3

Modularity

From the goals of extendibility and reusability, two of the principal quality factors
introduced in chaptef, follows the need for flexible system architectures, made of
autonomous software components. This is why chaptatso introduced the term
modularityto cover the combination of these two quality factors.

Modular programming was once taken to mean the construction of programs a
assemblies of small pieces, usually subroutines. But such a technigque cannot bring re
extendibility and reusability benefits unless we have a better way of guaranteeing that tt
resulting pieces — themodules — are self-contained and organized in stable
architectures. Any comprehensive definition of modularity must ensure these properties

A software construction method is modular, then, if it helps designers produce
software systems made of autonomous elements connected by a coherent, simy
structure. The purpose of this chapter is to refine this informal definition by exploring
what precise properties such a method must possess to deserve the “modular” label. T
focus will be on design methods, but the ideas also apply to earlier stages of syste
construction (analysis, specification) and must of course be maintained at the
implementation and maintenance stages.

As it turns out, a single definition of modularity would be insufficient; as with
software quality, we must look at modularity from more than one viewpoint. This chapter
introduces a set of complementary properties: dinteria, five rulesand fiveprinciples
of modularity which, taken collectively, cover the most important requirements on a
modular design method.

For the practicing software developer, the principles and the rules are just a
important as the criteria. The difference is simply one of causality: the criteria are
mutually independent — and it is indeed possible for a method to satisfy one of them whil
violating some of the others — whereas the rules follow from the criteria and the
principles follow from the rules.

You might expect this chapter to begin with a precise description of what a module
looks like. This is not the case, and for a good reason: our goal for the exploration ¢
modularity issues, in this chapter and the next two, is precisely to analyze the propertie
which a satisfactory module structure must satisfy; so the form of modules will be &
conclusion of the discussion, not a premise. Until we reach that conclusion the wort

40 MODULARITY §3.1

“module” will denote the basic unit of decomposition of our systems, whatever it actually

is. If you are familiar with non-object-oriented methods you will probably think of the
subroutines present in most programming and design languages, or perhaps of packages
as present in Ada and (under a different name) in Modula. The discussion will lead in a
later chapter to the O-O form of module — the class — which supersedes these ideas. If
you have encountered classes and O-O techniques before, you should still read this chapter
to understand the requirements that classes address, a prerequisite if you want to use them
well.

3.1 FIVE CRITERIA

A design method worthy of being called “modular” should satisfy five fundamental
requirements, explored in the next few sections:

* Decomposability.
e Composability.
* Understandability.

« Continuity.

Protection.

Modular decomposability

A software construction method satisfies Modular Decomposability |if it
helps in the task of decomposing a software problem into a small numper of
less complex subproblems, connected by a simple structure, and independent
enough to allow further work to proceed separately on each of them

The process will often be self-repeating since each subproblem may still be complex
enough to require further decomposition.

Decomposabil-
ity

§3.1 FIVE CRITERIA 41

A corollary of the decomposability requiremendivision of labo: once you have
decomposed a system into subsystems you should be able to distribute work on tt
subsystems among different people or groups. This is a difficult goal since it limits tl
dependencies that may exist between the subsystems:

* You must keep such dependencies to the bare minimum; otherwise the developrr
of each subsystem would be limited by tlae of the work on the other subsystems.

e The dependencies must be known: if you fail to list all the relations betwee
subsystems, you may at the end of the project get a set of software elements
appear to work individually but cannot be put together to produce a complete syst:
satisfying the overall requirements of the original problem.

As discussed bel,w The most obviousexampleof a method meant to satisfy the decomposability
top-down designis criterion istop-down desigr. This method directs designers to start with a most abstrac
not as well suited to gagcription of the system’s function, and then to refine this view through successive ste
other modularity decomposing each subsystem at each step into a small number of simpler subsyst

criteria.
until all the remaining elements are of a sufficiently low level of abstraction to allow dire
implementation. The process may be modeled as a tree.

A top-down Topmost functional abstraction

hierarchy

Sequence

Loop Conditional

o

The term “temporal A typical counter-exampleis any method encouraging you to include, in each
cohesion” comes Software system that you produce, a global initialization module. Many modules in
from the method ~ system will need some kind of initialization — actions such as the opening of certain fil
known as structured or the initialization of certain variables, which the module must execute before it perforr
ﬁss'rg”s_eelthetb'b' its first directly useful tasks. It may seem a good idea to concentrate all such actions,
graphicaineies il modules of the system, in a module that initializes everything for everybody. Such
module will exhibit good “temporal cohesion” in that all its actions are executed at tf
same stage of the system’s execution. But to obtain this temporal cohesion the met
would endanger the autonomy of modules: you will have to grant the initialization modu
authorization to access many separate data structures, belonging to the various modul
the system and requiring specific initialization actions. This means that the author of |
initialization module will constantly have to peek into the internal data structures of ti
other modules, and interact with their authors. This is incompatible with th

decomposability criterion.

In the object-oriented method, every module will be responsible for the initialization of
its own data structures.

42 MODULARITY §3.1

Modular composability

A method satisfies Modular Composability if it favors the production of
software elements which may then be freely combined with each other to
produce new systems, possibly in an environment quite different from the
one in which they were initially developed.

Where decomposability was concerned with the derivation of subsystems from overall
systems, composability addresses the reverse process: extracting existing software
elements from the context for which they were originally designed, so as to use them again
in different contexts.

Q Q Composability
@ o —

@

A modular design method should facilitate this process by yielding software
elements that will be sufficiently autonomous — sufficiently independent from the
immediate goal that led to their existence — as to make the extraction possible.

Composability is directly connected with the goal of reusability: the aim is to find
ways to design software elements performing well-defined tasks and usable in widely
different contexts. This criterion reflects an old dream: transforming the software design
process into a construction box activity, so that we would build programs by combining
standard prefabricated elements.

» Example :: subprogram librarie. Subprogram libraries are designed as sets of
composable elements. One of the areas where they have been successful is numerical
computation, which commonly relies on carefully designed subroutine libraries to
solve problems of linear algebra, finite elements, differential equations etc.

* Example : Unix Shell conventior. Basic Unix commands operate on an input
viewed as a sequential character stream, and produce an output with the same
standard structure. This makes them potentially composable throu| operator
of the command language (“shellA | B represents a program which will taA’s
input, haveA process it, send the outputB as input, and have it processedB.y
This systematic convention favors the composability of software tools.

