

Tutorials Point, Simply Easy Learning

1 | P a g e

Java Tutorial

Tutorialspoint.com

Java is a high-level programming language originally developed by Sun Microsystems
and released in 1995.

Java runs on a variety of platforms, such as Windows, Mac OS, and the various
versions of UNIX. This tutorial gives an initial push to start you with Java. For more
detail kindly check tutorialspoint.com/java

What is Java?

Java is:

 Object Oriented

 Platform independent:

 Simple

 Secure

 Architectural- neutral

 Portable

 Robust

 Multi-threaded

 Interpreted

 High Performance

 Distributed

 Dynamic

Java Environment Setup:

Java SE is freely available from the link Download Java. So you download a version based on
your operating system.

You can refere to installation guide for a complete detail.

Java Basic Syntax:

 Object - Objects have states and behaviors. Example: A dog has states-color, name,

breed as well as behaviors -wagging, barking, eating. An object is an instance of a
class.

 Class - A class can be defined as a template/ blue print that describe the

behaviors/states that object of its type support.

 Methods - A method is basically a behavior. A class can contain many methods. It is in
methods where the logics are written, data is manipulated and all the actions are
executed.

 Instant Variables - Each object has its unique set of instant variables. An object.s
state is created by the values assigned to these instant variables.

First Java Program:

Let us look at a simple code that would print the words Hello World.

public class MyFirstJavaProgram{

http://www.tutorialspoint.com/jsp
http://www.tutorialspoint.com/java
http://java.sun.com/javase/downloads/index_jdk5.jsp

Tutorials Point, Simply Easy Learning

2 | P a g e

 /* This is my first java program.

 * This will print 'Hello World' as the output

 */

 public static void main(String []args){

 System.out.println("Hello World"); // prints Hello World

 }

}

About Java programs, it is very important to keep in mind the following points.

 Case Sensitivity - Java is case sensitive which means identifier Hello and hello would

have different meaning in Java.

 Class Names - For all class names the first letter should be in Upper Case.

If several words are used to form a name of the class each inner words first letter
should be in Upper Case.

Example class MyFirstJavaClass

 Method Names - All method names should start with a Lower Case letter.

If several words are used to form the name of the method, then each inner word's first
letter should be in Upper Case.

Example public void myMethodName()

 Program File Name - Name of the program file should exactly match the class name.

When saving the file you should save it using the class name (Remember java is case
sensitive) and append '.java' to the end of the name. (if the file name and the class
name do not match your program will not compile).

Example : Assume 'MyFirstJavaProgram' is the class name. Then the file should be
saved as 'MyFirstJavaProgram.java'

 public static void main(String args[]) - java program processing starts from the
main() method which is a mandatory part of every java program..

Java Identifiers:

All java components require names. Names used for classes, variables and methods are called
identifiers.

In java there are several points to remember about identifiers. They are as follows:

 All identifiers should begin with a letter (A to Z or a to z), currency character ($) or an

underscore (-).

 After the first character identifiers can have any combination of characters.

 A key word cannot be used as an identifier.

 Most importantly identifiers are case sensitive.

 Examples of legal identifiers:age, $salary, _value, __1_value

 Examples of illegal identifiers : 123abc, -salary

Java Modifiers:

Like other languages it is possible to modify classes, methods etc by using modifiers. There are
two categories of modifiers.

 Access Modifiers : defualt, public , protected, private

Tutorials Point, Simply Easy Learning

3 | P a g e

 Non-access Modifiers : final, abstract, strictfp

We will be looking into more details about modifiers in the next section.

Java Variables:

We would see following type of variables in Java:

 Local Variables

 Class Variables (Static Variables)

 Instance Variables (Non static variables)

Java Arrays:

Arrays are objects that store multiple variables of the same type. However an Array itself is an

object on the heap. We will look into how to declare, construct and initialize in the upcoming
chapters.

Java Enums:

Enums were introduced in java 5.0. Enums restrict a variable to have one of only a few
predefined values. The values in this enumerated list are called enums.

With the use of enums it is possible to reduce the number of bugs in your code.

For example if we consider an application for a fresh juice shop it would be possible to restrict

the glass size to small, medium and Large. This would make sure that it would not allow anyone
to order any size other than the small, medium or large.

