
1

JavaServer Pages Pocket
Reference

The JavaServer Pages™ (JSP) specification is built on top of
the Java™ servlet specification and is intended to provide for
better separation of the presentation (e.g., HTML markup)
and business logic (e.g., database operations) parts of web
applications. JSP is supported by all major web and applica-
tion servers. A partial listing of JSP-compliant products is
available at Sun Microsystems’ JSP web page:

http://java.sun.com/products/jsp/

A JSP page is a web page that contains both static content,
such as HTML, and JSP elements for generating the parts
that differ with each request, as shown in Figure 1. The
default filename extension for a JSP page is .jsp.

Everything in the page that’s not a JSP element is called tem-
plate text. Template text can be in any format, including
HTML, WML, XML, and even plain text. Since HTML is by
far the most common web page language in use today, most
of the descriptions and examples in this text are HTML-
based. You should be aware, though, that JSP has no depen-
dency on HTML. Template text is not interpreted at all; it’s
passed straight through to the browser. JSP is therefore well-
suited to serve any markup language.

When a JSP page request is processed, the static template
text and the dynamic content generated by the JSP ele-
ments are merged, and the result is sent as the response to
the client.

,jsppr.9600 Page 1 Friday, September 7, 2001 2:51 PM

2 | JavaServer Pages Pocket Reference

JSP Processing
Before a JSP page is sent to a browser, the server must pro-
cess all the JSP elements it contains. This processing is per-
formed by a web container, which can be either a native part
of a web server or a separate product attached to the web
server. The web container turns the JSP page into a Java serv-
let, then executes the servlet.

Converting the JSP page into a servlet (known as the JSP page
implementation class) and compiling the servlet take place in
the translation phase. The web container initiates the transla-
tion phase for a JSP page automatically when the first request
for the page is received. The translation phase takes a bit of
time, of course, so users may notice a slight delay the first
time they request a JSP page. The translation phase can also

Figure 1. Template text and JSP elements

<%@ page language="java" contentType="text/html" %>

<html>
 <body bgcolor="white">

 <jsp:useBean
 id="userInfo"
 class="com.ora.jsp.beans.userinfo.UserInfoBean">
 <jsp:setProperty name="userInfo" property="*"/>
 </jsp:useBean>

 The following information was saved:

 User Name:

 <jsp:getProperty name="userInfo"
 property="userName"/>

 Email Address:

 <jsp:getProperty name="userInfo"
 property="emailAddr"/>

 </body>
</html>

JSP element

template text

JSP element

template text

JSP element

template text

JSP element

template text

,jsppr.9600 Page 2 Friday, September 7, 2001 2:51 PM

JSP Processing | 3

be initiated explicitly, to avoid hitting the first user with the
delay. This is referred to as precompilation.

The web container is also responsible for invoking the JSP
page implementation class to process each request and gen-
erate responses. This is called the request processing phase.
The two phases are illustrated in Figure 2.

As long as the JSP page remains unchanged, the translation
phase is skipped. When the page is modified, it goes through
the translation phase again.

Let’s look at a simple example. In the tradition of program-
ming books, we start with an application that writes “Hello
World” (with a twist—it also shows the current time on the
server):

<html>
 <head>
 <title>Hello World</title>
 </head>
 <body>
 <h1>Hello World</h1>
 It's <%= new java.util.Date().toString() %> and all
 is well.
 </body>
</html>

This JSP page produces the result shown in Figure 3.

Figure 2. JSP page translation and processing phases

Client

Server with
JSP Container

GET /hello.jsp

HTTP/1.0 200 OK

1

6

hello.jsp

helloServlet.java

helloServlet.class

Generate3

Read

2

5
Execute

Compile

4<html>Hello!</html>

Translation
phase

Request
processing

phase

,jsppr.9600 Page 3 Friday, September 7, 2001 2:51 PM

4 | JavaServer Pages Pocket Reference

This is as simple as it gets. The code represented by the JSP
element (which we have highlighted in bold in the code) is
executed, and the result is combined with the regular HTML
in the page. In this case the JSP element is a scripting ele-
ment with Java code for writing the current date and time.

There are three types of JSP elements: directives, actions, and
scripting elements. The following sections describe the ele-
ments of each type.

Directive Elements
Directive elements specify information about the page itself;
information that doesn’t differ between requests for the page.
Examples are the scripting language used in the page,
whether or not session tracking is required, and the name of
the page that will be used to report any errors.

The general directive syntax is:

<%@ directiveName attr1="value1" attr2="value2" %>

You can use single quotes instead of double quotes around
the attribute values. The directive name and all attribute
names are case-sensitive.

Include Directive
The include directive includes a file, merging its content with
the including page before the combined result is converted to

Figure 3. The output from the Hello World page

,jsppr.9600 Page 4 Friday, September 7, 2001 2:51 PM

Directive Elements | 5

a JSP page implementation class. It supports the attribute
described in Table 1.

A single page can contain multiple include directives.
Together, the including page and all included pages form a
JSP translation unit.

Example:

<%@ include file="header.html" %>

Page Directive
The page directive defines page-dependent attributes, such as
scripting language, error page, and buffering requirements. It
supports the attributes described in Table 2.

Table 1. Attributes for the include directive

Name Default Description

file No default A page- or context-relative URI path for the file
to include.

Table 2. Attributes for the page directive

Name Default Description

autoFlush true Set to true if the page buffer should be flushed
automatically when it’s full or to false if an
exception should be thrown when it’s full.

buffer 8kb Specifies the buffer size for the page. The value
must be expressed as the size in kilobytes
followed by kb, or be the keyword none to
disable buffering.

contentType text/
html

The MIME type for the response generated by
the page, and optionally the charset for the
source page (e.g., text/
html;charset=Shift_JIS).

errorPage No
default

A page- or context-relative URI path to which
the JSP page will forward users if an exception is
thrown by code in the page.

,jsppr.9600 Page 5 Friday, September 7, 2001 2:51 PM

6 | JavaServer Pages Pocket Reference

A JSP translation unit (the source file and any files included
via the include directive) can contain more than one page

extends No
default

The fully qualified name of a Java class that the
generated JSP page implementation class
extends. The class must implement the
JspPage or HttpJspPage interface in the
javax.servlet.jsp package.
Note that the recommendation is to not use this
attribute. Specifying your own superclass
restricts the web container’s ability to provide a
specialized, high-performance superclass.

import No
default

A Java import declaration; i.e., a comma-
separated list of fully qualified class names or
package names followed by .* (for all public
classes in the package).

info No
default

Text that a web container may use to describe
the page in its administration user interface.

isErrorPage false Set to true for a page that is used as an error
page, to make the implicit exception variable
available to scripting elements. Use false for
regular JSP pages.

isThreadSafe true Set to true if the container is allowed to run
multiple threads through the page (i.e., let the
page serve parallel requests). If set to false,
the container serializes all requests for the page.
It may also use a pool of JSP page
implementation class instances to serve more
than one request at a time. The
recommendation is to always use true and to
handle multithread issues by avoiding JSP
declarations and ensuring that all objects used
by the page are thread-safe.

language java The scripting language used in the page.

session true Set to true if the page should participate in a
user session. If set to false, the implicit
session variable is not available to scripting
elements in the page.

Table 2. Attributes for the page directive (continued)

Name Default Description

,jsppr.9600 Page 6 Friday, September 7, 2001 2:51 PM

Standard Action Elements | 7

directive as long as each attribute, with the exception of the
import attribute, occurs no more than once. If multiple
import attribute values are used, they are combined into one
list of import definitions.

Example:

<%@ page language="java"
 contentType="text/html;charset=Shift_JIS"%>
<%@ page import="java.util.*, java.text.*" %>
<%@ page import="java.sql.Date" %>

Taglib Directive
The taglib directive declares a tag library, containing cus-
tom actions, that is used in the page. It supports the
attributes described in Table 3.

Example:

<%@ taglib uri="/orataglib" prefix="ora" %>

Standard Action Elements
Actions are executed when a client requests a JSP page. They
are inserted in a page using XML element syntax and per-
form such functions as input validation, database access, or
passing control to another page. The JSP specification defines
a few standard action elements, described in this section, and
includes a framework for developing custom action elements.

Table 3. Attributes for the taglib directive

Name Default Description

prefix No default Mandatory. The prefix to use in the action element
names for all actions in the library.

uri No default Mandatory. Either a symbolic name for the tag library
defined in the application’s web.xml file, or a page- or
context-relative URI path for the library’s TLD file or JAR
file.

,jsppr.9600 Page 7 Friday, September 7, 2001 2:51 PM

8 | JavaServer Pages Pocket Reference

An action element consists of a start tag (optionally with
attributes), a body, and an end tag. Other elements can be
nested in the body. Here’s an example:

<jsp:forward page="nextPage.jsp">
 <jsp:param name="aParam" value="aValue" />
</jsp:forward>

If the action element doesn’t have a body, you can use a
shorthand notation in which the start tag ends with /> instead
of >, as shown by the <jsp:param> action in this example. The
action element name and attribute names are case-sensitive.

Action elements, or tags, are grouped into tag libraries. The
action name is composed of two parts, a library prefix and
the name of the action within the library, separated by a
colon (e.g., jsp:useBean). All actions in the JSP standard
library use the prefix jsp, while custom actions can use any
prefix except jsp, jspx, java, javax, servlet, sun, or sunw, as
specified per page by the taglib directive.

Some action attributes accept a request-time attribute value,
using the JSP expression syntax:

<% String headerPage = currentTemplateDir +
 "/header.jsp"; %>
<jsp:include page="<%= headerPage %>" flush="true" />

Here the page attribute value is assigned to the value held by
the scripting variable headerPage at request time. You can use
any valid Java expression that evaluates to the type of the
attribute.

The attribute descriptions for each action in this section define
whether a request-time attribute value is accepted or not.

<jsp:fallback>
You can use the <jsp:fallback> action only in the body of a
<jsp:plugin> action. Its body specifies the template text to
use for browsers that do not support the HTML <embed> or
<object> elements. This action supports no attributes.

,jsppr.9600 Page 8 Friday, September 7, 2001 2:51 PM

Standard Action Elements | 9

Example:

<jsp:plugin type="applet" code="Clock2.class"
 codebase="applet"
 jreversion="1.2" width="160" height="150" >
<jsp:fallback>

 Plug-in tag OBJECT or EMBED not supported by browser.
</jsp:fallback>

</jsp:plugin>

<jsp:forward>
The <jsp:forward> action passes the request-processing con-
trol to another JSP page or servlet in the same web applica-
tion. The execution of the current page is terminated, giving
the target resource full control over the request.

When the <jsp:forward> action is executed, the buffer is
cleared of any response content. If the response has already
been committed (i.e., partly sent to the browser), the for-
warding fails with an IllegalStateException.

The action adjusts the URI path information available
through the implicit request object to reflect the URI path
information for the target resource. All other request infor-
mation is left untouched, so the target resource has access to
all the original parameters and headers passed with the
request. Additional parameters can be passed to the target
resource through <jsp:param> elements in the <jsp:forward>
element’s body.

The <jsp:forward> action supports the attribute described in
Table 4.

Table 4. Attributes for <jsp:forward>

Name Java type
Request-time
value accepted Description

page String yes Mandatory. A page- or context-
relative URI path to which the
resource will forward users.

,jsppr.9600 Page 9 Friday, September 7, 2001 2:51 PM

10 | JavaServer Pages Pocket Reference

Example:

<jsp:forward page="list.jsp" />

<jsp:getProperty>
The <jsp:getProperty> action adds the value of a bean prop-
erty, converted to a String, to the response generated by the
page. It supports the attributes described in Table 5.

Example:

<jsp:getProperty name="clock" property="hours" />

<jsp:include>
The <jsp:include> action includes the response from another
JSP page, servlet, or static file in the same web application.
The execution of the current page continues after including
the response generated by the target resource.

When the <jsp:include> action is executed, the buffer is
flushed of any response content. Although the flush attribute
can control this behavior, the only valid value in JSP 1.1 is
true. This limitation will likely be lifted in a future version of
JSP.

Even in the target resource, the URI path information avail-
able through the implicit request object reflects the URI path
information for the source JSP page. All other request infor-
mation is also left untouched, so the target resource has
access to all the original parameters and headers passed with

Table 5. Attributes for <jsp:getProperty>

Name Java type
Request-time
value accepted Description

name String no Mandatory. The name assigned to
a bean in one of the JSP scopes.

property String no Mandatory. The name of the
bean’s property to include in the
page.

,jsppr.9600 Page 10 Friday, September 7, 2001 2:51 PM

Standard Action Elements | 11

the request. Additional parameters can be passed to the tar-
get resource through <jsp:param> elements in the <jsp:
include> element’s body.

The <jsp:include> action supports the attributes described
in Table 6.

Example:

<jsp:include page="navigation.jsp" />

<jsp:param>
You can use the <jsp:param> action in the body of a <jsp:
forward> or <jsp:include> action to specify additional
request parameters for the target resource, as well as in the
body of a <jsp:params> action to specify applet parameters. It
supports the attributes described in Table 7.

Example:

<jsp:include page="navigation.jsp">
<jsp:param name="bgColor" value="<%= currentBGColor %>"

 />
</jsp:include>

Table 6. Attributes for <jsp:include>

Name Java type
Request-time
value accepted Description

page String yes Mandatory. A page- or context-
relative URI path for the resource
to include.

flush String no Mandatory in JSP 1.1, with true
as the only accepted value.

Table 7. Attributes for <jsp:param>

Name Java type
Request-time
value accepted Description

name String no Mandatory. The parameter name.

value String yes Mandatory. The parameter value.

,jsppr.9600 Page 11 Friday, September 7, 2001 2:51 PM

12 | JavaServer Pages Pocket Reference

<jsp:params>
You can use the <jsp:params> action only in the body of a
<jsp:plugin> action, to enclose a set of <jsp:param> actions
that specify applet parameters. This action supports no
attributes.

