
NetBeans IDE Field
Guide
Copyright © 2005 Sun Microsystems, Inc. All rights reserved.

Table of Contents
Integrating Existing Ant Scripts With the IDE..1

Creating a Free-Form Project..2
Mapping a Target to an IDE Command...3

Project Validation..4
Setting Up the Debug Project Command For a General Java Application..................................5

Mapping the Project's Sources to its Outputs...5
Creating the Debug Target ..5
Mapping the Debug Target to the IDE Command..7

Setting Up the Debug Project Command For A Web Application...7
Creating the Debug Target ..7
Mapping the Debug Target to the IDE Command..9

Setting Up Commands for Selected Files..9
Setting Up the Compile File Command..10

Creating the compile-selected-files Target...10
Mapping the compile-selected-files Target to the IDE Command..10
Handling Properties in the project.xml File...11

Setting Up the Run File Command..12
Creating the run-selected-file Target..12
Mapping the run-selected-file Target to the IDE Command...13

Setting Up the Debug File Command..13
Creating the debug-selected-file Target...14
Mapping the debug-selected-file Target to the IDE Command.. 14

Setting Up the Debugger's Fix Command...15
Creating the debug-fix Target...15
Mapping the debug-fix Target to the IDE Command..16

Changing the Target JDK for a Free-form Project...17
Making a Custom Menu Item for a Target...18
Debugging Ant Scripts...18

Integrating Existing Ant Scripts
With the IDE

The user interface for standard projects in NetBeans IDE is designed to handle common
development scenarios, to be easy to use, and to encourage good programming practices (such as
modular design with no circular dependencies). It is particularly well-suited to creating projects
from scratch.

NetBeans IDE Field Guide, Integrating Existing Ant Scripts With the IDE, 1

However, the standard user interface does not cover all scenarios, particularly for projects
originally developed in other environments. If this is your case, you can take advantage of the
IDE's tight integration with Ant to customize the IDE to work with your existing Ant build script.

If you already have your own build script and do not want to (or cannot) re-create it through
the IDE, you can set up the IDE to use that build script by creating a free-form project. Free-form
projects also might be preferable to standard projects if you create multiple outputs from
individual source roots, or if there is anything too restrictive in standard projects.

NetBeans IDE Tip
Before committing to using your existing build script with the IDE,
carefully consider whether you really need to use your own Ant script and
make sure that it is not possible to replicate your existing build processes
with a combination of standard IDE projects since standard IDE projects
will likely be easier to maintain over a long-term basis.

The IDE's project system is based on Ant to the degree that even incremental commands
(such as for compiling a single file) and other commands that you might specifically associate
with IDE use (such as debugging) are defined in the build script. Build targets for these
commands are generated by default in standard projects, but not in free-form projects. In free-
form projects, it is left up to you to write the targets in whatever way will work with your project.

Using a build script that was created outside of the IDE entails the following steps:

• Creating a project in the IDE and using one of the free-form (“With Existing
Ant Script”) templates.

• Mapping key existing build targets to the IDE commands that correspond to
them (such as for compiling and running applications and running tests). You
can create these mappings in the New Project wizard as you set up the project
or later in the Project Properties dialog box.

• Registering classpath items (such as external source roots or JAR files) in the
IDE project so that IDE-specific features such as code completion and
refactoring work correctly. You can do this in the New Project wizard as you
set up the project or later in the Project Properties dialog box.

• Writing new build targets for commands that are IDE-specific (such as
debugging) and editing the project's project.xml file to map these targets
to IDE commands.

Creating a Free-Form Project
1. Choose File | New Project.
2. Select a project category (such as General or Web) and then select the “With

Existing Ant Script” template for that category.
3. In the Name and Location page of the wizard, fill in the Location field with

the folder that contains the various elements of your project, such as your
source folder, test folder, and build script.
If the build script is at the top level of the folder that you have specified, the
rest of the fields are filled in automatically. If the build script is not found, fill
in the Build Script field manually.
If you wish, you can change the other fields, such as Project Folder (which
determines where the IDE stores metadata for the project).

NetBeans IDE Field Guide, Integrating Existing Ant Scripts With the IDE, 2

4. In the Build and Run Actions page, specify targets for the listed IDE
commands so that the IDE knows which target in your script to run when you
choose the command in the IDE. You can click the combo box arrow next to
each command to select from a list of all targets in the build script, or you can
type a target into the combo box manually. If the IDE finds a likely target for
the command, it is filled in automatically, though you can change it if you
like. If you leave any of the commands blank, you can later fill them in
manually outside of the wizard.
If the build script imports targets from other build scripts, those targets are
not shown in the combo box list, though you can type one of those targets in
manually.
Not all available IDE commands are given here. You can provide mappings
for other IDE commands (such as Compile File) directly in the
project.xml file. See “Mapping a Target to an IDE Command” below.

