reduces the overall programming burden placed on

developers, leading to fewer subtle programming errors and to safer, more robust code.

In addition, the Java language defines different access modifiers that can be assigned to Java classes, methods,

and fields, enabling developers to restrict access to their class implementations as appropriate. Specifically,

the language defines four distinct access levels: private, protected, public, and, if unspecified,

package. The most open access specifier is public—access is allowed to anyone. The most restrictive modifier

is private—access is not allowed outside the particular class in which the private member (a method, for

example) is defined. The protected modifier allows access to any subclass, or to other classes within the same

package. Package-level access only allows access to classes within the same package.

A compiler translates Java programs into a machine-independent bytecode representation. A bytecode verifier is

invoked to ensure that only legitimate bytecodes are executed in the Java runtime. It checks that the bytecodes

conform to the Java Language Specification and do not violate Java language rules or namespace restrictions. The

verifier also checks for memory management violations, stack underflows or overflows, and illegal data typecasts.

Once bytecodes have been verified, the Java runtime prepares them for execution.

Sun Microsystems, Inc.P2 Java Language Security and Bytecode Verification

Chapter 3

Basic Security Architecture

The Java platform defines a set of APIs spanning major security areas, including cryptography, public key

infrastructure, authentication, secure communication, and access control. These APIs allow developers to easily

integrate security into their application code. They were designed around the following principles:

1. Implementation independence

Applications do not need to implement security themselves. Rather, they can request security

services from the Java platform. Security services are implemented in providers (see below),

which are plugged into the Java platform via a standard interface. An application may rely on

multiple independent providers for security functionality.

2. Implementation interoperability

Providers are interoperable across applications. Specifically, an application is not bound to a

specific provider, and a provider is not bound to a specific application.

3. Algorithm extensibility

The Java platform includes a number of built-in providers that implement a basic set of security

services that are widely used today. However, some applications may rely on emerging standards

not yet implemented, or on proprietary services. The Java platform supports the installation of

custom providers that implement such services.

Security Providers

The java.security.Provider class encapsulates the notion of a security provider in the Java platform.

It specifies the provider’s name and lists the security services it implements. Multiple providers may be configured

at the same time, and are listed in order of preference. When a security service is requested, the highest priority

provider that implements that service is selected.

Applications rely on the relevant getInstance method to obtain a security service from an underlying provider.

For example, message digest creation represents one type of service available from providers. (Chapter 4 discusses

message digests and other cryptographic services.) An application invokes the getInstance method in the

java.security.MessageDigest class to obtain an implementation of a specific message digest algorithm,

such as MD5.

MessageDigest md = MessageDigest.getInstance("MD5");

The program may optionally request an implementation from a specific provider, by indicating the provider name,

as in the following:

MessageDigest md =

MessageDigest.getInstance("MD5", "ProviderC");

Figures 1 and 2 illustrate these options for requesting an MD5 message digest implementation. Both figures show

three providers that implement message digest algorithms. The providers are ordered by preference from left to

right (1-3). In Figure 1, an application requests an MD5 algorithm implementation without specifying a provider

Sun Microsystems, Inc. Basic Security Architecture P3

name. The providers are searched in preference order and the implementation from the first provider supplying

that particular algorithm, ProviderB, is returned. In Figure 2, the application requests the MD5 algorithm

implementation from a specific provider, ProviderC. This time the implementation from that provider is returned,

even though a provider with a higher preference order, ProviderB, also supplies an MD5 implementation.

Figure 1 – Provider searching Figure 2 – Specific provider requested

The Java platform implementation from Sun Microsystems includes a number of pre-configured default

providers that implement a basic set of security services that can be used by applications. Note that other vendor

implementations of the Java platform may include different sets of providers that encapsulate vendor-specific

sets of security services. When this paper mentions built-in default providers, it is referencing those available in

Sun’s implementation.

The sections below on the various security areas (cryptography, authentication, etc.) each include descriptions

of the relevant services supplied by the default providers. A table in Appendix C summarizes all of the default

providers.

File Locations

Certain aspects of Java security mentioned in this paper, including the configuration of providers, may be

customized by setting security properties. You may set security properties statically in the security properties file,

which by default is the java.security file in the lib/security directory of the directory where the Java™ Runtime

Environment (JRE) is installed. Security properties may also be set dynamically by calling appropriate methods of

the Security class (in the java.security package).

