
How to use NetBeans with Murach’s Java SE 6 1

How to use NetBeans with
Murach’s Java SE 6
NetBeans is a software framework for developing Integrated Development
Environments (IDEs). In particular, it is used to develop the NetBeans IDE,
which is an IDE for Java. NetBeans is open-source, available for free, and runs
on all modern operating systems.

This tutorial has been designed to work with our beginning Java book,
Murach’s Java SE 6. To make it easy for you to use this tutorial with our Java
book, each topic in this tutorial includes references to the related chapters in
our book whenever that’s necessary or helpful.

How to get started with NetBeans .. 2
How to download and install the NetBeans IDE .. 2
How to start NetBeans .. 4
How to create a new project with a main class ... 6
How to save and edit source code ... 8
How to fix errors ... 10
How to compile and run an application .. 12
How to run a console application that gets user input 14

How to open and close projects
and import source code ... 16
How to open a project ... 16
How to close a project .. 16
How to import existing Java files into a new project 18

Object-oriented development with NetBeans 22
How to create a new class ... 22
How to work with classes ... 24
How to work with interfaces .. 26
How to start a class that implements an interface .. 28
How to work with packages ... 30
How to generate documentation ... 32

Debugging with NetBeans ... 34
How to set and remove breakpoints .. 34
How to step through code ... 36
How to inspect variables ... 36
How to inspect the stack trace .. 36

More NetBeans skills ... 38
How to run an applet .. 38
How to add a JAR file to the libraries for a project 40

Perspective .. 42

MIKE MURACH & ASSOCIATES, INC.
1-800-221-5528 • (559) 440-9071 • Fax: (559) 440-0963
murachbooks@murach.com • www.murach.com
Copyright © 2007 Mike Murach & Associates. All rights reserved.

mailto:murachbooks@murach.com
http://www.murach.com

2 How to use NetBeans with Murach’s Java SE 6

How to get started with NetBeans

Before you install the NetBeans IDE, you should install the need to install
the Java Development Kit (JDK) for Java SE 6 as described in figure 1-4 in
chapter 1 of Murach’s Java SE 6. In addition, if you want to use NetBeans with
our book, you should download the NetBeans version of the source code for our
book from our web site (www.murach.com). To do that, download the zip file
for this source code and unzip it into the C:\murach\java6 folder. If this folder
doesn’t already exist, you can create it.

How to download and install the NetBeans IDE

Once you have installed Java SE 6, you’re ready to install the NetBeans
IDE. Since most Java development is still done under Windows, figure 1 shows
how to install NetBeans on a Windows system. In summary, once you download
the exe file for the NetBeans installation program, you run this installation
program and respond to the resulting dialog boxes. When you do, the installa-
tion program will install NetBeans and create a shortcut to the NetBeans.exe file
in your Start menu. Since this works like most Windows installation programs,
you shouldn’t have any trouble doing this.

If you encounter any problems, you can view the documentation that’s
available from the NetBeans web site and consult the troubleshooting tips. If
you want to install NetBeans on another operating system such as Linux,
Solaris, or Mac OS X, you can follow the instructions that are available from
the NetBeans website.

How to use NetBeans with Murach’s Java SE 6 3

The NetBeans web site
www.netbeans.org

How to download and install NetBeans
1. Go to the NetBeans web site.

2. Download the NetBeans IDE installer. For NetBeans 5.5 on a Windows system, the exe
file should be named something like netbeans-5_5-windows.exe.

3. Run the install file and respond to the resulting dialog boxes.

The default install folder
C:\Program Files\netbeans-5.5

Description
• Although this procedure is for downloading and installing NetBeans for Windows, you

can use a similar procedure for non-Windows systems.

• For information about installing NetBeans on other operating systems or about trouble-
shooting installation problems, you can refer to the documentation that’s available from
the NetBeans web site.

Figure 1 How to download and install NetBeans

4 How to use NetBeans with Murach’s Java SE 6

How to start NetBeans

Once you’ve installed the NetBeans IDE, you can start it by selecting it
from the Start menu. When start NetBeans for the first time, it should display a
Welcome tab like the one shown in figure 2. If it doesn’t, you can display this
page by selecting the Welcome Screen command from the Help menu. Since
you don’t need this Welcome page to work with NetBeans, you can close it if
you like. To do that, click the X that’s displayed to the right of the tab for the
Welcome page.

If you’re curious to see what version of Java the NetBeans IDE uses by
default, you can select the Java Platform Manager command from the Tools
menu to display the Java Platform Manager dialog box. By default, NetBeans
uses the latest version of Java that’s installed on your system, which is usually
what you want. However, if you want to use another version of Java, you can
install that version of Java on your system and use the Java Platform Manager to
specify that version of Java.

How to use NetBeans with Murach’s Java SE 6 5

The Welcome page

Description
• You can start NetBeans by selecting it from the Start menu just as you would for any

other program. When you start NetBeans for the first time, it usually displays a Welcome
tab like the one above.

• If the Welcome page isn’t displayed on startup, you can display it by selecting the
Welcome Screen command from the Help menu.

Figure 2 How to start NetBeans

6 How to use NetBeans with Murach’s Java SE 6

How to create a new project with a main class

Figure 3 shows how to create a new NetBeans project. Essentially, a project
is a folder that contains all of the files that make up an application. To create a
new project, select the New Project command from the File menu. When you
do, NetBeans will display a New Project dialog box like the one in this figure.

In the New Project box, you can select the Java Application option to use a
wizard to create a new Java application (as opposed to the other types of
projects that are available from NetBeans). Then, you can click on the Next
button. When you do, NetBeans will display a dialog box like the second one in
this figure.

In the New Java Application dialog box, you can enter a name for the
project. In this figure, for example, the project name is “TestApp”.

After you enter the name for the project, you can select the folder that the
project should be stored in. In this figure, for example, the application is stored
in this folder:

C:\murach\java6\netbeans\applications

If you download the NetBeans files for Murach’s Java SE 6 and unzip them into
the C:\murach\java6 folder, all of the applications presented in this book will be
stored in this folder.

After you specify the folder for the project, you can use the first check box
to specify whether this project is the main project. By default, this check box is
selected, and that’s usually what you want. However, you can easily change this
later, so this choice isn’t critical.

