MATHEMATICAL
BACKGROUND

This supplementary chapter (present on the CD-ROM version of the book only) describe
some of the mathematical concepts behind the graphical techniques introduced in chapt
32of Object-Oriented Software Construction, second editibis extracted from the ISE
manual on EiffelBuildM 1995e]

The conventions, and any cross-reference that you may encounter in this chapte
are those ofM 1995e]rather than the rest @bject-Oriented Software Construction

Pages are numbered 1076.1, 1076.2 and so on to avoid any confusion with the pac
numbers of the rest of the book, as they appear in the printed version.

1076.2

This page intentionally blank

1076.3

This page intentionally blank

32A

Mathematical background

32A.1 OVERVIEW

EiffelBuild relies on simple properties of functions. This chapter presents a summary of
the necessary notions.

You can use EiffelBuild without having read this discus, and in fact if you are
eager to get your hands on EiffelBuild you may prefer to skip this chapter on first reading
and move immediately to the following chapter and the Guided Tour. But an
understanding of the elementary mathematical notions discussed béldwlpryou get
the most out of EiffelBuil, especially for advanced uses.

“Introduction to the Theory Many of the topics of this chapter are also useful for the formal study of
OfProgfamining . programming languages, and are covered in more details in thelntroduction to the
Languages", Prentice Hall, Theory of Programming Languac.es

1991, ISBN 0-13-498510-9
32A.2 FINITE SETS, CARTESIAN PRODUCT

(0-13-498502-8 pbk).

A finite set may be given by the list of its members in br, for example
PERSOL2 {Héléng, Kiyoke, Laura, Robertq, Helmut}
COUNTR2 {Japar, Francg, Italy, UK}

where# means “is defined as”.

A note about naming conventic: the example sets used in this chaj such asPERSON
and COUNTRY, follow the Eiffel rules for type(classe): they are written in upper-case
letters, and use the singular rather than the pluralPERSOI denotes a set of persons and
COUNTR" a set of countries. A mathematical text might call these PEOPLE and
COUNTRIE:, but for a programmer it is more attractive to think of declarations of the form

Hélén«: PERSOI -- (Eiffel syntay)

meaning Héléne represents an object of tyPERSOWM, hence the singular.

If X andY are set, thenX x Y, called the cartesian product of these, is the set
of all pairs of the formr<x, y> wherex is a member oX andy is a member oY. For
example the sePERSOI x COUNTR" contains all the pairs such <Héléng, Japar>,
<Héléng¢, France>, ..., <Kiyokc, Japar>, <Kiyokc, France> and so on.

Cartesian product is also applicable to infinite sets. For examN is the set of
natural (non-negativ) integers thenN x N is the set of all possible pairs of natural
integers.

1076.5 THE CONCEPTS832A.3

32A.3 RELATIONS

Let X andY be two sets. A relation with source X and target seY is a set of pairs of
the form<x, y> such thg, in every such pa, xis a member oX and y is a member Y.

In other word, a relation is one particular subset of the cartesian prcX x V.

For example. the set of pairs

citizenship2 {<Kiyokc, Japar>, <Héléne, France>, <Laura, ltaly>,
<Robertc, Italy>, <Héléne, UK>}

is a relation wittPER SOl as source set atCOUNTR" as target set. This relation could
represent the intuitive notiorx is a citizen oy”. Note that Héléne would then be a person
with dual citizenship. As indicat;, this relation will be callecitizenshiy.

This example is a finite relation. We can also have infinite relg; for example
with the set of natural integeN serving both as source set and targe, we can define
the infinite set of pairs

neighbors2 {<0, 1>,
<1, 0>, <1, 2>,
<2, 1>, <2, 3>,
<3, 2>, <3, 4>,

2}

denoted more precisely and concisely (with the bar | used to mean “such that”) as
{<x,y>ONxN]|y=x+lory=x-1

and representing the relation whose pairs all contain elements that differ from each other
by either +1 or —1. This relati, as indicate, will be calledneighbor:;

The set of all possible relations between two X andY is written X « Y. For
example the relatiocitizenshifis a member of the SPERSO! « COUNTRY, and the
relationneighbor:is a member oN ~ N. The precise definition <X ~ Y isthat itis the
setP (X x Y), using the notatiolP (A), for any se’A,to mean the powerset A, thatis to
say, the set of all possible subsetsA.f

Thedomain of a relation is the set consisting of all elemex such that the relation
contains a pair of the fori<x, y> for somey — that is to sa, a pair withx as its first
element. The domain is a subset of the source set. In the case of rcitizenshiy, the
source set i{ Héleng, Kiyokc, Laura, Robertd; it does not contaiHelmur, even though
this element has been listed as a member of the sourPERSOI, because no pair in
citizenshij has it as its first elemen(The relation does not give any information about
the citizenship oHelmu:.)