* Counter-examp!: preprocessol. A popular way to extend the facilities of
programming languages, and sometimes to correct some of their deficiencies, is to

§3.1 FIVE CRITERIA 43

The figure illustrat-
ing top-down design
was on pag41l.

See'ABOUT
SOFTWARE MAIN-
TENANCE”, 1.3,
page 17

Understan-
dability

use “preprocessors” that accept an extended syntax as input and map it into
standard form of the language. Typical preprocessors for Fortran and C supp
graphical primitives, extended control structures or database operations. Usua
however, such extensions are not compatible; then you cannot combine two of
preprocessors, leading to such dilemmas as whether to use graphics or database

Composability is independent of decomposability. In fact, these criteria are often
odds. Top-down design, for example, which we saw as a technique favorir
decomposability, tends to produce modules thainot easy to combine with modules
coming from other sources. This is because the method suggests developing each mc
to fulfill a specific requirement, corresponding to a subproblem obtained at some point
the refinement process. Such modules tend to be closely linked to the immediate con
that led to their development, and unfit for adaptation to other contexts. The meth
provides neither hints towards making modules more general than immediately requir
nor any incentives to do so; it helps neither avoid nor even just detect commonalities
redundancies between modules obtained in different parts of the hierarchy.

That composability and decomposability are both part of the requirements for
modular method reflects the inevitable mix of top-down and bottom-up reasoning —
complementarity that René Descartes had already noted almost four centuries ago
shown by the contrasting two paragraphs oDiscourseextract at the beginnin¢ partB.

Modular understandability

A method favors Modular Understandability if it helps produce software in
which a human reader can understand each module without having tg know
the others, or, at worst, by having to examine only a few of the others.

The importance of this criterion follows from its influence on the maintenance proces
Most maintenance activities, whether of the noble or not-so-noble category, invol
having to dig into existing software elements. A method can hardly be called modular i
reader of the software is unable to understand its elements separately.

44 MODULARITY §3.1

This criterion, like the others, applies to the modules of a system description at any
level: analysis, design, implementation.

* Counter-examplesequential dependencieAssume some modules have been so
designed that they will only function correctly if activated in a certain prescribed
order; for exampleR can only work properly if you execute it afterand beforeC,
perhaps because they are meant for use in “piped” form as in the Unix notation
encountered earlier:

AlB|C
Then it is probably hard to understadvithout understanding andC too.

In later chapters, the modular understandability criterion will help us addressSee alsglater in this
important questions: how to document reusable components; and how to index reichapter “Self-)
components so that software developers can retrieve them conveniently through q|E:gsrmeanon ’
The criterion suggests that information about a component, useful for documentati... _.
for retrieval, should whenever possible appear in the text of the component itself; tools for
documentation, indexing or retrieval can then process the component to extract the needed
pieces of information. Having the information includedeach component is preferable

to storing it elsewhere, for example in a database of informaboatcomponents.

Modular continuity

A method satisfies Modular Continuity if, in the software architectures| that
it yields, a small change in a problem specification will trigger a change of
just one module, or a small number of modules.

This criterion is directly connected to the general goal of extendibility. As emphasizisee‘Extendibility”,
an earlier chapter, change is an integral part of the software construction procesPagde 6
requirements will almost inevitably change as the project progresses. Continuity n

that small changes should affect individual modules in the structure of the system, rather

than the structure itself.

The term “continuity” is drawn from an analogy with the notion of a continuous
function in mathematical analysis. A mathematical function is continuous if (informally)
a small change in the argument will yield a proportionally small change in the result. Here
the function considered is the software construction method, which you can view as a
mechanism for obtaining systems from specifications:

software_construction_metho8pecification—» System

§3.1 FIVE CRITERIA 45

Continuity A

/\/V\/

This mathematical term only provides an analogy, since we lack formal notions
size for software. More precisely, it would be possible to define a generally acceptal
measure of what constitutes a “small” or “large” change to a program; but doing the sa
for the specifications is more of a challenge. If we make no pretense of full rigor, howev
the concepts should be intuitively clear and correspond to an essential requirement on
modular method.

This will be one of * Exampli1: symbolic constan. A sound style rule bars the instructions of a program
our principles of from using any numerical or textual constant directly; instead, they rely on symbol
style Symbolic names, and the actual values only appear in a constant deficonstaniin Pascal

Constant Principle or Ada, preprocessor macros inPARAMETEI! in Fortran 77, constant attributes in

age8s4.
bad the notation of this book). If the value changes, the only thing to update is tf
constant definition. This small but important rule is a wise precaution for continuit
since constants, in spite of their name, are remarkably prone to change.
See'Uniform * Example : the Uniform Access princip. :Another rule states that a single notation
Access”, page 55 should be available to obtain the features of an object, whether they are represer

as data fields or computed on demand. This property is sufficiently important |
warrant a separate discussion later in this chapter.

» Counter-example : using physical representatic.iA method in which program
designs are patterned after the physical implementation of data will yield desig
that are very sensitive to slight changes in the environment.

* Counter-example: static array. Languages such as Fortran or standard Pasca
which do not allow the declaration of arrays whose bounds will only be known at ru
time, make program evolution much harder.

Modular protection

A method satisfies Modular Protection if it yields architectures in which the
effect of an abnormal condition occurring at run time in a module will remain
confined to that module, or at worst will only propagate to a few neighboring
modules.

46 MODULARITY §3.2

The underlying issue, that of failures and errors, is central to software engineeringThe question of how
errors considered here are run-time errors, resulting from hardware failures, erroto handle abnormal
input or exhaustion of needed resources (for example memory storage). The criterio €@Ses is discussedin
not address the avoidance or correction of errors, but the aspect that is directly rele‘Oletall in chapterL2.
modularity: their propagation.

Protection
violation

« Example validating input at the sour.:A method requiring that you make everMore on thistopic in
“Assertions are not an

module that inputs data also responsible for checking their validity is goodinpm(:hecking mech-

modular protection. anism’, page 346

* Counter-exampl: undisciplined exceptio.Languages such as PL/lI, CLU, Ada _
. . . ~ ' ""On exception han-

C++ and Java support the notion of exception. An exception is a special SIgNEjing, see chaptet2.

may be “raised” by a certain instruction and “handled” in another, possibly rer

part of the system. When the exception is raised, control is transferred to the ha..u...