The tools and commands mentioned in this paper are all in the ~jre/bin directory, where ~jre stands for the

directory in which the JRE is installed. The cacerts file mentioned in Chapter 5 is in ~jre/lib/security.

Sun Microsystems, Inc.P4 Basic Security Architecture

1. ProviderA
MessageDigest

 SHA-1
SHA-256

MessageDigest.getInstance
("MD5")

MD5 MessageDigest
 from ProviderB

2. ProviderB
MessageDigest

 MD5
SHA-512

3. ProviderC
MessageDigest

 MD5
SHA-256

Application

Provider
Framework

1. ProviderA
MessageDigest

 SHA-1
SHA-256

MessageDigest.getInstance
("MD5", "ProviderC")

MD5 MessageDigest
 from ProviderC

2. ProviderB
MessageDigest

 MD5
SHA-512

3. ProviderC
MessageDigest

 MD5
SHA-256

Application

Provider
Framework

Chapter 4

Cryptography

The Java cryptography architecture is a framework for accessing and developing cryptographic functionality for

the Java platform. It includes APIs for a large variety of cryptographic services, including:

• Message digest algorithms

• Digital signature algorithms

• Symmetric bulk encryption

• Symmetric stream encryption

• Asymmetric encryption

• Password-based encryption (PBE)

• Elliptic Curve Cryptography (ECC)

• Key agreement algorithms

• Key generators

• Message Authentication Codes (MACs)

• (Pseudo-)random number generators

For historical (export control) reasons, the cryptography APIs are organized into two distinct packages. The

java.security package contains classes that are not subject to export controls (like Signature and

MessageDigest). The javax.crypto package contains classes that are subject to export controls (like

Cipher and KeyAgreement).

The cryptographic interfaces are provider-based, allowing for multiple and interoperable cryptography implementa-

tions. Some providers may perform cryptographic operations in software; others may perform the operations on a

hardware token (for example, on a smartcard device or on a hardware cryptographic accelerator). Providers that

implement export-controlled services must be digitally signed.

The Java platform includes built-in providers for many of the most commonly used cryptographic algorithms,

including the RSA and DSA signature algorithms, the DES, AES, and ARCFOUR encryption algorithms, the MD5

and SHA-1 message digest algorithms, and the Diffie-Hellman key agreement algorithm. These default providers

implement cryptographic algorithms in Java code.

The Java platform also includes a built-in provider that acts as a bridge to a native PKCS#11 (v2.x) token. This

provider, named “SunPKCS11”, allows Java applications to seamlessly access cryptographic services located on

PKCS#11-compliant tokens.

Sun Microsystems, Inc. Cryptography P5

Sun Microsystems, Inc.P6 Public Key Infrastructure

Chapter 5

Public Key Infrastructure

Public Key Infrastructure (PKI) is a term used for a framework that enables secure exchange of information based

on public key cryptography. It allows identities (of people, organizations, etc.) to be bound to digital certificates

and provides a means of verifying the authenticity of certificates. PKI encompasses keys, certificates, public key

encryption, and trusted Certification Authorities (CAs) who generate and digitally sign certificates.

The Java platform includes API and provider support for X.509 digital certificates and certificate revocation lists

(CRLs), as well as PKIX-compliant certification path building and validation. The classes related to PKI are located

in the java.security and java.security.cert packages.

Key and Certificate Storage

The Java platform provides for long-term persistent storage of cryptographic keys and certificates via key and

certificate stores. Specifically, the java.security.KeyStore class represents a key store, a secure repository

of cryptographic keys and/or trusted certificates (to be used, for example, during certification path validation),

and the java.security.cert.CertStore class represents a certificate store, a public and potentially

vast repository of unrelated and typically untrusted certificates. A CertStore may also store CRLs.

KeyStore and CertStore implementations are distinguished by types. The Java platform includes the

standard PKCS11 and PKCS12 key store types (whose implementations are compliant with the corresponding PKCS

specifications from RSA Security), as well as a proprietary file-based key store type called JKS (which stands for

“Java Key Store”).

The Java platform includes a special built-in JKS key store, cacerts, that contains a number of certificates for

well-known, trusted CAs. The keytool documentation (see the security features documentation link in Chapter 9)

lists the certificates included in cacerts.