5. (For Web projects only) In the Web Sources page, specify the folder that
contains your Web pages, fill in the context path for the application, and mark
the J2EE Specification level.

6. In the Source Package Folders page, specify all of the folders that contain
your top-level packages. For example, if the package structure of one of your
source roots begins with com, choose the folder that contains com (e.g. src).
Similarly, if you have any test packages, you can specify them here in the
Test Package Folders area.
On this page, also be sure to set the Source Level to the appropriate JDK
version. Even if this is already accounted for in your Ant script, you need to
set the source level here so that IDE-specific features, such as proper Source
Editor syntax highlighting and code completion work correctly.

7. In the Classpath page, specify any libraries or sources that each source root is
compiled against. Doing this hooks up IDE features such as code completion
and refactoring to your project. You do not have to specify the JDK on this
page.

NetBeans IDE Tip
Most of the fields in the template wizard are also editable in the Project
Properties dialog box, so you do not have to fill in each value
immediately. For example, if you still have to write a target for an IDE
command, you can later map the target to the command in the Build and
Run pane of the Project Properties dialog box. To open up a Project
Properties dialog box, open the Project's window, right-click the project's
main node, and choose Properties.

Mapping a Target to an IDE Command
When you use a general Java free-form template, the New Project wizard enables you to map

specific build targets IDE commands, including the following:

• Build Project
• Clean Project
• Generate Javadoc
• Run Project

NetBeans IDE Field Guide, Integrating Existing Ant Scripts With the IDE, 3

• Test Project

You can also use the Project Properties dialog box (Build and Run page) to map targets to
these commands. Other commands (such as Debug Project, Compile File, Run File, Debug File,
and Fix) need to have targets created for them and then be mapped in the project.xml file
manually if you want them to work in the IDE.

See Table 13-1 for a list of commands that you can map to your build script. The IDE Action
column gives the code name for the command that you use when mapping a build target to the
command.

The next several topics provide examples of how to create Ant targets for specific commands
and then map them to the IDE.
Table 13-1
Command IDE Action

Build Project build

Clean and Build Project rebuild

Compile Selected Files compile.single

Clean Project clean

Run Project run

Run Selected File run.single

Redeploy Project (for web applications) redeploy

Test Project test

Test File test.single

Debug Test For File debug.test.single

Debug Project debug

Debug File debug.single

Fix debug.fix

Step Into debug.stepinto

Generate Javadoc javadoc

Project Validation
The IDE comes bundled with XML schemas for the project.xml files and automatically

validates them every time you edit and save them. If you make invalid changes to a
project.xml file, the IDE reports the errors in the Output window.

If you would like to inspect the schema yourself, you can view them online. See Table 13-2
for a list of the schema used.
Table 13-2: Free-Form Project Schema
Schema Description

http://www.netbeans.org/ns/freeform-
project/1.xsd

Defines the <general-data> part of the
project.xml file for all free-form project types.

http://www.netbeans.org/ns/freeform-project-
java/1.xsd

Defines the <java-data> part of the
project.xml file for all free-form project types.

http://www.netbeans.org/ns/freeform-project-
web/1.xsd

Defines the <web-data> part of the project.xml
file for web applications.

NetBeans IDE Field Guide, Integrating Existing Ant Scripts With the IDE, 4

Setting Up the Debug Project Command For a General Java
Application

To get debugging to work with a free-form project, you need to:

• Make sure that the target you use for compiling specifies debug="true"
when calling the javac task.

• Creating a mapping in the IDE between the project's sources and the project's
outputs, so that the debugger knows which sources to display when you are
stepping through the running program.

• Add a target to your Ant script for the command, making sure that all
necessary path elements for the command are defined, either in the build
script or in a .properties file that is called by the script.

• Map the target to the IDE through the project's project.xml file.

Mapping the Project's Sources to its Outputs
In NetBeans IDE 4.1 free-form projects, the IDE does not automatically know which sources

are associated with compiled classes that you run. Therefore, to get the IDE's debugging features
to work, you need to create this mapping between the sources and the outputs.