(Details of the mechanism vary between languages; Ada or CLU are more disciplined

in this respect than PL/1.) Such facilities make it possible to decouple the algorithms

for normal cases from the processing of erroneous cases. But they must be used

carefully to avoid hindering modular protection. The chapter on exceptions will

investigate how to design a disciplined exception mechanism satisfying the c.iterion

3.2 FIVE RULES

From the preceding criteria, five rules follow which we must observe to ensure
modularity:

» Direct Mapping.

* Few Interfaces.

Small interfaces (weak coupling).

Explicit Interfaces.
 Information Hiding.

The first rule addresses the connection between a software system and the external
systems with which it is connected; the next four all address a common issue — how
modules will communicate. Obtaining good modular architectures requires that
communication occur in a controlled and disciplined way.

83.2 FIVE RULES 47

Direct Mapping

Any software system attempts to address the needs of some problem domain. If you t
a good model for describing that domain, you will find it desirable to keep a cle:
correspondence (mapping) between the structure of the solution, as provided by
software, and the structure of the problem, as described by the model. Hence the first r

The modular structure devised in the process of building a software system
should remain compatible with any modular structure devised in the process
of modeling the problem domain.

This advice follows in particular from two of the modularity criteria:

e Continuity: keeping a trace of the problem’s modular structure in the solution’
structure will make it easier to assess and limit the impact of changes.

« Decomposability: if some work has already been done to analyze the modu
structure of the problem domain, it may provide a good starting point for the modul
decomposition of the software.

Few Interfaces

The Few Interfaces rule restricts the overall number of communication channels betwe
modules in a software architecture:

Every module should communicate with as few others as possiblg.

Communication may occur between modules in a variety of ways. Modules may c:
each other (if they are procedures), share data structures etc. The Few Interfaces rule i
the number of such connections.

Types of module
interconnection
structures

(A) (B) (©)

More precisely, if a system is composed n modules, then the number of
intermodule connections should remain much closer to the mini n—1, shown a«A)
in the figure, than to the maximuin (n — 1) /2, shown a¢{B).

This rule follows in particular from the criteria of continuity and protection: if there
are too many relations between modules, then the effect of a change or of an error r

48 MODULARITY §3.2

propagate to a large number of modules. It is also connected to composability (if you want
a module to be usable by itself in a new environment, then it should not depend on too
many others), understandability and decomposability.

Cas¢ (A) on the last figure shows a way to reach the minimum number of n <s,
1, through an extremely centralized structure: one master module; everybody else talks to
it and to it only. But there are also much more “egalitarian” structures, syC) which
has almost the same number of links. In this scheme, every module just talks to its two
immediate najhbors, but there is no central authority. Such a style of designtitea |
surprising at first since it does not conform to the traditional model of functional, top-down
design. But it can yield robust, extendible architectures; this is the kind of structure that
object-oriented techniques, properly applied, will tend to yield.

Small Interfaces

The Small Interfaces or “Weak Coupling” rule relates to the size of intermodule
connections rather than to their number:

If two modules communicate, they should exchange as little information as
possible

An electrical engineer would say that the channels of communication between
modules must be of limited bandwidth:

Communication

Xy . bandwidth
between
<+ 7 7 modules

The Small Interfaces requirement follows in particular from the criteria of continuity
and protection.

An extremecounter-examplis a Fortran practice which some readers will recognize:
the “garbagecommon block”. A common block in Fortran is a directive of the form

COMMON/common_nan/ variable;,... variable,

indicating that the variables listed are accessible not just to the enclosing module but also
to any other module which include:COMMON directive with the samcommon_nan.e

It is not infrequent to see Fortran systems whose every module includes an identical
gigantic COMMON directive, listing all significant variables and arrays so that every
module may directly use every piece of data.

83.2 FIVE RULES

49

TheBody of a block
is a sequence of
instruction:. The syn-

tax used here is com-

patible with the
notation used in sub-
sequent chapte, so

it is not exactly
Algol's. “ --" intro-
duces a comme. it

On clusters see
chapter2€. The
0-0 alternative to
nesting is studied in
“The architectural
role of selective
exports”, page 203

The problem, of course, is that every module may also misuse the common data,
hence that modules are tightly coupled to each other; the problems of modular contint
(propagation of changes) and protection (propagation of errors) are particularly nas
This time-honored technigque has nevertheless remained a favorite, no doubt accoun
for many a late-night debugging session.

Developers using languages with nested structures can suffer from similar troubl
With block structure as introduced by Algol and retained in a more restricted form t
Pascal, it is possible to include blocks, delimitedbegin ... end pairs, within other
blocks. In addition every block may introduce its own variables, which are onl
meaningful within the syntactic scope of the block. For example:

local-- Beginning of bloc B1
X, y: INTEGER
do

... Instructions oB1 ...

local -- Beginning of bloc B2
2 BOOLEAN
do
... Instructions 0'B2 ...
end --- of block B2

local -- Beginning of bloc B3
y, Z INTEGER
do
... Instructions 0B3 ...
end -- of block B3

... Instructions oB1 (continued....
end -- of block B1

Variablex is accessible to all instructions throughout this extract, whereas the tw
variables callez (oneBOOLEAN, the otheINTEGEF) have scopes limited B2 andB3
respectively. Likex, variabley is declared at the level B1, but its scope does not include
B3, where another variable of the same name (and also oINTEGEF) locally takes
precedence over the outermwy. In Pascal this form of block structure exists only for
blocks associated with routines (procedures and functions).

With block structure, the equivalent of the Fortran garbage common block is tt
practice of declaring all variables at the topmost level. (The equivalent in C-bas
languages is to introduce all variables as external.)

Block structure, although an ingenious idea, introduces many opportunities
violate the Small Interfaces rule. For that reason we will refrain from using it in the objec
oriented notation devised later in this book, especially since the experience of Simula,
object-oriented Algol derivative supporting block structure, shows that the ability to ne
classes is redundant with some of the facilities provided by inheritance. The architect

50 MODULARITY §3.2

of object-oriented software will involve three levels: a system is a set of clusters; a cluster

is a set of classes; a class is a set of features (attributes and routines). Clusters, an
organizational tool rather than a linguistic construct, can be nested to allow a project
leader to structure a large system in as many levels as necessary; but classes as well as
features have a flat structure, since nesting at either of those levels would cause
unnecessary complication.