In addition, you can use the second check box to create a class that contains
a main method and to specify the name of that class. By default, this dialog box
creates a class named Main that contains a main method and it stores this class
in a package that has the same name as the project. For example, by default, this
dialog box suggests testapp.Main as the name for the class that stores the main
method for the TestApp project. However, in this figure, I changed this sug-
gested name to TestApp. As a result, the TestApp project will contain a class
named TestApp that contains a main method, and this class will be stored in the
default package that’s used when you don’t specify a package name.

Finally, you can click on the Finish button to create the project and the class
that contains the main method. When you do, NetBeans creates a folder that
corresponds with the project name and it creates some additional files that it
uses to configure the project.

How to use NetBeans with Murach’s Java SE 6 7

The first dialog box for creating a new project

The second dialog box for creating a new project

Description
• To create a new project, select the File�New Project command from the menu system

and respond to the resulting dialog boxes.

Figure 3 How to create a new project with a main class

8 How to use NetBeans with Murach’s Java SE 6

How to save and edit source code

When you create a new project that contains a class with a main method, the
class is typically opened in a new code editor window as shown in figure 5. To
make it easier to for you recognize the Java syntax, the code editor uses differ-
ent colors for different types of syntax. In addition, NetBeans provides standard
File and Edit menus and keystroke shortcuts that let you save and edit the
source code. For example, you can press Ctrl+S to save your source code, and
you can use standard commands to cut, copy, and paste code.

When you create a new class, NetBeans often generates some code for you.
In this figure, for example, NetBeans generated the code that declares the class,
and it generated the code that declares the main method (since this was speci-
fied by the dialog box in figure 3). For more information about declaring a class
or coding a main method, you can read chapter 2 of Murach’s Java SE 6.

If you want, you can delete or modify the generated code. For example,
when I created the TestApp class, NetBeans generated a constructor for the
class. However, since the TestApp class doesn’t need a constructor, I deleted it.

NetBeans also generates some comments that describe the class and its
methods. For the TestApp class, I deleted all comments except the javadoc
comment that was generated before the main method. Then, I entered a state-
ment that prints text to the console within the main method, and I modified the
placement of the braces.

When you enter code, you can use the code completion feature that’s
available from NetBeans to complete your code. This feature prevents you from
making typing mistakes, and it allows you to discover what methods are avail-
able from various classes and objects. In this figure, for example, I used code
completion when entering the statement that prints text to the console. To start, I
entered “sys” and pressed Ctrl+Spacebar (both keys at the same time). This
displayed a list of possible options. Then, I selected an option from the list that
looked like this:

System.out.println("|");

When I did, NetBeans entered this code into the editor for me and placed the
cursor between the two quotation marks. Finally, I typed the text that should be
printed to the console between the quotation marks. If you experiment with the
code completion feature, you’ll quickly figure out when it helps you enter code
more quickly and when it makes sense to enter the code yourself.

If the source code you want to work with isn’t displayed in a code editor
window, you can use the Projects window to navigate to the .java file and
double-click on it to open it in a code editor window. In this figure, for example,
the TestApp.java file that’s open in the code editor is also shown in the Projects
window. As you can see, this file is stored in the default package of the Source
Packages folder of the TestApp project.

How to use NetBeans with Murach’s Java SE 6 9

NetBeans’s code editor with source code in it

Description
• To open a code editor window for a file, double-click on the .java file in the Projects

window.

• To enter and edit source code, you can use the same techniques that you use with any
text editor.

• To activate the code completion feature, press Ctrl+Spacebar after entering the first few
letters of a class or object. Or, enter the period after a class or object. Then, you can
select an item from a list of possibilities.

• To save the source code, select the Save command (Ctrl+S) from the File menu.

• By default, NetBeans may generate some code. You can delete this code or modify it for
use in your application.

Figure 4 How to save and edit source code

10 How to use NetBeans with Murach’s Java SE 6

How to fix errors

In NetBeans, an error is a line of code that won’t compile. As you enter text
into the code editor, NetBeans displays errors whenever it detects them. In
figure 5, for example, NetBeans has displayed an error that indicates that a
semicolon needs to be entered to complete the statement. This error is marked
with a red icon that has an X on it just to the left of the statement that contains
the error. In addition, the statement that contains the error is marked with a
wavy red underlining.

If you position the mouse cursor over red X icon or over the statement
itself, NetBeans will display a description of the message. In this figure, for
example, the description indicates that NetBeans expected a semicolon at the
end of the statement. As a result, you can fix the error by typing the semicolon
at the end of the statement.

How to use NetBeans with Murach’s Java SE 6 11

An error that’s displayed when you save the source code

Description
• NetBeans often displays errors before you attempt to compile or run an application.

• NetBeans marks errors with a red square with an X in it in the code editor window.

• If you position the mouse pointer over the error, NetBeans will display a description of
the error. This usually provides enough information for you to fix the error.

Figure 5 How to fix errors

12 How to use NetBeans with Murach’s Java SE 6

How to compile and run an application

By default, NetBeans automatically compiles an application before it runs
the application. Since this saves a step in the development process, this is
usually what you want.

An easy way to run an application for the first time is to press F6. Then,
NetBeans will run the main class in the main project. In this figure, for example,
you only have one project and one class. As a result, NetBeans runs the TestApp
class in the TestApp project. This prints a line of text to the Output window,
which is the default console that’s used by NetBeans. Since this application just
prints text to the console, it can be referred to as a console application.

If you have several projects open at the same time, you can specify the main
project by right-clicking on the project and selecting the Set As Main command.
Similarly, if a project contains several classes that have a main method, you can
specify the main class by right-clicking on the project, selecting the Properties
command, clicking on the Run category, and using the dialog box to specify the
class. Or, if you just want to run the class, you can use the Projects window to
navigate to the .java file for the class, right-click on it, and select the Run File
command.

Now that you know how to create a simple project, you have all the skills
you need to complete the first exercise that’s presented at the end of this tuto-
rial. If you’re working through Murach’s Java SE 6, you can complete this
exercise when you finish chapter 1.

How to use NetBeans with Murach’s Java SE 6 13

An application that prints text to the console

Description
• When you run an application, NetBeans automatically compiles the application. As a

result, you don’t need to compile an application separately. If you want to compile an
application without running it, though, you can select one of the commands from the
Build menu.