Example:

<jsp:plugin type="applet" code="Clock2.class"
 codebase="applet"
 jreversion="1.2" width="160" height="150" >
<jsp:params>

 <jsp:param name="bgcolor" value="ccddff" />
</jsp:params>

</jsp:plugin>

<jsp:plugin>
The <jsp:plugin> action generates HTML <embed> or
<object> elements (depending on the browser type) that
result in the download of the Java Plug-in software (if
required) and subsequent execution of the specified Java
applet or JavaBeans™ component. The body of the action
can contain a <jsp:params> element to specify applet parame-
ters and a <jsp:fallback> element to specify the text that will
be shown in browsers that do not support the <embed> or
<object> HTML elements. For more information about the
Java Plug-in, see http://java.sun.com/products/plugin/.

The <jsp:plugin> action supports the attributes described in
Table 8.

Table 8. Attributes for <jsp:plugin>

Name Java type
Request-time
value accepted Description

align String no Optional. The alignment
of the applet area, one
of bottom, middle, or
top.

,jsppr.9600 Page 12 Friday, September 7, 2001 2:51 PM

Standard Action Elements | 13

archive String no Optional. A comma-separated
list of URIs for archives
containing classes and other
resources that will be
“preloaded.” The classes are
loaded using an instance of
an AppletClassLoader
with the given codebase.
Relative URIs for archives are
interpreted with respect to
the applet’s codebase.

code String no Mandatory. The fully
qualified class name for the
object.

codebase String no Mandatory. The relative URL
for the directory that contains
the class file. According to the
HTML 4.0 specification, the
directory must be a
subdirectory of the directory
containing the page.

height String no Optional. The height of the
applet area, in pixels or
percentage.

hspace String no Optional. The amount of
whitespace to be inserted to
the left and right of the
applet area, in pixels.

iepluginurl String no Optional. The URL for the
location of the Internet
Explorer Java Plug-in. The
default is implementation-
dependent.

jreversion String no Optional. The specification
version number of the JRE the
component requires in order
to operate. The default is 1.1.

Table 8. Attributes for <jsp:plugin> (continued)

Name Java type
Request-time
value accepted Description

,jsppr.9600 Page 13 Friday, September 7, 2001 2:51 PM

14 | JavaServer Pages Pocket Reference

Example:

<jsp:plugin type="applet" code="Clock2.class"
 codebase="applet"
 jreversion="1.2" width="160" height="150" >
 <jsp:params>
 <jsp:param name="bgcolor" value="ccddff" />
 </jsp:params>
 <jsp:fallback>
 Plug-in tag OBJECT or EMBED not supported by
 browser.
 </jsp:fallback>
</jsp:plugin>

name String no Optional. The applet name,
used by other applets on
the same page that need
to communicate with it.

nspluginurl String no Optional. The URL for the
location of the Netscape
Java Plug-in. The default
is implementation-
dependent.

title String no Optional. The text to be
rendered in some way by the
browser for the applet (e.g.,
as a “tool tip”).

type String no Mandatory. The type of object
to embed, one of applet or
bean.

vspace String no Optional. The amount of
whitespace to be inserted
above and below the applet
area, in pixels.

width String no Optional. The width of the
applet area, in pixels or
percentage.

Table 8. Attributes for <jsp:plugin> (continued)

Name Java type
Request-time
value accepted Description

,jsppr.9600 Page 14 Friday, September 7, 2001 2:51 PM

Standard Action Elements | 15

<jsp:setProperty>
The <jsp:setProperty> action sets the value of one or more
bean properties. It supports the attributes described in
Table 9.

The property type can be any valid Java type, including prim-
itive types and arrays (i.e., an indexed property). If the value
attribute specifies a runtime attribute value, the type of the
expression must match the property’s type.

If the value is a string, either in the form of a request parame-
ter value or explicitly specified by the value attribute, it is
converted to the property’s type as described in Table 10.

Table 9. Attributes for <jsp:setProperty>

Name Java type
Request-time
value accepted Description

name String no Mandatory. The name assigned to
a bean in one of the JSP scopes.

property String no Mandatory. The name of the bean
property to set, or an asterisk (*)
to set all properties with names
matching the request parameters.

param String no Optional. The name of a request
parameter that holds the value to
use for the specified property. If
omitted, the parameter name and
property name must be the same.

value See
below

yes Optional. An explicit value to
assign to the property. This
attribute cannot be combined
with the param attribute.

Table 10. Conversion of string value to property type

Property type Conversion method

boolean or Boolean Boolean.valueOf(String)

byte or Byte Byte.valueOf(String)

,jsppr.9600 Page 15 Friday, September 7, 2001 2:51 PM

16 | JavaServer Pages Pocket Reference

Example:

<jsp:setProperty name="user" property="*" />
<jsp:setProperty name="user" property="modDate"
 value="<%= new java.util.Date() %>" />

<jsp:useBean>
The <jsp:useBean> action associates a Java bean with a name
in one of the JSP scopes and makes it available as a scripting
variable. An attempt is first made to find a bean with the
specified name in the specified scope. If it’s not found, a new
instance of the specified class is created.

The <jsp:useBean> action supports the attributes described
in Table 11.

char or Character String.charAt(int)

double or Double Double.valueOf(String)

float or Float Float.valueOf(String)

int or Integer Integer.valueOf(String)

long or Long Long.valueOf(String)

Table 11. Attributes for <jsp:useBean>

Name Java type
Request-time
value accepted Description

beanName String yes Optional. The name of the bean,
as expected by the
instantiate()method of the
Beans class in thejava.beans
package.

class String no Optional. The fully qualified class
name for the bean.

id String no Mandatory. The name to assign to
the bean in the specified scope and
the name of the scripting variable.

Table 10. Conversion of string value to property type (continued)

Property type Conversion method

,jsppr.9600 Page 16 Friday, September 7, 2001 2:51 PM

Standard Action Elements | 17

Of the optional attributes, at least one of class or type must
be specified. If both are specified, class must be assignable
to type. The beanName attribute must be combined with the
type attribute and is not valid with the class attribute.

The action is processed in these steps:

1. Attempt to locate an object based on the id and scope
attribute values.

2. Define a scripting language variable with the given id of
the specified type or class.

3. If the object is found, initialize the variable’s value with a
reference to the located object, cast to the specified type.
This completes the processing of the action. If the action
element has a nonempty body, it is ignored.

4. If the object is not found in the specified scope and
neither class nor beanName is specified, an
InstantiationException is thrown. This completes the
processing of the action.

5. If the object is not found in the specified scope and the
class attribute specifies a nonabstract class with a public
no-args constructor, a new instance of the class is cre-
ated and associated with the scripting variable and the
specified name in the specified scope. After this, step 7 is
performed.

scope String no Optional. The scope for the bean:
one of page, request,
session, or application.
The default is page.

type String no Optional. The fully qualified type
name for the bean (i.e., a
superclass or an interface
implemented by the bean’s
class).

Table 11. Attributes for <jsp:useBean> (continued)

Name Java type
Request-time
value accepted Description

,jsppr.9600 Page 17 Friday, September 7, 2001 2:51 PM

18 | JavaServer Pages Pocket Reference

If the object is not found and the specified class doesn’t
fulfill the requirements, an InstantiationException is
thrown. This completes the processing of the action.

6. If the object is not found in the specified scope and the
beanName attribute is specified, the instantiate() method
of the java.beans.Beans class is invoked with the
ClassLoader of the JSP implementation class instance and
the beanName as arguments. If the method succeeds, the
new object reference is associated with the scripting vari-
able and the specified name in the specified scope. After
this, step 7 is performed.

7. If the action element has a nonempty body, the body is
processed. The scripting variable is initialized and avail-
able within the scope of the body. The text of the body is
treated as elsewhere: if there is template text, it is passed
through to the response; scriptlets and action tags are
evaluated.

A nonempty body is commonly used to complete initial-
ization of the created instance. In such a case, the body
typically contains <jsp:setProperty> actions and script-
lets. This completes the processing of the action.

Example:

<jsp:useBean id="clock" class="java.util.Date" />

Comments
You can use JSP comments in JSP pages to describe what a
scripting element or action is doing:

<%-- This is a comment --%>

All text between the start and stop tags is ignored by the web
container and not included in the response. The comment
text can be anything except the character sequence represent-
ing the closing tag: --%>.

,jsppr.9600 Page 18 Friday, September 7, 2001 2:51 PM

Escape Characters | 19

Besides describing what’s going on in the JSP page, com-
ments can be used to “comment out” portions of the JSP
page (for instance, during testing):

<jsp:useBean id="user" class="com.mycompany.UserBean" />
<%--
<jsp:setProperty name="user" property="*" />
<jsp:setProperty name="user" property="modDate"
 value="<%= new java.util.Date() %>" />
<% boolean isValid = user.isValid(); %>
--%>

The action and scripting elements within the comment are
not executed.

Escape Characters
Since certain character sequences represent start and stop
tags, you sometimes need to escape a character so the con-
tainer doesn’t interpret it as part of a special character
sequence.

In a scripting element, if you need to use the characters %> lit-
erally, you must escape the greater-than character with a
backslash:

<% String msg = "Literal %\> must be escaped"; %>

To avoid the character sequence <% in template text being
interpreted as the start of a scripting element, you must
escape the percent sign:

This is template text, and <\% is not a start of a
scriptlet.

In an attribute value, you must use the following escapes:

attr='a value with an escaped \' single quote'
attr="a value with an escaped \" double quote"
attr="a value with an escaped \\ backslash"
attr="a value with an escaped %\> scripting end tag"
attr="a value with an escaped <\% scripting start tag"

,jsppr.9600 Page 19 Friday, September 7, 2001 2:51 PM

20 | JavaServer Pages Pocket Reference

Scripting Elements
Scripting elements let you add small pieces of code to a JSP
page, such as an if statement to generate different HTML
depending on some condition. Like actions, they are exe-
cuted when the page is requested. You should use scripting
elements with extreme care; if you embed too much code in
your JSP pages you will end up with an application that’s
very hard to maintain. In addition, simple code syntax errors
in scripting elements often lead to error messages that are
much harder to interpret than error messages for syntax
errors in action elements.

Scriptlets
A scriptlet is a block of code enclosed between a scriptlet-
start identifier, <%, and an end identifier, %>:

<%@ page language="java" contentType="text/html" %>
<html>
<body bgcolor="white">
<jsp:useBean id="clock" class="java.util.Date" />

<% if (clock.getHours() < 12) { %>
 Good morning!
<% } else if (clock.getHours() < 17) { %>
 Good day!
<% } else { %>
 Good evening!
<% } %>

</body>
</html>

Here, a clock bean is first created by the <jsp:useBean>
action and assigned to a variable with the same name. It is
then used in four scriptlets, together forming a complete Java
if statement with template text in the if and else blocks:

<% if (clock.getHours() < 12) { %>
An if statement, testing if it’s before noon, with a block
start brace

,jsppr.9600 Page 20 Friday, September 7, 2001 2:51 PM

Scripting Elements | 21

<% } else if (clock.getHours() < 17) { %>
The if block end brace and an else-if statement, test-
ing if it’s before 5 P.M., with its block start brace

<% } else { %>
The else-if block end brace and a final else block start
brace, handling the case in which it’s after 5 P.M.

<% } %>
The else block end brace

The web container combines the code segment in the four
scriptlets with code for writing the template text to the
response body. The end result is that when the first if state-
ment is true, “Good morning!” is displayed, and when the
second if statement is true, “Good day!” is displayed. If nei-
ther if statement is true, the final else block is used, display-
ing “Good evening!”

The tricky part when using scriptlets is making sure to get all
the start and end braces in place. If you miss just one of the
braces, the code the web container generates is not syntacti-
cally correct. And, unfortunately, the error message you get
is not always easy to interpret.

Expressions
An expression starts with <%= and ends with %>. Note that the
only syntax difference compared to a scriptlet is the equals
sign (=) in the start identifier. An example is:

<%= userInfo.getUserName() %>

The result of the expression is written to the response body.
Note that unlike statements in a scriptlet, the code in an
expression must not end with a semicolon. This is because
the web container combines the expression code with code
for writing the result to the response body. If the expression
ends with a semicolon, the combined code will not be syn-
tactically correct.

,jsppr.9600 Page 21 Friday, September 7, 2001 2:51 PM

22 | JavaServer Pages Pocket Reference

In the previous examples using JSP action elements, the
attributes were set to literal string values. But in many cases,
the value of an attribute is not known when you write the
JSP page; the value must instead be calculated when the JSP
page is requested. As we mentioned before, for situations like
this you can use a JSP expression as a request-time attribute
value. Here is an example of how you can use this method to
set an attribute of a fictitious log entry bean:

<jsp:useBean id="logEntry" class="com.foo.LogEntryBean" />
<jsp:setProperty name="logEntry" property="entryTime"
 value="<%= new java.util.Date() %>" />
...

This bean has a property named entryTime that holds a
timestamp for a log entry, while other properties hold the
information to be logged. To set the timestamp to the time
when the JSP page is requested, a <jsp:setProperty> action
with a request-time attribute value is used. The attribute
value here is represented by a JSP expression that creates a
new java.util.Date object (representing the current date and
time). The request-time attribute is evaluated when the page
is requested, and the corresponding attribute is set to the
result of the expression. Any property you set this way must
have a Java type matching the result of the expression. In this
case, the entryTime property must be of type java.util.Date.

Declarations
A JSP declaration element starts with <%! and ends with %>.
Note the exclamation point (!) in the start identifier; that’s
what makes it a declaration as opposed to a scriptlet.