The SunPKCS11 provider mentioned in the “Cryptography” chapter (Chapter 4) includes a PKCS11 KeyStore

implementation. This means that keys and certificates residing in secure hardware (such as a smartcard) can be

accessed and used by Java applications via the KeyStore API. Note that smartcard keys may not be permitted

to leave the device. In such cases, the java.security.Key object reference returned by the KeyStore

API may simply be a reference to the key (that is, it would not contain the actual key material). Such a Key

object can only be used to perform cryptographic operations on the device where the actual key resides.

The Java platform also includes an LDAP certificate store type (for accessing certificates stored in an LDAP

directory), as well as an in-memory Collection certificate store type (for accessing certificates managed in a

java.util.Collection object).

PKI Tools

There are two built-in tools for working with keys, certificates, and key stores:

keytool is used to create and manage key stores. It can

• Create public/private key pairs

• Display, import, and export X.509 v1, v2, and v3 certificates stored as files

Sun Microsystems, Inc. Public Key Infrastructure P7

• Create self-signed certificates

• Issue certificate (PKCS#10) requests to be sent to CAs

• Import certificate replies (obtained from the CAs sent certificate requests)

• Designate public key certificates as trusted

The jarsigner tool is used to sign JAR files, or to verify signatures on signed JAR files. The Java™ ARchive (JAR) file

format enables the bundling of multiple files into a single file. Typically a JAR file contains the class files and

auxiliary resources associated with applets and applications. When you want to digitally sign code, you first use

keytool to generate or import appropriate keys and certificates into your key store (if they are not there already),

then use the jar tool to place the code in a JAR file, and finally use the jarsigner tool to sign the JAR file. The

jarsigner tool accesses a key store to find any keys and certificates needed to sign a JAR file or to verify the

signature of a signed JAR file.

Note – jarsigner can optionally generate signatures that include a timestamp. Systems (such as Java™ Plug-in) that verify JAR file
signatures can check the timestamp and accept a JAR file that was signed while the signing certificate was valid rather than
requiring the certificate to be current. (Certificates typically expire annually, and it is not reasonable to expect JAR file creators
to re-sign deployed JAR files annually.)

Sun Microsystems, Inc.P8 Authentication

Chapter 6

Authentication

Authentication is the process of determining the identity of a user. In the context of the Java™ runtime environment,

it is the process of identifying the user of an executing Java program. In certain cases, this process may rely on

the services described in the “Cryptography” chapter (Chapter 4).

The Java platform provides APIs that enable an application to perform user authentication via pluggable login

modules. Applications call into the LoginContext class (in the javax.security.auth.login package),

which in turn references a configuration. The configuration specifies which login module (an implementation of the

javax.security.auth.spi.LoginModule interface) is to be used to perform the actual authentication.

Since applications solely talk to the standard LoginContext API, they can remain independent from the

underlying plug-in modules. New or updated modules can be plugged in for an application without having to

modify the application itself. Figure 3 illustrates the independence between applications and underlying login

modules:

Figure 3 – Authentication login modules plugging into the authentication framework

It is important to note that although login modules are pluggable components that can be configured into the

Java platform, they are not plugged in via security providers. Therefore, they do not follow the provider searching

model described in Chapter 3. Instead, as is shown in the above diagram, login modules are administered by their

own unique configuration.

Application

Authentication
Framework

Smartcard Kerberos Username/
Password

Configuration

The Java platform provides the following built-in LoginModules, all in the com.sun.security.auth.

module package:

• Krb5LoginModule for authentication using Kerberos protocols

• JndiLoginModule for username/password authentication using LDAP or NIS databases

• KeyStoreLoginModule for logging into any type of key store, including a PKCS#11 token

key store

Authentication can also be achieved during the process of establishing a secure communication channel between

two peers. The Java platform provides implementations of a number of standard communication protocols, which

are discussed in the following chapter.

Sun Microsystems, Inc. Authentication P9

Chapter 7

Secure Communication

The data that travels across a network can be accessed by someone who is not the intended recipient. When the

data includes private information, such as passwords and credit card numbers, steps must be taken to make the

data unintelligible to unauthorized parties. It is also important to ensure that you are sending the data to the

appropriate party, and that the data has not been modified, either intentionally or unintentionally, during

transport.

Cryptography forms the basis required for secure communication, and that is described in Chapter 4. The Java

platform also provides API support and provider implementations for a number of standard secure communication

protocols.

SSL/TLS

The Java platform provides APIs and an implementation of the SSL and TLS protocols that includes functionality for

data encryption, message integrity, server authentication, and optional client authentication. Applications can use

SSL/TLS to provide for the secure passage of data between two peers over any application protocol, such as HTTP

on top of TCP/IP.