Therange of a relation is the inverse noti: the set consisting of all members of
the target set that appear as second element of at least one pair in the relation.

A relation istotal if its domain covers its entire source set — that is tc, if for
every membex of its source set there is at least one pair of the <x, y> (for somey)
in the relation. It ipartial otherwise. If we say “relation” without further qualification

§32A.4 FUNCTIONS 1076.6

the relation may be partial or total. Relatineighbor: is tota, but relationcitizenshiy is
not becausHelmu, a member of its source ., is not in the relation’s domain.

Note that the notion of relation used here is limited to binary relg, that is to say
relations between two se(the source and the tari). If necessar, we can model a more
general notion of relations involving any number of sets by using this r: for example
we can capture relations between three <X/ Y and Z by taking relations in
X o (Y o Z).This idea will further be applied below to “currying”.

32A.4 FUNCTIONS

A function is a relation as just defin; with the extra property that for aix in the source
setX, there isat most onepair of the formr<x, y> for somey — that is to sa, at most one
pair withx as its first element — in the relation.

The relations used above as examples are not functions. In the ccitizenshiy,
there are two pairs witHélén¢ as their first element. In the caseneighbor:, for each
numbern except () there are two pairs witn as their first eleme: the pair<n, n + 1>
and the pai<n, n — 1>.

If we prohibit dual citizenshi, that is to say if we remove one of the pairs for
Héléng, thencitizenshij becomes a function.

The set of pair<n, n + 1>, for all possible natural integen, is a function. Let us
call it nex. (This is a subset of relaticneighbor:.)

Like a relatiol, a function may be partial or total. As with relati, the word
“function” without further qualification means a function that may be total or partial.
Putting together the definitions of “function” and “total relation” we see that with a tota
function there i, for every membex of its source s, exactly oney in the target set such
that<x, y> is in the function.

More generall, if f is a function anx is a member of its dome, there is exactly
oney such tha<x, y> is in the function. This legitimates the usual notation for expressinc
the value of thay:

f (x)

For exampl, nexi (6) has the valu7; and, once we have macitizenshijafunction
by removing one of the two pairs fHéleng, citizenshij (Kiyokc) has the valuJdapar.

Remembe, howeve, that the notatioif (x) has a taboo associated wit: unless the
function is known to be tot, the notation is meaningless without a guarantee xhat
belongs to the domain di.f

The set of all possible functions with source X and target seY is written
X -+ Y. Since every function is a relati, X =+ Y is a subset aX « Y.

The bar across the arrow in theé> symbol reminds us that the functions may be
partial. The set of total functions froX to Y, a subset oX - Y, is writtenX - Y
without a bar.

1076.7 THE CONCEPTS832A.5

32A.5 FINITE FUNCTIONS

Like any se, a relation or function may be finite or infinite. Finite functi, that is to say
functions made of a finite set of pe, will be of particular interest for the rest of this
discussion.

Functioncitizenshij is finite; functionnex is infinite.

If both X andY are finite, as in the case ccitizenshij, then their cartesian product
X x Y is also finit,, so any function irX -~ Y (and more generally any relation in
X & Y), being a subset X x Y, will be finite. If X or Y or both are infinit; howeve, a
function with source seX and target s€Y may be finite or infinite. So in spite of thext
example you can have a finite function between infinite; for exampli, with N as both
source and targ, the function{<0, 1>, <237, 11&>} is finite even thougiN is infinite.

A function is finite if and only if both its domain and its range are finite.

The set of finite functions with source X and target seY, a subset oX —+> Y,
is written X -~ Y, where thef stands for “finite”.