Explicit Interfaces

With the fourth rule, we go one step further in enforcing a totalitarian regime upon the
society of modules: not only do we demand that any conversation be limited to few
participants and consist of just a few words; we also require that such conversations must
be held in public and loudly!

Whenever two moduleA andB communicate, this must be obvious from the
text of A or B or both.

Behind this rule stand the criteria of decomposability and composability (if you need
to decompose a module into several submodules or compose it with other modules, any
outside connection should be clearly visible), continuity (it should be easy to find out what
elements a potential change may affect) and understandability (how can you uncArstand
by itself if B can influence its behavior in some devious way?).

One of the problems in applying the Explicit Interfaces rule is that there is more to

intermodule coupling than procedure call; data sharing, in particular, is a source of
indirect coupling:

Data sharing

Module
B
accesses
Data
item
X

Assume that modulA modifies and modulB uses the same data itx. ThenA and
B are in fact strongly coupled throux even though there may be no apparent connection,
such as a procedure call, between them.

83.2 FIVE RULES

51

A moduleunder
Information
Hiding

Information Hiding

The rule of Information Hiding may be stated as follows:

The designer of every module must select a subset of the module’s properties
as the official information about the module, to be made available to authors
of client modules.

Application of this rule assumes that every module is known to the rest of tf
world (that is to say, to designers of other modules) through some official descriptic
or public properties.

Of course, the whole text of the module itself (program text, design text) could ser
as the description: it provides a correct view of the module siris the module! The
Information Hiding rule states that this should not in general be the case: the descript
should only includesome of the module’s properties. The rest should remain non-public
orsecre. Instead of public and secret properties, one may also talk of exported and priv
properties. The public properties of a module are also known ainterface of the
module (not to be confused with the user interface of a software system).

The fundamental reason behind the rule of Information Hiding is the continuit
criterion. Assume a module changes, but the changes apply only to its secret eleme
leaving the public ones untouched; then other modules who use it, calclients, will
not be affected. The smaller the public part, the higher the chances that changes to
module will indeed be in the secret part.

We may picture a module supporting Information Hiding as an iceberg; only the t
— the interface — is visible to the clients.

Public Part

Secret Part

52 MODULARITY §3.2

As a typical example, consider a procedure for retrieving the attributes associated
with a key in a certain table, such as a personnel file or the symbol table of a compiler. The
procedure will internally be very different depending on how the table is stored (sequential
array or file, hash table, binary or B-Tree etc.). Information hiding implies that uses of this
procedure should be independent of the particular implementation chosen. That way client
modules will not suffer from any change in implementation.

Information hiding emphasizes separation of function from implementation. Besides
continuity, this rule is also related to the criteria of decomposability, composability and
understandability. You cannot develop the modules of a system separately, combine
various existing modules, or understand individual modules, unless you know precisely
what each of them may and may not expect from the others.

Which properties of a module should be public, and which ones secret? As a general
guideline, the public part should include the specification of the module’s functionality;
anything that relates to the implementation of that functionality should be kept secret, so
as to preserve other modules from later reversals of implementation decisions.

This first answer is still fairly vague, however, as it does not tell us what issee chaptes, in par-
specification and what is the implementation; in fact, one might be tempted to reverdticular “Abstract
definition by stating that the specification consists of whatever public propertiesdata types and infor-
module has, and the implementation of its secrets! The object-oriented approach Wil[)naegfrll:"dmg ’
us a much more precise guideline thanks to the theory of abstract data types.

To understand information hiding and apply the rule properly, it is important to
avoid a common misunderstanding. In spite of its name, information hiding does not
imply protectionin the sense of security restrictions — physically prohibiting authors of
client modules from accessing the internal text of a supplier module. Client authors may
well be permitted to read all the details they want: preventing them from doing so may be
reasonable in some circumstances, but it is a project management decision which does not
necessarily follow from the information hiding rule. As a technical requirement,
information hiding means that client modules (whether or not their authors are permitted
to read the secret properties of suppliers) should only rely on the suppliers’ public
properties. More precisely, it should be impossible to write client modules whose correct
functioning depends on secret information.

In a completely formal approach to software construction, this definition would be stated See the comments on
as follows. To prove the correctness of a module, you will need to assume some conditional correct-
properties about its suppliers. Information hiding means that such proofs are only ness on pag4.
permitted to rely on public properties of the suppliers, never on their secret properties.
Consider again the example of a module providing a table searching mechaiuon..

Some client module, which might belong to a spreadsheet program, uses a table, and relies

on the table module to look for a certain element in the table. Assume further that the

algorithm uses a binary search tree implementation, but that this property is secret — not

part of the interface. Then you may or may not allow the author of the table searching

module to tell the author of the spreadsheet program what implementation he has used for

tables. This is a project management decision, or perhaps (for commercially released

software) a marketing decision; in either case it is irrelevant to the question of information

§3.3 FIVE PRINCIPLES 53

By default “Ada”

hiding. Information hiding means something else: teven if the author of the
spreadsheet program knoithat the implementation uses a binary search tree, he shou
be unable to write a client module which will only function correctly with this
implementation — and would not work any more if the table implementation was chang
to something else, such as hash coding.

One of the reasons for the misunderstanding mentioned above is the very te
“information hiding”, which tends to suggest physical protection. “Encapsulation”
sometimes used as a synonym for information hiding, is probably preferable in tf
respect, although this discussion will retain the more common term.

As a summary of this discussion: the key to information hiding is not manageme

alwaysmeansthe mostor marketing policies as to who may or may not access the source text of a module,
widespread formofthe gtrict language rule: to define what access rights a module has on properties of i

language (83), not the

more recent Ada 95.
Chapter32 presents
both versions.

suppliers. As explained in the next chapter, “encapsulation languages” such as Ada
Modula-2 made the first steps in the right direction. Object technology will bring a mor
complete solution.

3.3 FIVE PRINCIPLES

From the preceding rules, and indirectly from the criteria, five principles of softwar
construction follow:

e The Linguistic Modular Units principle.

L]

The Self-Documentation principle.

The Uniform Access principle.

e The Open-Closed principle.

The Single Choice principle.

