
NetBeans IDE Field
Guide
Copyright © 2005 Sun Microsystems, Inc. All rights reserved.

Table of Contents
Extending Web Applications with Business Logic: Introducing EJB Components............................1

EJB Project type Wizards...2
Adding EJB Components, Files and Libraries to Your EJB Module.. 5
Adding Business Logic to an Enterprise JavaBeans Component...8

Bean Methods...8
Adding a Simple Business Method..12
EJB Bean Deployment Descriptors..13

Extending Web Applications
with Business Logic:
Introducing EJB
Components

For many NetBeans users, as well as Web application developers, the Enterprise JavaBeans
concept might be new or apparently complex, as this is the first time that NetBeans 4.1 exposes
the necessary wizards and features to easily create EJB components, and add business methods to
them. Once these business methods are implemented (in Java code), then they can be called
either from other EJB components or from a Web application's servlets or utility classes. The
benefits of encapsulating application code within EJB business method are numerous:

1. Enterprise beans support transactions, the mechanisms that manage the
concurrent access of shared objects. Transaction setting are declarative, via
the deployment descriptor files.

2. Enterprise beans can be used by many clients, across machines or not (remote
and/or local access)

3. Enterprise beans business methods can be secured declaratively, without
source code modification.

4. Enterprise beans access external resources like databases, message queues,
mail sessions, Web services, declaratively via JNDI naming: the Java Naming
and Directory Interface (JNDI) naming service enables components to locate
other components and resources. To locate a JDBC resource, for example, an
enterprise bean invokes the JNDI lookup method. The JNDI naming service

NetBeans IDE Field Guide, Extending Web Applications with Business Logic: Introducing EJB
Components, 1

maintains a set of bindings that relate names to objects. The lookup method
passes a JNDI name parameter and returns the related object.

See Table 8-1 for a list of all of the EJB types.
Table 8-1: Types of Enterprise Beans
Enterprise Bean
type

Description

Session Performs a task for a client; implements a Web service. A Session Bean can
be stateful for conversation handling between the client (the user of the
business logic) and the Server, or stateless.

Entity Represents a business entity object that exists in persistent storage, typically
SQL databases (and possibly others)

Message-Driven Acts as a listener for the Java Message Service API, processing messages
asynchronously

EJB Project type Wizards.
The first thing to do in order to develop Enterprise JavaBeans components is to create an

EJB Module project that can contain one or more EJB components. To give an analogy from the
Web application concept: a Web application is a deployable J2EE component containing a
collections of servlets, web pages and JSP files, while an EJB module is also a deployable J2EE
component, containing a collection of enterprise beans.

To create an EJB Module project:

1. Choose the EJB Module project type, which is in the Enterprise project
categories (as shown in Figure 8-1).

NetBeans IDE Field Guide, Extending Web Applications with Business Logic: Introducing EJB
Components, 2

Figure 8-1
New Project Wizard with EJB Module project type selected

2. Specify the location of the project, its name, and whether or not you want to
add this J2EE component to an existing J2EE application (EAR project).

You can add the module a J2EE Application project later – for example,
when you create the J2EE project.

Once you complete the wizard, your project is created and visible in the Projects window as
shown in Figure 8-2. (For now, it contains no Enterprise JavaBeans components. Adding EJB
Components, Files and Libraries to Your EJB Module on page XXX explains how to populate
the module.)

Figure 8-2

Projects window with EJB module project showing

You can select the Files window (as shown in Figure 8-3) to see which directories and files
have been created on disk. See EJB Module Structure below for a description of the conventions
used for this structure.

NetBeans IDE Field Guide, Extending Web Applications with Business Logic: Introducing EJB
Components, 3

Figure 8-3
Files window with EJB module project showing

EJB Module Structure
The J2EE Blueprints provide guidelines on how to structure your J2EE
applications and EJB Modules to ensure that they work properly with
different application servers. When you create a project in the IDE, this
J2EE Blueprints convention structure is respected.
The following is a quick description on the structural elements of the built
EJB module:

• The src/java folder which contains all the Java source files in the
application.