The javax.net.ssl.SSLSocket class represents a network socket that encapsulates SSL/TLS support

on top of a normal stream socket (java.net.Socket). Some applications might want to use alternate data

transport abstractions (e.g., New-I/O); the javax.net.ssl.SSLEngine class is available to produce and

consume SSL/TLS packets.

The Java platform also includes APIs that support the notion of pluggable (provider-based) key managers and trust

managers. A key manager is encapsulated by the javax.net.ssl.KeyManager class, and manages the keys

used to perform authentication. A trust manager is encapsulated by the TrustManager class (in the same

package), and makes decisions about who to trust based on certificates in the key store it manages.

SASL

Simple Authentication and Security Layer (SASL) is an Internet standard that specifies a protocol for authentication

and optional establishment of a security layer between client and server applications. SASL defines how authentica-

tion data is to be exchanged, but does not itself specify the contents of that data. It is a framework into which

specific authentication mechanisms that specify the contents and semantics of the authentication data can fit.

There are a number of standard SASL mechanisms defined by the Internet community for various security levels

and deployment scenarios.

The Java SASL API defines classes and interfaces for applications that use SASL mechanisms. It is defined to be

mechanism-neutral; an application that uses the API need not be hardwired into using any particular SASL

mechanism. Applications can select the mechanism to use based on desired security features. The API supports

both client and server applications. The javax.security.sasl.Sasl class is used to create SaslClient

and SaslServer objects.

Sun Microsystems, Inc.P10 Secure Communication

SASL mechanism implementations are supplied in provider packages. Each provider may support one or more SASL

mechanisms and is registered and invoked via the standard provider architecture.

The Java platform includes a built-in provider that implements the following SASL mechanisms:

• CRAM-MD5, DIGEST-MD5, EXTERNAL, GSSAPI, and PLAIN client mechanisms

• CRAM-MD5, DIGEST-MD5, and GSSAPI server mechanisms

GSS-API and Kerberos
The Java platform contains an API with the Java language bindings for the Generic Security Service Application

Programming Interface (GSS-API). GSS-API offers application programmers uniform access to security services atop

a variety of underlying security mechanisms. The Java GSS-API currently requires use of a Kerberos v5 mechanism,

and the Java platform includes a built-in implementation of this mechanism. At this time, it is not possible to plug

in additional mechanisms.

Note – The Krb5LoginModule mentioned in Chapter 6 can be used in conjunction with the GSS Kerberos

mechanism.

Before two applications can use the Java GSS-API to securely exchange messages between them, they must

establish a joint security context. The context encapsulates shared state information that might include, for

example, cryptographic keys. Both applications create and use an org.ietf.jgss.GSSContext object to

establish and maintain the shared information that makes up the security context. Once a security context has

been established, it can be used to prepare secure messages for exchange.

The Java GSS APIs are in the org.ietf.jgss package. The Java platform also defines basic Kerberos classes,

like KerberosPrincipal and KerberosTicket, which are located in the javax.security.

auth.kerberos package.

Sun Microsystems, Inc. Secure Communication P11

Chapter 8

Access Control

The access control architecture in the Java platform protects access to sensitive resources (for example, local files)

or sensitive application code (for example, methods in a class). All access control decisions are mediated by a

security manager, represented by the java.lang.SecurityManager class. A SecurityManager must

be installed into the Java runtime in order to activate the access control checks.

Java applets and Java™ Web Start applications are automatically run with a SecurityManager installed.

However, local applications executed via the java command are by default not run with a SecurityManager

installed. In order to run local applications with a SecurityManager, either the application itself must

programmatically set one via the setSecurityManager method (in the java.lang.System class), or

java must be invoked with a -Djava.security.manager argument on the command line.

Permissions

When Java code is loaded by a class loader into the Java runtime, the class loader automatically associates the

following information with that code:

• Where the code was loaded from

• Who signed the code (if anyone)

• Default permissions granted to the code

This information is associated with the code regardless of whether the code is downloaded over an untrusted

network (e.g., an applet) or loaded from the filesystem (e.g., a local application). The location from which the code

was loaded is represented by a URL, the code signer is represented by the signer’s certificate chain, and default

permissions are represented by java.security.Permission objects.