Linguistic Modular Units

The Linguistic Modular Units principle expresses that the formalism used to descril
software at various levels (specifications, designs, implementations) must support
view of modularity retained:

Linguistic Modular Units principle

Modules must correspond to syntactic units in the language used|

The language mentioned may be a programming language, a design languag
specification language etc. In the case of programming languages, modules should
separately compilable.

54 MODULARITY §3.3

What this principle excludes at any level — analysis, design, implementation — is
combining a method that suggests a certain module concept and a language that does not
offer the corresponding modular construct, forcing software developers to perform manual
translation or restructuring. It is indeed not uncommon to see companies hoping to apply
certain methodological concepts (such as modules in the Ada sense, or object-oriented
principles) but then implement the result in a programming language such as Pascal or C
which does not support them. Such an approach defeats several of the modularity criteria:

« Continuity: if module boundaries in the final text do not correspond to the logical
decomposition of the specification or design, it will be difficult or impossible to
maintain consistency between the various levels when the system evolves. A change
of the specification may be considered small if it affects only a small number of
specification modules; to ensure continuity, there must be a direct correspondence
between specification, design and implementation modules.

» Direct Mapping: to maintain a clear correspondence between the structure of the
model and the structure of the solution, you must have a clear syntactical
identification of the conceptual units on both sides, reflecting the division suggested
by your development method.

« Decomposability: to divide system development into separate tasks, you need to
make sure that every task results in a well-delimited syntactic unit; at the
implementation stage, these units must be separately compilable.

e Composability: how could we combine anything other than modules with
unambiguous syntactic boundaries?

» Protection: you can only hope to control the scope of errors if modules are
syntactically delimited.

Self-Documentation

Like the rule of Information Hiding, the Self-Documentation principle governs how we
should document modules:

Self-Documentation principle

The designer of a module should strive to make all information about the
module part of the module itself.

What this precludes is the common situation in which information about the module
is kept in separate project documents.

The documentation under review hereénternal documentation about components of “About documen-
the software, nouser documentation about the resulting product, which may require tation”, page 1«
separate products, whether paper, CD-ROM or Web pages — although, as noted in the

discussion of software quality, one may see in the modern trend towards providing more

and more on-line help a consequence of the same general idea.

The most obvious justification for the Self-Documentation principle is the criterion
of modular understandability. Perhaps more important, however, is the role of this

§3.3 FIVE PRINCIPLES 55

“Using assertions

for documentation:
the short form of a
class”, page 39. See
also chapte2Z and
its last two exercises.

Also known as the
Uniform Reference
principle.

principle in helping to meet the continuity criterion. If the software and its documentatic
are treated as separate entities, it is difficult to guarantee that they will remain compati
— “in sync” — when things start changing. Keeping everything at the same plac
although not a guarantee, is a good way to help maintain this compatibility.

Innocuous as this principle may seem at first, it goes against much of what t
software engineering literature has usually suggested as good software developn
practices. The dominant view is that software developers, to deserve the title of softw
engineers, need to do what other engineers are supposed to: produce a kilogram of p
for every gram of actual deliverable. The encouragement to keep a record of the softw
construction process is good advice — but not the implication that software and
documentation are different products.

Such an approach ignores the specific property of software, which again and ag
comes back in this discussion: its changeability. If you treat the two products as separ
you risk finding yourself quickly in a situation where the documentation says one thir
and the software does something else. If there is any worse situation than having
documentation, it must be having wrong documentation.

A major advance of the past few years has been the appearequality standard for
software, such as ISO certification, the “2167” standard and its successors from the US
Department of Defense, and the Capability Maturity Model of the Software Engineering
Institute. Perhaps because they often sprang out of models from other disciplines, they
tend to specify a heavy paper trail. Several of these standards could have a stronger effect
on software quality (beyond providing a mechanism for managers to cover their bases in
case of later trouble) by enforcing the Self-Documentation principle.

This book will draw on the Self-Documentation principle to define a method fo
documenting classes — the modules of object-oriented software construction — tl
includes the documentation of every module in the module itself. Not that the nisxdule
its documentation: there is usually too much detail in the software text to make it suital
as documentation (this was the argument for information hiding). Instead, the modt
shouldcontainits documentation.

In this approach software becomes a single product that supports mviews.
One view, suitable for compilation and execution, is the full source code. Another is t
abstract interface documentation of each module, enabling software developers to w
client modules without having to learn the module’s own internals, in accordance with t
rule of Information Hiding. Other views are possible.

We will need to remember this rule when we examine the question of how |
document the classes of object-oriented software construction.

Uniform Access

Although it may at first appear just to address a notational issue, the Uniform Acce
principle is in fact a design rule which influences many aspects of object-oriented des|
and the supporting notation. It follows from the Continuity criterion; you may also viev
it as a special case of Information Hiding.

56 MODULARITY §3.3

Letx be a name used to access a certain data item (what will later be called an object)
andf the name of a feature applicablex. (A feature is an operation; this terminology will
also be defined more precisely.) For examx might be a variable representing a bank
account, ancf the feature that yields an account’s current balance. Uniform Access
addresses the question of how to express the result of apf to x, using a notation that
does not make any premature commitment as tof is implemented.

In most design and programming languages, the expression denoting the application
of f to x depends on what implementation the original software developer has chosen for
featuref: is the value stored along wix, or must it be computed whenever requested?
Both techniques are possible in the example of accounts and their balances:

Al -« You may represent the balance as one of the fields of the record describing each
account, as shown in the figure. With this technique, every operation that changes
the balance must take care of updatingbalancefield.

A2 « Oryou may define a function which computes the balance using other fields of the
record, for example fields representing the lists of withdrawals and deposits. With
this technique the balance of an account is not stored (therdbalancefield) but
computed on demand.

(A1)

deposits_list —

for a bank

f‘{ | account

Two
F_* F_* | representation
I

| |

withdrawals_list —

(A2) |

deposits_list

B o N
withdrawals_list —4| |_| |_| |_| |

A common notation, in languages such as Pascal, Ada, C, C++ and Jave,f ines
caseAl andf (x) in caseA2.

Choosing between representatioAl and A2 is a spacdime tradeoff: one
economizes on computation, the other on storage. The resolution of this tradeoff in favor
of one of the solutions is typical of representation decisions that developers often reverse
at least once during a project’s lifetime. So for continuity’s sake it is desirable to have a
feature access notation that does not distinguish between the two cases; then if you are in
charge ox’s implementation and change your mind at some stage, it will not be necessary
to change the modules that tf. This is an example of the Uniform Access principle.