Example:

class FreshJuice{

 enum FreshJuiceSize{ SIZE, MEDUIM, LARGE }

 FreshJuiceSize size;

}

public class FreshJuiceTest{

 public static void main(String args[]){

 FreshJuice juice = new FreshJuice();

 juice.size = FreshJuice. FreshJuiceSize.MEDUIM ;

 }

}

Note: enums can be declared as their own or inside a class. Methods, variables, constructors
can be defined inside enums as well.

Java Keywords:

The following list shows the reserved words in Java. These reserved words may not be used as
constant or variable or any other identifier names.

abstract assert boolean break

Tutorials Point, Simply Easy Learning

4 | P a g e

byte case catch char

class const continue default

do double else enum

extends final finally float

for goto if implements

import instanceof int interface

long native new package

private protected public return

short static strictfp super

switch synchronized this throw

throws transient try void

volatile while

Comments in Java

Java supports single line and multi-line comments very similar to c and c++. All characters
available inside any comment are ignored by Java compiler.

public class MyFirstJavaProgram{

 /* This is my first java program.

 * This will print 'Hello World' as the output

 * This is an example of multi-line comments.

 */

 public static void main(String []args){

 // This is an example of single line comment

 /* This is also an example of single line comment. */

 System.out.println("Hello World");

 }

}

Data Types in Java

There are two data types available in Java:

1. Primitive Data Types

Tutorials Point, Simply Easy Learning

5 | P a g e

2. Reference/Object Data Types

Primitive Data Types:

There are eight primitive data types supported by Java. Primitive data types are predefined by
the language and named by a key word. Let us now look into detail about the eight primitive
data types.

 byte

 short

 int

 long

 float

 double

 boolean

 char

Reference Data Types:

 Reference variables are created using defined constructors of the classes. They are

used to access objects. These variables are declared to be of a specific type that cannot
be changed. For example, Employee, Puppy etc.

 Class objects, and various type of array variables come under reference data type.

 Default value of any reference variable is null.

 A reference variable can be used to refer to any object of the declared type or any

compatible type.

 Example : Animal animal = new Animal("giraffe");

Java Literals:

A literal is a source code representation of a fixed value. They are represented directly in the
code without any computation.

Literals can be assigned to any primitive type variable. For example:

byte a = 68;

char a = 'A'

String literals in Java are specified like they are in most other languages by enclosing a
sequence of characters between a pair of double quotes. Examples of string literals are:

"Hello World"

"two\nlines"

"\"This is in quotes\""

Java language supports few special escape sequences for String and char literals as well. They
are:

Notation Character represented

\n Newline (0x0a)

Tutorials Point, Simply Easy Learning

6 | P a g e

\r Carriage return (0x0d)

\f Formfeed (0x0c)

\b Backspace (0x08)

\s Space (0x20)

\t tab

\" Double quote

\' Single quote

\\ backslash

\ddd Octal character (ddd)

\uxxxx Hexadecimal UNICODE character (xxxx)

Java Access Modifiers:

Java provides a number of access modifiers to set access levels for classes, variables, methods
and constructors. The four access levels are:

1. Visible to the package. the default. No modifiers are needed.
2. Visible to the class only (private).
3. Visible to the world (public).
4. Visible to the package and all subclasses (protected).

Java Basic Operators:

Java provides a rich set of operators to manipulate variables. We can divide all the Java
operators into the following groups:

The Arithmetic Operators:

Operator Description Example

+ Addition - Adds values on either side of

the operator

A + B will give 30

- Subtraction - Subtracts right hand

operand from left hand operand

A - B will give -10

* Multiplication - Multiplies values on either

side of the operator

A * B will give 200

Tutorials Point, Simply Easy Learning

7 | P a g e

/ Division - Divides left hand operand by

right hand operand

B / A will give 2

% Modulus - Divides left hand operand by

right hand operand and returns

remainder

B % A will give 0

++ Increment - Increase the value of

operand by 1

B++ gives 21

-- Decrement - Decrease the value of

operand by 1

B-- gives 19

The Relational Operators:

Operator Description Example

== Checks if the value of two operands are

equal or not, if yes then condition

becomes true.