32A.6 VISUALIZING A FINITE FUNCTION

Finite functions and relations are of particular interest for software applications because
they can be easily represented in the memory of a computer. But for a graphical
application builder such as EiffelBuild finite functions have an even more specifically
useful propert; they are easy to construct and manipulate vis, using an obvious
graphical representation in the form of a table. For example you can graphically display
the three-pair functio{<Hélén¢, 0>, <Helmu, @>, <Kiyokc, @>} — a function in
PERSOI +— SHAPE whereSHAPE is a set of graphical icons — as

Héléne O
Helmut <«
Kiyoko o

This representation has the immediate visual advantage that for a reasonably small
function it is easy to check visually that what is displayed is a fur, not just a general
relatior: just look at the first colum(the function’s domai) and check that it has no
duplicate. This will be even easier if the source set has a simple order relation so that
elements in the first column can be kept sorted, as has been done above using alphabetic
order.

§32A.7 DEALING WITH MULTI-ARGUMENT FUNCTIONS 1076.8

Typed pick-and-throw is

This convention blends particularly well with the visual principles of ISE E, asl

described in section 4.5 described inSE Eiffe: The Environmet. In particula, the environment's typed pick-

of “ISE Eiffel: The
Environment”.

See “Building a
behavior pair”, 5.6.6,
page 63 and “THE
STATE TOOL", 6.11,
page 150.

and-throw mechanism immediately suggests a convenient way for users to build
function:

O O
Argument/]

\ Result

hole Héléne O hole
Helmut L
Kiyoko @)

To add a new pair to the functi, you will drag-and-drop an element from the
source set to the top-left hole. This will only have an effect if that element is not alrear
in the function’s domalj, that is to say if it is distinct from all the elements in the left
column. Dropping the element into the hole will cause the hole to become occupi
(according to the conventions of the environment a small dot in the hole should indice
this). When you then drag-and-drop to the top-right hole a member of the tar, theset
newlywed pair clunks down the table to its proper station in life.

The order in which you select the pair's elements is imma: you can drag-and-
drop the result element into its hole first if you prefer.

The scheme just described is the basis for buillbehaviors in EiffelBuild, the
fundamental mechanism for producing context-event-command associations and hel
interactive graphical applications. It also governsState Toolof EiffelBuild.

32A.7 DEALING WITH MULTI-ARGUMENT FUNCTIONS

The example functions discussed so far in this chapter are, that is to say take a
single argumen(a member of the source).et

It is often necessary to use multiary functions — functions with two or more
arguments. Mathematica, this does not raise any particular prob: rather than talking
about a function with two arguments from sA andB, we consider that we have a function
whose(single) source set is the cartesian prodA x B ; the function will bea member of
the set of functionA x B -+ C for someC, and similarly for more than two arguments.

The practical consequences are awky, howeve, if we want to keep the visual
representation of functions introduced above. We could generalize that representatior
give displays of the form

1076.9 THE CONCEPTS832A.8

Héléne UK O
Kiyoko Japan (@)
Héléne France)
Kiyoko Italy ®)
Helmut Japan O

representing here a function PERSOLI x COUNTRY > SHAPE, the function

{<<Hélén¢, UK>, O>,<<Kiyokc, Japar>, ©Q>, <<Hélén¢, France>, @>,
<<Kiyokg, Italy>, @>, <<Helmu, Japar>, 00>}

But this representation is less convenient than for unary functions. In pal, itular
becomes much more difficult to check visually that the table indeed represents a f,unction
since the number of membersA x B is the product of the numbers of members in zach
the size of the table will soon become too large.

To solve this problem we can resort to a mathematical device known as currying.

32A.8 CURRYING

Consider a functionf2 corresponding to the usual notion of a function with two
arguments. For any applicable pair of valueA anc B respectivel, f2 yields a resultin
C. As we have set,; f2 will be for someA, B andC a member of the set

FUNC224AxB 4+ C

We can associate wif2, through a one-to-one corresponde, a functionfl — the
“curried” form off2 — having just one argument. Here is how.

Functionfl will be a member of the set
FUNC12AA +— (B + C)

What f1 represeni, like any other member ¢cFUNC], is a function taking one
argumeni(a member 0A), and yielding for any applicable value of that argurr(that
is to sa)y any member of the function’s dom)ianother function, itself a member of
B -+ C —thatis to say a function that for any applicable valuB yields a result irC.

Givenf2, the associatefl has as its domain the set of all memta of A for which
there exists a membb of B such that the pa<a, b> belongs to the domain 2. Now
take such aa. The value ofl (a) is itself a functiol, from Bto C. Let us call that function

§32A.8 CURRYING

1076.10

Using the first argument

is a matter of

convention. It is possible

to curry a multi-
argument function with

f1,. The domain ofl, is the set of all membeib of B such thai<a, b> belongs to the
domain off2. For any suclb, the value ofl, (b) is simplyf2 (a, b). (If this paragraph is
not immediately luminot, just read on the explanations and examples that fc)llow.