§3.3 FIVE PRINCIPLES 57

In its general form the principle may be expressed as:

Uniform Access principle

All services offered by a module should be available through a uniform
notation, which does not betray whether they are implemented through
storage or through computation.

Few languages satisfy this principle. An older one that did was Algol W, where bo
the function call and the access to a field were wria (x). Object-oriented languages
should satisfy Uniform Access, as did the first of them, Simula 67, whose notaxicn is
in both cases. The notation developed in C will retain this convention.

The Open-Closed principle

Another requirement that any modular decomposition technique must satisfy is the Op
Closed principle:

Open-Closed principle

Modules should be both open and closed.

The contradiction between the two terms is only apparent as they correspond to gc
of a different nature:

* A module is said to be open ifitis still available for extension. For example, it shoul
be possible to expand its set of operations or add fields to its data structures.

* Amodule is said to be closed if it is available for use by other modules. This assun
that the module has been given a well-defined, stable description (its interface in
sense of information hiding). At the implementation level, closure for a module als
implies that you may compile it, perhaps store it in a library, and make it availab
for others (itsclients) to use. In the case of a design or specification module, closin
a module simply means having it approved by management, adding it to the projec
official repository of accepted software items (often called the prbaseling), and
publishing its interface for the benefit of other module authors.

The need for modules to be closed, and the need for them to remain open, arise
differentreasons. Openness is a natural concern for software developers, as they know
itis almost impossible to foresee all the elements — data, operations — that a module:
need in its lifetime; so they will wish to retain as much flexibility as possible for futur
changes and extensions. But it is just as necessary to close modules, especially fro
project manager’s viewpoint: in a system comprising many modules, most will depend
some others; a user interface module may depend on a parsing module (for par:
command texts) and on a graphics module, the parsing module itself may depend ¢

58 MODULARITY §3.3

lexical analysis module, and so on. If we never closed a module until we were sure it
includes all the needed features, no multi-module software would ever reach completion:
every developer would always be waiting for the completion of someone else’s job.

With traditional techniques, the two goals are incompatible. Either you keep a
module open, and others cannot use it yet; or you close it, and any change or extension can
trigger a painful chain reaction of changes in many other modules, which relied on the
original module directly or indirectly.

The two figures below illustrate a typical situation where the needs for open and
closed modules are hard to reconcile. In the first figure, moA is used by client
modulesB, C, D, which may themselves have their own clieg, F, ...).

A module and

@ Client of

Later on, however, the situation is disrupted by the arrival of new clierB' and
others — which need an extended or adapted versiA, which we may ca A"

D@D =
D

=3
- G0

With non-O-O methods, there seem to be only two solutions, equally unsatisfactory:

N1leYou may adapt moduleA so that it will offer the extended or modified
functionality (A') required by the new clients.

N2 ¢ You may also decide to leaw as it is, make a copy, change the module’'s name
to A'in the copy, and perform all the necessary adaptations on the new module.
With this techniqu A' retains no further connection A.

§3.3 FIVE PRINCIPLES 59

ExerciseE3.6, page
66, asks you to dis-

cuss how much need

will remain for con-
figuration manage-
ment in an O-0
contex.

The potential for disaster with solutiN1 is obvious A may have been around for

a long time and have many clients suclB, C andD. The adaptations needed to satisfy
the new clients’ requirements may invalidate the assumptions on the basis of which
old ones useA; if so the change tA may start a dramatic series of changes in clients,
clients of clients and so on. For the project manager, this is a nightmare come tr
suddenly, entire parts of the software that were supposed to have been finished and se
off ages ago get reopened, triggering a new cycle of development, testing, debugging
documentation. If many a software project manager has the impression of living t
Sisyphus syndrome — the impression of being sentenced forever to carry a rock to the
of the hill, only to see it roll back dowsach time — it is for a large part because of the
problems caused by this need to reopen previously closed modules.

On the surface, solutioN2 seems better: it avoids the Sisyphus syndrome since |
does not require modifying any existing software (anything in the top half of the la
figure). But in fact this solution may be even more catastrophic since it only postpones:
day of reckoning. If you extrapolate its effects to many modules, many modificatio
requests and a long period, the consequences are appalling: an explosion of variants ¢
original modules, many of them very similar to each other although never quite identic

In many organizations, this abundance of modules, not matched by abundance
available functionality (many of the apparent variants being in fact quasi-clones), crea
a hugeconfiguration manageme problem, which people attempt to address through the
use of complex tools. Useful as these tools may be, they offer a cure in an area where
first concern should be prevention. Better avoid redundancy than manage it.

Configuration management will remain useful, of course, if only to find the modules
which must be reopened after a change, and to avoid unneeded module recompilations.

But how can we have modules that are both open and closed? How can vA: kee
and everything in the top part of the figure unchanged, while provA' to the bottom
clients, and avoiding duplication of software? The object-oriented method will offer
particularly elegant contribution thanks to inheritance.

The detailed study of inheritance appears in later chapters, but here is a preview
the basic idea. To get us out of ichange or reddilemma, inheritance will allow us to
define a new modulA' in terms of an existing moduA by stating the differences only.
We will write A" as

class A'inherit

redefinef, g, ... end

feature
fis ...

gis...

uis...

end

60 MODULARITY §3.3

where thefeature clause contains both the definition of the new features speciA', to
such acu, and the redefinition of those features (suclf, g, ...) whose form inA' is
different from the one they had A.

The pictorial representation for inheritance will use an arrow from the heir (the new
class, hereA') to the parent (hetA):

Adapting a
(D) D)e—(F) [lowma

clients
@ * Inherits from

- =D

Thanks to inheritance, O-O developers can adopt a much more incremental approach
to software development than used to be possible with earlier methods.

One way to describe the open-closed principle and the consequent object-oriented
techniques is to think of them asorganized hackin. “Hacking” is understood here as a
slipshod approach to building and modifying code (notin the more recent sense of breaking
into computer networks, which, organized or not, no one should condone). The hacker may
seem bad but often his heart is pure. He sees a useful piece of software, \almosts
able to address the needs of the moment, more general than the software’s original purpose.
Spurred by a laudable desire not to redo what can be reused, our hacker starts modifying
the original to add provisions for new cases. The impulse is good but the effect is often to
pollute the software with many clauses of the fdf that special cas then..., so that
after a few rounds of hacking, perhaps by a few different hackers, the software starts
resembling a chunk of Swiss cheese that has been left outside for too long in August (if the
tastelessness of this metaphor may be forgiven on the grounds that it does its best to convey
the presence in such software of both holes and growth).