The default permissions automatically granted to downloaded code include the ability to make network

connections back to the host from which it originated. The default permissions automatically granted to code

loaded from the local filesystem include the ability to read files from the directory it came from, and also from

subdirectories of that directory.

Note that the identity of the user executing the code is not available at class loading time. It is the responsibility of

application code to authenticate the end user if necessary (for example, as described in Chapter 6). Once the user

has been authenticated, the application can dynamically associate that user with executing code by invoking the

doAs method in the javax.security.auth.Subject class.

Policy

As mentioned earlier, a limited set of default permissions are granted to code by class loaders. Administrators have

the ability to flexibly manage additional code permissions via a security policy. The Java platform encapsulates the

notion of a security policy in the java.security.Policy class. There is only one Policy object installed

into the Java runtime at any given time. The basic responsibility of the Policy object is to determine whether

access to a protected resource is permitted to code (characterized by where it was loaded from, who signed it,

and who is executing it). How a Policy object makes this determination is implementation-dependent. For

example, it may consult a database containing authorization data, or it may contact another service.

Sun Microsystems, Inc.P12 Access Control

The Java platform includes a default Policy implementation that reads its authorization data from one or more

ASCII (UTF-8) files configured in the security properties file. These policy files contain the exact sets of permissions

granted to code—specifically, the exact sets of permissions granted to code loaded from particular locations,

signed by particular entities, and executing as particular users. The policy entries in each file must conform to a

documented proprietary syntax, and may be composed via a simple text editor or the graphical policytool utility.

Access Control Enforcement
The Java runtime keeps track of the sequence of Java calls that are made as a program executes. When access to a

protected resource is requested, the entire call stack, by default, is evaluated to determine whether the requested

access is permitted.

As mentioned earlier, resources are protected by the SecurityManager. Security-sensitive code in the Java

platform and in applications protects access to resources via code like the following:

SecurityManager sm = System.getSecurityManager();

if (sm != null) {

sm.checkPermission(perm);

}

where perm is the Permission object that corresponds to the requested access. For example, if an attempt is

made to read the file /tmp/abc, the permission may be constructed as follows:

Permission perm =

new java.io.FilePermission("/tmp/abc", "read");

The default implementation of SecurityManager delegates its decision to the java.security.

AccessController implementation. The AccessController traverses the call stack, passing to the

installed security Policy each code element in the stack, along with the requested permission (for example, the

FilePermission in the above example). The Policy determines whether the requested access is granted,

based on the permissions configured by the administrator. If access is not granted, the AccessController

throws a java.lang.SecurityException.

Figure 4 illustrates access control enforcement. In this particular example, there are initially two elements on

the call stack, ClassA and ClassB. ClassA invokes a method in ClassB, which then attempts to access the file

/tmp/abc by creating an instance of java.io.FileInputStream. The FileInputStream constructor

creates a FilePermission, perm, as shown above, and then passes perm to the SecurityManager’s

checkPermission method. In this particular case, only the permissions for ClassA and ClassB need to be

checked, because all system code, including FileInputStream, SecurityManager, and

AccessController, automatically receives all permissions.

In this example, ClassA and ClassB have different code characteristics—they come from different locations and

have different signers. Each may have been granted a different set of permissions. The AccessController

only grants access to the requested file if the Policy indicates that both classes have been granted the

required FilePermission.

Sun Microsystems, Inc. Access Control P13

Figure 4 – Controlling access to resources

Sun Microsystems, Inc.P14 Access Control

ClassA

ClassB

FileInputStream
sm.checkPermission(perm)

SecurityManager

Policy

AccessController

Location Who Signers

Location Who Signers

abc

authorization
data

access granted
or denied

Sun Microsystems, Inc. For More Information P15

Chapter 9

For More Information

Detailed documentation for all the J2SE 5.0 security features mentioned in this paper can be found at

http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html

Additional Java security documentation can be found online at

http://java.sun.com/security/

and in the book Inside Java 2 Platform Security, Second Edition (Addison-Wesley). See

http://java.sun.com/docs/books/security/index.html

Note – Historically, as new types of security services were added to the Java platform (sometimes initially as extensions),
various acronymns were used to refer to them. Since these acronyms are still in use in the Java security documentation,
here’s an explanation of what they represent: JSSE (Java™ Secure Socket Extension) refers to the SSL-related services described
in Chapter 7, JCE (Java™ Cryptography Extension) refers to cryptographic services (Chapter 4), and JAAS (Java™ Authentication
and Authorization Service) refers to the authentication and user-based access control services described in Chapters 6 and 8,
respectively.

http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html
http://java.sun.com/security/
http://java.sun.com/docs/books/security/index.html

Sun Microsystems, Inc.P16 For More Information

Appendix A – Classes Summary
Table 1 summarizes the names, packages, and usage of the Java security classes and interfaces mentioned in

this paper.

