
Lesson 2 – Basic Java Concepts Java™ Programming

Copyright © 2003 Jeremy Russell & Associates Lesson 2 - Page 1 of 18

Copyright Jeremy Russell & Associates, 2003. All rights reserved.JPROG2-1

02

Basic Java Concepts

Schedule: Timing Topic

 45 minutes Lecture

 15 minutes Lab

 60 minutes Total

Java™ Programming Lesson 2 – Basic Java Concepts

Page 2 of 18 – Lesson 2 Copyright © 2003 Jeremy Russell & Associates

JPROG2-2 Copyright Jeremy Russell & Associates, 2003. All rights reserved.

Objectives

• After completing this lesson, you will have
an understanding of:
– Important elements of a Java program
– Basic Java language syntax
– .java and .class file structures
– How to run a Java application

Objectives
Lesson 2 introduces key elements of the language for Java class creation.

Basic syntax is also demonstrated, together with coding and documentation standards.

The JDK is described in more detail to allow creation, compilation and running of simple Java
programs.

Lesson 2 – Basic Java Concepts Java™ Programming

Copyright © 2003 Jeremy Russell & Associates Lesson 2 - Page 3 of 18

JPROG2-3 Copyright Jeremy Russell & Associates, 2003. All rights reserved.

Sun’s JDK

• The Sun JDK includes "standard" classes
• The language package is in classes.zip
• Other packages included are:

– Windowing (java.swing)
– Applet (java.applet)
– Streams I/O (java.io)
– Network comms (java.net)

Sun’s JDK
The Java Developers Kit (JDK) (introduced in Lesson 1) includes a standard set of classes that
provide the core functions of Java. The language package (java.lang) contains the lowest level of
required classes. For example, java.lang includes the Object class, the foundation of all user
defined (and many Java defined) classes.

The JDK includes several packages (groups of classes) that share common definitions. Packages also
share a name space, the scope of internal definitions within the package. Different packages can
contain objects of the same name – the fully qualified object name includes the package name for
uniqueness. To simplify coding, a package can be imported into a class (discussed later), which
removes the requirement to fully name packaged objects.

Included packages
Some examples of included packages are:

�� java.lang Object, String, Thread, System, Math

�� javax.swing Window, Button, Menu, Font, Border

�� java.applet Applet, AudioClip,

�� java.io InputStream, OutputStream, File, StreamTokenizer

�� java.net Socket, URL, ContentHandler

Further information should be obtained from the JavaSoft website, from where the documentation can
be browsed or downloaded. The download is an (approximately) 21.5mb ZIP file, which can then be
unzipped into a set of HTML pages for use in any browser.

Alternatively, if you have access to a permanent Internet connection, the latest documentation can be
browsed online.

The URL for documentation is http://java.sun.com/j2se/1.3/docs.html.

Java™ Programming Lesson 2 – Basic Java Concepts

Page 4 of 18 – Lesson 2 Copyright © 2003 Jeremy Russell & Associates

JPROG2-4 Copyright Jeremy Russell & Associates, 2003. All rights reserved.

Java naming conventions

• Files HelloWorld.java

• Classes HelloWorld.class

• Methods main, showMessage

• Variables employeeName, birthDate
• Constants RETIREMENT_AGE

!! Everything in Java is case sensitive !!

Java naming conventions
All names and keywords in Java are case-sensitive.

Files
Source code are stored in files with the .java extension and must use the class name within the file as
the prefix of the file name itself. The compiled classes are stored in a file with a .class suffix – the
prefix must again be the same as the name of the initial class held within the file.

Classes
Class names should be nouns. The first letter of each word in the class name should be capitalised.

For example, OrderLine.

Methods
The name of each method is typically a verb. The first letter of the method name should be
lowercase; the first letter of subsequent words should be capitalised.

For example, getClientName().

Variables
A variable name should be short but descriptive, avoiding where possible the common variable names
like i and j etc.. Use the same mixed case as for method names.

For example, employeeTaxCode.

Constants
A constant should be declared with an all upper-case name, using underscores to separate internal
words.

For example, STANDARD_VAT_RATE.

Lesson 2 – Basic Java Concepts Java™ Programming

Copyright © 2003 Jeremy Russell & Associates Lesson 2 - Page 5 of 18

JPROG2-5 Copyright Jeremy Russell & Associates, 2003. All rights reserved.

Java class definition

• Package Name
• Access modifier
• Class keyword
• Variables

– Instance, Class, Local variables

• Methods
– Instance methods
– Class methods

• Constructors

package myPackage;

public class Employee {
private String employeeName;
private float salary;
public Employee() {

employeeName = "Unknown";
salary = 0;

}

public class Employee {...
Employee e1 = new Employee();
Employee e2 = new Employee();
...

e1 e2

Java class definition
Classes are the encapsulated definition of properties (variables) and subroutines (methods) to operate
on those properties. The class definition can be used as a model or blueprint for creating
(instantiating) actual examples of the class.

