
MATHEMATICAL
BACKGROUND
ribes
hapter

apter,

e page
This supplementary chapter (present on the CD-ROM version of the book only) desc
some of the mathematical concepts behind the graphical techniques introduced in c
32 of Object-Oriented Software Construction, second edition. It is extracted from the ISE
manual on EiffelBuild [M 1995e].

The conventions, and any cross-reference that you may encounter in this ch
are those of [M 1995e] rather than the rest of Object-Oriented Software Construction.

Pages are numbered 1076.1, 1076.2 and so on to avoid any confusion with th
numbers of the rest of the book, as they appear in the printed version.

§1076.2
This page intentionally blank

§1076.3
This page intentionally blank

32A
Mathematical background
ry of

ding
 an

 of

al

“Introduction to the Theory
of Programming
Languages”, Prentice Hal
1991, ISBN 0-13-498510-
(0-13-498502-8 pbk).
32A.1 OVERVIEW

EiffelBuild relies on simple properties of functions. This chapter presents a summa
the necessary notions.

You can use EiffelBuild without having read this discussion, and in fact if you are
eager to get your hands on EiffelBuild you may prefer to skip this chapter on first rea
and move immediately to the following chapter and the Guided Tour. But
understanding of the elementary mathematical notions discussed below will help you get
the most out of EiffelBuild, especially for advanced uses.

Many of the topics of this chapter are also useful for the formal study
programming languages, and are covered in more details in the book Introduction to the
Theory of Programming Languages.

32A.2 FINITE SETS, CARTESIAN PRODUCT

A finite set may be given by the list of its members in braces, for example

PERSON { Hélène, Kiyoko, Laura, Roberto, Helmut}

COUNTRY { Japan, France, Italy, UK}

where means “is defined as”.

A note about naming conventions: the example sets used in this chapter, such as PERSON
and COUNTRY, follow the Eiffel rules for types (classes): they are written in upper-case
letters, and use the singular rather than the plural. So PERSON denotes a set of persons and
COUNTRY a set of countries. A mathematical text might call these sets PEOPLE and
COUNTRIES, but for a programmer it is more attractive to think of declarations of the form

Hélène: PERSON -- (Eiffel syntax)

meaning “Hélène represents an object of type PERSON” , hence the singular.

If X and Y are sets, then X × Y, called the cartesian product of these sets, is the set
of all pairs of the form <x, y> where x is a member of X and y is a member of Y. For
example the set PERSON × COUNTRY contains all the pairs such as <Hélène, Japan>,
<Hélène, France>, ..., <Kiyoko, Japan>, <Kiyoko, France> and so on.

Cartesian product is also applicable to infinite sets. For example if N is the set of
natural (non-negative) integers, then N × N is the set of all possible pairs of natur
integers.

l,
9

=∆

=∆

=∆

THE CONCEPTS§32A.31076.5

d
n

 other

ut

f

32A.3 RELATIONS

Let X and Y be two sets. A relation with source set X and target set Y is a set of pairs of
the form <x, y> such that, in every such pair, x is a member of X and y is a member of Y.

In other words, a relation is one particular subset of the cartesian product X × Y.

For example. the set of pairs

citizenship {< Kiyoko, Japan>, <Hélène, France>, <Laura, Italy>,

<Roberto, Italy>, <Hélène, UK>}

is a relation with PERSON as source set and COUNTRY as target set. This relation coul
represent the intuitive notion “x is a citizen of y”. Note that Hélène would then be a perso
with dual citizenship. As indicated, this relation will be called citizenship.

This example is a finite relation. We can also have infinite relations; for example
with the set of natural integers N serving both as source set and target set, we can define
the infinite set of pairs

neighbors {< 0, 1>,

<1, 0>, <1, 2>,

<2, 1>, <2, 3>,

<3, 2>, <3, 4>,

...}

denoted more precisely and concisely (with the bar | used to mean “such that”) as

{< x, y> ∈ N × N | y = x + 1 or y = x – 1}

and representing the relation whose pairs all contain elements that differ from each
by either +1 or –1. This relation, as indicated, will be called neighbors.

The set of all possible relations between two sets X and Y is written X ↔ Y. For
example the relation citizenship is a member of the set PERSON ↔ COUNTRY; and the
relation neighbors is a member of N ↔ N. The precise definition of X ↔ Y is that it is the
set P (X × Y), using the notation P (A), for any set A, to mean the powerset of A, that is to
say, the set of all possible subsets of A.