• To run the main class from the main project, press F6 or select the Run Main Project
command from the Run menu or from the toolbar.

• If necessary, you can set the main project, by right-clicking on the project and selecting
the Set Main Project command.

• If necessary, you can set the main class, by right-clicking on the project, selecting the
Properties command, selecting the Run category, and using the dialog box to specify the
main class for the project.

• To run a class that has a main method, right-click on the .java file and select the Run File
command.

• When the application prints to the console, NetBeans displays an Output window like the
one shown above.

Figure 6 How to compile and run an application

14 How to use NetBeans with Murach’s Java SE 6

How to run a console application that gets user
input

In addition to printing data to the console, a console app can also get input
from a user. Unfortunately, the Output window that NetBeans uses as the default
console doesn’t act like a typical console window. Worse, NetBeans has a bug
that prevents you from using the print method of the System.out object when
working with console applications that use the Output window. As a result,
when developing console apps that get user input, we recommend using an
interactive console that was developed by Eric G. Berkowitz, an Associate
Professor at Roosevelt University in Chicago.

To use this interactive console instead of the Output window, you can follow
the procedure shown in figure 7. To start, you must add the file named eric.jar to
the Libraries folder for your project. This file is included in the NetBeans
versions of the applications that you can download from our web site
(www.murach.com).

After you add the eric.jar file to your project, you must add a line of code to
the beginning of your application that starts the interactive console. This line of
code creates a new instance of the Console class that’s stored in the eric pack-
age of the eric.jar file. As a result, the applications use the interactive console
instead of the Output window that’s available from NetBeans.

Once you’ve added this line of code to the beginning of your console app,
you can run the application as you would normally. When you do, the interac-
tive console should appear and the application should print some text to the
console that prompts you to enter data. Then, you can type the input into the
console and press Enter. When you do, the application will continue until it
finishes or until it prompts you for more information.

In this figure, for example, the application prompted me to enter a subtotal,
and I typed “100” and pressed Enter. Then, the application asked me if I wanted
to continue. At this point, the application is still running, and I can enter “y” to
continue or “n” to stop the application. However, even if I enter “n” to stop the
application, NetBeans doesn’t finish running the application until you close the
interactive console window. As a result, you should always close the console
window after you’re done running an application. Or, if you don’t want to finish
running the application, you can stop the application at any point during its
execution by closing the interactive console window.

When you’re learning Java, it’s common to create applications that use the
console to get input from the user and to display output to the user. You’ll learn
how to create this type of application in chapter 2 of our book, and this type of
application is used in chapters 2 through 14.

How to use NetBeans with Murach’s Java SE 6 15

A console app that uses an interactive console to get input from a user

How to use Eric G. Berkowitz’s interactive console
• Add the eric.jar file to the Libraries folder for your project. To do that, right-click on the

Libraries folder, select the Add Jar/Folder, and use the resulting dialog box to select the
jar file (which should be in c:\murach\java6\netbeans).

• Add the following line of code to the beginning of your console application:
new eric.Console();

• When you run the application, the interactive console window will appear and you can
enter text by typing text and pressing the Enter key.

• When you’re done running the application, close the console window.

Description
• NetBeans has a bug that prevents it from working properly with the print method of the

System.out object. As a result, we recommend using the interactive console that was
developed by Eric G. Berkowitz.

• The eric.jar file is included with the NetBeans versions of the applications that are
available from our web site, and these applications have already been configured to use
the interactive console.

Figure 7 How to run a console application that gets user input

16 How to use NetBeans with Murach’s Java SE 6

How to open and close projects and
import source code

Once you understand how to use NetBeans to run simple applications like
the ones presented in chapters 1 and 2, you may want to add more projects to
the Projects window. For example, if you have an existing NetBeans project that
isn’t displayed in the Projects window, you may want to add that project to the
project window by opening it. Or, if you have some code that was created with a
text editor or another IDE, you may want to add a new project to the Projects
window and import this code into that project so you can work with it.

Then, if the Projects window becomes cluttered with multiple projects, you
may want to remove one or more of these projects from the Projects window.
For example, if you download the NetBeans version of the source code for
Murach’s Java SE 6, you’ll find that the applications folder contains more than
10 projects. Similarly, the exercises folder contains over 40 projects. As a result,
you won’t want to have all of these projects open at the same time. Instead, you
can open the ones you want to work with and close them when you’re done with
them.

How to open a project

To add an existing project to the Projects window, you can select the Open
command from the File menu and use the Open Project dialog box as shown in
figure 8. To start, you can navigate to the folder that contains the project or
projects that you want to add. When you do, all of the possible projects will be
displayed in the Open Project dialog box so you can select the projects that you
want to add. In this figure, for example, the Open Project dialog box shows all
of the existing NetBeans projects for the applications presented in Murach’s
Java SE 6.

To clearly indicate when a folder is a project folder, the Open Project dialog
box displays a small green icon in the lower right corner of the folder icon. In
this figure, for example, all of the folder icons have this small green icon. As a
result, you can add any of these projects to the Projects window by selecting the
folder and clicking on the Open Project Folder button.

How to close a project

To remove a project from the Projects window, you can right-click on the
project and select the Close Project command. For example, to remove the
project named TestApp that’s shown in figure 7, you can right-click on the
project in the Projects window and select the Close Project command. Since this
doesn’t delete the files for the project, you can easily open the project later.

Alternately, you can remove the project from the Projects window and
delete its files by right-clicking on the project and selecting the Delete Project

How to use NetBeans with Murach’s Java SE 6 17

The dialog box for opening an existing NetBeans project

Description
• To add a project to the Projects window, right-click on the project in the Projects

window and select the Open Project command. Then, use the Open Project dialog
box to locate the folder for the project and click on the Open Project Folder
button.

• The Open Project dialog box identifies a NetBeans project by displaying a small
icon in the lower right corner of the icon for its project folder.

• To remove a project from the Projects window, right-click on the project in the
Projects window and select the Close command.

• You can download a zip file from www.murach.com that contains the NetBeans
projects for all of the applications described in Murach’s Java SE 6.