The transformation which for any two-argument functidf2 yields the
corresponding one-argument functifl is called currying(not because it was designed
over dinner in some oriental restaurant but after the name of an English mather).aticie
Currying is itself a function — a total o, since every functic, whether finit¢, partial or
total will always have a curried version. If we ccurry the function that curries functions
(over some arbitrary basic seA, B andC as abov) we see that it is a member of the set

(AxB -+ C) - (A = (B + Q)

If we are only interested in finite functior— which is the case for visual
programming applications studied in this book — we can replace althe symbo

(but not the—, of course) by -~ . Functioncurry is not only total but one-to-one

every two-argument function iA x B -+ C has a one-argument curried version in
A —= (B -+ C), and every such one-argument function is the curried form of som
two-argument function.

Were it not for Professor Cu, the function could have been callspecializ, since
this is what it doe: taking a function with two arguments and specializing it with respect
to its first argument. Starting with the two-argument funcif2, the curried versioifl
takes only one argume, and is such th. f1 (a) —what was called1, above — is likef2

respect to any argumentbut with the first argument setto a in all cases.

Consider for example the addition function on inte, which we may caladdz. It
takes two arguments and yields their sum. It is a membN xN - N. (Addition on
integers is a total functi, so in this example all the arrows can be writter—: rather
than just—+>) The functiol, add1 2 curry (addZ) — the curried version cadd2— is a
member of

N - (N > N)

that is to say a function whi, for any integen, yields a function whic, for any integer
m, yields an integer.

What concretely iiadd1? Well, for anyn, add1(n) is the function whic, for any
m, yieldsn + m. For exampl, add1(1) is the “successor” function on integzrs

add1(l) = next

wherenex, as introduced earlier, is the functionNii—» N defined by the property that
next(n) is n + 1 for every integen. Similarly, add1 (-1) is the functionpreviousthat
subtracts one from any inte(; add1(0) is the identity function oN — the function the,t
for anyn, return: nitsell; add1(2) is the function that adds 2 to any intej and so on.

One way to describe currying informally is to say that this mechanism trade
argument complexity(cartesian product lev) for result complexity(higher-level
functions. Define the argument level of a function as the numb, plus ong, in the
definition of its source se(that is to say the number of function argumy), and its
result level as the number of arrows, plus one, in its target set. For example a functi
in ((AxB) xC) - (D -~ E) has argument complexity 3 and result complexity 2.

1076.11 THE CONCEPTS832A.9

If we curry it we get a function i(A x B) - (C -+ (D — E)), with argument level

2 and result level 3. If we curry this curried version once 1, we get a function itA

-+ (B -+ (C -~ (D -+E))), with respective levels 1 and 4. Each currying
operation reduces the argument level by 1 but increases the function level by 1.

The is example illustrates the need for a notational convention to reduce the number
of parentheses. As soon as we enter the spice-rich world of currying we start dealing with
higher-level function spaces suchAs+ (B - (C -= (D —+> E))); so to make
things lighter it is customary to allow dropping parentheses with the understanding that
arrows associate from the right. As a result the noteA>f= B - C - D - E
means the same as the last expression. Sim, a state was defined in the previous chapter
as a member of the SCONTEXT - EVEN1 -~ COMMANL, which should be

understood as an abbreviation CONTEXT -~ (EVEN1 -~ COMMANL).

For a different grouping or to remove risks of ambigl you may of course
reinstate the parentheses.

32A.9 A DIGRESSION: CORRECTNESS OF COMPILERS
AND INTERPRETERS

In a totally different application domg, currying helps understand notions related to
softwar¢, programming languages and programming tools. In parti, the notions of
compiler and interpreter are not always well unders, so it is useful to provide precise
definitions. This example is not directly relevant to EiffelB, but it should help you
improve your appreciation of the concepts. As on the other topics of this ¢, the book
Introduction to the Theory of Programming Languagprovides more extensive
discussions and examples.