The behaviour of the class is defined as methods that operate on the attributes of the class. Attribute
values are stored as variables, either for a specific instance of the class (instance variables) or as
variables shared by all instances of the class (class variables).

The class definition includes the following components:

��Package name Name of the package where this class belongs – discussed later.

��Access modifier Keyword to specify how external access to this class is managed. Options
include public or private.

��Class keyword A mandatory keyword.

��Instance variables Variables (constants) defined outside of a method and available to all
methods in the class.

��Class variables Variables (constants) defined with the static keyword – a single instance
of the variable is created which is shared by all instances of the class.
Instance variables are created when the class is loaded initially and can be
set and accessed even before new instances of the class are created.

��Local variables Variables (constants) defined inside a method. The variable scope is
inside the method where it is declared.

��Instance methods Functions (subroutines) that operate on instances of the class.

��Class methods Functions (subroutines) that operate on class variables of the class.

��Constructors Methods that have the same name as the class and are automatically called
to create new instances of the class (initialise instance variables).

Java™ Programming Lesson 2 – Basic Java Concepts

Page 6 of 18 – Lesson 2 Copyright © 2003 Jeremy Russell & Associates

JPROG2-6 Copyright Jeremy Russell & Associates, 2003. All rights reserved.

Packages

• Java uses packages
– to group related classes
– to reduce namespace

conflicts

• Package conventions
– reverse domain name
– runtime directories follow

package names

ROOT Directory

package com.JeremyRussell;

public class Employee {
...

JeremyRussell

com

source.java

.

.

Packages
Java uses “packages” to both group related classes and ensure that potential namespace conflicts are
minimised.

Each class resides in a package – if the class does not include a package specifier, the class is a
member of the default package. Each Java class is fully qualified by the fully qualified class name,
which consists of the package name and the class name, concatenated with dot notation. For example,
java.lang.Object class is the fully qualified name of the Object class. The java.lang package is
included in every java class by default.

One generally accepted convention for package naming is to use the author’s internet domain name as
the initial components of the package name. Furthermore, the initial portion of the package name is
often uppercased.

For example, packages created for use by Microsoft, with their domain name of ‘microsoft.com’,
would typically have a package name of “COM.microsoft”. If Microsoft were to create a class called
“Customer” for their “licence” subsystem, the fully qualified class name would be
“com.Microsoft.licence.Customer”.

Package names of “java”, “javax” and “sun” are reserved for use by Sun.

Lesson 2 – Basic Java Concepts Java™ Programming

Copyright © 2003 Jeremy Russell & Associates Lesson 2 - Page 7 of 18

Class files at runtime
The root directory for the class hierarchy must also be identified in the environment variable
CLASSPATH for both Windows and UNIX systems. This environment variable can contain a list of
directories to be searched at runtime (by java) for the initial directory containing the class hierarchy.

At runtime, compiled Java classes must appear in a directory tree structure that corresponds to their
package name. The compiler can be instructed to create the directory hierarchy by using the
command line option –d, as below

SET CLASSPATH=C:\Course
javac –d . Source.java

If Source.java contains the following code:
package practice;
public class Question1 {
...

the compiled Source.class file must appear in the file C:\Course\practice\Question1.class.

Compiled class files must be placed in a directory that matches their package name.

Microsoft’ s licence system, customer class must be stored for a Windows operating system, in
“ ..\com\microsoft\licence\Customer.class” or, for a UNIX system, the directory
“ ../com/microsoft/licence/Customer.class”

To execute this class, use this command:
java practice.Question1

Note that since CLASSPATH has been set already, this command can be invoked from any directory
on your system.

Java™ Programming Lesson 2 – Basic Java Concepts

Page 8 of 18 – Lesson 2 Copyright © 2003 Jeremy Russell & Associates

JPROG2-6 Copyright Jeremy Russell & Associates, 2003. All rights reserved.

Example class

public class HelloWorld {
private String employeeName;

public static void main(String[] args) {

System.out.println("Hello, World");

employeeName = "Jeremy";
showMessage("Employee:");

}

static void showMessage(String msg) {
int i;

System.out.println(msg + " " +

employeeName);

}

}

Access modifier

Instance Method

Instance
Variable

Class
Method

Class declaration

Instance
Variable

Java class definition
Classes are the encapsulated definition of properties (variables) and subroutines (methods) to operate
on those properties. The class definition can be used as a model or blueprint for creating
(instantiating) actual examples of the class.