This declaration element declares an instance variable named
globalCounter, shared by all requests for the page:

<%@ page language="java" contentType="text/html" %>
<%!
 int globalCounter = 0;
%>

,jsppr.9600 Page 22 Friday, September 7, 2001 2:51 PM

Scripting Elements | 23

Note that a variable declared with a JSP declaration element
is shared by all requests for the page. This can cause so-
called multithreading problems if more than one request for
the page is processed at the same time. For instance, one
request may overwrite the value of the variable set by another
request. In most cases, you should declare scripting variables
using a JSP scriptlet instead:

<%
 int requestLocalCounter = 0;
%>

A variable declared in a scriptlet is not shared. It holds a
unique value for each request.

You can also use a JSP declaration element to declare a
method that can then be used in scriptlets in the same page:

<%@ page language="java" contentType="text/html" %>
<html>
<body bgcolor="white">

 <%!
 String randomColor() {
 java.util.Random random = new java.util.Random();
 int red = (int) (random.nextFloat() * 255);
 int green = (int) (random.nextFloat() * 255);
 int blue = (int) (random.nextFloat() * 255);
 return "#" +
 Integer.toString(red, 16) +
 Integer.toString(green, 16) +
 Integer.toString(blue, 16);
 }
 %>

 <h1>Random Color</h1>

 <table bgcolor="<%= randomColor() %>" >
 <tr><td width="100" height="100"> </td></tr>
 </table>

</body>
</html>

,jsppr.9600 Page 23 Friday, September 7, 2001 2:51 PM

24 | JavaServer Pages Pocket Reference

Implicit Objects
When you use scripting elements in a JSP page, you always
have access to a number of objects (listed in Table 12) that
the web container makes available. These objects are
instances of classes defined by the servlet and JSP specifica-
tions. Each class is described in detail in this section, follow-
ing the table.

application

Variable name: application

Interface name: javax.servlet.ServletContext

Extends: None

Implemented by: Internal container-dependent class

JSP Page type: Available in both regular JSP pages and error
pages

Description

The ServletContext provides resources shared within a web appli-
cation. It holds attribute values representing the JSP application
scope. An attribute value can be an instance of any valid Java
class. The ServletContext also defines a set of methods that a JSP

Table 12. Implicit JSP objects

Variable name Java type

application javax.servlet.ServletContext

config javax.servlet.ServletConfig

exception java.lang.Throwable

out javax.servlet.jsp.JspWriter

page java.lang.Object

pageContext javax.servlet.jsp.PageContext

request javax.servlet.http.HttpServletRequest

response javax.servlet.http.HttpServletResponse

session javax.servlet.http.HttpSession

,jsppr.9600 Page 24 Friday, September 7, 2001 2:51 PM

application | 25

page or a servlet uses to communicate with its container; for
example, to get the MIME type of a file, dispatch requests, or
write to a log file. The web container is responsible for providing
an implementation of the ServletContext interface.

Each ServletContext is assigned a specific URI path prefix within
a web server. For example, a context could be responsible for all
resources under http://www.mycorp.com/catalog. All requests that
start with the /catalog request path, which is known as the context
path, are routed to this servlet context.

Only one instance of a ServletContext may be available to the
servlets and JSP pages in a web application. If the web application
indicates that it is distributable, there must be only one instance
of the ServletContext object in use per application in each Java
Virtual Machine.

Methods

public Object getAttribute(String name)
Returns the servlet context attribute with the specified name,
or null if there is no attribute by that name. Context
attributes can be set by a servlet or a JSP page, representing
the JSP application scope. A container can also use attributes
to provide information that is not already available through
methods in this interface.

public java.util.Enumeration getAttributeNames()
Returns an Enumeration of String objects containing the
attribute names available within this servlet context.

public ServletContext getContext(String uripath)
Returns a ServletContext object that corresponds to a speci-
fied URI in the web container. This method allows servlets
and JSP pages to gain access to contexts other than their own.
The URI path must be absolute (beginning with “/”) and is
interpreted based on the containers’ document root. In a
security-conscious environment, the container may return
null for a given URI.

public String getInitParameter(String name)
Returns a String containing the value of the named context-
wide initialization parameter, or null if the parameter does
not exist. Context initialization parameters can be defined in
the web application deployment descriptor.

,jsppr.9600 Page 25 Friday, September 7, 2001 2:51 PM

26 | JavaServer Pages Pocket Reference

public java.util.Enumeration getInitParameterNames()
Returns the names of the context’s initialization parameters as
an Enumeration of String objects, or an empty Enumeration if
the context has no initialization parameters.

public int getMajorVersion()
Returns the major version of the Java Servlet API the web
container supports. A container that complies with the Servlet
2.3 API returns 2.

public String getMimeType(String filename)
Returns the MIME type of the specified file, or null if the
MIME type is not known. The MIME type is determined by
the configuration of the web container and may be specified
in a web application deployment descriptor.

public int getMinorVersion()
Returns the minor version of the Java Servlet API the web
container supports. A container that complies with the Servlet
2.3 API returns 3.

public RequestDispatcher getNamedDispatcher(String name)
Returns a RequestDispatcher object that acts as a wrapper for
the named servlet or JSP page. Names can be defined for serv-
lets and JSP pages in the web application deployment
descriptor.

public String getRealPath(String path)
Returns a String containing the filesystem path for specified
context-relative path. This method returns null if the web
container cannot translate the path to a filesystem path for
any reason (such as when the content is being made available
from a WAR archive).

public RequestDispatcher getRequestDispatcher(String path)
Returns a RequestDispatcher object that acts as a wrapper for
the resource located at the specified context-relative path. The
resource can be dynamic (servlet or JSP) or static (e.g., a
regular HTML file).

public java.net.URL getResource(String path)
 throws MalformedURLException

Returns a URL to the resource that is mapped to the specified
context-relative path. This method allows the web container

,jsppr.9600 Page 26 Friday, September 7, 2001 2:51 PM

application | 27

to make a resource available to servlets and JSP pages from
sources other than a local filesystem, such as a database or a
WAR file.

The URL provides access to the resource content direct, so be
aware that requesting a JSP page returns a URL for the JSP
source code as opposed to the processed result. Use a
RequestDispatcher instead to include the results of an
execution.

This method returns null if no resource is mapped to the
pathname.

public java.io.InputStream getResourceAsStream(String path)
Returns the resource mapped to the specified context-relative
path as an InputStream object. See the getResource() method
for details.

public String getServerInfo()
Returns the name and version of the servlet container on
which the servlet or JSP page is running as a String with the
format servername/versionnumber (for example, Tomcat/3.2).
A container may include other optional information, such as
the Java version and operating system information, within
parentheses.

public void log(String message)
Writes the specified message to a web container log file. The
name and type of the log file are container-dependent.

public void log(String message, Throwable cause)
Writes the specified message and a stack trace for the speci-
fied Throwable to the servlet log file. The name and type of the
log file are container-dependent.

public void removeAttribute(String name)
Removes the attribute with the specified name from the
servlet context.

public void setAttribute(String name, Object attribute)
Binds an object to the specified attribute name in this servlet
context. If the specified name is already used for an attribute,
this method removes the old attribute and binds the name to
the new attribute.

,jsppr.9600 Page 27 Friday, September 7, 2001 2:51 PM

28 | JavaServer Pages Pocket Reference

The following methods are deprecated:

public Servlet getServlet(String name)
 throws ServletException

This method was originally defined to retrieve a servlet from a
ServletContext. As of the Servlet 2.1 API, this method always
returns null and remains only to preserve binary compati-
bility. This method will be permanently removed in a future
version of the Java Servlet API.

public Enumeration getServlets()
This method was originally defined to return an Enumeration
of all the servlets known to this servlet context. As of the
Servlet 2.1 API, this method always returns an empty
Enumeration and remains only to preserve binary compati-
bility. This method will be permanently removed in a future
version of the Java Servlet API.

public Enumeration getServletNames()
This method was originally defined to return an Enumeration of
all the servlet names known to this context. As of Servlet 2.1,
this method always returns an empty Enumeration and remains
only to preserve binary compatibility. This method will be
permanently removed in a future version of the Java Servlet
API.

public void log(Exception exception, String message)
This method was originally defined to write an exception’s
stack trace and an explanatory error message to the web
container log file. As of the Servlet 2.1 API, the recommenda-
tion is to use log(String, Throwable) instead.

config

Variable name: config

Interface name: javax.servlet.ServletConfig

Extends: None

Implemented by: Internal container-dependent class

JSP page type: Available in both regular JSP pages and error
pages

,jsppr.9600 Page 28 Friday, September 7, 2001 2:51 PM

exception | 29

Description

A ServletConfig instance is used by a web container to pass infor-
mation to a servlet or JSP page during initialization. The
configuration information contains initialization parameters
(defined in the web application deployment descriptor) and the
ServletContext object representing the web application to which
the servlet or JSP page belongs.

Methods

public String getInitParameter(String name)
Returns a String containing the value of the specified servlet
or JSP page initialization parameter, or null if the parameter
does not exist.

public java.util.Enumeration getInitParameterNames()
Returns the names of the servlet’s or JSP page’s initialization
parameters as an Enumeration of String objects, or an empty
Enumeration if the servlet has no initialization parameters.

public ServletContext getServletContext()
Returns a reference to the ServletContext to which the servlet
or JSP page belongs.

public String getServletName()
Returns the name of this servlet instance or JSP page. The
name may be assigned in the web application deployment
descriptor. For an unregistered (and thus unnamed) servlet
instance or JSP page, the servlet’s class name is returned.

exception

Variable name: exception

Class name: java.lang.Throwable

Extends: None

Implements: java.io.Serializable

Implemented by: Part of the standard Java library

JSP page type: Available only in a page marked as an error page
using the page directive isErrorPage attribute

,jsppr.9600 Page 29 Friday, September 7, 2001 2:51 PM

30 | JavaServer Pages Pocket Reference

Description

The exception variable is assigned to the subclass of Throwable
that caused the error page to be invoked. The Throwable class is
the superclass of all errors and exceptions in the Java language.
Only objects that are instances of this class (or of one of its
subclasses) are thrown by the Java Virtual Machine or can be
thrown by the Java throw statement. See the Java documentation
at http://java.sun.com/docs/index.html for a description of the
Throwable class.

out

Variable name: out

Class name: javax.servlet.jsp.JspWriter

Extends: java.io.Writer

Implements: None

Implemented by: A concrete subclass of this abstract class is
provided as an internal container-dependent
class.

JSP page type: Available in both regular JSP pages and error
pages

Description

The out variable is assigned to a concrete subclass of the
JspWriter abstract class by the web container. JspWriter emulates
some of the functionality found in the java.io.BufferedWriter
and java.io.PrintWriter classes. It differs, however, in that it
throws a java.io.IOException from the print methods (the
PrintWriter does not).

If the page directive attribute autoflush is set to true, all the I/O
operations on this class automatically flush the contents of the
buffer when it’s full. If autoflush is set to false, all the I/O opera-
tions on this class throw an IOException when the buffer is full.

Constructor

protected JspWriter(int bufferSize, boolean autoFlush)
Creates an instance with at least the specified buffer size and
autoflush behavior.

,jsppr.9600 Page 30 Friday, September 7, 2001 2:51 PM

page | 31

Methods

public abstract void clear() throws java.io.IOException
Clears the contents of the buffer. If the buffer has already
been flushed, throws an IOException to signal the fact that
some data has already been irrevocably written to the client
response stream.

public abstract void clearBuffer() throws java.io.IOException
Clears the current contents of the buffer. Unlike clear(), this
method does not throw an IOException if the buffer has
already been flushed. It just clears the current content of the
buffer and returns.

public abstract void close() throws java.io.IOException
Closes the JspWriter after flushing it. Calls to flush() or
write() after a call to close() cause an IOException to be
thrown. If close() is called on a previously closed JspWriter,
it is ignored.

public abstract void flush() throws java.io.IOException
Flushes the current contents of the buffer to the underlying
writer, then flushes the underlying writer. This means the
buffered content is delivered to the client immediately.

public int getBufferSize()
Returns the size of the buffer in bytes, or 0 if it is not buffered.

public abstract int getRemaining()
Returns the number of unused bytes in the buffer.

public boolean isAutoFlush()
Returns true if this JspWriter is set to autoflush the buffer,
false otherwise.

page

Variable name: page

Class name: Object

Extends: None

Implements: None

Implemented by: Part of the standard Java library

JSP page type: Available in both regular JSP pages and error
pages

,jsppr.9600 Page 31 Friday, September 7, 2001 2:51 PM

32 | JavaServer Pages Pocket Reference

Description

The page variable is assigned to the instance of the JSP implemen-
tation class, declared as an Object. This variable is rarely, if ever,
used. See the Java documentation at http://java.sun.com/docs/
index.html for a description of the Object class.

pageContext

Variable name: pageContext

Class name: javax.servlet.jsp.PageContext

Extends: None

Implements: None

Implemented by: A concrete subclass of this abstract class is
provided as an internal container-dependent
class.

JSP page type: Available in both regular JSP pages and error
pages

Description

A PageContext instance provides access to all the JSP scopes and
several page attributes, and offers a layer above the container-
implementation details to enable a container to generate portable
JSP implementation classes. The JSP page scope is represented by
PageContext attributes. A unique instance of this object is created
by the web container and assigned to the pageContext variable for
each request.

Constants

public static final int PAGE_SCOPE = 1;
public static final int REQUEST_SCOPE = 2;
public static final int SESSION_SCOPE = 3;
public static final int APPLICATION_SCOPE = 4;

Constructor

public PageContext()
Creates an instance of the PageContext class. Typically, the
JspFactory class creates and initializes the instance.

,jsppr.9600 Page 32 Friday, September 7, 2001 2:51 PM

pageContext | 33

Methods

public abstract Object findAttribute(String name)
Searches for the named attribute in the page, request, session
(if valid), and application scope(s) in order and returns the
associated value. If the attribute is not found, returns null.

public abstract void forward(String relativeUrlPath)
 throws ServletException, java.io.IOException

Forwards the current request to another active component in
the application, such as a servlet or JSP page. If the specified
URI starts with a slash, it’s interpreted as a context-relative
path; otherwise, it’s interpreted as a page-relative path.