(A == B) is not true.

!= Checks if the value of two operands are

equal or not, if values are not equal then

condition becomes true.

(A != B) is true.

> Checks if the value of left operand is

greater than the value of right operand,

if yes then condition becomes true.

(A > B) is not true.

< Checks if the value of left operand is less

than the value of right operand, if yes

then condition becomes true.

(A < B) is true.

>= Checks if the value of left operand is

greater than or equal to the value of

right operand, if yes then condition

becomes true.

(A >= B) is not true.

<= Checks if the value of left operand is less

than or equal to the value of right

operand, if yes then condition becomes

true.

(A <= B) is true.

The Bitwise Operators:

Operator Description Example

Tutorials Point, Simply Easy Learning

8 | P a g e

& Binary AND Operator copies a bit to the

result if it exists in both operands.

(A & B) will give 12 which is 0000 1100

| Binary OR Operator copies a bit if it

exists in eather operand.

(A | B) will give 61 which is 0011 1101

^ Binary XOR Operator copies the bit if it is

set in one operand but not both.

(A ^ B) will give 49 which is 0011 0001

~ Binary Ones Complement Operator is

unary and has the efect of 'flipping' bits.

(~A) will give -60 which is 1100 0011

<< Binary Left Shift Operator. The left

operands value is moved left by the

number of bits specified by the right

operand.

A << 2 will give 240 which is 1111 0000

>> Binary Right Shift Operator. The left

operands value is moved right by the

number of bits specified by the right

operand.

A >> 2 will give 15 which is 1111

>>> Shift right zero fill operator. The left

operands value is moved right by the

number of bits specified by the right

operand and shifted values are filled up

with zeros.

A >>>2 will give 15 which is 0000 1111

The Logical Operators:

Operator Description Example

&& Called Logical AND operator. If both the

operands are non zero then then

condition becomes true.

(A && B) is false.

|| Called Logical OR Operator. If any of the

two operands are non zero then then

condition becomes true.

(A || B) is true.

! Called Logical NOT Operator. Use to

reverses the logical state of its operand.

If a condition is true then Logical NOT

operator will make false.

!(A && B) is true.

The Assignment Operators:

Operator Description Example

Tutorials Point, Simply Easy Learning

9 | P a g e

= Simple assignment operator,

Assigns values from right side

operands to left side operand

C = A + B will assigne value of A + B into C

+= Add AND assignment operator, It

adds right operand to the left

operand and assign the result to left

operand

C += A is equivalent to C = C + A

-= Subtract AND assignment operator,

It subtracts right operand from the

left operand and assign the result to

left operand

C -= A is equivalent to C = C - A

*= Multiply AND assignment operator,

It multiplies right operand with the

left operand and assign the result to

left operand

C *= A is equivalent to C = C * A

/= Divide AND assignment operator, It

divides left operand with the right

operand and assign the result to left

operand

C /= A is equivalent to C = C / A

%= Modulus AND assignment operator,

It takes modulus using two

operands and assign the result to

left operand

C %= A is equivalent to C = C % A

<<= Left shift AND assignment operator C <<= 2 is same as C = C << 2

>>= Right shift AND assignment operator C >>= 2 is same as C = C >> 2

&= Bitwise AND assignment operator C &= 2 is same as C = C & 2

^= bitwise exclusive OR and

assignment operator

C ^= 2 is same as C = C ^ 2

|= bitwise inclusive OR and assignment

operator

C |= 2 is same as C = C | 2

Misc Operators

There are few other operators supported by Java Language.

Conditional Operator (? :):

Tutorials Point, Simply Easy Learning

10 | P a g e

Conditional operator is also known as the ternary operator. This operator consists of three
operands and is used to evaluate boolean expressions. The goal of the operator is to decide
which value should be assigned to the variable. The operator is written as :

variable x = (expression) ? value if true : value if false

instanceOf Operator:

This operator is used only for object reference variables. The operator checks whether the
object is of a particular type(class type or interface type). instanceOf operator is wriiten as:

(Object reference variable) instanceOf (class/interface type)

Precedence of Java Operators:

Category Operator Associativity

Postfix () [] . (dot operator) Left to right

Unary ++ - - ! ~ Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift >> >>> << Left to right

Relational > >= < <= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %= >>= <<= &= ^= |= Right to left

Comma , Left to right

Tutorials Point, Simply Easy Learning

11 | P a g e

The while Loop:

A while loop is a control structure that allows you to repeat a task a certain number of times.