• The src/conf folder which contains the J2EE deployment descriptors
and the application servers specific deployment descriptors.

• The setup directory which contains server specific resource files.

You can find additional information on these conventions at
https://conventions.dev.java.net/

NetBeans IDE Field Guide, Extending Web Applications with Business Logic: Introducing EJB
Components, 4

See Table 8-2 for information on how the various source elements of an
EJB Module map to their representation in the IDE and where they end
up in the deployed component.
Table 8-2: Matrix of EJB Module Elements and Their Representation in the IDE
Content Representation in the

Projects Window
Representation in the Files
Window

Location Within the Built
EJB JAR File (located in
the dist folder)

EJBs Enterprise JavaBeans node src/javafolder root of the file

Java source files, helper
classes, EJB Java files, etc.

Source Packages node src/java folder Package structure for the
JAR file

unit tests Test Packages node test folder N/A

deployment descriptor (ejb-
jar.xml,
webservices.xml)

Configuration Files node src/conf folder META-INF folder

Application servers
deployment descriptors
context configuration file
(sun-ejb-jar.xml,
sun-cmp-
mapping.xml,
others)

src/conf folder META-INF folder

Application Server specific
resources or scripts
(SQL,...)

Configuration Files (visible
when some J2EE resources
exist there)

setup folder N/A. The resources in this
folder are registered
automatically at deployment
time for the Sun
Application Server target.

Web services Web services node src area (Java code)

libraries Libraries node Location of the libraries
folder

 JAR libraries included in
the EJB module JAR file, at
the top location.

Test classpath entries Test Libraries node test folder N/A

project metadata including
build script

Project Properties dialog
box, which you can open by
right-clicking the project's
node and choosing
Properties.

build.xml file, nbproject
folder

N/A

EJB Module build area
(*.class files)

Not visible in the project
view

Build and build/generated Main content for the EJB
module archive jar file.

Adding EJB Components, Files and Libraries to Your EJB
Module

Once you have created an EJB module project through the New Project wizard, you can start
populating it with new EJB components and helper Java classes.

The most straightforward way to create files is by opening the Projects window, right-
clicking the node where you want to place the file and choosing New and then a template from
the submenu. A short wizard appears for the template enabling you to set the name and other
characteristics of the file. Choose the “Session Bean” template as shown in Figure 8-4.

NetBeans IDE Field Guide, Extending Web Applications with Business Logic: Introducing EJB
Components, 5

Figure 8-4

Adding a File to an EJB Module

The wizard will create a session bean and add it to the EJB Module. You can specify the
bean name, package (make sure you select or create a Java package there instead of leaving it
blank). You can specify whether this session bean will have a local and/or a remote interface
(local is the default), and if the bean is stateful or stateless. For now, accept the default values to
create a local stateless session bean as shown in Figure 8-5.

NetBeans IDE Field Guide, Extending Web Applications with Business Logic: Introducing EJB
Components, 6

Figure 8-5
New Session Bean page of the New File wizard

Notice the new logical view in the Projects window under the Enterprise JavaBeans node (as
shown in Figure 8-6). This EJB component is a set of Java files (4 for a simple session bean):

• The local interface (BeanNamelocal.java)
• The local home interface (BeanNameLocalHome.java)
• The bean implementation itself (BeanNameBean.java)
• The business interface (BeanNameLocalBusiness.java)

The Project window's logicall view hides the complexity of this enterprise bean by showing
only a single node that exposes some important methods for the bean, like the local methods.

NetBeans IDE Field Guide, Extending Web Applications with Business Logic: Introducing EJB
Components, 7

Figure 8-6
Projects window showing a new EJB component.