The domain of a relation is the set consisting of all elements x such that the relation
contains a pair of the form <x, y> for some y — that is to say, a pair with x as its first
element. The domain is a subset of the source set. In the case of relation citizenship, the
source set is { Hélène, Kiyoko, Laura, Roberto}; it does not contain Helmut, even though
this element has been listed as a member of the source set PERSON, because no pair in
citizenship has it as its first element. (The relation does not give any information abo
the citizenship of Helmut.)

The range of a relation is the inverse notion: the set consisting of all members o
the target set that appear as second element of at least one pair in the relation.

A relation is total if its domain covers its entire source set — that is to say, if for
every member x of its source set there is at least one pair of the form <x, y> (for some y)
in the relation. It is partial otherwise. If we say “relation” without further qualification

=∆

=∆

§32A.4 FUNCTIONS 1076.6

r

ial.
tal

ing

t

e

the relation may be partial or total. Relation neighbors is total, but relation citizenship is
not because Helmut, a member of its source set, is not in the relation’s domain.

Note that the notion of relation used here is limited to binary relations, that is to say
relations between two sets (the source and the target). If necessary, we can model a more
general notion of relations involving any number of sets by using this notion: for example
we can capture relations between three sets X, Y and Z by taking relations in
X ↔ (Y ↔ Z). This idea will further be applied below to “currying”.

32A.4 FUNCTIONS

A function is a relation as just defined, with the extra property that for any x in the source
set X, there is at most one pair of the form <x, y> for some y — that is to say, at most one
pair with x as its first element — in the relation.

The relations used above as examples are not functions. In the case of citizenship,
there are two pairs with Hélène as their first element. In the case of neighbors, for each
number n except 0, there are two pairs with n as their first element: the pair <n, n + 1>
and the pair <n, n – 1>.

If we prohibit dual citizenship, that is to say if we remove one of the pairs fo
Hélène, then citizenship becomes a function.

The set of pairs <n, n + 1>, for all possible natural integers n, is a function. Let us
call it next. (This is a subset of relation neighbors.)

Like a relation, a function may be partial or total. As with relations, the word
“function” without further qualification means a function that may be total or part
Putting together the definitions of “function” and “total relation” we see that with a to
function there is, for every member x of its source set, exactly one y in the target set such
that <x, y> is in the function.

More generally, if f is a function and x is a member of its domain, there is exactly
one y such that <x, y> is in the function. This legitimates the usual notation for express
the value of that y:

f (x)

For example, next (6) has the value 7; and, once we have made citizenship a function
by removing one of the two pairs for Hélène, citizenship (Kiyoko) has the value Japan.

Remember, however, that the notation f (x) has a taboo associated with it: unless the
function is known to be total, the notation is meaningless without a guarantee thax
belongs to the domain of f.

The set of all possible functions with source set X and target set Y is written
X Y. Since every function is a relation, X Y is a subset of X ↔ Y.

The bar across the arrow in the symbol reminds us that the functions may b
partial. The set of total functions from X to Y, a subset of X Y, is written X → Y
without a bar.

| |

|

|

THE CONCEPTS§32A.51076.7

s

t

ause
hical
ally

splay

 small

o that
habetic
32A.5 FINITE FUNCTIONS

Like any set, a relation or function may be finite or infinite. Finite functions, that is to say
functions made of a finite set of pairs, will be of particular interest for the rest of thi
discussion.

Function citizenship is finite; function next is infinite.

If both X and Y are finite, as in the case of citizenship, then their cartesian produc
X × Y is also finite, so any function in X Y (and more generally any relation in
X ↔ Y), being a subset of X × Y, will be finite. If X or Y or both are infinite, however, a
function with source set X and target set Y may be finite or infinite. So in spite of the next
example you can have a finite function between infinite sets; for example, with N as both
source and target, the function {< 0, 1>, <237, 118>} is finite even though N is infinite.

A function is finite if and only if both its domain and its range are finite.

The set of finite functions with source set X and target set Y, a subset of X Y,
is written X Y, where the f stands for “finite”.