Syntax:

The syntax of a while loop is:

while(Boolean_expression)

{

 //Statements

}

The do...while Loop:

A do...while loop is similar to a while loop, except that a do...while loop is guaranteed to
execute at least one time.

Syntax:

The syntax of a do...while loop is:

do

{

 //Statements

}while(Boolean_expression);

The for Loop:

A for loop is a repetition control structure that allows you to efficiently write a loop that needs to
execute a specific number of times.

A for loop is useful when you know how many times a task is to be repeated.

Syntax:

The syntax of a for loop is:

for(initialization; Boolean_expression; update)

{

 //Statements

}

Enhanced for loop in Java:

As of java 5 the enhanced for loop was introduced. This is mainly used for Arrays.

Syntax:

The syntax of enhanced for loop is:

Tutorials Point, Simply Easy Learning

12 | P a g e

for(declaration : expression)

{

 //Statements

}

The break Keyword:

The break keyword is used to stop the entire loop. The break keyword must be used inside any
loop or a switch statement.

The break keyword will stop the execution of the innermost loop and start executing the next
line of code after the block.

The continue Keyword:

The continue keyword can be used in any of the loop control structures. It causes the loop to
immediately jump to the next iteration of the loop.

 In a for loop, the continue keyword causes flow of control to immediately jump to the

update statement.

 In a while loop or do/while loop, flow of control immediately jumps to the Boolean
expression.

Syntax:

The syntax of a continue is a single statement inside any loop:

continue;

The if Statement:

An if statement consists of a Boolean expression followed by one or more statements.

Syntax:

The syntax of an if statement is:

if(Boolean_expression)

{

 //Statements will execute if the Boolean expression is true

}

The if...else Statement:

An if statement can be followed by an optional else statement, which executes when the
Boolean expression is false.

Syntax:

The syntax of a if...else is:

Tutorials Point, Simply Easy Learning

13 | P a g e

if(Boolean_expression){

 //Executes when the Boolean expression is true

}else{

 //Executes when the Boolean expression is false

}

The if...else if...else Statement:

An if statement can be followed by an optional else if...else statement, which is very usefull to
test various conditions using single if...else if statement.

Syntax:

The syntax of a if...else is:

if(Boolean_expression 1){

 //Executes when the Boolean expression 1 is true

}else if(Boolean_expression 2){

 //Executes when the Boolean expression 2 is true

}else if(Boolean_expression 3){

 //Executes when the Boolean expression 3 is true

}else {

 //Executes when the one of the above condition is true.

}

Nested if...else Statement:

It is always legal to nest if-else statements. When using if , else if , else statements there are
few points to keep in mind.

 An if can have zero or one else's and it must come after any else if's.

 An if can have zero to many else if's and they must come before the else.

 Once an else if succeeds, none of he remaining else if's or else's will be tested.

Syntax:

The syntax for a nested if...else is as follows:

if(Boolean_expression 1){

 //Executes when the Boolean expression 1 is true

 if(Boolean_expression 2){

 //Executes when the Boolean expression 2 is true

 }

}

The switch Statement:

A switch statement allows a variable to be tested for equality against a list of values. Each value
is called a case, and the variable being switched on is checked for each case.

Syntax:

The syntax of enhanced for loop is:

Tutorials Point, Simply Easy Learning

14 | P a g e

switch(expression){

 case value :

 //Statements

 break; //optional

 case value :

 //Statements

 break; //optional

 //You can have any number of case statements.

 default : //Optional

 //Statements

}

Java Methods:

A Java method is a collection of statements that are grouped together to perform an operation.

When you call the System.out.println method, for example, the system actually executes
several statements in order to display a message on the console.

In general, a method has the following syntax:

modifier returnValueType methodName(list of parameters) {

 // Method body;

}

A method definition consists of a method header and a method body. Here are all the parts of a
method:

 Modifiers: The modifier, which is optional, tells the compiler how to call the method.
This defines the access type of the method.