The response must not be modified after calling this method,
since the response is committed before this method returns.

public abstract Object getAttribute(String name)
Returns the Object associated with the specified attribute
name in the page scope, or null if the attribute is not found.

public abstract Object getAttribute(String name, int scope)
Returns the Object associated with the specified attribute
name in the specified scope, or null if the attribute is not
found. The scope argument must be one of the int values
specified by the PageContext static scope variables.

public abstract java.util.Enumeration
 getAttributeNamesInScope(int scope)

Returns an Enumeration of String objects containing all the
attribute names for the specified scope. The scope argument
must be one of the int values specified by the PageContext
static scope variables.

public abstract int getAttributesScope(String name)
Returns one of the int values specified by the PageContext
static scope variables for the scope of the object associated
with the specified attribute name, or 0 if the attribute is not
found.

public abstract Exception getException()
Returns the Exception that caused the current page to be
invoked if its page directive isErrorPage attribute is set to
true.

,jsppr.9600 Page 33 Friday, September 7, 2001 2:51 PM

34 | JavaServer Pages Pocket Reference

public abstract JspWriter getOut()
Returns the current JspWriter for the page. When this
method is called by a tag handler that implements BodyTag or
is nested in the body of another action element, the returned
object may be an instance of the BodyContent subclass.

public abstract Object getPage()
Returns the Object that represents the JSP page implementa-
tion class instance with which this PageContext is associated.

public abstract ServletRequest getRequest()
Returns the current ServletRequest.

public abstract ServletResponse getResponse()
Returns the current ServletResponse.

public abstract ServletConfig getServletConfig()
Returns the ServletConfig for this JSP page implementation
class instance.

public abstract ServletContext getServletContext()
Returns the ServletContext for this JSP page implementation
class instance.

public abstract HttpSession getSession()
Returns the current HttpSession, or null if the page directive
session attribute is set to false.

public abstract void handlePageException(Exception e)
 throws ServletException, java.io.IOException

This method is intended to be called by the JSP page imple-
mentation class only to process unhandled exceptions, either
by forwarding the request exception to the error page speci-
fied by the page directive errorPage attribute or by performing
an implementation-dependent action (if no error page is
specified).

public abstract void include(String relativeUrlPath)
 throws ServletException, java.io.IOException

Causes the specified resource to be processed as part of the
current request. The current JspWriter is flushed before
invoking the target resource, and the output of the target
resource’s processing of the request is written directly to the
current ServletResponse object’s writer. If the specified URI

,jsppr.9600 Page 34 Friday, September 7, 2001 2:51 PM

pageContext | 35

starts with a slash, it’s interpreted as a context-relative path;
otherwise, it’s interpreted as a page-relative path.

public abstract void initialize(Servlet servlet,
 ServletRequest request, ServletResponse response,
 String errorPageURL, boolean needsSession,
 int bufferSize, boolean autoFlush)
 throws java.io.IOException, IllegalStateException,
IllegalArgumentException

This method is called to initialize a PageContext object so that
it may be used by a JSP implementation class to service an
incoming request. This method is typically called from the
JspFactory.getPageContext() method.

public JspWriter popBody()
This method is intended to be called by the JSP page imple-
mentation class only to reassign the previous JspWriter, saved
by the matching pushBody() method, as the current JspWriter.

public BodyContent pushBody()
This method is intended to be called by the JSP page imple-
mentation class only to get a new BodyContent object and save
the current JspWriter on the PageContext object’s internal
stack.

public abstract void release()
Resets the internal state of a PageContext, releasing all internal
references and preparing the PageContext for potential reuse by
a later invocation of initialize(). This method is typically
called from the JspFactory.releasePageContext() method.

public abstract void removeAttribute(String name)
Removes the object reference associated with the specified
attribute name in the page scope.

public abstract void removeAttribute(String name, int scope)
Removes the object reference associated with the specified
attribute name in the specified scope. The scope argument
must be one of the int values specified by the PageContext
static scope variables.

public abstract void setAttribute(String name,
 Object attribute)

Saves the specified attribute name and object in the page scope.

,jsppr.9600 Page 35 Friday, September 7, 2001 2:51 PM

36 | JavaServer Pages Pocket Reference

public abstract void setAttribute(String name, Object o,
 int scope)

Saves the specified attribute name and object in the specified
scope. The scope argument must be one of the int values
specified by the PageContext static scope variables.

request

Variable name: request

Interface name: javax.servlet.http.HttpServletRequest

Extends: javax.servlet.ServletRequest

Implemented by: Internal container-dependent class

JSP page type: Available in both regular JSP pages and error
pages

Description

The request variable is assigned a reference to an internal
container-dependent class that implements a protocol-dependent
interface that extends the javax.servlet.ServletRequest interface.
Since HTTP is the only protocol supported by JSP 1.1, the class
always implements the javax.servlet.http.HttpServletRequest
interface. The method descriptions in this section include the
methods from both interfaces.

Methods

public Object getAttribute(String name)
Returns the value of the named attribute as an Object, or null
if no attribute of the given name exists.

public java.util.Enumeration getAttributeNames()
Returns an Enumeration containing the names of the attributes
available to this request. The Enumeration is empty if the
request doesn’t have any attributes.

public String getAuthType()
Returns the name of the authentication scheme used to
protect the servlet (for example, BASIC or SSL), or null if the
servlet is not protected.

,jsppr.9600 Page 36 Friday, September 7, 2001 2:51 PM

request | 37

public String getCharacterEncoding()
Returns the name of the character encoding method used in
the body of this request, or null if the request does not specify
a character encoding method.

public int getContentLength()
Returns the length, in bytes, of the request body (if it is made
available by the input stream), or –1 if the length is not known.

public String getContentType()
Returns the MIME type of the body of the request, or null if
the type is not known.

public String getContextPath()
Returns the portion of the request URI that indicates the
context of the request.

public Cookie[] getCookies()
Returns an array containing all the Cookie objects the client
sent with this request, or null if the request contains no
cookies.

public long getDateHeader(String name)
Returns the value of the specified request header as a long
value that represents a date value, or –1 if the header is not
included in the request.

public String getHeader(String name)
Returns the value of the specified request header as a String,
or null if the header is not included with the request.

public java.util.Enumeration getHeaderNames()
Returns all the header names this request contains as an
Enumeration of String objects. The Enumeration is empty if the
request doesn’t have any headers.

public java.util.Enumeration getHeaders(String name)
Returns all the values of the specified request header as an
Enumeration of String objects. The Enumeration is empty if the
request doesn’t contain the specified header.

public ServletInputStream getInputStream()
 throws java.io.IOException

Retrieves the body of the request as binary data using a
ServletInputStream.

,jsppr.9600 Page 37 Friday, September 7, 2001 2:51 PM

38 | JavaServer Pages Pocket Reference

public int getIntHeader(String name)
Returns the value of the specified request header as an int, or
–1 if the header is not included in the request.

public java.util.Locale getLocale()
Returns the preferred Locale in which the client will accept
content, based on the Accept-Language header.

public java.util.Enumeration getLocales()
Returns an Enumeration of Locale objects indicating, in
decreasing order and starting with the preferred locale, the
locales that are acceptable to the client based on the Accept-
Language header.

public String getMethod()
Returns the name of the HTTP method with which this
request was made; for example, GET, POST, or PUT.

public String getParameter(String name)
Returns the value of a request parameter as a String, or null if
the parameter does not exist.

public String getParameterNames()
Returns an Enumeration of String objects containing the
names of the parameters in this request.

public String[] getParameterValues()
Returns an array of String objects containing all of the given
request parameter’s values, or null if the parameter does not
exist.

public String getPathInfo()
Returns any extra path information associated with the URI
the client sent when it made this request, or null if there is no
extra path information. For a JSP page, this method always
returns null.

public String getPathTranslated()
Returns the result of getPathInfo() translated into the corre-
sponding filesystem path. Returns null if getPathInfo()
returns null.

public String getProtocol()
Returns the name and version of the protocol the request uses
in the form protocol/majorVersion.minorVersion; for example,
HTTP/1.1.

,jsppr.9600 Page 38 Friday, September 7, 2001 2:51 PM

request | 39

public String getQueryString()
Returns the query string that is contained in the request URI
after the path.

public java.io.BufferedReader getReader()
 throws java.io.IOException

Retrieves the body of the request as character data using a
BufferedReader.

public String getRemoteAddr()
Returns the Internet Protocol (IP) address of the client that
sent the request.

public String getRemoteHost()
Returns the fully qualified name of the client host that sent
the request or, if the hostname cannot be determined, the IP
address of the client.

public String getRemoteUser()
Returns the login ID of the user making this request if the
user has been authenticated, or null if the user has not been
authenticated.

public RequestDispatcher getRequestDispatcher(String path)
Returns a RequestDispatcher object that acts as a wrapper for
the resource located at the given path.

public String getRequestedSessionId()
Returns the session ID specified by the client.

public String getRequestURI()
Returns the part of this request’s URI from the protocol name
up to the query string in the first line of the HTTP request.

public String getScheme()
Returns the name of the scheme (protocol) used to make this
request; for example, http, https, or ftp.

public String getServerName()
Returns the hostname of the server that received the request.

public int getServerPort()
Returns the port number on which the request was received.

public String getServletPath()
Returns the part of this request’s URI that calls the servlet. For
a JSP page, this is the page’s complete context-relative path.

,jsppr.9600 Page 39 Friday, September 7, 2001 2:51 PM

40 | JavaServer Pages Pocket Reference

public HttpSession getSession()
Returns the current HttpSession associated with this request.
If the request does not have a session, a new HttpSession
object is created, associated with the request, and returned.

public HttpSession getSession(boolean create)
Returns the current HttpSession associated with this request.
If there is no current session and create is true, a new
HttpSession object is created, associated with the request, and
returned. If create is false and the request is not associated
with a session, this method returns null.

public java.security.Principal getUserPrincipal()
Returns a Principal object containing the name of the current
authenticated user.

public boolean isRequestedSessionIdFromCookie()
Checks if the requested session ID came in as a cookie.

public boolean isRequestedSessionIdFromURL()
Checks if the requested session ID came in as part of the
request URL.

public boolean isRequestedSessionIdValid()
Checks if the requested session ID is still valid.

public boolean isSecure()
Returns a boolean indicating whether this request was made
using a secure channel, such as HTTPS, or not.

public boolean isUserInRole(String role)
Returns a boolean indicating whether the authenticated user is
included in the specified logical role or not.

public void removeAttribute(String name)
Removes the specified attribute from the request.

public Object setAttribute(String name, Object attribute)
Stores the specified attribute in the request.

The following methods are deprecated:

public String getRealPath()
As of the Servlet 2.1 API, use ServletContext.
getRealPath(String) instead.

public boolean isRequestSessionIdFromUrl()
As of the Servlet 2.1 API, use isRequestedSessionIdFromURL()
instead.

,jsppr.9600 Page 40 Friday, September 7, 2001 2:51 PM

response | 41

response

Variable name: response

Interface name: javax.servlet.http.HttpServletResponse

Extends: javax.servlet.ServletResponse

Implemented by: Internal container-dependent class

JSP page type: Available in both regular JSP pages and error
pages

Description

The response variable is assigned a reference to an internal
container-dependent class that implements a protocol-dependent
interface that extends the javax.servlet.ServletResponse
interface. Since HTTP is the only protocol supported by JSP 1.1,
the class always implements the javax.servlet.http.
HttpServletResponse interface. The method descriptions in this
section include the methods from both interfaces.

Constants

public static final int SC_CONTINUE = 100;
public static final int SC_SWITCHING_PROTOCOLS = 101;
public static final int SC_OK = 200;
public static final int SC_CREATED = 201;
public static final int SC_ACCEPTED = 202;
public static final int SC_NON_AUTHORITATIVE_INFORMATION =
203;
public static final int SC_NO_CONTENT = 204;
public static final int SC_RESET_CONTENT = 205;
public static final int SC_PARTIAL_CONTENT = 206;
public static final int SC_MULTIPLE_CHOICES = 300;
public static final int SC_MOVED_PERMANENTLY = 301;
public static final int SC_MOVED_TEMPORARILY = 302;
public static final int SC_SEE_OTHER = 303;
public static final int SC_NOT_MODIFIED = 304;
public static final int SC_USE_PROXY = 305;
public static final int SC_TEMPORARY_REDIRECT = 307;
public static final int SC_BAD_REQUEST = 400;
public static final int SC_UNAUTHORIZED = 401;
public static final int SC_PAYMENT_REQUIRED = 402;
public static final int SC_FORBIDDEN = 403;
public static final int SC_NOT_FOUND = 404;
public static final int SC_METHOD_NOT_ALLOWED = 405;

,jsppr.9600 Page 41 Friday, September 7, 2001 2:51 PM

42 | JavaServer Pages Pocket Reference

public static final int SC_NOT_ACCEPTABLE = 406;
public static final int SC_PROXY_AUTHENTICATION_REQUIRED =
407;
public static final int SC_REQUEST_TIMEOUT = 408;
public static final int SC_CONFLICT = 409;
public static final int SC_GONE = 410;
public static final int SC_LENGTH_REQUIRED = 411;
public static final int SC_PRECONDITION_FAILED = 412;
public static final int SC_REQUEST_ENTITY_TOO_LARGE = 413;
public static final int SC_REQUEST_URI_TOO_LONG = 414;
public static final int SC_UNSUPPORTED_MEDIA_TYPE = 415;
public static final int SC_REQUESTED_RANGE_NOT_SATISFIABLE
= 416;
public static final int SC_EXPECTATION_FAILED = 417;
public static final int SC_INTERNAL_SERVER_ERROR = 500;
public static final int SC_NOT_IMPLEMENTED = 501;
public static final int SC_BAD_GATEWAY = 502;
public static final int SC_SERVICE_UNAVAILABLE = 503;
public static final int SC_GATEWAY_TIMEOUT = 504;
public static final int SC_HTTP_VERSION_NOT_SUPPORTED =
505;

Methods

public void addCookie(Cookie cookie)
Adds the specified cookie to the response.

public void addDateHeader(String headername, long date)
Adds a response header with the given name and date value.
The date is specified in terms of milliseconds since the epoch
(January 1, 1970, 00:00:00 GMT).

public void addHeader(String headername, String value)
Adds a response header with the specified name and value.

public void addIntHeader(String headername, int value)
Adds a response header with the given name and integer
value.

public boolean containsHeader(String name)
Returns a boolean indicating whether the named response
header has already been set.

public String encodeRedirectURL(String url)
Encodes the specified URL for use in the sendRedirect()
method by including the session ID in it. If encoding (URL
rewriting) is not needed, it returns the URL unchanged.