32A.6 VISUALIZING A FINITE FUNCTION

Finite functions and relations are of particular interest for software applications bec
they can be easily represented in the memory of a computer. But for a grap
application builder such as EiffelBuild finite functions have an even more specific
useful property: they are easy to construct and manipulate visually, using an obvious
graphical representation in the form of a table. For example you can graphically di
the three-pair function {< Hélène, >, <Helmut, >, <Kiyoko, >} — a function in
PERSON SHAPE where SHAPE is a set of graphical icons — as

This representation has the immediate visual advantage that for a reasonably
function it is easy to check visually that what is displayed is a function, not just a general
relation: just look at the first column (the function’s domain) and check that it has no
duplicate. This will be even easier if the source set has a simple order relation s
elements in the first column can be kept sorted, as has been done above using alp
order.

|

|

f

f

Hélène

Kiyoko

Helmut

§32A.7 DEALING WITH MULTI-ARGUMENT FUNCTIONS 1076.8

ild a

e
eady
ft
pied
icate
t

hence

ore

n

.

tion to

Typed pick-and-throw i
described in section 4.
of ‘‘ISE Eiffel: The
Environment”.

See “Building a
behavior pair”, 5.6.6,
page 63 and “THE
STATE TOOL”, 6.11,
page 150.
This convention blends particularly well with the visual principles of ISE Eiffel, as
described in ISE Eiffel: The Environment. In particular, the environment’s typed pick-
and-throw mechanism immediately suggests a convenient way for users to bu
function:

To add a new pair to the function, you will drag-and-drop an element from th
source set to the top-left hole. This will only have an effect if that element is not alr
in the function’s domain, that is to say if it is distinct from all the elements in the le
column. Dropping the element into the hole will cause the hole to become occu
(according to the conventions of the environment a small dot in the hole should ind
this). When you then drag-and-drop to the top-right hole a member of the target se, the
newlywed pair clunks down the table to its proper station in life.

The order in which you select the pair’s elements is immaterial: you can drag-and-
drop the result element into its hole first if you prefer.

The scheme just described is the basis for building behaviors in EiffelBuild, the
fundamental mechanism for producing context-event-command associations and
interactive graphical applications. It also governs the State Tool of EiffelBuild.

32A.7 DEALING WITH MULTI-ARGUMENT FUNCTIONS

The example functions discussed so far in this chapter are unary, that is to say take a
single argument (a member of the source set).

It is often necessary to use multiary functions — functions with two or m
arguments. Mathematically, this does not raise any particular problem: rather than talking
about a function with two arguments from sets A and B, we consider that we have a functio
whose (single) source set is the cartesian product A × B ; the function will be a member of
the set of functions A × B C for some C, and similarly for more than two arguments

The practical consequences are awkward, however, if we want to keep the visual
representation of functions introduced above. We could generalize that representa
give displays of the form

s
5

Hélène

Kiyoko

Helmut

Argument
hole

Result
hole

|

THE CONCEPTS§32A.81076.9

ar
ction
ch

ing.

o

representing here a function in PERSON × COUNTRY SHAPE, the function

{<<Hélène, UK>, >,<<Kiyoko, Japan>, >, <<Hélène, France>, >,

<<Kiyoko, Italy>, >, <<Helmut, Japan>, >}

But this representation is less convenient than for unary functions. In particul, it
becomes much more difficult to check visually that the table indeed represents a fun;
since the number of members of A × B is the product of the numbers of members in ea,
the size of the table will soon become too large.

To solve this problem we can resort to a mathematical device known as curry

32A.8 CURRYING

Consider a function f2 corresponding to the usual notion of a function with tw
arguments. For any applicable pair of values in A and B respectively, f 2 yields a result in
C. As we have seen, f2 will be for some A, B and C a member of the set

FUNC2 A × B C

We can associate with f 2, through a one-to-one correspondence, a function f1 — the
“curried” form of f 2 — having just one argument. Here is how.

Function f1 will be a member of the set

FUNC1 A (B C)

What f1 represents, like any other member of FUNC1, is a function taking one
argument (a member of A), and yielding for any applicable value of that argument (that
is to say, any member of the function’s domain) another function, itself a member of
B C — that is to say a function that for any applicable value in B yields a result in C.

Given f 2, the associated f1 has as its domain the set of all members a of A for which
there exists a member b of B such that the pair <a, b> belongs to the domain of f 2. Now
take such an a. The value of f1 (a) is itself a function, from B to C. Let us call that function

UK

Japan

France

Hélène

Kiyoko

Hélène

ItalyKiyoko

JapanHelmut

f

=∆ |

=∆ | |

|

§32A.8 CURRYING 1076.10

w.

d
ician

et

bols

in
me

ect

des

ction
2.