The behaviour of the class is defined as methods that operate on the attributes of the class. Attribute
values are stored as variables, either for a specific instance of the class (instance variables) or as
variables shared by all instances of the class (class variables).

The class definition includes the following components:

��Access modifier Keyword to specify how external access to this class is managed. Options
include public or private.

��Class keyword A mandatory keyword.

��Instance variables Variables (constants) defined outside of a method and available to all
methods in the class.

��Class variables Variables (constants) defined with the static keyword – a single instance
of the variable is created which is shared by all instances of the class.
Instance variables are created when the class is loaded initially and can be
set and accessed even before new instances of the class are created.

��Local variables Variables (constants) defined inside a method. The variable scope is
inside the method where it is declared.

��Instance methods Functions (subroutines) that operate on instances of the class.

��Class methods Functions (subroutines) that operate on class variables of the class.

��Constructors Methods that have the same name as the class and are automatically called
to create new instances of the class (initialise instance variables).

Lesson 2 – Basic Java Concepts Java™ Programming

Copyright © 2003 Jeremy Russell & Associates Lesson 2 - Page 9 of 18

JPROG2-7 Copyright Jeremy Russell & Associates, 2003. All rights reserved.

Methods

• Methods are defined within a class
• Method signature includes

– Access modifier
– Static keyword
– Arguments
– Return type

• Method body includes statements
public static int getAge(int customer)

{ ... }

Methods
Each method is defined within a class, and can be equivalent to a subroutine, a procedure or a
function in other programming languages.

For each method, the following forms part of the definition:

��Access modifier Keyword to specify how external access to this method is managed.
Options include:
��public - accessible from other classes
��private - not accessible outside this class
��protected - accessible from sub-classes of this class
��default - accessible from other classes in the same package

(the default keyword does not appear but is assumed).
��Static keyword A mandatory keyword for class methods.

��Return type The data type returned by this method. If the method does not return a
value, the data type void must be used.

��Method name The name of the method.

��Arguments A comma separated list of datatypes and names passed as parameters to
this method.

��Method body Java statements that provide the functionality of this method.

Unless a method does not return a value (and has a signature specifying a void return type), the
method must end with a ‘return’ statement to provide the value to the calling method. A method
may have several exit points (return statements) – each statement must return the same type.

main method
Executable classes (applications) must have a “ main” method defined. This method is the entry point
to the application. Other classes do not need a main method but may have one defined for use as a
testing entry point. The main method signature is always:

public static void main(String[] args){ ... }

Java™ Programming Lesson 2 – Basic Java Concepts

Page 10 of 18 – Lesson 2 Copyright © 2003 Jeremy Russell & Associates

JPROG2-8 Copyright Jeremy Russell & Associates, 2003. All rights reserved.

Code blocks

• Method body consists of a code block
• Code blocks are enclosed in braces { }
• Code blocks can be nested
• Use code blocks for

– Class declarations
– Method declarations
– Nesting other blocks

{

// Get cust, return age

Customer c =

getCust(customer);

return c.getAge();

}

Code blocks
The body of a method appears as a code block, a set of Java statements enclosed within brace
characters ({ and }).

Code blocks can be nested to form compound statements, often within conditional or loop constructs.

Variables defined within a code block have a scope of that code block only (temporary variables).

A temporary variable that is defined with the same name as a variable with a higher scope will mask
the definition of the higher scoped variable – this is not good practice for code clarity.

Lesson 2 – Basic Java Concepts Java™ Programming

Copyright © 2003 Jeremy Russell & Associates Lesson 2 - Page 11 of 18

JPROG2-9 Copyright Jeremy Russell & Associates, 2003. All rights reserved.

Statements

• Statements are terminated
with semicolon

• Compound statements
contained within a code
block

• Braces used for control
flow blocks

{

if (age > 65)

pension = true;

else {

pension = false;

calculateTax();

}

createPaySlip();

...

}

{

}

Statements
Java statements are always terminated with a semi-colon.

Statements may be Java statements (variable declaration, assignment, logic statements) or references
to methods within the same or another class.

Compound statements are contained within a code block, delimited by braces.

Multiple statements can appear on a single line of source code, provided that each statement is
delimited with a semi-colon. This is not good practice for coding clarity reasons and should be
avoided whenever possible.

Java™ Programming Lesson 2 – Basic Java Concepts

Page 12 of 18 – Lesson 2 Copyright © 2003 Jeremy Russell & Associates

JPROG2-10 Copyright Jeremy Russell & Associates, 2003. All rights reserved.

Variables

• Must be defined before use
• Variables can be primitives or objects
• Variable declarations appear one per line
• Should be initialised wherever possible
• Can be declared as :

– Instance variables (start of class)
– Method variables (start of code block)
– Temporary (within a code block)

Variables
The Java language is strongly typed, meaning that variables must be defined before they are
referenced.