,jsppr.9600 Page 42 Friday, September 7, 2001 2:51 PM

response | 43

public String encodeURL(String url)
Encodes the specified URL for use in a reference element (e.g.,
<a>) by including the session ID in it. If encoding (URL
rewriting) is not needed, it returns the URL unchanged.

public void flushBuffer() throws IOException
Forces any content in the response body buffer to be written
to the client.

public int getBufferSize()
Returns the actual buffer size (in bytes) used for the response,
or 0 if no buffering is used.

public String getCharacterEncoding()
Returns the name of the charset used for the MIME body sent
in this response.

public Locale getLocale()
Returns the locale assigned to the response. This is either a
Locale object for the server’s default locale or the Locale set
with setLocale().

public ServletOutputStream getOutputStream()
 throws IOException

Returns a ServletOutputStream suitable for writing binary
data in the response. This method should not be used in a JSP
page, since JSP pages are intended for text data.

public PrintWriter getWriter throws IOException
Returns a PrintWriter object that can send character text to
the client. This method should not be used in a JSP page, since
it may interfere with the container’s writer mechanism. Use
the PageContext method instead to get the current JspWriter.

public boolean isCommitted()
Returns a boolean indicating if the response has been
committed.

public void reset()
Clears any data that exists in the buffer as well as the status
code and headers. If the response has been committed, this
method throws an IllegalStateException.

public void sendError(int status) throws IOException
Sends an error response to the client using the specified
status. If the response has already been committed, this

,jsppr.9600 Page 43 Friday, September 7, 2001 2:51 PM

44 | JavaServer Pages Pocket Reference

method throws an IllegalStateException. After you use this
method, you should consider the response committed and
should not write to it.

public void sendError(int status, String message)
 throws IOException

Sends an error response to the client using the specified
status code and descriptive message. If the response has
already been committed, this method throws an
IllegalStateException. After you use this method, you
should consider the response committed and should not
write to it.

public void sendRedirect(String location) throws IOException
Sends a temporary redirect response to the client using the
specified redirect location URL. This method can accept rela-
tive URLs; the servlet container will convert the relative URL
to an absolute URL before sending the response to the client.
If the response is already committed, this method throws an
IllegalStateException. After you use this method, you
should consider the response committed and should not write
to it.

public void setBufferSize(int size)
Sets the preferred buffer size (in bytes) for the body of the
response. The servlet container uses a buffer at least as large
as the size requested. The actual buffer size used can be found
with the getBufferSize() method.

public void setContentLength(int length)
Sets the length (in bytes) of the content body in the response.
In HTTP servlets, this method sets the HTTP Content-Length
header. This method should not be used in a JSP page, since it
may interfere with the container’s writer mechanism.

public void setContentType(String type)
Sets the content type of the response being sent to the client.

public void setDateHeader(String headername, long date)
Sets a response header with the given name and date value.
The date is specified in terms of milliseconds since the epoch
(January 1, 1970, 00:00:00 GMT). If the header is already set,
the new value overwrites the previous one.

,jsppr.9600 Page 44 Friday, September 7, 2001 2:51 PM

session | 45

public void setHeader(String headername, String value)
Sets a response header with the given name and value. If the
header is already set, the new value overwrites the previous
one.

public void setIntHeader(String headername, int value)
Sets a response header with the given name and integer value.
If the header is already set, the new value overwrites the
previous one.

public void setLocale(Locale locale)
Sets the locale of the response, setting the headers (including
the Content-Type header’s charset) as appropriate.

public void setStatus(int statuscode)
Sets the status code for this response. Unlike the sendError()
method, this method only sets the status code; it doesn’t add
a body and it does not commit the response.

The following methods are deprecated:

public String encodeRedirectUrl(String url)
As of the Servlet 2.1 API, use encodeRedirectURL(String url)
instead.

public String encodeUrl(String url)
As of the Servlet 2.1 API, use encodeURL(String url) instead.

public void setStatus(int statuscode, String message)
As of the Servlet 2.1 API, use setStatus(int) to set a status
code and sendError(int, String) to send an error with a
description. This method was deprecated because of the
ambiguous meaning of the message parameter.

session

Variable name: session

Interface name: javax.servlet.http.HttpSession

Extends: None

Implemented by: Internal container-dependent class

JSP page type: Available in both regular JSP pages and error
pages, unless the page directive session attribute
is set to false

,jsppr.9600 Page 45 Friday, September 7, 2001 2:51 PM

46 | JavaServer Pages Pocket Reference

Description

The session variable is assigned a reference to the HttpSession
object that represents the current client session. Information
stored as HttpSession attributes corresponds to objects in the JSP
session scope.

By default, the session persists for the time period specified in the
web application deployment descriptor, across more than one
page request from the user. The container can maintain a session
in many ways, such as using cookies or rewriting URLs.

Methods

public Object getAttribute(String name)
Returns the Object associated with the specified name in this
session, or null if the object is not found.

public java.util.Enumeration getAttributeNames()
Returns an Enumeration of String objects containing the
names of all the objects in this session.

public long getCreationTime()
Returns the time when this session was created, measured in
milliseconds since the epoch (January 1, 1970, 00:00:00 GMT).

public String getId()
Returns a String containing the unique identifier assigned to
this session.

public long getLastAccessedTime()
Returns the last time the client sent a request associated
with this session as the number of milliseconds since the
epoch (January 1, 1970, 00:00:00 GMT).

public int getMaxInactiveInterval()
Returns the maximum time interval, in seconds, that the servlet
container will keep this session active between client accesses.

public void invalidate()
Invalidates this session and unbinds any objects bound to it,
calling the valueUnbound() methods of all objects in the session
implementing the HttpSessionBindingListener interface.

public boolean isNew()
Returns true if a request for this session has not yet been
received from the client.

,jsppr.9600 Page 46 Friday, September 7, 2001 2:51 PM

Custom Actions | 47

public void removeAttribute(String name)
Removes the object bound with the specified name from this
session.

public void setAttribute(String name, Object attribute)
Associates the specified object with this session using the
name specified.

public void setMaxInactiveInterval(int interval)
Specifies the time, in seconds, that can elapse between client
requests before the servlet container will invalidate this
session.

The following methods are deprecated:

public HttpSessionContext getSessionContext()
As of the Servlet 2.1 API, this method is deprecated and has
no replacement.

public Object getValue(String name)
As of the Servlet 2.2 API, this method is replaced by
getAttribute(String).

public String[] getValueNames()
As of the Servlet 2.2 API, this method is replaced by
getAttributeNames().

public void putValue(String name, Object value)
As of the Servlet 2.2 API, this method is replaced by
setAttribute(String, Object).

public void removeValue(String name)
As of the Servlet 2.2 API, this method is replaced by
setAttribute(String, Object).

Custom Actions
Custom action elements can be developed by programmers
to extend the JSP language; for instance, for application-spe-
cific presentation, localization, validation, or any other task
not provided by the standard JSP action elements.

The general syntax for using a custom action element in a
JSP page is the same as that for JSP standard actions: a start
tag (optionally with attributes), a body, and an end tag.

,jsppr.9600 Page 47 Friday, September 7, 2001 2:51 PM

48 | JavaServer Pages Pocket Reference

Other elements and template text can be nested in the body.
Here’s an example:

<prefix:actionName attr1="value1" attr2="value2">
 The body
</prefix:actionName>

If the action element doesn’t have a body, the following
shorthand notation can be used instead of the start tag and
end tag:

<prefix:actionName attr1="value1" attr2="value2" />

Before you can use a custom action in a JSP page, you must
declare the tag library containing the custom action by using
the taglib directive, identifying the library and assigning the
prefix to be used for all custom action elements in the page.

Developing Custom Actions
A custom action—actually, a tag handler class for a custom
action—is basically a bean, with property setter methods
corresponding to the custom action element’s attributes. In
addition, the tag handler class must implement one of two
Java interfaces defined by the JSP specification.

All the interfaces and classes you need to implement a tag
handler are defined in the javax.servlet.jsp.tagext pack-
age. The two primary interfaces are named Tag and BodyTag.
The Tag interface defines the methods you need to implement
for any action. The BodyTag interface extends the Tag interface
and adds methods used to access the body of an action ele-
ment. To make it easier to develop a tag handler, two support
classes are defined by the API: TagSupport and BodyTagSupport
(shown in Figure 4). These classes provide default implemen-
tations for the methods in the corresponding interfaces.

The specification defines interfaces as well as the support
classes that implement them to cover all the bases. If you
already have a class with functionality that you want to access
as a custom action, you can specify that your class imple-
ments the appropriate interface and add the few methods

,jsppr.9600 Page 48 Friday, September 7, 2001 2:51 PM

Custom Actions | 49

defined by that interface. In practice, though, I recommend
that you implement your tag handlers as extensions of the
support classes. This way you get most of the methods for
free, and you can still reuse your existing classes by calling
them from the tag handler.

A tag library is a collection of custom actions. Besides the tag
handler class files, a tag library must contain a Tag Library
Descriptor (TLD) file. This is an XML file that maps all the
custom action names to the corresponding tag handler
classes and describes all the attributes supported by each cus-
tom action. The class files and the TLD can be packaged in a
JAR file to make the tag library easy to install.

Before we get into the intricate details, let’s take a brief look
at what it takes to develop, deploy, and use a custom
action. First you must implement a tag handler class, like
the following:

package com.mycompany;

import java.io.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

Figure 4. The primary tag-extension interfaces and support classes

Tag
interface

TagSupport
class

BodyTag
interface

BodyTagSupport
class

implements

implements

extends extends

,jsppr.9600 Page 49 Friday, September 7, 2001 2:51 PM

50 | JavaServer Pages Pocket Reference

public class HelloTag extends TagSupport {
 private String name = "World";

 public void setName(String name) {
 this.name = name;
 }

 public int doEndTag() {
 try {
 pageContext.getOut().println("Hello " +
 name);
 }
 catch (IOException e) {} // Ignore it
 return EVAL_PAGE;
 }
}

The tag handler class contains a setter method for an attribute
named name. The doEndTag() method (defined by the Tag
interface) simply writes “Hello ” plus the name attribute value
to the response. Compile the class and place the resulting
class file in the WEB-INF/classes directory for the application.

Next, create the TLD file. The following is a minimal TLD
file for a library containing just the one custom action ele-
ment in this example:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
"http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<taglib>
 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>test</shortname>

 <tag>
 <name>hello</name>
 <tagclass>com.mycompany.HelloTag</tagclass>
 <bodycontent>empty</bodycontent>
 <attribute>
 <name>name</name>
 </attribute>
 </tag>
</tablib>

,jsppr.9600 Page 50 Friday, September 7, 2001 2:51 PM

Custom Actions | 51

The TLD maps the custom action name hello to the tag han-
dler class com.mycompany.HelloTag and defines the name
attribute. Place the TLD file in the application’s WEB-INF/
tlds directory, using a filename such as mylib.tld.

Now you’re ready to use the custom action in a JSP page, like
this:

<%@ taglib uri="/WEB-INF/mylib.tld" prefix="test" %>
<html>
 <body bgcolor="white">
 <test:hello name="Hans" />
 </body>
</html>

The taglib directive associates the TLD with the element
name prefix used for the custom action in this page: test.
When the page is requested, the web container uses the TLD
to figure out which class to execute for the custom action. It
then calls all the appropriate methods, resulting in the text
“Hello Hans” being added to the response.

Custom Actions That Do Not
Process Their Bodies
A tag handler is the object that’s invoked by the web con-
tainer when a custom action element is found in a JSP page.
In order for it to do anything interesting, it needs access to all
the information about the request and the page, as well as
the action element’s attribute values (if any). At a minimum,
the tag handler must implement the Tag interface, which con-
tains methods for giving it access to the request and page
information, as well as the methods called by the container
when the start tag and end tag are encountered. For the
attribute values, the web container treats the tag handler as a
bean and calls property setter methods corresponding to the
action element attributes, as shown in Figure 5.

Typically, the tag handler class extends the TagSupport class
(which provides default implementations for all Tag meth-
ods) and overrides only one of the methods.

,jsppr.9600 Page 51 Friday, September 7, 2001 2:51 PM

52 | JavaServer Pages Pocket Reference

Note that while an action element supported by a tag han-
dler that implements the Tag interface may have a body, this
tag handler will have more limited control over the body
content than a tag handler that implements the BodyTag
interface.

Tag Interface

Interface name: javax.servlet.jsp.tagext.Tag

Extends: None

Implemented by: Custom action tag handler classes and javax.
servlet.jsp.tagext.TagSupport

Description

The Tag interface should be implemented by tag handler classes
that do not need access to the body contents of the corresponding
custom action element and do not need to iterate over the body of
a custom action element.