Figure 8 How to open and close existing projects

18 How to use NetBeans with Murach’s Java SE 6

command. When you do, NetBeans will prompt you to confirm the deletion. By
default, NetBeans deletes most of the files for the project but does not delete the
source code. However, if you select the “Also Delete Sources” option, NetBeans
will delete all folders and files for the project. Of course, if you delete the files
from a project, it’s no longer easy to open the project with NetBeans. As a
result, you’ll only want to use this option if you don’t plan on using NetBeans to
work with the project anymore.

Now that you know how to run the interactive console and how to open
existing projects, you have all the skills you need to complete the second
exercise that’s presented at the end of this tutorial. If you’re working through
Murach’s Java SE 6, you should do this exercise before you do the exercises for
chapter 2 of the book.

How to import existing Java files into a new
project

Before you import existing Java files into a NetBeans project, you should
move or copy the .java files into the right folder for storing your source code.
Often, that means moving the .java files into a subfolder of the folder for the
project. In this figure, for example, the .java files are stored in the src subfolder
of the C:\murach\java6\netbeans\applications\Ch02 folder.

Once you have stored the .java files in the correct folder, you can use the
New Project dialog box to create a new project and import these files into the
project. To start, you can select the New Project command from the File menu
to display the first dialog box shown in figure 9. In this dialog box, you can
select the “Java Project with Existing Sources” option to create a new project
that imports existing .java files.

Then, you can use the second dialog box shown to specify the name and
location for the project. In this figure, for example, the second dialog box
creates a project named Ch02 in the
C:\murach\java6\netbeans\applications\Ch02 folder. Note that this folder
already exists since it had to be created to store the src subfolder that contains
the .java files.

How to use NetBeans with Murach’s Java SE 6 19

The first dialog box for importing Java files into a NetBeans project

The second dialog box for importing Java files into a NetBeans project

Figure 9 How to import existing Java files into a new project (part 1 of 2)

20 How to use NetBeans with Murach’s Java SE 6

Finally, in the third dialog box, you can select the src folder that contains
the .java files. When you click on the Finish button to complete the process
NetBeans creates the Ch02 project and imports all .java files in the src subfolder
of this project.

When you use this technique to import .java files, you need to pay attention
to the packages that contain these files. If you use the third dialog box to select
the root folder for the application you want to import, NetBeans usually places
the .java files in the appropriate folders. If, for example, the src folder contains a
subfolder named murach/business that corresponded with a package named
murach.business, NetBeans will place any classes within this subfolder in the
corresponding package within the Ch02 project. Usually, that’s what you want
when you’re importing .java files. If it isn’t, you can use the third dialog box to
import the files in the murach/business subfolder into the default package. Or,
you can use the skills described in figure 14 to reorganize these packages.

How to use NetBeans with Murach’s Java SE 6 21

The third dialog box for importing Java files into a NetBeans project

Description
• Before you import existing Java files into a new NetBeans project, you should move or

copy your .java files into the folder where you want to store your source code. In this
figure, for example, the source files are stored in the Ch02\src folder.

• To import existing Java files into a new NetBeans project, select the New Project com-
mand from the File menu, select the “Java Project with Existing Sources” option and
respond to the resulting dialog boxes.

Figure 9 How to import existing Java files into a new project (part 2 of 2)

22 How to use NetBeans with Murach’s Java SE 6

Object-oriented development with
NetBeans

NetBeans has many features that make it easier to work with the object-oriented
programming techniques that are presented in chapters 6 through 9 of Murach’s Java
SE 6. For example, NetBeans makes it easy to create get and set methods for a class, to
begin coding a class that implements an interface, and to store classes and interfaces in
packages. However, these skills don’t make sense until you understand object-oriented
programming. As a result, you may want to read chapters 6 through 9 of Murach’s
Java SE 6 before you go through the topics that follow.

How to create a new class

In figure 3, you learned how to create a project that contains a single class that
contains a main method. However, when you start developing object-oriented applica-
tions, you’ll need to add other classes to your project. To do that, you can display the
New Java Class dialog box shown in figure 10. Then, you can use this dialog box to
add new classes to your project. In this figure, for example, the New Java Class dialog
specifies a public class named Product.

Although the New Java Class dialog box encourages you to enter a package for the
class, this isn’t required. If you don’t enter a package for the class, NetBeans will use
the default package. However, if you enter a package for the class, NetBeans will
automatically create a folder for the package and store the class within that package.
For more information about working with packages, see figure 14 of this tutorial and
chapter 9 of Murach’s Java SE 6.

How to use NetBeans with Murach’s Java SE 6 23

The dialog box for creating a new class

Description
• To create a new class, right-click on the package where you want to add the class, select

the New�Java Class command, and respond to the resulting dialog boxes.

• You must enter a name for the class in the Class Name text box.

• Although this dialog box encourages you to enter a package for the class, this isn’t
required. If you don’t enter a package for the class, NetBeans will use the default pack-
age.

Figure 10 How to create a new class

24 How to use NetBeans with Murach’s Java SE 6

How to work with classes

Figure 11 describes a few skills that are useful for working with classes. To
start, after you enter the private fields for a class, you can generate the get and
set methods for those fields. In this figure, for example, the Encapsulate Fields
dialog box will generate one get and one set method for each of the private
fields for the class.

By default, the get and set methods for a field are formatted like this:
 public String getCode() {
 return code;
 }

 public void setCode(String code) {
 this.code = code;
 }

However, if you have another coding style that you prefer, you can select the
Tools�Options command, click on the Editor tab, and use it change the coding
style. For example, you can select the “Add New Line Before Brace” option to
add a new line character before the opening braces.

Once you’ve created a class that contains multiple methods, you can use the
Navigator window to navigate to that method. To do that, just double-click on
the method in the Navigator window. In this figure, for example, you could
double-click on the getFormattedPrice method to display that method in the
code editor. Although the usefulness of this feature isn’t obvious for a short
class like the Product class shown in this figure, it’s very helpful for longer
classes.

How to use NetBeans with Murach’s Java SE 6 25

The NetBeans window for the Product application in chapter 6

The dialog box for generating the get and set methods for a field

Description
• To generate the get and set methods for a field, select the Refactor�Encapsulate Fields

command from the menu system and respond to the resulting dialog boxes.

• To jump to a method, double-click on the method in the Navigator window.