To map a project's sources to its outputs:

1. In the Projects window, right-click the project's node and choose Properties.
2. In the Project Properties dialog box, select the Output node.
3. In the right pane, click the Add JAR/Folder button and navigate to the folder

or JAR file that contains the compiled classes corresponding to the source
root selected in the Source Packages Folder field.
If you have multiple source roots, repeat this step for each source root listed
in the Source Packages Folder field.

NetBeans IDE Tip
When you write your debug target, the outputs you specify here will need
to be referenced as part of the classpath attribute of the jpdastart
(or nbjpdaconnect) task.

Creating the Debug Target
Below is a sample target for debugging that can be used when you want to start a general

Java application in the debugger.

<target name="debug" depends="compile" if="netbeans.home"
description="Debug Project">
 <nbjpdastart name="Display-Name-for-Debugged-App"
 addressproperty="jpda.address" transport="dt_socket">
 <classpath refid="run.classpath"/>
 <sourcepath refid="debug.sourcepath"/>
 </nbjpdastart>
 <java fork="true" classname="fully-qualified-main-class-name">
 <jvmarg value="-Xdebug"/>
 <jvmarg value="-Xnoagent"/>
 <jvmarg value="-Djava.compiler=none"/>
 <jvmarg
 value="-Xrunjdwp:transport=dt_socket,address=${jpda.address}"/>

NetBeans IDE Field Guide, Integrating Existing Ant Scripts With the IDE, 5

 <classpath refid="run.classpath"/>
 </java>
</target>

This target can be used in your project with some customizations to fit your environment.
Look at Table 13-3 for further details and some things to look out for.
Table 13-3: Details of the Debug Target for a General Java Application
Target, Task, Attribute or
Property

Description

depends Attribute where you specify targets that need to be run before the current target
is run.

netbeans.home Ant property that is loaded by any instance of Ant that runs inside of the IDE.
The if="netbeans.home" attribute ensures that the target is only be
run if it is called from within the IDE.

nbjpdastart A special task bundled with the IDE to debug programs within the JPDA
debugger.

addressproperty An attribute of nbjpdastart that defines the property that holds the port
that the debugger is listening on. (The IDE automatically assigns the port
number to the property.) The value of the property that is defined there (in this
case, jpda.address) is passed as the value for the address sub-option
of the -Xrunjdwp option.

transport An attribute specifying the debugging transport protocol to use. You can use
dt_socket on all platforms. On Windows machines, you can also use
dt_schem.

classpath An attribute of nbjpdastart that represents the classpath used for
debugging the application. In the given example, it is mapped to the property
that holds the execution classpath.

sourcepath An attribute of nbjpdastart used to specify the explicit location of source
files that correspond to JAR files in your classpath. If you have used the IDE's
Library Manager to associate source with JAR files, you should not need to set
this attribute.

fork Attribute of the java element that determines whether or not the debugging
process is launched in a separate virtual machine. For this target, the value must
be true.

classname Attribute of the java element. It points to the class that the debugger executes.
For the Debug Project target, this attribute should be the fully qualified name of
the main class of the project.

jvmarg Parameter of the java element for providing arguments to the JVM. The
arguments provided in the example are typical for debugging J2SE applications
with the JPDA debugger.

The example uses the refid attribute to reference two path elements (run.classpath and
debug.sourcepath) that need to be defined in elsewhere in your build script. For example,
run.classpath could be defined as in the snippet below:

<path id="run.classpath">
 <pathelement path="${javac.classpath}">
 <pathelement path="${build.classes.dir}">
</path>

The paths for javac.classpath and build.classes.dir would need to be defined in their
own path elements. If the path element needs to reference a physical location, the location

NetBeans IDE Field Guide, Integrating Existing Ant Scripts With the IDE, 6

attribute could be used to specify a directory relative to the Ant project's base directory. For
example:

<path id="build.classes.dir">
 <pathelement location="classes">
</path>

Mapping the Debug Target to the IDE Command
You need to provide a mapping for the Ant target so that the Debug Project command works

on your project when that project is selected.
To map the target to the IDE command:

1. In the Files window, expand the project's folder, expand the nbproject
folder, and then open the project.xml file.

2. Under the <ide-actions> line, add a mapping for the Debug Project
command. The mapping might look something like the following example.

<action name="debug">
 <target>debug</target>
</action>

Setting Up the Debug Project Command For A Web
Application

To get debugging to work with a free-form Web project, you need to.

• Make sure that the target you use for compiling specifies debug="true"
when calling the javac task.