Methods

public int doEndTag() throws JspException
Performs actions when the end tag is encountered. If this
method returns SKIP_PAGE, execution of the rest of the page is
aborted and the _jspService() method of JSP page implemen-
tation class returns. If EVAL_PAGE is returned, the code
following the custom action in the _jspService() method is
executed.

Figure 5. Tag interface methods and property setter methods

<prefix:actionName
 attr1="value1"
 attr2="value2"
>
 The body
</prefix:actionName>

setAttr1("value1")

setAttr2("value2")

doStartTag()

doEndTag()

1
2

3

4

,jsppr.9600 Page 52 Friday, September 7, 2001 2:51 PM

TagSupport Class | 53

public int doStartTag() throws JspException
Performs actions when the start tag is encountered. This
method is called by the web container after all property setter
methods have been called. The return value controls how the
action’s body, if any, is handled. If it returns EVAL_BODY_
INCLUDE, the web container evaluates the body and processes
possible JSP elements. The result of the evaluation is added to
the response. If SKIP_BODY is returned, the body is ignored.

A tag handler class that implements the BodyTag interface
(extending the Tag interface) can return EVAL_BODY_TAG instead
of EVAL_BODY_INCLUDE. The web container then creates a
BodyContent instance and makes it available to the tag handler
for special processing.

public Tag getParent()
Returns the tag handler’s parent (the Tag instance for the
enclosing action element, if any) or null if the tag handler
doesn’t have a parent.

public void release()
Removes the references to all objects held by this instance.

public void setPageContext(PageContext pc)
Saves a reference to the current PageContext.

public void setParent(Tag t)
Saves a reference to the tag handler’s parent (the Tag instance
for the enclosing action element).

TagSupport Class

Class name: javax.servlet.jsp.tagext.TagSupport

Extends: None

Implements: Tag, java.io.Serializable

Implemented by: Internal container-dependent class. Most
containers use the reference implementation of
the class (developed in the Apache Jakarta
project).

Description

TagSupport is a support class that provides default implementa-
tions for all Tag interface methods. It’s intended to be used as a

,jsppr.9600 Page 53 Friday, September 7, 2001 2:51 PM

54 | JavaServer Pages Pocket Reference

superclass for tag handlers that do not need access to the body
contents of the corresponding custom action elements.

Constructor

public TagSupport()
Creates a new instance with the specified name and value.

Methods

public int doEndTag() throws JspException
Returns EVAL_PAGE.

public int doStartTag() throws JspException
Returns SKIP_BODY.

public static final Tag findAncestorWithClass(Tag from,
 Class class)

Returns the instance of the specified class, found by testing
for a match of each parent in a tag handler nesting structure
(corresponding to nested action elements) starting with the
specified Tag instance, or null if not found.

public String getId()
Returns the id attribute value, or null if not set.

public Tag getParent()
Returns the parent of this Tag instance (representing the
action element that contains the action element corre-
sponding to this Tag instance), or null if the instance has no
parent (i.e., is at the top level in the JSP page).

public Object getValue(String k)
Returns the value for the specified attribute that has been set
with the setValue() method, or null if not found.

public java.util.Enumeration getValues()
Returns an Enumeration of all attribute names for values set
with the setValue() method.

public void release()
Removes the references to all objects held by this instance.

public void removeValue(String k)
Removes a value set with the setValue() method.

,jsppr.9600 Page 54 Friday, September 7, 2001 2:51 PM

TagSupport Class | 55

public void setPageContext(PageContext pageContext)
Saves a reference to the current PageContext.

public void setId(String id)
Sets the id attribute value.

public void setParent(Tag t)
Saves a reference to the parent for this instance.

public void setValue(String k, Object o)
Saves the specified attribute with the specified value.
Subclasses can use this method to save attribute values as an
alternative to instance variables.

Example

An example of a custom action that can be implemented as a
simple tag handler (that is, just implementing the Tag interface) is
an action that adds a cookie to the HTTP response. Let’s call this
action <ora:addCookie>. The tag handler class is called com.ora.
jsp.tags.generic.AddCookieTag and extends the TagSupport class
to inherit most of the Tag interface method implementations:

package com.ora.jsp.tags.generic;

import javax.servlet.http.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import com.ora.jsp.util.*;

public class AddCookieTag extends TagSupport {

The <ora:addCookie> action has two mandatory attributes, name
and value, and one optional attribute, maxAge. Each attribute is
represented by an instance variable and a standard property setter
method:

 private String name;
 private String value;
 private String maxAgeString;

 public void setName(String name) {
 this.name = name;
 }

 public void setValue(String value) {

,jsppr.9600 Page 55 Friday, September 7, 2001 2:51 PM

56 | JavaServer Pages Pocket Reference

 this.value = value;
 }

 public void setMaxAge(String maxAgeString) {
 this.maxAgeString = maxAgeString;
 }

All setter methods set the corresponding instance variables.

The purpose of the custom action is to create a new javax.servlet.
Cookie object with the name, value, and maxAge values specified by
the attributes and add the cookie to the response. The tag handler
class overrides the doEndTag() method to carry out this work:

 public int doEndTag() throws JspException {
 int maxAge = -1;
 if (maxAgeString != null) {
 try {
 maxAge = Integer.valueOf(maxAgeString).
 intValue();
 }
 catch (NumberFormatException e) {

throw new JspException("Invalid maxAge: " +
 e.getMessage());
 }
 }
 sendCookie(name, value, maxAge,
 (HttpServletResponse) pageContext.getResponse());
 return EVAL_PAGE;
 }

 private void sendCookie(String name, String value,
 int maxAge,
 HttpServletResponse res) {
 Cookie cookie = new Cookie(name, value);
 cookie.setMaxAge(maxAge);
 res.addCookie(cookie);
 }

The maxAge attribute is optional, so before the corresponding
String value is converted to an int, a test is performed to see if it’s
set. Similar tests are not necessary for the name and value variables
because the web container verifies that all mandatory attributes
are set in the custom action. If a mandatory attribute is not set,
the web container refuses to process the page—so you can always
be sure that a variable corresponding to a mandatory attribute has

,jsppr.9600 Page 56 Friday, September 7, 2001 2:51 PM

TagSupport Class | 57

a value. Whether an attribute is mandatory is specified in the TLD
for the library.

The tag handler class should also implement the release()
method, to release all references to objects it has acquired:

public void release() {
 name = null;
 value = null;
 maxAgeString = null;
 super.release();
}

The release() method is called when the tag handler is no longer
needed. The AddCookieTag class sets all its properties to null and
calls super.release() to let the TagSupport class do the same. This
makes all property objects available for garbage collection.

A TagSupport method that’s not needed for this example but can
be handy in other situations is the findAncestorWithClass()
method. It can be used by a tag handler for a nested action
element to find its parent. The nested tag handler can then call
methods implemented by the parent tag handler class to get from
or provide information to the parent. For example, it can provide
the <jsp:param> elements nested within the body of <jsp:forward>
and <jsp:include> standard JSP action elements. An equivalent
custom action for a nested parameter element could be imple-
mented with a tag handler that uses the findAncestorWithClass()
method like this:

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
public class ParamTag extends TagSupport {
 private String name;
 private String value;

 public void setName(String name) {
 this.name = name;
 }

 public void setValue(String value) {
 this.value = value;
 }

 public int doEndTag() throws JspException {
 Tag parent = findAncestorWithClass(this,

,jsppr.9600 Page 57 Friday, September 7, 2001 2:51 PM

58 | JavaServer Pages Pocket Reference

 ParamParent.class);
 if (parent == null) {
 throw new JspException("The param action is not " +
 "enclosed by a supported action type");
 }
 ParamParent paramParent = (ParamParent) parent;
 paramParent.setParam(name, URLEncoder.
 encode(value));
 return EVAL_PAGE;
 }
}

Custom Actions That Process Their Bodies
As you can see, it’s easy to develop a tag handler that doesn’t
need to do anything with the action element’s body. For a
tag handler that does need to process the body, just a few
more methods are needed. They are defined by the BodyTag
interface, an interface that extends the Tag interface.

You can use the action element’s body in many ways. One
use is for input values spanning multiple lines. Say that you
develop a custom action that executes a SQL statement spec-
ified by the page author. SQL statements are often large, so
it’s better to let the page author write the statement in the
action body instead of forcing it to fit on one line, which is a
requirement for an attribute value. You can also use the
action element’s body in an action that processes the body
content in a particular way before it’s added to the response
(for instance, an action that processes its XML body using an
XSL stylesheet specified as an attribute).

As in the Tag interface, there’s a BodyTagSupport class that
implements all the methods of the BodyTag interface plus a
few utility methods.

A tag handler that implements the BodyTag interface is at first
handled the same way as a tag handler implementing the Tag
interface: the container calls all property setter methods and
the doStartTag() method. But then things diverge, as illus-
trated in Figure 6.

,jsppr.9600 Page 58 Friday, September 7, 2001 2:51 PM

BodyTag Interface | 59

The additional methods, setBodyContent(), doInitBody(),
and doAfterBody(), give the tag handler access to the content
of the element’s body and an opportunity to process it, as
described in the next sections.

BodyTag Interface

Interface name: javax.servlet.jsp.tagext.BodyTag

Extends: javax.servlet.jsp.tagext.Tag

Implemented by: Custom action tag handler classes and javax.
servlet.jsp.tagext.BodyTagSupport

Description

The BodyTag interface must be implemented by tag handler classes
that need access to the body contents of the corresponding
custom action element; for instance, in order to perform a trans-
formation of the contents before they are included in the
response. This interface must also be implemented by tag
handlers that need to iterate over the body of a custom action
element.

Methods

public int doAfterBody() throws JspException
Performs actions after the body has been evaluated. This
method is invoked after every body evaluation. If this
method returns EVAL_BODY_TAG the body is evaluated again,

Figure 6. BodyTag interface methods

<prefix:actionName
 attr1="value1"
 attr2="value2"
>
 The body

</prefix:actionName>

setAttr1("value1")

setAttr2("value2")

doStartTag()

setBodyContent()

doInitBody()

doAfterBody()
doEndTag()

1
2

3

4

5

6

7

,jsppr.9600 Page 59 Friday, September 7, 2001 2:51 PM

60 | JavaServer Pages Pocket Reference

typically after changing the values of variables used in it. If it
returns SKIP_BODY, the processing continues with a call to
doEndTag().

This method is not invoked if the element body is empty or if
doStartTag() returns SKIP_BODY.

public void doInitBody() throws JspException
Prepares for evaluation of the body. This method is invoked
by the page implementation once per action invocation, after
a new BodyContent has been obtained and set on the tag
handler via the setBodyContent() method and before the eval-
uation of the element’s body.

This method is not invoked if the element body is empty or if
doStartTag() returns SKIP_BODY.

public void setBodyContent(BodyContent b)
Sets the BodyContent created for this tag handler. This method
is not invoked if the element body is empty or if doStartTag()
returns SKIP_BODY.

BodyTagSupport Class

Class name: javax.servlet.jsp.tagext.BodyTagSupport

Extends: javax.servlet.jsp.tagext.TagSupport

Implements: BodyTag

Implemented by: Internal container-dependent class. Most
containers use the reference implementation of
the class (developed in the Apache Jakarta
project).

Description

BodyTagSupport is a support class that provides default implemen-
tations of all BodyTag interface methods. It’s intended to be used as
a superclass for tag handlers that need access to the body contents
of the corresponding custom action elements.

Constructor

public BodyTagSupport()
Creates a new BodyTagSupport instance.

,jsppr.9600 Page 60 Friday, September 7, 2001 2:51 PM

BodyContent Class | 61

Methods

public int doAfterBody() throws JspException
Returns SKIP_BODY.

public int doEndTag() throws JspException
Returns EVAL_PAGE.

public void doInitBody()
Does nothing in the BodyTagSupport class.

public BodyContent getBodyContent()
Returns the BodyContent object assigned to this instance.

public JspWriter getPreviousOut()
Returns the enclosing writer of the BodyContent object
assigned to this instance.

public void release()
Removes the references to all objects held by this instance.

public void setBodyContent(BodyContent b)
Saves a reference to the assigned BodyContent object as an
instance variable.

BodyContent Class

Class name: javax.servlet.jsp.tagext.BodyContent

Extends: javax.servlet.jsp.JspWriter

Implements: None

Implemented by: Internal container-dependent class

Description

The container creates an instance of the BodyContent class to hold
the result of evaluating the element’s body content if the corre-
sponding tag handler implements the BodyTag interface. The
container makes the BodyContent instance available to the tag
handler by calling the setBodyContent() method, so the tag
handler can process the body content.

Constructor

protected BodyContent(JspWriter e)
Creates a new instance with the specified JspWriter as the
enclosing writer.

,jsppr.9600 Page 61 Friday, September 7, 2001 2:51 PM

62 | JavaServer Pages Pocket Reference

Methods

public void clearBody()
Removes all buffered content for this instance.

public void flush() throws java.io.IOException
Overwrites the behavior inherited from JspWriter to always
throw an IOException, since it’s invalid to flush a BodyContent
instance.

public JspWriter getEnclosingWriter()
Returns the enclosing JspWriter; in other words, either the
top-level JspWriter or the JspWriter (BodyContent subclass) of
the parent tag handler.

public abstract java.io.Reader getReader()
Returns the value of this BodyContent object as a Reader with
the content produced by evaluating the element’s body.

public abstract String getString()
Returns the value of this BodyContent object as a String with
the content produced by evaluating the element’s body.

public abstract void writeOut(java.io.Writer out)
 throws java.io.IOException

Writes the content of this BodyContent object into a Writer.