The organized form of hacking will enable us to cater to the variants without
affecting the consistency of the original version.

A word of caution: nothing in this discussion suggedisorganized hacking.
In particular:

« If you have control over the original software and can rewrite it so that it will address
the needs of several kinds of client at no extra complication, you should do so.

§3.3 FIVE PRINCIPLES 61

* Neither the Open-Closed principle nor redefinition in inheritance is a way to addre
design flaws, let alone buclf there is something wrong with a mogc, you should
fix it — not leave the original as it is and try to correct the problem in a derive
module. (The only potential exception to this rule is the case of flawed softwa
which you are not at liberty to modify.) The Open-Closed principle and associate
techniques are intended for the adaptation of healthy modules: modules th
although they may not suffice for some new uses, meet their own well-define
requirements, to the satisfaction of their owients.

Single Choice

The last of the five modularity principles may be viewed as a consequence of both
Open-Closed and Information Hiding rules.

Before examining the Single Choice principle in its full generality, let us look at :
typical example. Assume you are building a system to manage a library (in the nc
software sense of the term: a collection of books and other publications, not softw:
modules). The system will manipulate data structures representing publications. You n
have declared the corresponding type as follows in Pascal-Ada syntax:

type PUBLICATION=
record
authol, title: STRING,
publication_yea: INTEGER
cas¢ pubtype (book, journal, conference_proceedin) of
boolk: (publishe: STRINC();
journal: (volumeg, issue: STRINCQ);
proceeding: (editor, place: STRIN(C) -- Conference proceedings
end

This particular form uses the Pascal-Ada notion of “record type with variants” t
describe sets of data structures with some fields (autho, title, publication_yea)
common to all instances, and others specific to individual variants.

The use of a particular syntax is not crucial here; Algol 68 and C provide an equivalent
mechanism through the notion of union type. A union type is aT.defined as the union

of pre-existing typeA, B, ...: a value of typ T is either a value of tygA, or a value of
typeB, ... Record types with variants have the advantage of clearly associating a tag, here
bool, journal, conference_proceedin, with each variant.

Let A be the module that contains the above declaration or its equivalent usi
another mechanism. As long A is considered open, you may add fields or introduce new
variants. To enab A to have clients, however, you must close the module; this means th
you implicitly consider that you have listed all the relevant fields and variantB be a
typical client ofA. B will manipulate publications through a variable such as

p: PUBLICATION

62 MODULARITY §3.3

and, to do just about anything useful wp, will need to discriminate explicitly between
the various cases, as in:

case p of
bool: ... Instructions which may access the f plqpublisher...
journal: ... Instructions which may access fie p.svolume, p.issue...
proceeding: ... Instructions which may access fie pseditor, p. place...
end

The case instruction of Pascal and Ada comes in handy here; it is of course on
purpose that its syntax mirrors the form of the declaration of a record type with variants.
Fortran and C will emulate the effect through multi-target goto instructswitch in C).

In these and other languages a multi-branch conditional instrudf ... then ... elseif
... elseitf ... else ... end) will also do the job.

Aside from syntactic variants, the principal observation is that to perform such a
discrimination every client must know the exact list of variants of the notion of publication
supported byA. The consequence is easy to foresee. Sooner or later, you will realize the
need for a new variant, such as technical reports of companies and universities. Then you
will have to extend the definition of tyjPUBLICATION in moduleA to support the new
case. Fair enough: you have modified the conceptual notion of publication, so you should
update the corresponding type declaration. This change is logical and inevitable. Far
harder to justify, however, is the other consequence: any clieA, such aB, will also
require updating if it used a structure such as the above, relying on an explicit list of cases
for p. This may, as we have seen, be the case for most clients.

What we observe here is a disastrous situation for software change and evolution:
a simple and natural addition may cause a chain reaction of changes across many client
modules.

The issue will arise whenever a certain notion admits a number of variants. Here the
notion was “publication” and its initial variants were book, journal article, conference
proceedings; other typical examples include:

* In a graphics system: the notion of figure, with such variants as polygon, circle,
ellipse, segment and other basic figure types.

« In a text editor: the notion of user command, with such variants as line insertion, line
deletion, character deletion, global replacement of a word by another.

< In a compiler for a programming language, the notion of language construct, with
such variants as instruction, expression, procedure.

In any such case, we must accept the possibility that the list of variants, although
fixed and known at some point of the software’s evolution, may later be changed by the
addition or removal of variants. To support our long-term, software engineering view of
the software construction process, we must find a wiprotect the software’s structure
against the effects of such changes. Hence the Single Choice principle:

§3.3 FIVE PRINCIPLES

63

Single Choice principle

Whenever a software system must support a set of alternatives, one and only
one module in the system should know their exhaustive list.

By requiring that knowledge of the list of choices be confined to just one module, v

prepare the scene for later changes: if variants are added, we will only have to update
module which has the information — the point of single choice. All others, in particule
its clients, will be able to continue their business as usual.

See'DYNAMIC

Once again, as the publications example shows, traditional methods do not prov

BINDING”, 14.4, a solution; once again, object technology will show the way, here thanks to two techniqt
page 48) connected with inheritance: polymorphism and dynamic binding. No sneak preview
this case, however; these techniques must be understood in the context of the full mett

See the second figure
on pagess.

The Single Choice principle prompts a few more comments:

The number of modules that know the list of choices should be, according to t
principle, exactly one. The modularity goals suggest that we ‘at most one
module to have this knowledge; but then it is also clealat least onemodule must
possess it. You cannot write an editor unless at least one component of the sys
has the list of all supported commands, or a graphics system unless at least
component has the list of all supported figure types, or a Pascal compiler unless
least one component “knows” the list of Pascal constructs.

Like many of the other rules and principles studied in this chapter, the principle
aboutdistribution of knowledge in a software system. This question is indeed
crucial to the search for extendible, reusable software. To obtain solid, durat
system architectures you must take stringent steps to limit the amount of informati
available to each module. By analogy with the methods employed by certain hum
organizations, we may call thisneed-to-know policy: barring every module from

accessing any information that is not strictly required for its proper functioning.