• Make sure you have a target in your build script for deploying your Web
application and that you have the target mapped to the Deploy command. You
can provide this mapping in the wizard when creating the project or on the
Build and Run page of the Project Properties dialog box.

• Creating a mapping in the IDE between the project's sources and the project's
outputs, so that the debugger knows which sources to display when you are
stepping through the running program.

• Add a target to your Ant script for attaching the debugger to a running Web
application, making sure that all necessary path elements for the command
are defined, either in the build script or in a .properties file that is called
by the script.

• Map the target to the IDE through the project's project.xml file.

Creating the Debug Target
Below is a sample target for debugging that can be used when you want to attach the

debugger to your Web application to.

NetBeans IDE Field Guide, Integrating Existing Ant Scripts With the IDE, 7

<target name="debug" depends="compile, deploy" if="netbeans.home"
description="Debug Project">
 <nbjpdaconnect name="Display-Name-for-Debugged-App"
 host="${jpda.host}" address="${jpda.address}"
 transport="dt_socket">
 <classpath refid="${run.classpath}"/>
 <sourcepath refid="${debug.sourcepath}"/>
 </nbjpdaconnect>
 <nbbrowse url="${client.url}"/>
</target>

This target can be used in your project with some customizations to fit your environment.

Look at Table 13-4 for further details and some things to look out for.
Table 13-4: Details of the Debug Target for a Web Application
Target, Task, Attribute, or
Property

Description

depends Attribute where you specify targets that need to be run before the current target
is run.

netbeans.home Ant property that is loaded by any instance of Ant that runs inside of the IDE.
The if="netbeans.home" attribute ensures that the target is only be
run if it is called from within the IDE.

nbjpdaconnect A special task bundled with the IDE to enable attaching the JPDA debugger to a
running application.

host An attribute of nbjpdaconnect that specifies the host name of the machine
that the debugged application is running on.
In this example, the jpda.host property is used. The value of this property
would need to be defined elsewhere in the build script or in a .properties
file that is referenced by the build script.

address An attribute of nbjpdaconnect that specifies the port that the debugger is
listening on.
In this example, the jpda.address property is used. The value of this
property would need to be defined elsewhere in the build script or in a .
properties file that is referenced by the build script.

transport An attribute specifying the JPDA debugging transport protocol to use. You can
use dt_socket on all platforms. On Windows machines, you can also use
dt_schem, though the IDE and the debugged application would both have to
be running on the same machine.An attribute specifying the debugging transport
protocol to use. You can use dt_socket on all platforms. On Windows
machines, you can also use dt_schem.

classpath An attribute of nbjpdaconnect that represents the classpath used for
debugging the application. In the given example, it is mapped to the property
that holds the execution classpath.

sourcepath An attribute of nbjpdaconnect used to specify the explicit location of
source files that correspond to JAR files in your classpath.

nbbrowse Element that specifies a web page to be opened in the default browser that is
specified by the IDE.
In this example, the client.url property is used. The value of this property
would need to be defined elsewhere in the build script or in a .properties
file that is referenced by the build script.

NetBeans IDE Field Guide, Integrating Existing Ant Scripts With the IDE, 8

The example uses the refid attribute to reference two path elements (run.classpath and
debug.sourcepath) that need to be defined in elsewhere in your build script. For example,
run.classpath could be defined as in the snippet below:

<path id="run.classpath">
 <pathelement path="${javac.classpath}">
 <pathelement path="${build.classes.dir}">
</path>

The paths for javac.classpath and build.classes.dir would need to be defined in their
own path elements. If the path element needs to reference a physical location, the location
attribute could be used to specify a directory relative to the Ant project's base directory. For
example:

<path id="build.classes.dir">
 <pathelement location="classes">
</path>

Mapping the Debug Target to the IDE Command
You need to provide a mapping for the Ant target so that the Debug Project command works

on your project when that project is selected.

1. In the Files window, expand the project's folder, expand the nbproject
folder, and then open the project.xml file.

2. Under the <ide-actions> line, add a mapping for the Debug Project
command. The mapping might look something like the following example.

<action name="debug">
 <target>debug</target>
</action>

Setting Up Commands for Selected Files
To get file-specific commands (such as Compile File, Run File, and Debug File) to work in

the IDE, you need to do the following:

1. Add a target to your Ant script for the command, making sure that all
necessary path elements for the command are defined, either in the build
script or in a .properties file that is called by the script.

2. Map the target to the IDE through the project's project.xml file, and
include a context element to provide the IDE a way of passing the currently
selected files to the Ant script.