Example

Let’s look at a tag handler class that extends the BodyTagSupport
class. The EncodeHTMLTag class is the tag handler class for a custom
action called <ora:encodeHTML>. This action reads its body;
replaces all characters with a special meaning in HTML, such as
single quotes, double quotes, less-than symbols, greater-than
symbols, and ampersands, with their corresponding HTML char-
acter entities (i.e., ', ", <, >, and &); and inserts
the result in the response body. The following example shows
how the action can be used in a JSP page:

<%@ page language="java" %>
<%@ taglib uri="/orataglib" prefix="ora" %>
<html>
 <head>
 <title>Encoded HTML Example</title>
 </head>
 <body>

,jsppr.9600 Page 62 Friday, September 7, 2001 2:51 PM

BodyContent Class | 63

 <h1>Encoded HTML Example</h1>
 The following text is encoded by the
 <ora:encodeHTML> custom action:
 <pre>
 <ora:encodeHTML>
 HTML 3.2 Documents start with a <!DOCTYPE>

declaration followed by an HTML element containing
 a HEAD and then a BODY element:

 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
 <HTML>
 <HEAD>
 <TITLE>A study of population dynamics</TITLE>
 ... other head elements
 </HEAD>
 <BODY>
 ... document body
 </BODY>
 </HTML>
 </ora:encodeHTML>
 </pre>
 </body>
</html>

Note that the body of the <ora:encodeHTML> action in the JSP page
example contains HTML elements. If the special characters aren’t
converted to HTML character entities, the browser interprets the
HTML and shows the result of that interpretation instead of the
elements themselves. Thanks to the conversion performed by the
custom action, however, the page is processed correctly (as shown
in Figure 7).

Besides static text, the action body can contain any JSP element. A
more realistic example of the use of this action is to insert text
from a database into a JSP page, without having to worry about
how special characters in the text are interpreted by the browser.
The tag handler class is very trivial, as shown here:

package com.ora.jsp.tags.generic;

import java.io.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import com.ora.jsp.util.*;

public class EncodeHTMLTag extends BodyTagSupport {

,jsppr.9600 Page 63 Friday, September 7, 2001 2:51 PM

64 | JavaServer Pages Pocket Reference

 public int doAfterBody() throws JspException {
 BodyContent bc = getBodyContent();
 JspWriter out = getPreviousOut();
 try {
 out.write(toHTMLString(bc.getString()));
 }
 catch (IOException e) {} // Ignore
 return SKIP_BODY;
 }

 private String toHTMLString(String in) {
 StringBuffer out = new StringBuffer();
 for (int i = 0; in != null && i < in.length();
 i++) {
 char c = in.charAt(i);
 if (c == '\'') {
 out.append("'");
 }
 else if (c == '\"') {
 out.append(""");
 }
 else if (c == '<') {
 out.append("<");
 }
 else if (c == '>') {
 out.append(">");

Figure 7. HTML processed by the <ora:encodeHTML> action

,jsppr.9600 Page 64 Friday, September 7, 2001 2:51 PM

BodyContent Class | 65

 }
 else if (c == '&') {
 out.append("&");
 }
 else {
 out.append(c);
 }
 }
 return out.toString();
 }
}

The action doesn’t have any attributes, so the tag handler doesn’t
need any instance variables and property access methods. The tag
handler can reuse all the BodyTag methods implemented by the
BodyTagSupport class except the doAfterBody() method.

Two utility methods provided by the BodyTagSupport class are
used in the doAfterBody() method. The getBodyContent() method
returns a reference to the BodyContent object that contains the
result of processing the action’s body. The getPreviousOut()
method returns the BodyContent of the enclosing action, if any, or
the main JspWriter for the page if the action is at the top level.

You may wonder why the method is called getPreviousOut() and
not getOut(). The name is intended to emphasize the fact that you
want to use the object assigned as the output to the enclosing
element in a hierarchy of nested action elements. Say you have the
following action elements in a page:

 <xmp:foo>
 <xmp:bar>
 Some template text
 </xmp:bar>
</xmp:foo>

The web container first creates a JspWriter and assigns it to the
out variable for the page. When it encounters the <xmp:foo>
action, it creates a BodyContent object and temporarily assigns it to
the out variable. It then creates another BodyContent for the <xmp:
bar> action and, again, assigns it to out. The web container keeps
track of this hierarchy of output objects. Template text and
output produced by the standard JSP elements end up in the
current output object. Each element can access its own
BodyContent object by calling the getBodyContent() method, then
read the content. For the <xmp:bar> element, the content is the

,jsppr.9600 Page 65 Friday, September 7, 2001 2:51 PM

66 | JavaServer Pages Pocket Reference

template text. After processing the content, it can write it to the
<xmp:foo> body by getting the BodyContent for this element
through the getPreviousOut() method. Finally, the <xmp:foo>
element can process the content provided by the <xmp:bar>
element and add it to the top-level output object: the JspWriter
object it gets by calling the getPreviousOut() method.

The tag handler in this example converts all special characters it
finds in its BodyContent object with the toHTMLString() method.
Using the getString() method, it gets the content of the
BodyContent object and uses it as the argument to the
toHTMLString() method. The result is written to the JspWriter
obtained by calling getPreviousOut().

The doAfterBody() method in this example returns SKIP_BODY,
telling the container to continue by calling doEndTag(). For a tag
handler that implements an iterating custom action, doAfterBody()
can instead return EVAL_BODY_TAG. The container then evaluates the
element’s body again, writing the result to the BodyContent for the
element, and calls doAfterBody(). The process is repeated until
doAfterBody() returns SKIP_BODY.

Actions Creating Objects
Actions can cooperate through objects available in the stan-
dard JSP scopes (page, request, session, and application). One
example of this type of cooperation is illustrated by the three
standard JSP actions: <jsp:useBean>, <jsp:setProperty>, and
<jsp:getProperty>. The <jsp:useBean> action creates a new
object and makes it available in one of the JSP scopes. The
other two actions can then access the properties of the object
by searching for it in the scopes. Besides making the object
available in one of the scopes, the <jsp:useBean> action also
makes it available as a scripting variable, so it can be accessed
by scripting elements in the page.

The JSP 1.1 specification states that an attribute named id
must be used to name a variable created by an action. The
value of the id attribute must be unique within the page. Since
it’s used as a scripting variable name, it must also follow the
variable-name rules for the scripting language. For Java, this

,jsppr.9600 Page 66 Friday, September 7, 2001 2:51 PM

TagExtraInfo Class | 67

means it must start with a letter followed by a combination of
letters and digits and must not contain special characters, such
as a dot or a plus sign. An attribute used in another action to
refer to the variable can be named anything, but the conven-
tion established by the standard actions is to call it name.

To create a scripting variable, a custom action must cooper-
ate with the web container. To understand how this works,
recall that the JSP page is turned into a servlet by the web
container. First, the container needs to generate code that
declares the scripting variable in the generated servlet and
assigns the variable a value. To do this, it must know the vari-
able name and its Java type. You must provide this informa-
tion to the container through a TagExtraInfo subclass for the
custom action. The container calls the getVariableInfo()
method in the TagExtraInfo subclass defined for the custom
action when it converts the JSP page to a servlet. This method
returns an array of VariableInfo instances, providing the
required information for the variables created by the custom
action. Second, the tag handler class for the custom action
must place the object in one of the JSP scopes, using the
PageContext setAttribute() method. The generated code
then uses the PageContext findAttribute() method to get the
object and assign it to the scripting variable.

TagExtraInfo Class

Class name: javax.servlet.jsp.tagext.TagExtraInfo

Extends: None

Implements: None

Implemented by: Internal container-dependent class. Most
containers use the reference implementation of
the class (developed in the Apache Jakarta
project).

Description

For custom actions that create scripting variables or require addi-
tional translation time for validation of the tag attributes, a
subclass of the TagExtraInfo class must be developed and declared

,jsppr.9600 Page 67 Friday, September 7, 2001 2:51 PM

68 | JavaServer Pages Pocket Reference

in the TLD. The web container creates an instance of the
TagExtraInfo subclass during the translation phase.

Constructor

public TagExtraInfo()
Creates a new TagExtraInfo instance.

Methods

public TagInfo getTagInfo()
Returns the TagInfo instance for the custom action associated
with this TagExtraInfo instance. The TagInfo instance is set by
the setTagInfo() method (called by the web container).

public VariableInfo[] getVariableInfo(TagData data)
Returns a VariableInfo[] array containing information about
scripting variables created by the tag handler class associated
with this TagExtraInfo instance. The default implementation
returns an empty array. A subclass must override this method
if the corresponding tag handler creates scripting variables.

public boolean isValid(TagData data)
Returns true if the set of attribute values specified for the
custom action associated with this TagExtraInfo instance is
valid and false otherwise. The default implementation
returns true. A subclass can override this method if the vali-
dation performed by the web container based on the TLD
information is not enough.

public void setTagInfo(TagInfo tagInfo)
Sets the TagInfo object for this instance. This method is called
by the web container before any of the other methods are
called.

VariableInfo Class

Class name: javax.servlet.jsp.tagext.VariableInfo

Extends: None

Implements: None

Implemented by: Internal container-dependent class. Most
containers use the reference implementation of
the class (developed in the Apache Jakarta
project).

,jsppr.9600 Page 68 Friday, September 7, 2001 2:51 PM

VariableInfo Class | 69

Description

VariableInfo instances are created by TagExtraInfo subclasses to
describe each scripting variable that the corresponding tag handler
class creates.

Constructor

public VariableInfo(String varName, String className,
 boolean declare, int scope)

Creates a new instance with the specified values.

Methods

public String getClassName()
Returns the scripting variable’s Java type.

public boolean getDeclare()
Returns true if the web container creates a declaration state-
ment for the scripting variable; otherwise, returns false (used
if the variable has already been declared by another tag
handler and is only updated by the tag handler corre-
sponding to the TagExtraInfo subclass creating this
VariableInfo instance).

public int getScope()
Returns one of AT_BEGIN (makes the scripting variable avail-
able from the start tag to the end of the JSP page), AT_END
(makes the variable available from after the end tag to the end
of the JSP page), or NESTED (makes the variable available only
between the start and stop tags).

public String getVarName()
Returns the variable name.

Example

Here’s an example of a TagExtraInfo subclass for a custom action
that creates a variable with the name specified by the id attribute
and the Java type specified by the className attribute:

package com.ora.jsp.tags.generic;
import javax.servlet.jsp.tagext.*;
public class UsePropertyTagExtraInfo
 extends TagExtraInfo {
 public VariableInfo[] getVariableInfo(TagData data) {
 return new VariableInfo[] {

,jsppr.9600 Page 69 Friday, September 7, 2001 2:51 PM

70 | JavaServer Pages Pocket Reference

 new VariableInfo(
 data.getAttributeString("id"),
 data.getAttributeString("className"),
 true,
 VariableInfo.AT_END)
 };
 }
}

The web container calls getVariableInfo() during the translation
phase. It returns an array of VariableInfo objects, one per vari-
able introduced by the tag handler.

The VariableInfo class is a simple bean with four properties,
initialized to the values passed as arguments to the constructor:
varName, className, declare, and scope. varName is simply the
name of the scripting variable, and className is the name of its
class.

The declare property is a boolean, where true means that a brand
new variable is created by the action (i.e., a declaration of the vari-
able must be added to the generated servlet). A value of false
means that the variable has already been created by another
action, or another occurrence of the same action, so the gener-
ated code already contains the declaration. All the container needs
to do in this case is assign a new value to the variable.

The scope property has nothing to do with the JSP scopes we have
seen so far (page, request, session, and application). Instead, it
defines where the new variable is available to JSP scripting
elements. A value of AT_BEGIN means that it is available from the
action’s start tag to after the action’s end tag. AT_END means it is
not available until after the action’s end tag. A variable with scope
NESTED is available only in the action’s body, between the start and
end tags. The scope therefore controls where the variable-declara-
tion and value-assignment code is generated, and the tag handler
class must make sure the variable is available in one of the JSP
scopes at the appropriate time; e.g., in the doStartTag() method
for the AT_BEGIN and NESTED scopes and the doEndTag() method for
the AT_END scope. For a BodyTag that iterates over the body, the
value can also be updated in the doAfterBody() method to provide
a new value for each iteration.

,jsppr.9600 Page 70 Friday, September 7, 2001 2:51 PM

VariableInfo Class | 71

Attribute Validation
In the previous example, the UsePropertyTagExtraInfo class
sets the varName and className properties of the VariableInfo
bean to the values of the id and className attributes speci-
fied by the page author in the JSP page. This is done using
another simple class named TagData, passed as the argument
to the getVariableInfo() method. The TagData instance is
created by the web container to provide the TagExtraInfo
subclass with information about all the action attributes
specified by the page author in the JSP page.

A TagData instance is also passed as an argument to the
TagExtraInfo isValid() method. This method is called by the
web container during the translation phase to allow you to
implement validation rules for the custom action’s attributes.
The container can perform simple validation based on the
information available in the TLD about which attributes are
required. But a custom action may have optional attributes
that are mutually exclusive or that depend on each other.
That’s when you have to implement the isValid() method in
a TagExtraInfo subclass and provide your own validation
code.

The TagData class has two methods of interest. The
getAttributeString() method simply returns the specified
attribute as a String. But some attributes’ values may be
specified by a JSP expression—a so-called request-time
attribute—instead of a string literal. Since such a value is not
known during the translation phase, the TagData class pro-
vides the getAttribute() method to indicate whether an
attribute value is a literal string, a request-time attribute, or
not set at all. The getAttribute() method returns an Object.
If the attribute is specified as a request-time value, the spe-
cial REQUEST_TIME_VALUE object is returned. Otherwise a
String is returned, or null if the attribute is not set.

,jsppr.9600 Page 71 Friday, September 7, 2001 2:51 PM

72 | JavaServer Pages Pocket Reference

TagData Class

Class name: javax.servlet.jsp.tagext.TagData

Extends: None

Implements: Cloneable

Implemented by: Internal container-dependent class. Most
containers use the reference implementation of
the class (developed in the Apache Jakarta
project).