Consider a programming langug, say Eiffel (although any other example would
do). It defines the seEIFFEL_SYSTENMof valid system(program). LetEXECUTABLE
be the set of machine-language programs for a certain archii; say Intel X86. We
may abstractly consider that set as a function

EXECUTABLE2 INPUT -+ OUTPUT

where INPUT is the set of all possible program ing, and OUTPUT the set of all
possible program outputs. What this definition expresses is that a machine program
defines a function th, for any possible inp), should produce the corresponding output.
Such functions are partidhence the—= and the word “should” in the preceding
sentenc) because a program may for some inputs enter into an infinite loop or recursion,
or crasl, and hence fail to yield an output.

Now consider a compiler for Eiffel. It is a mechanism to transform Eiffel systems
into machine progran) mathematically this means that the compiler is the
implementation of a functiocompiler— a member of the set

EIFFEL_SYSTEM-—> EXECUTABLE

Next consider an interpreter. Unlike a comf, it is able to execute a system
directly without first translating it to another form. What you feed into such execution is
not just the input but also the software it; to do its jol, the interpreter has an equal
need for both of these two elements.

§32A.10 CURRYING FOR VISUAL DISPLAY 1076.12

Looking at the interpreter properties from a mathematical persf, we may understand
the interpreter as implementing a two-argument fundnterpretel, a member of the set

EIFFEL_SYSTEM INPUT - OUTPUT

Some software development environments provide both a compiler and an interpre
for the same language. The goal is to let environment users use the interpreter when {
need fast turnaroul, and the compiler when they need the highest possible performance

ISE Eiffel applies a more sophisticated form of this techr: its Melting Ice Technology
integrates both compiled and interpretative techni, but the choice between the two kinds
is done automatically by the environment according to the needs of the n, rather than
by users selecting one or the other.

The presence of both a compiler and an interpreter raises a tricky: how to
guarantee that the semantics is the same — in other , that you will not get some
results when you are using the interpreter during develof, and different ones when
you move to production and start relying on the compiler?

In the above framework the semantics compatibility requirement may be express
simply: what we want is

| conrpiler = curry (interpretei) |

32A.10 CURRYING FOR VISUAL DISPLAY

Let us return now to graphical application building. Currying provides us with a simpl
solution to the problem of displaying multi-argument functions. Displaying such :
function directly in a tabular form, as we sa\, neither convenient nor convincing.

The tabular format is only satisfactory with two colui, one for the input and one
for the output — that is to say for single-argument functions, so that it is easy to che
visually for the function property. The solut, ther, is to curry multi-argument
functions as many times as needed until we only have single-argument equivalents.

Our earlier example was the display of the following func, with argument level:2
{<<Hélén¢, UK>, 00>, <<Kiyokc, Japar>, ©>, <<Hélén¢, France>, @>,
<<Kiyokg, Italy>, @>, <<Helmu, Japar>, 00>}

Currying it means specializing on the first argun; or, to put it differently,
considering separately the country-to-shape correspondences induced by each of
person:the correspondence for Ji, the correspondence for Kiyoko and so on. Here is
the curried versig, one line per person, source sets alphabetically or:lered

{<Héleng, {<France, @®>, <UK, O>}>,
<Helmu, {<Jdapar, O>}>
<Kiyokc, {< Italy, @>, < Japar, Q>}>}

The first element on each line is a pel; the second is a finite function from
countries to shapes.

1076.13 THE CONCEPTS §32A.10

The visual representation readily adapts to this curried form: since we are back to
dealing with one-argument functions only, it suffices to nest the tabular display devised
for such functions:

Hélene France L J

UK O

Helmut Japan O
Kiyoko

Italy ®)

Japan Q

For displaying an existing finite function on paper this nested technique may be
convenient if the function is not too large. With an interactive computer system, too much
nesting may lead to an impractical user interface, especially if you are building or
expanding a function rather than just exploring an existing one. We may in his case
replace nesting by zooming: a function of the above form may appear initially as
something like

S]]

where the elements on the right are placeholders for the right-hand side functions. Note
that this figure includes again the argument and result holes introduced earlier as the basic
device enabling interactive users to build and modify the function.

§32A.11 FUNCTIONS AND CURRYING FOR EIFFELBUILD 1076.14

See “States”, 1.4.6,
page 7.

If you want to work on one of the right-hand side function you will start the
corresponding tool (in the ISE Eiffel sense of this term). For example if the tool is targets
to the result — itself a function — of the curried function applieddbene it will show:

&

20 | [

France [)

UK |

Note the (filled) tool hole at the top left. It applies to the tool's contents (its target
as a hole; you can use it to drag-and-drop the entire function into the result hole of 1
primary function — the top-right hole of the immediately preceding figure.