Figure 11 How to work with classes

26 How to use NetBeans with Murach’s Java SE 6

How to work with interfaces

Figure 12 shows the NetBeans window for the Product Maintenance appli-
cation presented in chapter 8. If you look at the Projects window, you can see
that the project for this application contains source code files for several classes
and interfaces. If you expand the nodes for the .java files that contain the source
code, you can see that NetBeans uses different icons to identify the files as
classes or interfaces. In this figure, for example, the DAOFactory.java file
contains the source code for a class while the ProductDAO.java and
ProductReader.java files contain the source code for interfaces.

To add an interface, you can right-click on the package where you want to
add the interface and select the New�Java Interface command. Then, you can
use the resulting dialog box to enter a name for the interface. This dialog box
works like the one for creating a new class that’s shown in figure 10.

Once you’ve added an interface, you shouldn’t have any trouble entering
and editing the code for the interface. In general, you can use many of the same
skills that you use for entering and editing the code for a class.

How to use NetBeans with Murach’s Java SE 6 27

The NetBeans window for the Product Maintenance application in chapter 8

Description
• The Projects window identifies interfaces by using the interface icon, which is a small

circle and a large circle connected by two lines.

• To add an interface to a project, right-click on the package you want to add the interface
to, select the New�Java Interface command, and use the resulting dialog box to enter a
name for the interface.

Note
• The products.txt file that’s used by this application is stored in the

netbeans\Ch08_ProductMaint folder. In other words, it’s stored in the root folder for the
project.

Figure 12 How to work with interfaces

28 How to use NetBeans with Murach’s Java SE 6

How to start a class that implements an interface

When coding a class that implements an interface, you can automatically
generate all the method stubs for the interface. To do that, you can begin by
creating a new class. Then, you enter the implements keyword followed by the
interface or interfaces that the class implements. When you do, a yellow light
bulb icon will be displayed to the left of the declaration for the class.

If you click on this icon, you’ll get a menu with the “Implement all abstract
methods” command as shown in figure 13. To generate all method stubs for the
interfaces specified by the class declaration, you can select this command. Then,
NetBeans will generate the method stubs for all of the methods specified by the
interface or interfaces that are implemented by the class.

How to use NetBeans with Murach’s Java SE 6 29

A class that implements the ProductDAO interface in chapter 8

Description
• When coding a class that implements an interface, you can automatically generate all the

method stubs for the interface. To do that, create a new class as described in figure 10,
use the implements keyword to identify the interface, click on the light bulb icon, and
select the “Implement all abstract methods” command as shown above.

Figure 13 How to start a class that implements an interface

30 How to use NetBeans with Murach’s Java SE 6

How to work with packages

Often, the classes for an application are organized into packages. Compared
to using a text editor, NetBeans makes it easy to create packages and to store
your classes in packages.

When a project contains packages, you can use the Projects window to
navigate through the project’s packages. To do that, you can click on the plus and
minus signs to the left of the packages to expand or collapse them. In figure 14,
for example, the Projects window displays the four packages that are used for the
Line Item application that’s presented in chapter 9 of Murach’s Java SE 6.

To get started with packages, you can add a new package to a project by
right-clicking on the project and selecting the New�Java Package command.
When you do, you’ll get a dialog box that allows you to enter a name for the
package. As you create packages, remember that packages correspond to the
folders and subfolders that are used to store the source code. In this figure, for
example, the murach.business package is stored in the murach/business subfolder
of the Ch09 folder.

Once you’ve created some packages for your application, NetBeans can
automatically add the necessary package statements when you create a new class
or interface. For example, if you right-click on the murach.business package and
select the New�Java Class command, the murach.business package will auto-
matically be added to the New Java Class dialog box. Then, when you complete
this dialog box, NetBeans will automatically add the necessary package state-
ment at the beginning of the class.

If you need to delete a package, you can right-click on the package and select
the Delete command from the resulting menu. This will delete the folder for the
package and all subfolders and classes within that folder.

How to use NetBeans with Murach’s Java SE 6 31

The NetBeans window for the Line Item application in chapter 9

Description
• To navigate through existing packages, use the Projects window to expand or collapse

the packages within a project.

• To add a new package to a project, right-click on the Source Packages folder in the
Projects window, select the New�Java Package command, and respond to the resulting
dialog box. This creates a subfolder within the current folder.

• If you add a new class or interface to a package, NetBeans automatically adds the
necessary package statement to the class or interface.

• To remove a package from a project, right-click on the package and select the Delete
command from the resulting menu. This will delete the folder for the package and all
subfolders and files within that folder.

Figure 14 How to work with packages

32 How to use NetBeans with Murach’s Java SE 6

How to generate documentation

NetBeans also makes it easy to generate the documentation for your classes. First,
you make sure that your document has javadoc comments that describe its constructors
and methods, and you make sure that your classes are stored in the appropriate pack-
ages. (Both of these skills are described in chapter 9 of our book.) Then, you can
generate the documentation by right-clicking on the project in the Projects window and
selecting the Generate Javadoc for Project command. When you do, NetBeans will
generate the Java documentation for the project and display it in the default web
browser.

By default, NetBeans stores the documentation for a project in a subfolder named
dist\javadoc that’s subordinate to the project’s root folder. If this folder already con-
tains documentation when you generate the documentation, NetBeans will overwrite
these files with the new ones, which is usually what you want.

How to use NetBeans with Murach’s Java SE 6 33

The documentation for the application in chapter 9

Description
• To generate or view the documentation for a project, you can right-click on the project

folder in the Projects window and select the Generate Javadoc for Project command.
When you do, NetBeans will generate the Java documentation for the project and display
it in the default web browser.

• By default, NetBeans stores the documentation for a project in a subfolder named
dist\javadoc that’s subordinate to the project’s root folder.

• If the project already contains documentation, NetBeans will overwrite existing files
without any warning prompts.

Figure 15 How to generate documentation

34 How to use NetBeans with Murach’s Java SE 6

Debugging with NetBeans

As you test applications, you will encounter errors that are commonly
referred to as bugs. When that happens, you must find and fix those errors. This
process is commonly known as debugging. Fortunately, NetBeans includes a
powerful tool known as a debugger that can help you identify and fix these
errors.

How to set and remove breakpoints

The first step in debugging an application is to figure out what is causing
the bug. To do that, it’s often helpful to view the values of the variables at
different points in the application as it is executing. This will help you deter-
mine the cause of the bug, which is critical to debugging the application.