 Return Type: A method may return a value. The returnValueType is the data type of
the value the method returns. Some methods perform the desired operations without
returning a value. In this case, the returnValueType is the keyword void.

 Method Name: This is the actual name of the method. The method name and the

parameter list together constitute the method signature.

 Parameters: A parameter is like a placeholder. When a method is invoked, you pass a

value to the parameter. This value is referred to as actual parameter or argument. The
parameter list refers to the type, order, and number of the parameters of a method.
Parameters are optional; that is, a method may contain no parameters.

 Method Body: The method body contains a collection of statements that define what
the method does.

Java Classes & Objects:

 Object - Objects have states and behaviors. Example: A dog has states-color, name,
breed as well as behaviors -wagging, barking, eating. An object is an instance of a
class.

 Class - A class can be defined as a template/ blue print that describe the
behaviors/states that object of its type support.

A sample of a class is given below:

public class Dog{

 String breed;

 int age;

 String color;

Tutorials Point, Simply Easy Learning

15 | P a g e

 void barking(){

 }

 void hungry(){

 }

 void sleeping(){

 }

}

A class can contain any of the following variable types.

 Local variables . variables defined inside methods, constructors or blocks are called

local variables. The variable will be declared and initialized within the method and the
variable will be destroyed when the method has completed.

 Instance variables . Instance variables are variables within a class but outside any
method. These variables are instantiated when the class is loaded. Instance variables

can be accessed from inside any method, constructor or blocks of that particular class.

 Class variables . Class variables are variables declared with in a class, outside any
method, with the static keyword.

Exceptions Handling:

A method catches an exception using a combination of the try and catch keywords. A try/catch

block is placed around the code that might generate an exception. Code within a try/catch block
is referred to as protected code, and the syntax for using try/catch looks like the following:

try

{

 //Protected code

}catch(ExceptionName e1)

{

 //Catch block

}

Multiple catch Blocks:

A try block can be followed by multiple catch blocks. The syntax for multiple catch blocks looks
like the following:

try

{

 //Protected code

}catch(ExceptionType1 e1)

{

 //Catch block

}catch(ExceptionType2 e2)

{

 //Catch block

}catch(ExceptionType3 e3)

{

 //Catch block

}

The throws/throw Keywords:

Tutorials Point, Simply Easy Learning

16 | P a g e

If a method does not handle a checked exception, the method must declare it using the throws
keyword. The throws keyword appears at the end of a method's signature.

You can throw an exception, either a newly instantiated one or an exception that you just
caught, by using the throw keyword. Try to understand the different in throws and throw
keywords.

The finally Keyword

The finally keyword is used to create a block of code that follows a try block. A finally block of
code always executes, whether or not an exception has occurred.

Using a finally block allows you to run any cleanup-type statements that you want to execute,
no matter what happens in the protected code.

A finally block appears at the end of the catch blocks and has the following syntax:

try

{

 //Protected code

}catch(ExceptionType1 e1)

{

 //Catch block

}catch(ExceptionType2 e2)

{

 //Catch block

}catch(ExceptionType3 e3)

{

 //Catch block

}finally

{

 //The finally block always executes.

}

Further Detail:

Refer to the link http://www.tutorialspoint.com/java

List of Tutorials from TutorialsPoint.com
 Learn JSP

 Learn Servlets

 Learn log4j

 Learn iBATIS

 Learn Java

 Learn JDBC

 Java Examples

 Learn Best Practices

 Learn Python

 Learn Ruby

 Learn Ruby on Rails

 Learn ASP.Net

 Learn HTML

 Learn HTML5

 Learn XHTML

 Learn CSS

 Learn HTTP

 Learn JavaScript

 Learn jQuery

 Learn Prototype

 Learn script.aculo.us

 Web Developer's Guide

http://www.tutorialspoint.com/java
http://www.tutorialspoint.com/
http://www.tutorialspoint.com/jsp
http://www.tutorialspoint.com/servlets/index.htm
http://www.tutorialspoint.com/log4j/index.htm
http://www.tutorialspoint.com/ibatis/index.htm
http://www.tutorialspoint.com/java/index.htm
http://www.tutorialspoint.com/jdbc/index.htm
http://www.tutorialspoint.com/javaexamples/index.htm
http://www.tutorialspoint.com/developers_best_practices/index.htm
http://www.tutorialspoint.com/python/index.htm
http://www.tutorialspoint.com/ruby/index.htm
http://www.tutorialspoint.com/ruby-on-rails-2.1/index.htm
http://www.tutorialspoint.com/asp.net/index.htm
http://www.tutorialspoint.com/html/index.htm
http://www.tutorialspoint.com/html5/index.htm
http://www.tutorialspoint.com/xhtml/index.htm
http://www.tutorialspoint.com/css/index.htm
http://www.tutorialspoint.com/http/index.htm
http://www.tutorialspoint.com/javascript/index.htm
http://www.tutorialspoint.com/jquery/index.htm
http://www.tutorialspoint.com/prototype/index.htm
http://www.tutorialspoint.com/script.aculo.us/index.htm
http://www.tutorialspoint.com/web_developers_guide/index.htm

Tutorials Point, Simply Easy Learning

17 | P a g e

 Learn SQL

 Learn MySQL

 Learn AJAX

 Learn C Programming

 Learn C++ Programming

 Learn CGI with PERL

 Learn DLL

 Learn ebXML

 Learn Euphoria

 Learn GDB Debugger

 Learn Makefile

 Learn Parrot

 Learn Perl Script

 Learn PHP Script

 Learn Six Sigma

 Learn SEI CMMI

 Learn WiMAX

 Learn Telecom Billing

 Learn RADIUS

 Learn RSS

 Learn SEO Techniques

 Learn SOAP

 Learn UDDI

 Learn Unix Sockets

 Learn Web Services

 Learn XML-RPC

 Learn UML

 Learn UNIX

 Learn WSDL

 Learn i-Mode

 Learn GPRS

 Learn GSM

 Learn WAP

 Learn WML

 Learn Wi-Fi

webmaster@TutorialsPoint.com

http://www.tutorialspoint.com/sql/index.htm
http://www.tutorialspoint.com/mysql/index.htm
http://www.tutorialspoint.com/ajax/index.htm
http://www.tutorialspoint.com/ansi_c/index.htm
http://www.tutorialspoint.com/cplusplus/index.htm
http://www.tutorialspoint.com/perl/perl_cgi.htm
http://www.tutorialspoint.com/dll/index.htm
http://www.tutorialspoint.com/ebxml/index.htm
http://www.tutorialspoint.com/euphoria/index.htm
http://www.tutorialspoint.com/gnu_debugger/index.htm
http://www.tutorialspoint.com/makefile/index.htm
http://www.tutorialspoint.com/parrot/index.htm
http://www.tutorialspoint.com/perl/index.htm
http://www.tutorialspoint.com/php/index.htm
http://www.tutorialspoint.com/six_sigma/index.htm
http://www.tutorialspoint.com/cmmi/index.htm
http://www.tutorialspoint.com/wimax/index.htm
http://www.tutorialspoint.com/telecom-billing/index.htm
http://www.tutorialspoint.com/radius/index.htm
http://www.tutorialspoint.com/rss/index.htm
http://www.tutorialspoint.com/seo/index.htm
http://www.tutorialspoint.com/soap/index.htm
http://www.tutorialspoint.com/uddi/index.htm
http://www.tutorialspoint.com/unix_sockets/index.htm
http://www.tutorialspoint.com/webservices/index.htm
http://www.tutorialspoint.com/xml-rpc/index.htm
http://www.tutorialspoint.com/uml/index.htm
http://www.tutorialspoint.com/unix/index.htm
http://www.tutorialspoint.com/wsdl/index.htm
http://www.tutorialspoint.com/i-mode/index.htm
http://www.tutorialspoint.com/gprs/index.htm
http://www.tutorialspoint.com/gsm/index.htm
http://www.tutorialspoint.com/wap/index.htm
http://www.tutorialspoint.com/wml/index.htm
http://www.tutorialspoint.com/wi-fi/index.htm
http://www.tutorialspoint.com/