3. Define any properties that needed in the project's project.xml file, either in
the project.xml file or in a properties file that is referenced from the
project.xml file.

See the next few topics for examples of how to set up the commands.

NetBeans IDE Field Guide, Integrating Existing Ant Scripts With the IDE, 9

Setting Up the Compile File Command
To be able to compile selected files or packages in a free-form project in the IDE, you need

to write an Ant target for the command and then map that target in the project's project.xml
file.

Creating the compile-selected-files Target
Below is a sample target for compiling selected files:

<target name="compile-selected-files" depends="compile">
 <fail unless="selected-files">Must set
 property 'selected-files'</fail>
 <mkdir dir="${classes.dir}"/>
 <javac srcdir="${src.dir}" destdir="${classes.dir}" debug="true"
 includes="${selected-files}">
 <classpath refid="javac.classpath"/>
 </javac>
</target>

In this example, the selected-files property picks up the files or the package that you
have selected in the IDE. The value of selected-files is passed from the project.xml file
when you choose the Compile File command. If no files are selected in the IDE when Compile
File is chosen (and therefore no value is passed to selected-files from the project.xml
file), the target does not complete successfully.

This example build target uses the refid attribute to reference the src.dir,
classes.dir, and javac.classpath path elements, which need to be defined in elsewhere in
your build script. For example, javac.classpath could be defined as in the snippet below:

<path id="javac.classpath">
 <pathelement location="libs">
</path>

Mapping the compile-selected-files Target to the IDE Command
1. In the Files window, expand the project's folder, expand the nbproject

folder, and then open the project.xml file.
2. Within the <ide-actions> element, add a mapping for the Compile File

command. The mapping might look something like the following example.

<action name="compile.single">
 <target>compile-selected-files</target>
 <context>
 <property>selected-files</property>
 <folder>${src.dir}</folder>
 <pattern>\.java$</pattern>
 <format>relative-path</format>
 <arity>
 <separated-files>,</separated-files>
 </arity>
 </context>
</action>

NetBeans IDE Field Guide, Integrating Existing Ant Scripts With the IDE, 10

See Table 13-5 for a description of the parts of the <action> element in the project.xml
file.
Table 13-5: Details of the project.xml <action> Element
Target, Task, or Property Description

context Parameter that the IDE uses to collect information about the files that the command is
to be run on.

property Parameter that defines the name of the property that is passed the names of the
currently selected files or packages in the IDE when the Compile File command is
chosen. A target can then reference this property to determine what files to run the
command on. For example, the sample compile-selected-files target
above references the selected-files property to determine which files are to
be compiled. You can provide any value for this parameter that you wish.

folder Parameter that enables you to specify the directory in which the compile-
selected-files target is enabled. In this example, the value is provided as a
reference to the src.dir property.

pattern Parameter that contains a regular expression to limit the kinds of files that the target
can be run on. In this example, only files with the .java extension are passed to
the target.

format Parameter that specifies the form in which the selected files are passed to the target.
Possible values for this element are:

relative-path – passes the file name with its path
relative to the folder specified by the folder element
relative-path-noext – like relative-path except
that the file name is passed without its extension.
java-name – like relative-path-noext except that
periods (.) are used in instead of slashes to delimit the
folders in the path.
absolute-path – passes the file name with its absolute
path
absolute-path-noext - like absolute-path except
that the file name is passed without its extension

arity Parameter that specifies whether single or multiple files can be passed to the target.
Possible values are:

<separated-files>delimiter</separated-files> -
Multiple files can be passed.

<one-file-only> - only one file can be passed.

Handling Properties in the project.xml File
In the example above, the src.dir property is referenced from the project.xml file. This

property needs to be defined, either in a file referenced by the project.xml file or directly in
the project.xml file.

In the project.xml file, properties are defined in the <properties> element, which
belongs between the <name> and <folders> elements. Within the <properties> element,
use the <property> element and its name attribute to define an individual property, or use the
<property-file> element to designate a .properties file. Note that this syntax is different
than Ant's syntax for defining properties.

NetBeans IDE Field Guide, Integrating Existing Ant Scripts With the IDE, 11

After completing the New Project wizard where you have specified the build script to use,
something like the following is generated in your project.xml file.