Using the first argumen
is a matter of
convention. It is possibl
to curry a multi-
argument function with
respect to any argumen
f1a. The domain of f1a is the set of all members b of B such that <a, b> belongs to the

domain of f 2. For any such b, the value of f1a (b) is simply f2 (a, b). (If this paragraph is

not immediately luminous, just read on the explanations and examples that follo)

The transformation which for any two-argument function f2 yields the
corresponding one-argument function f1 is called currying (not because it was designe
over dinner in some oriental restaurant but after the name of an English mathemat).
Currying is itself a function — a total one, since every function, whether finite, partial or
total will always have a curried version. If we call curry the function that curries functions
(over some arbitrary basic sets A, B and C as above) we see that it is a member of the s

(A × B C) → (A (B C))

I f we are only interested in fini te functions — which is the case for visual
programming applications studied in this book — we can replace all the sym
(but not the → , of course) by . Function curry is not only total but one-to-one:

every two-argument function in A × B C has a one-argument curried version
A (B C), and every such one-argument function is the curried form of so
two-argument function.

Were it not for Professor Curry, the function could have been called specialize, since
this is what it does: taking a function with two arguments and specializing it with resp
to its first argument. Starting with the two-argument function f2, the curried version f1
takes only one argument, and is such that f1 (a) — what was called f1a above — is like f2

but with the first argument set to be a in all cases.

Consider for example the addition function on integers, which we may call add2. It
takes two arguments and yields their sum. It is a member of N × N → N. (Addition on
integers is a total function, so in this example all the arrows can be written as → rather
than just .) The function, add1 curry (add2) — the curried version of add2 — is a
member of

N → (N → N)

that is to say a function which, for any integer n, yields a function which, for any integer
m, yields an integer.

What concretely is add1? Well, for any n, add1 (n) is the function which, for any
m, yields n + m. For example, add1 (1) is the “successor” function on integers:

add1 (1) = next

where next, as introduced earlier, is the function in N → N defined by the property that
next (n) is n + 1 for every integer n. Similarly, add1 (–1) is the function previous that
subtracts one from any integer; add1 (0) is the identity function on N — the function that,
for any n, returns n itself; add1 (2) is the function that adds 2 to any integer; and so on.

One way to describe currying informally is to say that this mechanism tra
argument complexity (cartesian product level) for result complexity (higher-level
functions). Define the argument level of a function as the number of ×, plus one, in the
definition of its source set (that is to say the number of function arguments), and its
result level as the number of arrows, plus one, in its target set. For example a fun
in ((A × B) × C) (D E) has argument complexity 3 and result complexity

| | |

|

f
|

| |

t

e

t.

| =∆

| |

THE CONCEPTS§32A.91076.11

g
y 1.

mber
g with

 that

ter

to

gram
t.
g

sion,

ms
he

n is
l

If we curry it we get a function in (A × B) (C (D E)), with argument level
2 and result level 3. If we curry this curried version once more, we get a function in A

 (B (C (D E))), with respective levels 1 and 4. Each curryin
operation reduces the argument level by 1 but increases the function level b

The is example illustrates the need for a notational convention to reduce the nu
of parentheses. As soon as we enter the spice-rich world of currying we start dealin
higher-level function spaces such as A (B (C (D E))); so to make
things lighter it is customary to allow dropping parentheses with the understanding
arrows associate from the right. As a result the notation A B C D E
means the same as the last expression. Similarly, a state was defined in the previous chap
as a member of the set CONTEXT EVENT COMMAND, which should be

understood as an abbreviation for CONTEXT (EVENT COMMAND).

For a different grouping or to remove risks of ambiguity, you may of course
reinstate the parentheses.

32A.9 A DIGRESSION: CORRECTNESS OF COMPILERS
AND INTERPRETERS

In a totally different application domain, currying helps understand notions related
software, programming languages and programming tools. In particular, the notions of
compiler and interpreter are not always well understood, so it is useful to provide precise
definitions. This example is not directly relevant to EiffelBuild, but it should help you
improve your appreciation of the concepts. As on the other topics of this chapter, the book
Introduction to the Theory of Programming Languages provides more extensive
discussions and examples.

Consider a programming language, say Eiffel (although any other example would
do). It defines the set EIFFEL_SYSTEM of valid systems (programs). Let EXECUTABLE
be the set of machine-language programs for a certain architecture, say Intel X86. We
may abstractly consider that set as a function:

EXECUTABLE INPUT OUTPUT

where INPUT is the set of all possible program inputs, and OUTPUT the set of all
possible program outputs. What this definition expresses is that a machine pro
defines a function that, for any possible input, should produce the corresponding outpu
Such functions are partial (hence the and the word “should” in the precedin
sentence) because a program may for some inputs enter into an infinite loop or recur
or crash, and hence fail to yield an output.