The easiest way to view the variables at a particular point in an application
is to set a breakpoint as shown in figure 16. To do that, you click to the left of
the line of code on the vertical bar on the left side of the code editor window.
Then, the breakpoint is marked by a red square to the left of the line of code.
Later, when you run the application with the debugger, execution will stop just
prior to the statement at the breakpoint, and you will be able to view the vari-
ables that are in scope at that point in the application.

When debugging, it’s important to set the breakpoint before the line in the
application that’s causing the bug. Often, you can figure out where to set a
breakpoint by reading the runtime exception that’s printed to the Console
window when your application crashes. However, there are times when you will
have to experiment a little before finding a good location to set a breakpoint.

After you set the breakpoint, you need to run the application with the
debugger attached. To do this, you can use the Debug Main Project button that’s
available from the toolbar (just to the right of the Run Main Project button). If
you encounter any problems, try right-clicking on the .java file that contains the
main method and selecting the Debug File command to run the application with
the debugger.

When you run the application with the debugger, NetBeans will display the
debugging windows and buttons that are shown in figure 17. After you run the
application with the debugger, the breakpoints will remain where you set them.
If you want to remove a breakpoint, you can do that by clicking on the red
square for the breakpoint.

How to use NetBeans with Murach’s Java SE 6 35

A code editor window with a breakpoint

Description
• A breakpoint is indicated by a small red square icon that’s placed to the left of the line of

code.

• To set a breakpoint for a line, open the code editor for the class and click on the vertical
bar to the left of the line number.

• To remove a breakpoint, click on it.

• Once you set a breakpoint, you can use the Debug Main Project button on the toolbar to
begin debugging. This works much like the Run Main Project button described in figure
6, except that it allows you to debug the application.

• Alternatively, you can right-click on the file that contains the main method you want to
run and select the Debug File command.

Figure 16 How to set and remove breakpoints

36 How to use NetBeans with Murach’s Java SE 6

How to step through code

When you run application with the debugger and it encounters a breakpoint,
execution will stop just prior to the statement at the breakpoint. Once execution
is stopped, a green arrow marks the next statement to be executed. In addition,
NetBeans opens several new windows, including the Local Variables, Watches,
and Call Stack windows shown in figure 17. Of these windows, the Local
Variables window shows the values of the variables that are in scope at the
current point of execution.

NetBeans also displays some extra toolbar buttons while you’re debugging.
For instance, you can use the Step Over and Step Into buttons to step through
the statements in an application, one statement at a time. This lets you observe
exactly how and when the variable values change as the application executes,
and that can help you determine the cause of a bug. Once you have stepped
through the code that you’re interested in, you can use the Continue button to
continue execution until the next breakpoint is encountered. Or, you can use the
Finish Debugger Session button to end the application’s execution.

How to inspect variables

When you set breakpoints and step through code, the Local Variables
window will automatically display the variables that are in scope. In figure 17,
the execution point is in the calculateTotal method of the LineItem class. Here,
the price variable is a local variable that’s declared to store the price for the
product. In addition, the quantity, total, and product instance variables of the
LineItem object are also in scope. To view these variables, expand the variable
named this, which is a standard variable name that’s used to refer to the current
object (in this case, the LineItem object).

For numeric variables and strings, the value of the variable is shown in the
Local Variables window. However, you can also view the values for an object by
expanding the variable that refers to the object. In this figure, for example, you
could expand the product variable by clicking on the plus sign to its left to view
the values of its code, description, and price variables.

How to inspect the stack trace

When you’re debugging, the Call Stack window shows the stack trace,
which is a list of methods in the reverse order in which they were called. You
can click on any of these methods to display the method and highlight the line
of code that called the next method. This opens a new code editor window if
necessary. Although the Call Stack window isn’t shown in this figure, you could
click on the Call Stack tab to display this window. If you experiment with is,
you’ll find that it can help you locate the origin of a bug.

How to use NetBeans with Murach’s Java SE 6 37

A debugging session

Description
• When a breakpoint is reached, program execution is stopped before the line is executed.

• In the code editor window, the arrow shows the line that will be executed next.

• The Local Variables window shows the values of the variables that are in scope for the
current method. This includes static variables, instance variables, and local variables. If a
variable refers to an object, you can view the values for that object by expanding the
object to drill down through its variables.

• The Call Stack window shows the stack trace, which is a list of methods in the reverse
order in which they were called. You can click on any of these methods to display the
code for the method in a code editor window and to display the variables for that method
in the Variables window.

• To step through the code one statement at a time, you can click on the Step Over or Step
Into buttons that are available from the debugging toolbar. These buttons work the same,
except that the Step Over button skips over called methods while the Step Into button
steps through all of the statements in a called method.

• To continue executing code until the next breakpoint, select the Continue button.

• To end the application’s execution, select the Finish Debugger Session button.

Figure 17 How to work with the debugger

38 How to use NetBeans with Murach’s Java SE 6

More NetBeans skills

So far, this tutorial has presented all of the skills that you need for using
NetBeans to develop the object-oriented Java applications described in
Murach’s Java SE 6. However, if you want to develop applets as described in
chapter 18, you can use NetBeans to test an applet. Or, if you want to access
classes that are stored in a JAR file, such as the eric.jar file described in figure 7
of this tutorial or the derby.jar file described in chapter 22 of the book, you need
to learn how to add a JAR file to the build path.

How to run an applet

An applet is a special type of class that can be downloaded from an Internet
or intranet server and run on a client computer within a web browser. To add an
applet to a project, you can add a new class to the project as described in figure
10. Then, you can enter the code for the applet. For more information about
coding applets, see chapter 18 of our book.

To run an applet in the Applet Viewer, you can find the .java file for the
applet in the Projects window, right-click on it, and select the Run File com-
mand. When you do, NetBeans will generate a temporary HTML page for the
applet and display the applet in an Applet Viewer dialog box like the one in this
figure. However, you may need to resize this dialog box to get the applet to
display correctly.

If you don’t want to manually resize this dialog box, you can code an
HTML page for the applet as described in chapter 18 of Murach’s Java SE 6.
Within this HTML page, you can specify the height and width for the applet.
Then, you can run the applet by viewing this HTML page in a web browser.