Table 1 – Key Java security packages and classes

Package Class/Interface Name Usage

com.sun.security.auth.module JndiLoginModule Performs username/password
authentication using LDAP or NIS database

KeyStoreLoginModule Performs authentication based on key store
login

Krb5LoginModule Performs authentication using Kerberos protocols

java.lang SecurityException Indicates a security violation

SecurityManager Mediates all access control decisions

System Installs the SecurityManager

java.security AccessController Called by default implementation of
SecurityManager to make access control decisions

Key Represents a cryptographic key

KeyStore Represents a repository of keys and trusted
certificates

MessageDigest Represents a message digest

Permission Represents access to a particular resource

Policy Encapsulates the security policy

Provider Encapsulates security service implementations

Security Manages security providers and security
properties

Signature Creates and verifies digital signatures

java.security.cert Certificate Represents a public key certificate

CertStore Represents a repository of unrelated and typically
untrusted certificates

javax.crypto Cipher Performs encryption and decryption

KeyAgreement Performs a key exchange

javax.net.ssl KeyManager Manages keys used to perform SSL/TLS
authentication

SSLEngine Produces/consumes SSL/TLS packets, allowing
the application freedom to choose a transport
mechanism

SSLSocket Represents a network socket that encapsulates
SSL/TLS support on top of a normal stream socket

TrustManager Makes decisions about who to trust in SSL/TLS
interactions (for example, based on trusted
certificates in key stores)

Sun Microsystems, Inc. For More Information P17

There are also three Kerberos-related tools that are shipped with the Java platform for Windows. Equivalent

functionality is provided in tools of the same name that are automatically part of the Solaris™ and Linux operating

environments. Table 3 summarizes the Kerberos tools.

Table 3 – Kerberos-related tools

Tool Usage

kinit Obtains and caches Kerberos ticket-granting tickets

klist Lists entries in the local Kerberos credentials cache
and key table

ktab Manages the names and service keys stored in the
local Kerberos key table

Appendix B – Tools Summary
Table 2 summarizes the tools mentioned in this paper.

Table 2 – Java security tools

Tool Usage

jar Creates Java Archive (JAR) files

jarsigner Signs and verifies signatures on JAR files

keytool Creates and manages key stores

policytool Creates and edits policy files for use with default
Policy implementation

Package Class/Interface Name Usage

javax.security.auth Subject Represents a user

javax.security.auth.kerberos KerberosPrincipal Represents a Kerberos principal

KerberosTicket Represents a Kerberos ticket

javax.security.auth.login LoginContext Supports pluggable authentication

javax.security.auth.spi LoginModule Implements a specific authentication mechanism

javax.security.sasl Sasl Creates SaslClient and SaslServer objects

SaslClient Performs SASL authentication as a client

SaslServer Performs SASL authentication as a server

org.ietf.jgss GSSContext Encapsulates a GSS-API security context and
provides the security services available via
the context

Sun Microsystems, Inc.P18

Appendix C – Built-in Providers
The Java platform implementation from Sun Microsystems includes a number of built-in provider

packages. Table 4 summarizes some of the most important security services supplied by these providers. For

details, see the documentation referenced in the “For More Information” chapter.

In the table, the providers are listed in default preference order, and the preference order is shown underneath

each provider name, in parentheses. The final column lists the standard names that can be passed to relevant

getInstance calls (for example, MessageDigest.getInstance).