Now consider a compiler for Eiffel. It is a mechanism to transform Eiffel syste
into machine programs; mathematically this means that the compiler is t
implementation of a function compiler — a member of the set

EIFFEL_SYSTEM EXECUTABLE

Next consider an interpreter. Unlike a compiler, it is able to execute a system
directly without first translating it to another form. What you feed into such executio
not just the input but also the software itself; to do its job, the interpreter has an equa
need for both of these two elements.

| | |

| | | |

| | | |

| | | |

f f

f f

=∆ |

|

|

§32A.10 CURRYING FOR VISUAL DISPLAY 1076.12

preter
n they
ce.

ssed

ple
h a

heck

.

of the
 is
Looking at the interpreter properties from a mathematical perspective, we may understand
the interpreter as implementing a two-argument function interpreter, a member of the set

EIFFEL_SYSTEM × INPUT OUTPUT

Some software development environments provide both a compiler and an inter
for the same language. The goal is to let environment users use the interpreter whe
need fast turnaround, and the compiler when they need the highest possible performan

ISE Eiffel applies a more sophisticated form of this technique: its Melting Ice Technology
integrates both compiled and interpretative techniques, but the choice between the two kinds
is done automatically by the environment according to the needs of the moment, rather than
by users selecting one or the other.

The presence of both a compiler and an interpreter raises a tricky issue: how to
guarantee that the semantics is the same — in other words, that you will not get some
results when you are using the interpreter during development, and different ones when
you move to production and start relying on the compiler?

In the above framework the semantics compatibility requirement may be expre
simply: what we want is

32A.10 CURRYING FOR VISUAL DISPLAY

Let us return now to graphical application building. Currying provides us with a sim
solution to the problem of displaying multi-argument functions. Displaying suc
function directly in a tabular form is, as we saw, neither convenient nor convincing.

The tabular format is only satisfactory with two columns, one for the input and one
for the output — that is to say for single-argument functions, so that it is easy to c
visually for the function property. The solution, then, is to curry multi-argument
functions as many times as needed until we only have single-argument equivalents

Our earlier example was the display of the following function, with argument level 2:

{<< Hélène, UK>, >, <<Kiyoko, Japan>, >, <<Hélène, France>, >,

<<Kiyoko, Italy>, >, <<Helmut, Japan>, >}

Currying it means specializing on the first argument; or, to put it differently,
considering separately the country-to-shape correspondences induced by each
persons: the correspondence for Julie, the correspondence for Kiyoko and so on. Here
the curried version, one line per person, source sets alphabetically ordered:

{< Hélène, { <France, >, <UK, >}>,

<Helmut, { <Japan, >}>

<Kiyoko, { < Italy, >, < Japan, >}>}

The first element on each line is a person; the second is a finite function from
countries to shapes.

compiler = curry (interpreter)

|

THE CONCEPTS §32A.101076.13

ck to
ised

y be
uch

g or
case
 as

 Note
 basic
The visual representation readily adapts to this curried form: since we are ba
dealing with one-argument functions only, it suffices to nest the tabular display dev
for such functions:

For displaying an existing finite function on paper this nested technique ma
convenient if the function is not too large. With an interactive computer system, too m
nesting may lead to an impractical user interface, especially if you are buildin
expanding a function rather than just exploring an existing one. We may in his
replace nesting by zooming: a function of the above form may appear initially
something like

where the elements on the right are placeholders for the right-hand side functions.
that this figure includes again the argument and result holes introduced earlier as the
device enabling interactive users to build and modify the function.

UK

Japan

France
Hélène

Kiyoko
Italy

JapanHelmut

Hélène

Kiyoko

Helmut

§32A.11 FUNCTIONS AND CURRYING FOR EIFFELBUILD 1076.14

he
eted

get)
of the

ild’s
el of

reted

utton

 click
t of it.

on
curs in

 and
ts or

ple
ay be

to
-and-

See “States”, 1.4.6,
page 7.
If you want to work on one of the right-hand side function you will start t
corresponding tool (in the ISE Eiffel sense of this term). For example if the tool is targ
to the result — itself a function — of the curried function applied to Hélène, it will show:

Note the (filled) tool hole at the top left. It applies to the tool’s contents (its tar
as a hole; you can use it to drag-and-drop the entire function into the result hole
primary function — the top-right hole of the immediately preceding figure.