<properties>
 <property name="project.dir">C:\MyNBProjects\SampleFreeForm</property>
 <property name="ant.script">${project.dir}/build.xml</property>
</properties>

You can add additional property or property file references within the <properties> element.
Since the src.dir property in this example is likely a property that can also used in your build
script, it might be useful to set the property in one place and let both the build script and
project.xml file use it. A reference to a .properties file from the project.xml file would
look something like the following line:

<property-file>${project.dir}/MyProject.properties</property-file>

NetBeans IDE Tip
File paths that are referenced from the project.xml file are relative to
the project folder. For path references to work the same for both the
project.xml file and the build script, the build script needs to be in the
project folder (which is actually folder that contains the nbproject
folder).
If the build script is in a different folder, you might solve the path
discrepancy by moving the project.dir property in the example above
to a properties file that is common for both the project.xml file and
build script and use that property in the values of other properties that you
define for your classpath, source path, etc. For example, you could
create a property to specify the location for compiled class files and give
it the value ${project.dir}/build/classes.

Setting Up the Run File Command
To be able to run a selected file in a free-form project in the IDE, you need to write an Ant

target for the command and then map that target in the project's project.xml file.

Creating the run-selected-file Target
Below is a sample target for running selected files:

<target name="run-selected-file" depends="compile-selected-files"
description="Run Single File">
 <fail unless="selected-file">Must set
 property 'selected-file'</fail>
 <java classname="${selected-file}">
 <classpath refid="run.classpath"/>
 </java>
</target>

In this example, the selected-file property picks up the file that you have selected in the
IDE. The value of selected-file is passed from the project.xml file when you choose the
Run File command.

NetBeans IDE Field Guide, Integrating Existing Ant Scripts With the IDE, 12

This example also assumes you have a working compile-selected-files target (like
the example in the Setting Up the Compile File Command on page XXX), though it is also
possible to have the target depend on a different compile target you have set in your script.

The example uses the refid attribute to reference a run classpath that must be defined
elsewhere in the script with run.classpath specified as the id attribute of a path element.
For example, run.classpath could be defined as in the snippet below.

<path id="run.classpath">
 <pathelement path="${javac.classpath}">
 <pathelement path="${build.classes.dir}">
</path>

The paths for javac.classpath and build.classes.dir would need to be defined in their
own path elements. If the path element needs to reference a physical location, the location
attribute could be used to specify a directory relative to the Ant project's base directory. For
example:

<path id="build.classes.dir">
 <pathelement location="classes">
</path>

Mapping the run-selected-file Target to the IDE Command
1. In the Files window, expand the project's folder, expand the nbproject

folder, and then open the project.xml file.
2. Within the <ide-actions> element, add a mapping for the Run File

command. The mapping might look something like the following example,
where path-to-file-with-debug-target is replaced with the name of
the file that contains the debug target.

<action name="run.single">
 <target>run-selected-file</target>
 <context>
 <property>selected-file</property>
 <folder>${src.dir}</folder>
 <pattern>\.java$</pattern>
 <format>java-name</format>
 <arity>
 <one-file-only/>
 </arity>
 </context>
</action>

See Table 13-5 for a description of the parts of the <action> element in the project.xml
file. See Handling Properties in the project.xml File on page XXX for information on calling
properties from the project.xml file.

Setting Up the Debug File Command
To be able to debug a selected file in a free-form project in the IDE, you need to write an Ant

target for the command and then map that target in the project's project.xml file.

NetBeans IDE Field Guide, Integrating Existing Ant Scripts With the IDE, 13

Creating the debug-selected-file Target
Below is a sample target for debugging a selected file:

<target name="debug-selected-file" depends="compile-selected-files"
if="netbeans.home" description="Debug a Single File">
 <fail unless="selected-file">Must set
 property 'selected-file'</fail>
 <nbjpdastart name="${selected-file}" addressproperty="jpda.address"
 transport="dt_socket">
 <classpath refid="run.classpath"/>
 <sourcepath refid="debug.sourcepath"/>
 </nbjpdastart>
 <java fork="true" classname="${selected-file}">
 <jvmarg value="-Xdebug"/>
 <jvmarg value="-Xnoagent"/>
 <jvmarg value="-Djava.compiler=none"/>
 <jvmarg
 value="-Xrunjdwp:transport=dt_socket,address=${jpda.address}"/>
 <classpath refid="run.classpath"/>
 </java>
</target>

In this example, the selected-file property picks up the file that you have selected in the
IDE. The value of selected-file is passed from the project.xml file when you choose the
Debug File command.

This example also assumes you have a working compile-selected-files target (like
the example in Setting Up the Compile File Command on page XXX), though it is also possible
to have the target depend on a different compile target you have set in your script.