How to use NetBeans with Murach’s Java SE 6 39

The dialog box for running the applet in chapter 18

Description
• To run an applet in the Applet Viewer, right-click on the source code file for the applet

and select the Run File command. If necessary, resize the Applet Viewer window so it is
the correct size for the applet.

• If you want to run an applet in an HTML page instead of running it in the Applet Viewer,
see chapter 18 of Murach’s Java SE 6.

Figure 18 How to run an applet

40 How to use NetBeans with Murach’s Java SE 6

How to add a JAR file to the libraries for a project

Most of the projects in Murach’s Java SE 6 only use classes that are avail-
able from the standard JDK 1.6 libraries, which are available to all projects by
default. However, to use classes that are stored in other libraries, you can add
the JAR file (Java Archive file) for that library to the build path. In figure 7, for
example, you learned how to add the library for Eric G. Berkowitz’s interactive
console to a project.

Once you add a JAR file to a project, your project can use any classes
within the JAR file when it compiles and runs. If, for example, you want to use
a database driver other than the standard JDBC-ODBC bridge driver described
in chapter 21, you need to add the JAR file for the database driver to the librar-
ies of your project. Similarly, if you want to work with the Derby database
described in chapter 22, you need to add the appropriate JAR file or files to the
libraries for your project.

To add a JAR file to the libraries for a project, you can begin by right-
clicking on the Libraries folder for the project and selecting the Add JAR/Folder
command. Then, you can use the resulting dialog box to select the JAR file. In
figure 19, for example, I used this dialog box to select the derby.jar file that’s
needed to run the Product Maintenance application described in chapter 22.

In this figure, you can see that the derby.jar file has been added to the
Libraries folder for the project, above the eric.jar file and the JDK 1.6 libraries.
As a result, any classes in this project will be able to use any of the classes that
are stored within any of these libraries.

How to use NetBeans with Murach’s Java SE 6 41

A JAR file that has been added to the application in chapter 22

Description
• If you add a JAR file to the libraries for a project, the JRE will be able to find and run

any of the classes within the JAR file that are needed by the project.

• To add a JAR file to the libraries for a project, right-click on the Libraries folder for the
project, select the Add JAR/Folder command, and use the resulting dialog box to select
the JAR file.

• To remove a JAR file from the libraries for a project, right-click on the JAR file and
select the Remove command.

Figure 19 How to add a JAR file to the libraries for a project

42 How to use NetBeans with Murach’s Java SE 6

Perspective

In this tutorial, you learned all of the NetBeans skills that you need for devel-
oping the applications that are described in Murach’s Java SE 6. Keep in mind,
though, there’s much more to learn about NetBeans. To start, you may want to
review the documentation that’s available from the NetBeans Help menu and from
the NetBeans web site. Or, you may want to experiment with the commands in the
Source and Refactor menus to see how they can help you enter and modify code.

Summary

• NetBeans is a software framework for developing Integrated Development
Environments (IDEs). The NetBeans IDE for Java is built on this framework.
NetBeans is open-source, available for free from the NetBeans web site
(www.netbeans.org), and runs on all modern operating systems.

• A project is a folder that contains all of the files that make up an application.

• The code completion feature can help you enter code.

• In NetBeans, an error is a line of code that won’t compile.

• If you have multiple projects open, you can specify one project as the main
project. If this project contains multiple classes that have a main method, you
can specify one class as the main class. Then, you can use the Run Main
Project command to run the main class in the main project.

• When you run an application from NetBeans, the default console is the Output
window. However, this console has a bug that prevents it from working with the
print method of the System.out object. As a result, to use NetBeans to test
console applications, you may want to use a third-party console such as Eric G.
Berkowitz’s interactive console.

• NetBeans includes a debugger that can help you find and fix any bugs in your
applications. To use the debugger, you can set a breakpoint to stop program
execution. Then, you can step through the statements in your applications and
view the values of variables and the stack trace.

How to use NetBeans with Murach’s Java SE 6 43

Before you do any of the exercises that follow…
Before you do the exercises that follow, you should use the procedure shown in
chapter 1 (figures 1-4) of Murach’s Java SE 6 to install the JDK. Then, you
should do the procedure in figure 1 of this tutorial to install NetBeans. In
addition, you should download the NetBeans versions of the folders and files
for our book from our web site (www.murach.com) and unzip them into the
C:\murach\java6 folder. If this folder doesn’t already exist, you should create it.

Exercise 1 Use NetBeans to develop an
application

Please read chapter 1 in Murach’s Java SE 6 before you do this exercise.
This exercise will guide you through the process of using NetBeans to enter,
save, compile, and run a simple application.

Enter and save the source code
1. Start NetBeans.

2. Select the File�New Project command from the NetBeans menu system. Then,
use the resulting dialog box to create a project named TestApp that contains a
class named TestApp that has a main method and store this project in this folder:
C:\murach\java6\netbeans\exercises

3. Modify the generated code for the TestApp class so it looks like this (type
carefully and use the same capitalization):
public class TestApp

{

 public static void main(String[] args)

 {

 System.out.println("This Java application has run successfully");

 }

}

4. Enter the statement that starts with System.out again, right after the first
statement. This time, type sys and press Ctrl+Spacebar. Then, select
system.out.println by double-clicking on it, and complete the statement.

5. Enter that statement a third time, right after the second statement. This time, type
System, enter a period, and select out from the list that’s displayed. Then, enter
another period, select println(String x), and complete the statement. You should
now have the same statement three times in a row.

6. Use the Save command (Ctrl+S) in the File menu to save your changes.

44 How to use NetBeans with Murach’s Java SE 6

Run the application
7. Click on the Run Main Project button in the toolbar to compile and run the

class. This should display “This Java application has run successfully” three
times in a row in the Output tab.

8. Press F6 to run the application a second time.

Introduce and correct a compile-time error
9. In the code editor window, delete the semicolon at the end of the first println

statement, and NetBeans will display an error icon to the left of the statement.

10. Correct the error, and NetBeans will remove the error icon.

11. Save the files and press F6 to run the application again.

12. Exit NetBeans by selecting the Exit command from the File menu.

Exercise 2 Use NetBeans to open and run an
existing application

Please read chapter 2 in Murach’s Java SE 6 before you do this exercise.
This exercise will guide you through the process of using NetBeans to open
and run a simple console application that gets input from a user.