NetBeans IDE Tip
“Where are my Java Files?” The Projects window hides the Java files by
default. But you can see the entire package structure and all the
Enterprise Beans classes under the Source Packages node. Remember
that an EJB component is a collection of Java files, and some entries in
some deployment descriptors files. NetBeans will keep all these files
synchronized automatically whenever you interact with the Projects
window.

Adding Business Logic to an Enterprise JavaBeans
Component

In this section you will learn about the different method types you can add to an Enterprise
JavaBeans component. Remember that NetBeans IDE offers the necessary wizards that will
greatly simplify the work of coding business logic within EJB components.

Bean Methods
A J2EE application gets its work done through methods that the client calls on the bean. The

following list of method types are either automatically generated via the wizard with default
implementation, or can be added via popup menu actions in the Projects window or the Source
Editor window for an EJB bean implementation class. Necessary extra generation is taken care of
by the IDE (i.e. updating the local or remote interfaces with the correct signature entry):

NetBeans IDE Field Guide, Extending Web Applications with Business Logic: Introducing EJB
Components, 8

Figure 8-7
Projects window and the adding of a method to an EJB component

NetBeans IDE Field Guide, Extending Web Applications with Business Logic: Introducing EJB
Components, 9

Figure 8-8
Source Editor and the adding of a method to an EJB component

• Business Methods. A client calls business methods on a bean through the
bean's remote interface (or local interface, as applicable).
You have to add business methods to the bean yourself – the IDE doesn't
generate any default business method declarations. However, when you
specify a business method, the IDE places matching method declarations in
the bean class and in the remote, local, or remote and local interfaces.
NetBeans IDE Tip
Business Methods are the most important methods for an EJB
component. These are the ones called by other EJBs or Web tier
components like JSP files or servlets. A special NetBeans wizard is
available to simplify the coding of calling an EJB business method.

NetBeans IDE Field Guide, Extending Web Applications with Business Logic: Introducing EJB
Components, 10

From a servlet or EJB file in the Source Editor, right-click to activate
the popup menu and choose the “Enterprise Resources” menu and
the Call EJB sub-menu item.

• Life-cycle Methods. The container calls several methods to manage the life
cycle of an enterprise bean. Depending on the type of bean, the container
works through the methods in slightly different ways. You have the option of
specifying parameters for some of these methods.
The IDE automatically generates the appropriate life-cycle method
declarations for each type of bean and places them in the bean class.

• Finder Methods. The client goes through the home interface to find an entity
bean instance by its primary key. The developer can also add other finder
methods.
NetBeans automatically generates a findByPrimaryKey method
declaration in the local home interface of every entity bean (and in the bean's
home interface, if it has one). The IDE also places a corresponding
ejbFindByPrimaryKey method declaration in the bean class of every
entity bean that manages its own persistence (that is, a bean-managed
persistent entity bean, or BMP entity bean). If you add another finder method,
the IDE automatically places the corresponding method declarations in the
local home (and home) interface and, for BMP entity beans, in the bean class.
An entity bean that delegates its persistence to the container is called a
container-managed persistent entity bean, or a CMP entity bean. Finder
methods that are added to CMP entity beans include EJB Query Language
(EJB QL) statements, which are converted automatically to the kind of SQL
code the server needs.
NetBeans IDE Tip
The server integration plug-in module is what does this EJBQL
conversion. NetBeans IDE comes with a server integration plug-in for
the Sun Java System Application Server. If you deploy to a different
application server, you would need a corresponding plug-in module for
that server to get the same functionality in the IDE as you get when
deploying to the Sun Java System Application Server.

• Create Methods. The container initializes the enterprise bean instance, using
the create method's arguments.

• Home Methods. An entity bean can use a home method for a lightweight
operation that doesn't require access to any particular instance of the bean.
(By contrast, a business method does require access to a particular instance.)
It is up to you to explicitly add the home method, and the IDE generates the
corresponding method declaration in the bean class and the bean's local home
or home interface. An entity bean can have any number of home methods.