For code clarity, a declaration should appear on a separate line in the source file. Multiple variables
of the same type can be declared (and initialised) using a single statement.

Declarations can appear at the beginning of a code block or within a code block (for temporary
variables).

Each variable should be initialised on declaration wherever possible. Primitive (built-in) variables
and class variables are automatically initialised to an appropriate value (as described later). Object
variables (user-defined) may be declared without initialisation values.

Lesson 2 – Basic Java Concepts Java™ Programming

Copyright © 2003 Jeremy Russell & Associates Lesson 2 - Page 13 of 18

JPROG2-11 Copyright Jeremy Russell & Associates, 2003. All rights reserved.

Comments

public class HelloWorld { // comment to end of line

private static String employeeName;

/* multiline

comment */
public static void main(String[] args) {

System.out.println("Hello, World");
employeeName = "Jeremy";

showMessage("Employee:");
}

/** Documentation comment */

static void showMessage(String msg) {

System.out.println(msg + " " +

employeeName);

}
}

Comments
Code should be commented wherever possible, to ensure clarity for the original developer and for
developers that may subsequently work on or use the class.

Comments can be specified in several ways:

��Using // All characters after // are treated as comments by the compiler.

��Using /* and */ A multi-line comment is enclosed between a /* and */ pair

��Using /** and */ The /** prefix is used by the Javadoc utility for generating standardised
documentation in HTML format (discussed later).

Java™ Programming Lesson 2 – Basic Java Concepts

Page 14 of 18 – Lesson 2 Copyright © 2003 Jeremy Russell & Associates

JPROG2-12 Copyright Jeremy Russell & Associates, 2003. All rights reserved.

Compiling an application

$ javac HelloWorld.java

$ HelloWorld.java:12: ’}’ expected

}

^

1 error

$ vi HelloWorld.java

$ javac HelloWorld.java

$ _

Compiling an application
To compile a Java source file, use the JDK Java compiler “ javac.exe” .

Change to the directory containing the “ .java” file to be compiled, and run the compiler as shown
above. Remember that the name of the source file is case-sensitive for the compiler, whichever
operating sytem you are using for the compilation.

Errors in the code that prevent compilation will be reported by the compiler immediately.

If there are no errors, the compiler will create a class file in the same directory as the source file.

Lesson 2 – Basic Java Concepts Java™ Programming

Copyright © 2003 Jeremy Russell & Associates Lesson 2 - Page 15 of 18

JPROG2-13 Copyright Jeremy Russell & Associates, 2003. All rights reserved.

Running an application

$ java HelloWorld

Hello, World

Employee: Jeremy

$ _

JVM HelloWorld

java.lang

HelloWorld

java.lang

Running an application
To compile a Java source file, use the JDK Java runtime “ java.exe” .

Change to the directory containing the “ .class” file to be execute, and invoke the Java runtime as
shown above. Remember that the name of the class file is case-sensitive for the runtime, whichever
operating sytem you are using for execution.

The java.exe program loads the class and verifies the integrity of the bytecodes before converting the
bytecodes into machine code and executing the main() method. The JVM is started to manage the
processing. Any other classes referenced in the application will be loaded into the JVM’ s memory
space as required.

Java™ Programming Lesson 2 – Basic Java Concepts

Page 16 of 18 – Lesson 2 Copyright © 2003 Jeremy Russell & Associates

JPROG2-14 Copyright Jeremy Russell & Associates, 2003. All rights reserved.

Lesson Summary

• In this lesson, you learnt:
– Important elements of a Java program
– Basic Java language syntax
– .java and .class file structures
– How to run a Java application

Lesson 2 – Basic Java Concepts Java™ Programming

Copyright © 2003 Jeremy Russell & Associates Lesson 2 - Page 17 of 18

Practice 2
1) Using the notes in this lesson as a guide, define the following terms:

a) Class:

b) Instance variable:

c) Instance method:

d) Temporary variable:

2) Examine the following code example and answer the questions below:
public class HelloWorld {
 private String employeeName;
 private int age;
 private float salary;

 public static void main(String[] args) {
 System.out.println("Hello, World");
 employeeName = "Jeremy";
 showMessage("Hello, from a method");
 }

 static void showMessage(String msg) {
 int messageCode = 0;
 int messagePriority = 0;
 System.out.println(msg + " " + employeeName);
 }
}

a) What is the class name?

b) What are the method names?

c) What are the names of the instance variables?

d) What are the names of the method variables?

3) List four components of the JDK.

a)

b)

c)

d)

Java™ Programming Lesson 2 – Basic Java Concepts

Page 18 of 18 – Lesson 2 Copyright © 2003 Jeremy Russell & Associates

This page intentionally left blank