Open and run the Invoice application
1. Start NetBeans, and open the project named Ch02 as described in figure 8. This

project folder should be stored in this directory:
C:\murach\java6\netbeans\exercises

2. Check to make sure that the eric.jar file has been added to the Libraries folder.
If it hasn’t, add this JAR file to the Libraries folder as described in figure 7.

3. Open the InvoiceApp.java file in the text editor. Note that the main method for
this class begins with the line of code that starts the interactive console.

4. Run the Invoice application. To do that, right-click on the InvoiceApp.java file
and select the Run File command. Respond to the prompts on the interactive
console until you finish running the application.

5. Close the interactive console. Note that this causes the Output window to
display a message that indicates that the application has finished running.

Open and run the Test Scores application
6. Follow steps 3 through 5 for the TestScoreApp.java file.

7. Close the project, and exit from NetBeans.

How to use NetBeans with Murach’s Java SE 6 45

Exercise 3 Test and debug an application
Please read chapter 2 in Murach’s Java SE 6 before you do this exercise.
This exercise will guide you through the process of using NetBeans to test and
debug an application.

Test the Invoice application with invalid data
1. Open the ch02 project, and test the Invoice application with an invalid subtotal

like $1000 (enter the dollar sign too). This time, the application will crash with
a run-time error, and an error message will be displayed in the Console
window.

2. Study the error message, and note the line number of the statement that caused
the crash. Then, open the InvoiceApp.java file in the text editor and select the
View�Show Line Numbers command to display the line numbers to the left of
each line of code. Based on this information, you should be able to figure out
that the application crashed because $1000 isn’t a valid double value.

Set a breakpoint and step through the application
3. Set a breakpoint on this line of code:

double discountPercent = 0.0;

4. Right-click on the InvoiceApp.java file in the Projects tab and select Debug
File. This will run the application with the debugger on.

5. When the application prompts you for a subtotal entry, enter 100. Then, when
the application reaches the breakpoint and stops, click on the Local Variables
tab and note that the choice and subtotal variables have been assigned values.

6. Click on the Step Into button in the toolbar to step through the application one
statement at a time. After each step, review the variables in the Local Variables
tab to see how they have changed. Note too how the application steps through
the if/else statement based on the subtotal value.

7. Click on the Continue button in the toolbar to continue the execution of the
application at full speed. When prompted, enter the required values until you
reach the breakpoint the second time. Then, click the Finish Debugger Session
button to end the application. This should give you some idea of how useful the
NetBeans debugging tools can be.

8. End the application, and exit from NetBeans.

46 How to use NetBeans with Murach’s Java SE 6

What else you need to know before you do the
exercises for Murach’s Java SE 6…
At this point, you have all the NetBeans skills you need for doing the exercises
in Murach’s Java SE 6. However, you need to know (1) how the names we
used for the NetBeans exercise starts relate to those in the book exercises, and
(2) how to copy and rename files.

In addition, you need to use common sense as you follow the directions in the
book. For example, when you use NetBeans to do these exercises, you’ll find
that NetBeans automatically performs some operations that are done manually
in the exercises. That’s particularly true when you apply the object-oriented
skills described in chapters 6 through 9 to the exercises for those chapters.

How the NetBeans project names relate to the book exercises
• By now, you should have unzipped all of the NetBeans exercise starts into:

C:\murach\java6\netbeans\exercises\

• Some of the projects stored in this directory have short names like ch02 and
ch03 that map directly to the directory names that are used by the exercises in
the book.

• Other projects have longer names that don’t map directly to the directory
names that are used in the exercises in the book. Here’s how project names
used by this workspace map to the directory names that are used by the
exercises in the book:

Project name Directory name
ch06_LineItem ch06\LineItem
ch08_DisplayableTest ch08\DisplayableText

• As you do the exercises in the book, you need to convert the directory names
that are used in the book to the project names that are available from the
NetBeans directories.

How to use NetBeans to copy and rename files
• As you do the exercises in the book, you are often asked to copy an existing

application or to save one with a new name. Most of the time, the easiest way
to do these tasks is to use the Projects tab.

• To copy a file, right-click on the .java file in the Projects tab, select the Copy
command, right-click on the package in the Projects tab, and select the Paste
command. If you’re copying a file within the same project, NetBeans will
automatically modify the name of the file so it doesn’t conflict with the original
file.

How to use NetBeans with Murach’s Java SE 6 47

• To rename a file, right-click on the .java file in the Projects tab, select the
Refactor�Rename command, and respond to the resulting dialog boxes. To do
that, click on the Next button in the first dialog box. Then, after previewing the
changes in the Refactoring window, click on the Do Refactoring button to
complete the refactoring.

• If you change the name of a file, NetBeans automatically changes the name of
the class, which is usually what you want.

Examples of converting the book exercises to NetBeans
• Exercise 2-2 in the book asks you to save the TestScoreApp.java file as

ModifiedTestScoreApp.java in the same directory. To do that, open the Ch02
project and use the Projects tab to display the TestScoreApp.java file that’s
stored in the default package. Then, right-click on the file, select the Copy
command, right-click on the default package, and select the Paste command.
When you do, NetBeans will create a new file named TestScoreApp_1.java.
Finally, right-click on the TestScoreApp_1.java file, select the
Refactor�Rename command, click on the Next button in the first dialog box,
and click on the Do Refactoring button in the Refactoring window.

• Exercise 3-2 in the book asks you to open a file named
ModifiedTestScoreApp.java in the ch02 directory and save it in the ch03
directory as EnhancedTestScoreApp.java. To get the same result, you can use
the Projects tab to open the ch02 and ch03 projects. Then, you can copy the file
from the default package of the ch02 project to the default package of the ch03
project. Finally, you can rename the file by right-clicking on it, selecting the
Refactor�Rename command, clicking on the Next button in the first dialog
box, and clicking on the Do Refactoring button in the Refactoring window.

• Exercise 6-1 in the book asks you to open the classes that are in the
ch06\LineItem directory. To do that, open the existing project named
ch06_LineItem. Then, use the Projects tab to open the classes in this project.

• Exercise 9-1 in the books asks you to use the Windows Explorer to create and
work with the subdirectories that correspond with the packages for the
application. With NetBeans, you can use the Projects tab to create packages
and work with packages as described in figure 14 of this tutorial. This
automates many aspects of working with packages.