Table 4 – Built-in providers and the services they implement

P18 For More Information

Provider Name Security Services Algorithms/Standards Supported
(and default preference order)

SUN Algorithm parameter generation DSA

(1) Algorithm parameter management DSA

Certificate and CRL creation X509 (from ASN.1 binary or Base64
encoded bytes)

Certificate store Collection (in-memory collection)
LDAP

Certification path building PKIX

Certification path creation X509 (from PKCS#7 or PkiPath encoded bytes)

Certification path validation PKIX (revocation checking via CRLs or OCSP)

Key conversion (from raw bytes to DSA
Java objects and vice versa)

Key pair generation DSA

Key store JKS (Sun proprietary standard)

Message digest calculation MD2
MD5
SHA-1
SHA-256
SHA-384
SHA-512

Pseudorandom number generation SHA1PRNG (Sun proprietary algorithm)

Signature generation RawDSA
SHA1withDSA

SunRsaSign Key conversion (from raw bytes to RSA
(2) Java objects and vice versa)

Key pair generation RSA

Signature generation MD2withRSA
MD5withRSA
SHA1withRSA
SHA256withRSA
SHA384withRSA
SHA512withRSA

Sun Microsystems, Inc. P19For More Information P19

Provider Name Security Services Algorithms/Standards Supported
(and default preference order)

SunJSSE Key manager SunX509

(3) Key store PKCS12

SSL/TLS protocols SSLv3
TLSv1

Trust manager PKIX (alias: X509)

SunJCE Algorithm parameter generation DiffieHellman

(4) Algorithm parameter management AES
Blowfish
DES
DESede (Triple DES)
DiffieHellman
OAEP
PBE
PBEWithMD5AndDES
PBEWithMD5AndTripleDES
PBEWithSHA1AndDESede
PBEWithSHA1AndRC2_40
RC2

Cipher modes Modes provided for all block ciphers:
CBC (Cipher Block Chaining)
CFB (Cipher Feedback)
CTR (Counter)
ECB (Electronic Codebook)
OFB (Output Feedback)
PCBC (Propagating Cipher Block Chaining)

Cipher padding For all block ciphers:
NOPADDING or PKCS5PADDING

For non-PKCS#5 block ciphers:
ISO10126PADDING (XML encryption padding)

Encryption/decryption AES
ARCFOUR
Blowfish
DES
DESede (Triple DES)
PBEWithMD5AndDES
PBEWithMD5AndTripleDES
PBEWithSHA1AndDESede
PBEWithSHA1AndRC2_40
RC2
RSA

Key agreement DiffieHellman

Key conversion (from raw bytes DES
to Java objects and vice versa) DESede (Triple DES)

DiffieHellman
PBE
PBEWithMD5AndDES
PBEWithMD5AndTripleDES
PBEWithSHA1AndDESede
PBEWithSHA1AndRC2_40

Sun Microsystems, Inc.P20 For More Information

Provider Name Security Services Algorithms/Standards Supported
(and default preference order)

Key generation AES
ARCFOUR
Blowfish
DES
DESede (Triple DES)
DiffieHellman
HmacMD5
HmacSHA1
HmacSHA256
HmacSHA384
HmacSHA512
RC2

Key store JCEKS (Sun proprietary standard)

Message authentication code HmacMD5
(MAC) calculation HmacPBE SHA1

HmacSHA1
HmacSHA256
HmacSHA384
HmacSHA512

SunJGSS GSS-API security mechanism (built-in Kerberos v5 provider)
(5)

SunSASL Client authentication CRAM-MD5
(6) mechanisms DIGEST-MD5

EXTERNAL
GSSAPI (Kerberos v5)
PLAIN

Server authentication CRAM-MD5
mechanisms DIGEST-MD5

GSSAPI (Kerberos v5)

SunPKCS11 PKCS#11 token cryptography (Enables access to native PKCS#11 tokens
via standard Java cryptography APIs)

Key store PKCS11
(1 on Solaris 10—other
provider preferences
increased by 1—otherwise
not configured by default)

P20

White Paper Java Security Overview On the Web sun.com

SUN™ © 2005 Sun Microsystems, Inc. All rights reserved. Sun, Sun Microsystems, the Sun logo, Java, the Java Coffee Cup logo, Solaris, and J2SE are trademarks, registered trademarks or service marks of Sun
Microsystems, Inc. in the United States and other countries.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.

Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 USA Phone 1-650-960-1300 or 1-800-555-9SUN Web sun.co

© 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, CA 95054 USA

All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or

document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software, including font

technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Java, the Java Coffee Cup logo, Solaris, and J2SE are trademarks, registered trademarks or service marks of Sun Microsystems, Inc. in

the United States and other countries.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC

trademarks are based upon an architecture developed by Sun Microsystems, Inc.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87),

or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a). DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND

WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE

EXTENT THAT SUCH DISCLAIMERS HELD TO BE LEGALLY INVALID.

Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 USA Phone 1-650-960-1300 or 1-800-555-9SUN Web sun.com