• Select Methods. A CMP entity bean can use a select method. Like a finder
method, a select method can query the database and return a local or remote
interface or a collection. In addition, a select method can query a related
entity bean within the same EJB module and return values from its persistent
fields. Select methods aren't exposed in remote-type interfaces and can't be
invoked by a client.

• OnMessage Methods. A client sends a message through a Java Message
Service (JMS) destination to call an onMessage method on a message-

NetBeans IDE Field Guide, Extending Web Applications with Business Logic: Introducing EJB
Components, 11

driven bean.

Adding a Simple Business Method
To add a business method:

1. Choose the Add Business Method popup menu item either from an EJB
component's node (as shown in Figure 8-7) or from within the Source Editor
for a bean implementation class (as shown in Figure 8-8).

2. In the Add Business Method dialog box (shown in Figure 8-9), enter a
method name, a list of parameters and their type, as well as possible
exceptions that will be thrown by this business method.

Figure 8-9
Add Business Method dialog box

Notice the change inside the bean implementation Java file (as shown in Figure
8-10). It now contains the new business method body and you now can use the
capabilities of the IDE's Source Editor to finish the implementation of the
method.

NetBeans IDE Field Guide, Extending Web Applications with Business Logic: Introducing EJB
Components, 12

Figure 8-10

Source Editor with new business method added

3. When you are done coding the method, right-click your project's node in the
Projects window and choose Build Project to trigger the compilation of the
Java files and the creation of the EJB Archive file (in the dist directory).

EJB Bean Deployment Descriptors

One of the goals of NetBeans IDE is to keep you from having to deal with deployment
descriptors as much as possible. This is achieved via the zero-configuration concept implemented
in the IDE: when you use the provided commands, such as Call EJB, Use Database, Call
Message, or Call Web Service Operation, the IDE performs the following tasks:

• Generates the Java Code snippet for the JDNI lookup code in the caller Java
file.

• Makes sure to update the J2EE deployment descriptor file by adding the

NetBeans IDE Field Guide, Extending Web Applications with Business Logic: Introducing EJB
Components, 13

corresponding EJB-REF or RESOURCE-REF elements.
• Modifies the J2EE project to add the necessary project dependancies if the

call goes to a class or resource in another IDE project. The resulting
packaging has to use the J2EE Application Project type to make sure all the
J2EE modules are correctly assembled into a J2EE Application Archive
(EAR) before deployment.

Of course, you are still allowed to edit the deployment descriptors. And here also, NetBeans
offers significant ease of use features like two editing modes (direct XML, editing with code
completion and online validation features, and visual editing).

The visual editor for a Deployment descriptor file (as shown in Figure 8-11) is activated by
double clicking on the deployment descriptor's file node in the Projects window. A set of views
are available: for example, for a J2EE EJB module, Overview and XML views are available.
Also, a combo-box to the right of the buttons for the views allows you to jump directly to a
particular section in the deployment descriptor file.

Figure 8-11
Visual deployment descriptor editor

NetBeans IDE Field Guide, Extending Web Applications with Business Logic: Introducing EJB
Components, 14

If you want to edit the file's XML code directly, you can switch to the XML view of the file
by clicking the XML button located at the top of the visual editor.

Figure 8-12

XML deployment descriptor editor with code completion

The XML editor (as shown in Figure 8-12) also has a code completion feature to make hand
coding faster and more accurate. See Chapter 4, Generating Code Snippets for a general
discussion of how code completion works.

Also note the toolbar on this editor. The last icon activates the XML validation action, so
that you can verify the conformance of the deployment descriptor file with the DTD or schema.
See Figure 8-13 for an example of the output after running the XML Validation command.

NetBeans IDE Field Guide, Extending Web Applications with Business Logic: Introducing EJB
Components, 15

Figure 8-13
Output of XML validation

NetBeans IDE Field Guide, Extending Web Applications with Business Logic: Introducing EJB
Components, 16