32A.11 FUNCTIONS AND CURRYING FOR EIFFELBUILD

The concepts introduced in this chapter are the mathematical basis for EiffelBuild
approach to building GUI applications. In the Context-Event-Command-State model
EiffelBuild, we define each state as a function in the set of states

STATE22 CONTEXT EVENT > COMMAND

What this means is that a state is defined by how user actions will be interpret
when the session is in that state. The domain of the function is the<smirdkxt, event>
pairs that are recognized:

* What contexts are known to the system in that state, for example a certain butt
and a certain window.

« What events will be meaningful for each of these contexts — for example a mouse cli
on the button, and a mouse movement that brings the cursor into the window or out o

For each<context, event>pair in the state function’s domain, the state function
defines a result: the command that must be executed whenever the given event occu
the given context. For example if the button readsE, a mouse click occurring in that
button should cause tf8avecommand to be executed. Contexts, events, commands ar
states are all Eiffel objects, either extracted from a catalog of predefined elements
instances of classes defined by the software developer.

An entire interactive application consists of one or more states. Many simpl
applications will have just one state, but as we saw in the preceding chapter it may
desirable to have several states, interconnected through a transition diagram.

An essential part of building an application with EiffelBuild, then, will be to
construct its states, that is to say to specify visually, through the environment’s drag-at
drop mechanism, what events should trigger what commands in what states.

1076.15 THE CONCEPTS§32A.11

Because states are two-argument funcii we should apply currying and its visual
counterpart. To define the set of st;, ther, we will not useSTATE: as defined above
but its curried versicn

STATE1A CONTEXT-~ EVENT -> COMMAND

(Remember that there are implicit parentheses around the rightmost tv)o sets.

We could of course have used currying on events rather than c¢, defining
states as members of the set

EVENT -~ CONTEXT~> COMMAND

But this would be less convenient because of how interactive applications and the
underlying toolkits are typically organized. For each kind of col, only a few events
make sense — such as “Click”, “Release” and “Activate” for a certain kind of k; scon
the normal way to proceed: is

0O+« Select a statsi.

1+ Determine the list of contexts that are relevantst;imathematicall, this is the
domain of the functioist.

2+ For each contesctin that lis, determine the list of events that are applicablct;to
mathematicall, this is the domain of the functiost (ct) — that is to sa, the
function from events to commands that results from applst to its domain
memberct.

3+« For each everev in that lis, determine the command that must be executed when
ev occurs withinct for statest.

Although it would be possible to change this sequence of steps to specialize on
events before conte», this would mean that once we have chosen a state and an event
we may have to build a big functi, since an event is often applicable to many contexts.

In contras, once we have chosen a con, only a small number of events will typically

be applicable to a given context. So currying on contexts first yields a more modular
approach to the interactive construction of a i with only one potentially large
function(the stat), all the other(the context-command mappir) being typically small

even if there are many of them.

As a result a new development abstraction em¢, important to the practical
understanding of EiffelBuil: the behavior. A behavior is a member of the set of
functions

BEHAVIORA EVENT ~~> COMMAND

So the seSTATElintroduced above iCONTEXT - BEHAVIOF; a state is a

function that associates a behay(a finite function from events to commai) with each
one of a certain set of contexts.

To build a state is to build a curried two-argument function. In EiffelBuild, the State
Tool and the Behavior format of the Context Tool use the principles developed in the
earlier section by enablincyou to associate a behavior with t every context applicable to
a state.

	 MATHEMATICAL BACKGROUND
	32A � Mathematical background
	32A.1 OVERVIEW
	32A.2 FINITE SETS, CARTESIAN PRODUCT
	32A.3 RELATIONS
	32A.4 FUNCTIONS
	32A.5 FINITE FUNCTIONS
	32A.6 VISUALIZING A FINITE FUNCTION
	32A.7 DEALING WITH MULTI-ARGUMENT FUNCTIONS
	32A.8 CURRYING
	32A.9 A DIGRESSION: CORRECTNESS OF COMPILERS AND I...
	32A.10 CURRYING FOR VISUAL DISPLAY
	32A.11 FUNCTIONS AND CURRYING FOR EIFFELBUILD