32A.11 FUNCTIONS AND CURRYING FOR EIFFELBUILD

The concepts introduced in this chapter are the mathematical basis for EiffelBu
approach to building GUI applications. In the Context-Event-Command-State mod
EiffelBuild, we define each state as a function in the set of states

STATE2 CONTEXT ✕ EVENT COMMAND

What this means is that a state is defined by how user actions will be interp
when the session is in that state. The domain of the function is the set of <context, event>
pairs that are recognized:

• What contexts are known to the system in that state, for example a certain b
and a certain window.

• What events will be meaningful for each of these contexts — for example a mouse
on the button, and a mouse movement that brings the cursor into the window or ou

For each <context, event> pair in the state function’s domain, the state functi
defines a result: the command that must be executed whenever the given event oc
the given context. For example if the button reads SAVE, a mouse click occurring in that
button should cause the Save command to be executed. Contexts, events, commands
states are all Eiffel objects, either extracted from a catalog of predefined elemen
instances of classes defined by the software developer.

An entire interactive application consists of one or more states. Many sim
applications will have just one state, but as we saw in the preceding chapter it m
desirable to have several states, interconnected through a transition diagram.

An essential part of building an application with EiffelBuild, then, will be
construct its states, that is to say to specify visually, through the environment’s drag
drop mechanism, what events should trigger what commands in what states.

UK

France

=∆ f

THE CONCEPTS§32A.111076.15

l

d the

en

e on
vent
ts.

dular

f

tate
 the
 to
Because states are two-argument functions, we should apply currying and its visua
counterpart. To define the set of states, then, we will not use STATE2 as defined above
but its curried version:

STATE1 CONTEXT EVENT COMMAND

(Remember that there are implicit parentheses around the rightmost two sets.)

We could of course have used currying on events rather than contexts, defining
states as members of the set

EVENT CONTEXT COMMAND

But this would be less convenient because of how interactive applications an
underlying toolkits are typically organized. For each kind of context, only a few events
make sense — such as “Click”, “Release” and “Activate” for a certain kind of button; so
the normal way to proceed is:

0 • Select a state st.

1 • Determine the list of contexts that are relevant for st; mathematically, this is the
domain of the function st.

2 • For each context ct in that list, determine the list of events that are applicable to ct;
mathematically, this is the domain of the function st (ct) — that is to say, the
function from events to commands that results from applying st to its domain
member ct.

3 • For each event ev in that list, determine the command that must be executed wh
ev occurs within ct for state st.

Although it would be possible to change this sequence of steps to specializ
events before contexts, this would mean that once we have chosen a state and an e
we may have to build a big function, since an event is often applicable to many contex
In contrast, once we have chosen a context, only a small number of events will typically
be applicable to a given context. So currying on contexts first yields a more mo
approach to the interactive construction of a state, with only one potentially large
function (the state), all the others (the context-command mappings) being typically small
even if there are many of them.

As a result a new development abstraction emerges, important to the practical
understanding of EiffelBuild: the behavior. A behavior is a member of the set o
functions

BEHAVIOR EVENT COMMAND

So the set STATE1 introduced above is CONTEXT BEHAVIOR; a state is a

function that associates a behavior (a finite function from events to commands) with each
one of a certain set of contexts.

To build a state is to build a curried two-argument function. In EiffelBuild, the S
Tool and the Behavior format of the Context Tool use the principles developed in
earlier sections by enabling you to associate a behavior with t every context applicable
a state.

=∆ f f

f f

=∆ f

f

	 MATHEMATICAL BACKGROUND
	32A � Mathematical background
	32A.1 OVERVIEW
	32A.2 FINITE SETS, CARTESIAN PRODUCT
	32A.3 RELATIONS
	32A.4 FUNCTIONS
	32A.5 FINITE FUNCTIONS
	32A.6 VISUALIZING A FINITE FUNCTION
	32A.7 DEALING WITH MULTI-ARGUMENT FUNCTIONS
	32A.8 CURRYING
	32A.9 A DIGRESSION: CORRECTNESS OF COMPILERS AND I...
	32A.10 CURRYING FOR VISUAL DISPLAY
	32A.11 FUNCTIONS AND CURRYING FOR EIFFELBUILD