You may view the Single Choice principle as a direct consequence of the Ope
Closed principle. Consider the publications example in light of the figure the
illustrated the need for open-closed moduA is the module which includes the
original declaration of typPUBLICATION, the client B, C, ... are the modules that
relied on the initial list of variant<A' is the updated version Al offering an extra
variant (technical reports).

You may also understand the principle as a strong form of Information Hiding. Tt
designer of supplier modules suchA andA' seeks to hide information (regarding
the precise list of variants available for a certain notion) from the clients.

64 MODULARITY §3.4

3.4 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

e The choice of a proper module structure is the key to achieving the aims of
reusability and extendibility.

« Modules serve for both software decomposition (the top-down view) and software
composition (bottom-up).

« Modular concepts apply to specification and design as well as implementation.

< A comprehensive definition of modularity must combine several perspectives; the
various requirements may sometimes appear at odds with each other, as with
decomposability (which encourages top-down methods) and composability (which
favors a bottom-up approach).

e Controlling the amount and form of communication between modules is a
fundamental step in producing a good modular architecture.

e The long-term integrity of modular system structures requires information hiding,
which enforces a rigorous separation of interface and implementation.

< Uniform access frees clients from internal representation choices in their suppliers.
* A closed module is one that may be used, through its interface, by client modules.
* An open module is one that is still subject to extension.

« Effective project management requires support for modules that are both open and
closed. But traditional approaches to design and programming do not permit this.

* The principle of Single Choice directs us to limit the dissemination of exhaustive
knowledge about variants of a certain notion.

3.5 BIBLIOGRAPHICAL NOTES

The design method known as “structured desi[Yourdon 1979 emphasized the
importance of modular structures. It was based on an analysis of module “cohesion” and
“coupling”. But the view of modules implicit in structured design was influenced by the
traditional notion of subroutine, which limits the scope of the discussion.

The principle of uniform access comes originally (under the name “uniform
reference”) fror [Geschke 197 |

The discussion of uniform access cited the Algol W language, a successor to Algol
60 and forerunner to Pascal (but offering some interesting mechanisms not retained in
Pascal), designed by Wirth and Hoare and describ[Hoare 196¢€.

Information hiding was introduced in two milestone articles by C Parna{Parnas
1972 [Parnas 1972i]

8E3.1 EXERCISES 65

Configuration management tools that will recompile the modules affected b
modifications in other modules, based on an explicit list of module dependencies,
based on the ideas of the Make tool, originally for | [Feldman 197¢. Recent tools —
there are many on the market — have added considerable functionality to the basic id

Some of the exercises below ask you to develop metrics to evaluate quantitativ
the various informal measures of modularity developed in this chapter. For some resi
in O-O metrics, see the work of Christine Ming[Mingins 1993 [Mingins 1995 and
Brian Henderson-Selle[Henderson-Sellers 199¢.a]

EXERCISES

E3.1 Modularity in programming languages

Examine the modular structures of any programming language which you know well a
assess how they support the criteria and principles developed in this chapter.
E3.2 The Open-Closed principle (for Lisp programmers)

Many Lisp implementations associate functions with function names at run time ratf
than statically. Does this feature make Lisp more supportive of the Open-Closed princi
than more static languages?

E3.3 Limits to information hiding

Can you think of circumstances where information hiding shmnot be applied to
relations between modules?

E3.4 Metrics for modularity (term project)

The criteria, rules and principles of modularity of this chapter were all introduced throug
gualitative definitions. Some of them, however, may be amenable to quantitative analy:
The possible candidates include:

e Modular continuity.

* Few Interfaces.

Small Interfaces.

Explicit Interfaces.
* Information Hiding.
« Single Choice.

Explore the possibility of developing modularity metrics to evaluate how modular

software architecture is according to some of these viewpoints. The metrics should
size-independent: increasing the size of a system without changing its modular struct
should not change its complexity measures. (See also the next exercise.)

66 MODULARITY 8E3.5

E3.5 Modularity of existing systems

Apply the modularity criteria, rules and principles of this chapter to evaluate a system to
which you have access. If you have answered the previous exercise, apply any proposed
modularity metric.

Can you draw any correlations between the results of this analysis (qualitative,
guantitative or both) and assessments of structural complexity for the systems under study,
based either on informal analysis or, if available, on actual measurements of debugging
and maintenance costs?

E3.6 Configuration management and inheritance

(This exercise assumes knowledge of inheritance techniques described in the rest of this
book. It is not applicable if you have read this chapter as part of a first, sequential reading
of the book.)

The discussion of the open-closed principle indicated that in non-object-oriented
approaches the absence of inheritance places undue burden on configuration management
tools, since the desire to avoid reopening closed modules may lead to the creation of too
many module variants. Discuss what role remains for configuration management in an
object-oriented environment where inheritais present, and more generally how the use

of object technology affects the problem of configuration management.

If you are familiar with specific configuration management tools, discuss how they
interact with inheritance and other principles of O-O development.

	3 3 Modularity
	3.1 FIVE CRITERIA
	Modular decomposability
	Decomposability
	A top-down hierarchy

	Modular composability
	Composability

	Modular understandability
	Understan- dability

	Modular continuity
	Continuity

	Modular protection
	Protection violation

	3.2 FIVE RULES
	Direct Mapping
	Few Interfaces
	Types of module interconnection structures

	Small Interfaces
	Communication bandwidth between modules

	Explicit Interfaces
	Data sharing

	Information Hiding
	A module under Information Hiding

	3.3 FIVE PRINCIPLES
	Linguistic Modular Units
	Linguistic Modular Units principle

	Self-Documentation
	Self-Documentation principle

	Uniform Access
	Two representation for a bank account
	Uniform Access principle

	The Open-Closed principle
	Open-Closed principle
	A module and its clients
	Old and new clients
	Adapting a module to new clients

	Single Choice
	Single Choice principle

	3.4 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
	3.5 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E3.1 Modularity in programming languages
	E3.2 The Open-Closed principle (for Lisp programme...
	E3.3 Limits to information hiding
	E3.4 Metrics for modularity (term project)
	E3.5 Modularity of existing systems
	E3.6 Configuration management and inheritance