The example uses the refid attribute to reference two path elements (run.classpath and
debug.sourcepath) that need to be defined in elsewhere in your build script. For example,
run.classpath could be defined as in the snippet below:

<path id="run.classpath">
 <pathelement path="${javac.classpath}">
 <pathelement path="${build.classes.dir}">
</path>

The paths for javac.classpath and build.classes.dir would need to be defined in their
own path elements. If the path element needs to reference a physical location, the location
attribute could be used to specify a directory relative to the Ant project's base directory. For
example:

<path id="build.classes.dir">
 <pathelement location="classes">
</path>

See Table 13-3 for a description of the various parts of the target.

Mapping the debug-selected-file Target to the IDE Command
1. In the Files window, expand the project's folder, expand the nbproject

folder, and then open the project.xml file.
2. Within the <ide-actions> element, add a mapping for the Debug File

command. The mapping might look something like the following example.

NetBeans IDE Field Guide, Integrating Existing Ant Scripts With the IDE, 14

<action name="debug.single">
 <target>debug-selected-file</target>
 <context>
 <property>selected-file</property>
 <folder>${src.dir}</folder>
 <pattern>\.java$</pattern>
 <format>java-name</format>
 <arity>
 <one-file-only/>
 </arity>
 </context>
</action>

See Table 13-5 for a description of the parts of the <action> element in the project.xml
file. See Handling Properties in the project.xml File on page XXX for information on calling
properties from the project.xml file.

Setting Up the Debugger's Fix Command
To be able to use the debugger's Fix feature in a free-form project, you need to write a

special Ant target for the command and then map that target in the project's project.xml file.
The Ant target needs to call the IDE's custom nbjpdareload task that the IDE uses to reload
the fixed code into the debugged program's JVM. See Chapter 4, Fixing Code During a
Debugging Session for information on using Fix.

Creating the debug-fix Target
Below is a sample target for running the Fix command:

<target name="debug-fix" description="Reload Fixed Code Into the
Debugger">
 <javac srcdir="${src.dir}" destdir="${classes.dir}" debug="true">
 <classpath refid="javac.classpath"/>
 <include name="${selected-file}.java"/>
 </javac>
 <nbjpdareload>
 <fileset dir="${classes.dir}">
 <include name="${selected-file}.class"/>
 </fileset>
 </nbjpdareload>
</target>

In this example, the selected-file property picks up the file that have selected in the
IDE. The value of selected-file is passed from the project.xml file when you choose the
Run | Fix command.

The example uses the refid attribute to reference the javac.classpath path element,
which needs to be defined elsewhere in your build script. For example, javac.classpath
could be defined as in the snippet below:

<path id="javac.classpath">
 <pathelement location="libs">
</path>

NetBeans IDE Field Guide, Integrating Existing Ant Scripts With the IDE, 15

Mapping the debug-fix Target to the IDE Command
1. In the Files window, expand the project's folder, expand the nbproject

folder, and then open the project.xml file.
2. Within the <ide-actions> element, add a mapping for the Fix command.

The mapping might look something like the following example.

<action name="debug.fix">
 <target>debug-fix </target>
 <context>
 <property>selected-file</property>
 <folder>${src.dir}</folder>
 <pattern>\.java$</pattern>
 <format>relative-path-noext</format>
 <arity>
 <one-file-only/>
 </arity>
 </context>
</action>

Inside the Generated Build Scripts
Here is a look at all of the pieces of the project metadata and how they
work together.
When you create a standard project, the IDE creates the files listed in
Table 13-6.
Table 13-6
File Description

build.xml This script is the master build script for the project.
When you call a project-related command from the IDE,
the IDE calls a target in this file. You can freely edit this
file if you want to make customizations to your build
process. This file is generated when you create the
project but is not regenerated afterwards. Any
configuration that you do in the IDE that is relevant to
the build script is reflected in the build-impl.xml
file, which is imported by build.xml. If a target with
the same name appears in both build.xml and
build-impl.xml, the target in build.xml
takes precedence.

nbproject/build-impl.xml Included in standard projects (but not free-form
projects),this file contains the meat of the build script
and is imported by build.xml. It is generated based
on the type of project and the contents of that project's
project.xml file. Do not edit this file.

nbproject/project.properties Included in standard projects (but not free-form
projects), this file contains values that the build script
uses when building your project. These values include
things such as the name and location of the directory for
your compiled files, and references to properties set
elsewhere in the project. Changes that you make in your
Project Properties dialog box are propagated here. You
can also modify this file directly in the Source Editor.