Description

TagData instances are created by the web container during the
translation phase. They provide information about the attribute
values specified for a custom action to the TagExtraInfo subclass
for the corresponding tag handler, if any.

Constructors

public TagData(Object[][] atts)
Creates a new instance with the attribute name/value pairs
specified by the Object[][]. Element 0 of each Object[]
contains the name; element 1 contains the value or REQUEST_
TIME_VALUE (if the attribute value is defined as a request-time
value, or JSP expression).

public TagData(java.util.Hashtable attrs)
Creates a new instance with the attribute name/value pairs
specified by the Hashtable.

Methods

public Object getAttribute(String attName)
Returns the specified attribute value as a String or as the
REQUEST_TIME_VALUE object (if the attribute value is defined as
a request-time value, or JSP expression).

public String getAttributeString(String attName)
Returns the specified attribute value as a String. A
ClassCastException is thrown if the attribute value is defined
as a request-time value (a JSP expression).

,jsppr.9600 Page 72 Friday, September 7, 2001 2:51 PM

Creating a Tag Library Descriptor | 73

public String getId()
Returns the attribute named id as a String, or null if it is not
found.

public void setAttribute(String attName, Object value)
Sets the specified attribute to the specified value.

Example

After the web container has checked everything it can on its own
based on attribute information in the TLD, it looks for a
TagExtraInfo subclass, defined by the <teiclass> element, for the
custom action. If one is defined, it puts all the attribute informa-
tion in an instance of the TagData class and calls the TagExtraInfo
isValid() method:

public boolean isValid(TagData data) {
 // Mutually exclusive attributes
 if (data.getAttribute("attr1") != null &&
 data.getAttribute("attr2" != null) {
 return false;
 }

 // Dependent optional attributes
 if (data.getAttribute("attr3") != null &&
 data.getAttribute("attr4" == null) {
 return false;
 }
 return true;
}

A TagExtraInfo subclass can use the TagData instance to verify that
all attribute dependencies are okay, as in this example. Unfortu-
nately, in JSP 1.1 there’s no way to generate an appropriate error
message; the method can only return false to indicate that some-
thing is not quite right. This will hopefully be rectified in a future
version of JSP.

Creating a Tag Library Descriptor
When the web container converts custom action elements
into code that creates and calls the correct tag handler, it
needs information about which tag handler implements

,jsppr.9600 Page 73 Friday, September 7, 2001 2:51 PM

74 | JavaServer Pages Pocket Reference

which custom action element. It gets this information from
the Tag Library Descriptor (TLD).

The TLD is an XML file that contains information about all
the custom actions in one library. A JSP page that uses cus-
tom actions must identify the corresponding TLD and the
namespace prefix used for the actions in the page with the
taglib directive, described in more detail in the next section:

<%@ taglib uri="/WEB-INF/tlds/orataglib_1_0.tld"
 prefix="ora" %>
...
<ora:redirect page="main.jsp" />

The JSP page then uses the TLD to find the information it
needs when it encounters a custom action element with a
matching prefix.

Here’s an example of part of a TLD:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
"http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<taglib>
 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>ora</shortname>
 <uri>
 /orataglib
 </uri>
 <info>
 A tab library for the examples in the O'Reilly JSP
 book
 </info>

 <tag>
 <name>redirect</name>
 <tagclass>com.ora.jsp.tags.generic.RedirectTag
 </tagclass>
 <bodycontent>JSP</bodycontent>
 <info>
 Encodes the url attribute and possible param tags
 in the body and sets redirect headers.
 </info>

,jsppr.9600 Page 74 Friday, September 7, 2001 2:51 PM

Creating a Tag Library Descriptor | 75

 <attribute>
 <name>page</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>
 ...
</taglib>

At the top of the TLD file are a standard XML declaration
and a DOCTYPE declaration specifying the Document Type
Definition (DTD) for this file. A DTD defines the rules for
how elements in an XML file must be used, such as the order
of the elements, which elements are mandatory and which
are optional, if an element can be included multiple times,
etc. If you’re not familiar with XML, don’t worry about this.
Just remember that you need to copy the first two elements
in this example faithfully into your own TLD files. The ele-
ments must follow the same order as in this example.
Whether an element is mandatory or optional is spelled out
in the following element descriptions.

After the two declarations, the first element in the TLD file
must be the <taglib> element. This is the main element for
the TLD, enclosing all the more specific elements that
describe the library. Within the body of the <taglib> ele-
ment you can specify elements that describe the library as
such, as well as each individual tag handler. Let’s start with
the five elements that describe the library itself:

<tlibversion>
This mandatory element is used to specify the tag library
version. The version should be specified as a series of
numbers separated by dots. In other words, you should
use the normal conventions for software version num-
bers (e.g., 1.1, 2.0.3).

<jspversion>
This optional element specifies the version of the JSP spec-
ification on which the library depends. The default value
is 1.1.

,jsppr.9600 Page 75 Friday, September 7, 2001 2:51 PM

76 | JavaServer Pages Pocket Reference

<shortname>
This element is intended to be used by page-authoring
tools. It’s a mandatory element that should contain the
default prefix for the action elements. In the previous
example the value is ora, meaning that an authoring tool
by default generates custom action elements using the
ora prefix; for instance, <ora:redirect page="main.jsp">.
If the tool generates the taglib directive in the JSP page,
authoring tools can also use this element value as the
value of the prefix attribute. The element value must not
include whitespace characters or other special charac-
ters, or start with a digit or underscore.

<uri>
This element is also intended to benefit authoring tools.
The value can be used as the default value for the uri
attribute in a taglib directive. This element is optional,
and it follows the same character rules as the <shortname>
element.

<info>
This optional element provides a short description of the
library; for instance, text a tool may display to help users
decide if this is the library they need.

Besides the general elements, the TLD must include at least
one <tag> element. The <tag> element contains other ele-
ments that describe different aspects of the custom action:

<name>
This mandatory element contains the unique name for
the corresponding custom action element.

<tagclass>
This mandatory element contains the fully qualified class
name for the tag handler class.

<teiclass>
This optional element is used to specify the fully quali-
fied class name for the TagExtraInfo subclass, if the

,jsppr.9600 Page 76 Friday, September 7, 2001 2:51 PM

Creating a Tag Library Descriptor | 77

action introduces variables or needs to do additional syn-
tax validation (as described in the next section).

<bodycontent>
This optional element can contain one of three values. A
value of empty means that the action body must be
empty. If the body can contain JSP elements, such as
standard or custom actions or scripting elements, use the
JSP value. All JSP elements in the body are processed,
and the result is handled as specified by the tag handler
(i.e., processed by the tag handler or sent through to the
response body). This is also the default value, in case you
omit the <bodycontent> element. The third alternative is
tagdependent. This value means that possible JSP ele-
ments in the body will not be processed. Typically, this
value is used when the body is processed by the tag han-
dler, and the content may contain characters that could
be confused with JSP elements, such as SELECT * FROM
MyTable WHERE Name LIKE '<%>'. If a tag that expects this
kind of body content is declared as JSP, the <%> is likely
to confuse the web container. Use the tagdependent value
to avoid this risk of confusion.

<info>
This optional element can be used to describe the pur-
pose of the action.

The <tag> element must also contain an <attribute> ele-
ment for each action attribute. The <attribute> element
contains the following nested elements to describe the
attribute:

<name>
This mandatory element contains the attribute name.

<required>
This optional element tells if the attribute is required.
The values true, false, yes, and no are valid, with false
being the default.

,jsppr.9600 Page 77 Friday, September 7, 2001 2:51 PM

78 | JavaServer Pages Pocket Reference

<rtexprvalue>
This optional element can have the same values as the
<required> element. If it’s true or yes, a request-time
attribute expression can specify the attribute value; for
instance, attr="<%= request.getParameter("par") %>. The
default value is false.

Packaging and Installing
a Tag Library
During development, you may want to let the tag library
classes and the TLD file reside as-is in the filesystem. This
makes it easy to change the TLD and modify and recompile
the classes. If you do so, make sure the class files are stored
in a directory that’s part of the classpath for the web con-
tainer, such as the WEB-INF/classes directory for the web
application. The TLD must also be available in a directory
where the web container can find it. The recommended loca-
tion is the WEB-INF/tlds directory. To identify the library
with the TLD stored in this location, use a taglib directive
like this in the JSP pages:

<%@ taglib uri="/WEB-INF/tlds/orataglib_1_0.tld"
 prefix="ora" %>

Here the uri attribute refers directly to the TLD file’s location.

When you’re done with the development, you may want to
package all the tag handler classes, TagExtraInfo classes, and
beans used by the tag handler classes, plus the TLD, in a JAR
file. This makes it easier to install the library in an applica-
tion. The TLD must be saved as /META-INF/taglib.tld within
the JAR file.

To create the JAR file, first arrange the files in a directory
with a structure like this:

META-INF/
 taglib.tld
com/
 ora/

,jsppr.9600 Page 78 Friday, September 7, 2001 2:51 PM

Packaging and Installing a Tag Library | 79

 jsp/
 tags/
 generic/
 EncodeHTMLTag.class
 ...
 util/
 StringFormat.class
 ...

The structure for the class files must match the package
names for your classes. A few of the classes in the tag library
for this book are shown here as an example.

With the file structure in place, use the jar command to cre-
ate the JAR file:

jar cvf orataglib_1_0.jar META-INF com

This command creates a JAR file named orataglib_1_0.jar
containing the files in the META-INF and com directories.
Use any JAR filename that makes sense for your own tag
library. Including the version number for the library is a good
idea, since it makes it easier for users to know which version
of the library they are using.

You can now use the packaged tag library in any applica-
tion. Just copy the JAR file to the application’s WEB-INF/lib
directory and use a taglib directive like this in the JSP pages:

<%@ taglib uri="/WEB-INF/lib/orataglib_1_0.jar"
 prefix="ora" %>

Note that the uri attribute now refers to the JAR file instead
of the TLD file. A JSP 1.1 container is supposed to be able to
find the TLD file in the JAR file, but this is a fairly recent
clarification of the specification. If the web container you use
doesn’t support this notation yet, you have to extract the
TLD file from the JAR file, save it somewhere else—for
instance, in WEB-INF/tlds—and let the uri attribute refer to
the TLD file instead.

An alternative to letting the taglib directive point directly to
the TLD or JAR file is specifying a symbolic name as the uri
attribute value and providing a mapping between this name

,jsppr.9600 Page 79 Friday, September 7, 2001 2:51 PM

80 | JavaServer Pages Pocket Reference

and the real location in the WEB-INF/web.xml file for the
application:

<%@ taglib uri="/orataglib" prefix="ora" %>

The WEB-INF/web.xml file must then contain the following
elements:

<web-app>
 ...
 <taglib>
 <taglib-uri>
 /orataglib
 </taglib-uri>
 <taglib-location>
 /WEB-INF/lib/orataglib_1_0.jar
 </taglib-location>
 </taglib>
 ...
</web-app>

The <taglib-uri> element contains the symbolic name, and
the <taglib-location> element contains the path to either the
JAR file or the extracted TLD file.

The Web Archive (WAR) File
The portable distribution and deployment format for a web
application defined by the servlet specification is the Web
Archive (WAR). All Servlet 2.2–compliant servers provide
tools for installing a WAR file and associating the applica-
tion with a servlet context.

A WAR file has a .war file extension and can be created with
the Java jar command or a ZIP utility program such as
WinZip. The internal structure of the WAR file is defined by
the servlet specification as:

/index.html
/company/index.html
/company/contact.html
/company/phonelist.jsp
/products/searchform.html
/products/list.jsp

,jsppr.9600 Page 80 Friday, September 7, 2001 2:51 PM

The Web Archive (WAR) File | 81

/images/banner.gif
/WEB-INF/web.xml
/WEB-INF/lib/bean.jar
/WEB-INF/lib/actions.jar
/WEB-INF/classes/com/mycorp/servlets/PurchaseServlet.class
/WEB-INF/classes/com/mycorp/util/MyUtils.class
/WEB-INF/tlds/actions.tld

The top level in this structure is the document root for all
application web page files. This is where you place all your
HTML pages, JSP pages, and image files. All these files can be
accessed with a URI starting with the context path. For exam-
ple, if the application was assigned the context path /sales,
the URI /sales/products/list.jsp would be used to access
the JSP page named list.jsp in the products directory.

The WEB-INF directory contains files and subdirectories for
other types of resources. Two WEB-INF subdirectories have
special meaning: lib and classes. The lib directory contains
JAR files with Java class files; for instance, JavaBeans classes,
custom action handler classes, and utility classes. The classes
directory contains class files that are not packaged in JAR
files. The servlet container automatically has access to all
class files in the lib and classes directories (in other words,
you don’t have to add them to the CLASSPATH environment
variable).

If you store class files in the classes directory, they must be
stored in subdirectories mirroring the package structure. For
example, if you have a class named com.mycorp.util.MyUtils,
you must store the class file in WEB-INF/classes/com/mycorp/
util/MyUtils.class.

The WEB-INF directory can also contain other directories.
For instance, a directory named tlds is by convention used for
tag library TLD files that are not packaged within the tag
library JAR file.

During development, it’s more convenient to work with the
web application files in a regular filesystem structure than to
create a new WAR file every time something changes. Most

,jsppr.9600 Page 81 Friday, September 7, 2001 2:51 PM

containers therefore support the WAR structure in an open
filesystem as well.

The WEB-INF/web.xml file is an important file. It is the
application deployment descriptor that contains all the con-
figuration information for an application. If your application
consists of only JSP and HTML files, you typically do not
need to worry about this file. But if the application also con-
tains servlets or tag libraries, or uses the container-provided
security mechanisms, you often need to define some configu-
ration information in the web.xml file. A description of the
elements in the web.xml file is beyond the scope of this refer-
ence. Please see the Servlet 2.2 specification instead.

,jsppr.9600 Page 82 Friday, September 7, 2001 2:51 PM