NetBeans IDE Field Guide, Integrating Existing Ant Scripts With the IDE, 16

File Description

nbproject/project.xml Provides the basic metadata that determines how the
project works in the IDE. For standard projects, this file
determines how build-impl.xml and
project.properties are generated. For free-
form projects, this file serves as the glue between your
build script and the IDE's user interface. This file is
generally editable but you are only likely to need to edit
it for free-form projects.

nbproject/genfiles.xml Used by the IDE to help keep track of the state of the
build script (such as whether the build-impl.xml file
needs to be regenerated, etc.). Do not edit this file.

nbproject/private/private.properties Holds properties that are specific to your installation of
the IDE. These properties are not to be versioned, but
they can be used by headless builds run on your machine.

NetBeans IDE Tip
There is also a build.properties file that is created in your IDE's
user directory. This file holds properties for the location of libraries that
are packaged with the IDE, any libraries that you specify with the IDE's
Library Manager, and any versions of the Java platform that you register
with the IDE's Java Platform Manager. The private.properties file
references the build.properties file with its
user.properties.file property.

Changing the Target JDK for a Free-form Project
If you want to set a target JDK for your project that differs from the JDK that the IDE is

running on, you must specify the JDK version in both of the following places:

• The Ant script for any pertinent tasks, such as javac. This ensures that the
built targets (and the IDE commands that call them) work correctly.

• The Project Properties dialog box for the project. This ensures that IDE-
specific functions, such as code completion and the Javadoc popup, work
correctly.

For the javac task, you could do this by including the source and target options when
you call javac. For example, the call to the task might look something like the example below.
The javac.source and javac.target properties would need to be specified elsewhere in
the script or in a .properties file with the values set to the appropriate JDK version (e.g 1.3,
1.4, or 1.5).

 <javac srcdir="${src.dir}" destdir="${classes.dir}"
 debug="true" source="${javac.source}"
 target="${javac.target}"
 <classpath refid="javac.classpath"/>
 </javac>

To change the target JDK in the project's properties:
1. In the Projects window, right-click the project's node and choose Properties.
2. In the Properties window, select the Sources node and select the target JDK

from the Source Level combo box.

NetBeans IDE Field Guide, Integrating Existing Ant Scripts With the IDE, 17

3. If you do not already have a JDK registered with the IDE's Platform Manager
that matches the source level you have set, choose Tools | Java Platform
Manager and add that JDK. See Chapter 3, Changing the Version of the JDK
That Your Project is Based On for more information on the Java Platform
Manager.

Making a Custom Menu Item for a Target
If your build script has a target that does not exactly correspond with any of the available

menu items, you can create a custom menu item for it. The menu item is then available when you
right-click the project's node in the Projects window.

To create a custom menu item for a target:
1. In the Projects window, right-click the project's node and choose Properties.
2. In the Properties window, select the Build and Run node.
3. Click the Add button next to the Custom Menu Items table to add a blank row

to the table.
4. Fill in the target name in the Ant Target column and the name for the menu

item in the Label column.

Debugging Ant Scripts
If you need to troubleshoot an Ant script or you just would like a tool to help you make sense

of a working script, you can use the IDE's new Ant Debugger module. The module essentially
plugs into the IDE's visual debugging framework and provides most of the debugging features
you are used to for Java files and applies them to Ant scripts. For example, you can:

• Use the Step Into, Step Over, Step Out, and Continue commands to trace
execution of the script or a specific target. This feature is particularly useful
to help you untangle the order in which nested targets (and even nested
scripts) are called.

• Use the Call Stack window to monitor the current hierarchy of nested calls.
• Set breakpoints.
• View the values of properties in the Local Variables window.
• Set a watch on a property.

NetBeans IDE Field Guide, Integrating Existing Ant Scripts With the IDE, 18

Figure 13-1
Ant Debugger

The Ant Debugger is not included in the standard NetBeans IDE 4.1 download, but you can
add it to your installation through the IDE's Update Center. Choose Tools | Update Center and
then go through the wizard to pick and download the module. When presented with a list of
“update centers” in the wizard, first look in the “Beta” update center.

Most likely, the module will be a standard part of the NetBeans IDE release in versions after
4.1.

Once the Ant Debugger module is installed, to start debugging a build script:
1. Open the Files window and navigate to the build script.
2. Right-click the build script and choose Debug Target and then the name of

the target you want to debug.
The program counter goes to the line where the target is declared and stops.
You can then step through the target with any of the normal debugging
commands.

NetBeans IDE Field Guide, Integrating Existing Ant Scripts With the IDE, 19

