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From the goals of extendibility and reusability, two of the principal quality fact
introduced in chapter 1, follows the need for flexible system architectures, made
autonomous software components. This is why chapter 1 also introduced the term
modularity to cover the combination of these two quality factors. 

Modular programming was once taken to mean the construction of program
assemblies of small pieces, usually subroutines. But such a technique cannot brin
extendibility and reusability benefits unless we have a better way of guaranteeing th
resulting pieces — the modules — are self-contained and organized in stab
architectures. Any comprehensive definition of modularity must ensure these prope

A software construction method is modular, then, if it helps designers pro
software systems made of autonomous elements connected by a coherent, 
structure. The purpose of this chapter is to refine this informal definition by explo
what precise properties such a method must possess to deserve the “modular” lab
focus will be on design methods, but the ideas also apply to earlier stages of s
construction (analysis, specification) and must of course be maintained a
implementation and maintenance stages. 

As it turns out, a single definition of modularity would be insufficient; as w
software quality, we must look at modularity from more than one viewpoint. This cha
introduces a set of complementary properties: five criteria, five rules and five principles
of modularity which, taken collectively, cover the most important requirements o
modular design method. 

For the practicing software developer, the principles and the rules are ju
important as the criteria. The difference is simply one of causality: the criteria
mutually independent — and it is indeed possible for a method to satisfy one of them
violating some of the others — whereas the rules follow from the criteria and
principles follow from the rules. 

You might expect this chapter to begin with a precise description of what a mo
looks like. This is not the case, and for a good reason: our goal for the explorati
modularity issues, in this chapter and the next two, is precisely to analyze the prop
which a satisfactory module structure must satisfy; so the form of modules will 
conclusion of the discussion, not a premise. Until we reach that conclusion the 
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“module” will denote the basic unit of decomposition of our systems, whatever it act
is. If you are familiar with non-object-oriented methods you will probably think of 
subroutines present in most programming and design languages, or perhaps of pa
as present in Ada and (under a different name) in Modula. The discussion will lea
later chapter to the O-O form of module — the class — which supersedes these id
you have encountered classes and O-O techniques before, you should still read this 
to understand the requirements that classes address, a prerequisite if you want to u
well.

3.1  FIVE CRITERIA 

A design method worthy of being called “modular” should satisfy five fundame
requirements, explored in the next few sections: 

• Decomposability. 

• Composability. 

• Understandability. 

• Continuity. 

• Protection. 

Modular decomposability

The process will often be self-repeating since each subproblem may still be com
enough to require further decomposition.

A software construction method satisfies Modular Decomposability if it
helps in the task of decomposing a software problem into a small number of
less complex subproblems, connected by a simple structure, and independent
enough to allow further work to proceed separately on each of them
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As discussed below, 
top-down design is
not as well suited to
other modularity 
criteria.

A top-down 
hierarchy

The term “temporal
cohesion” comes 
from the method 
known as structure
design; see the bib-
liographical notes.
A corollary of the decomposability requirement is division of labor: once you have
decomposed a system into subsystems you should be able to distribute work on
subsystems among different people or groups. This is a difficult goal since it limits
dependencies that may exist between the subsystems: 

• You must keep such dependencies to the bare minimum; otherwise the develo
of each subsystem would be limited by the pace of the work on the other subsystem

• The dependencies must be known: if you fail to list all the relations betw
subsystems, you may at the end of the project get a set of software elemen
appear to work individually but cannot be put together to produce a complete sy
satisfying the overall requirements of the original problem. 

The most obvious example of a method meant to satisfy the decomposabil
criterion is top-down design. This method directs designers to start with a most abst
description of the system’s function, and then to refine this view through successive 
decomposing each subsystem at each step into a small number of simpler subsy
until all the remaining elements are of a sufficiently low level of abstraction to allow d
implementation. The process may be modeled as a tree.

A typical counter-example is any method encouraging you to include, in ea
software system that you produce, a global initialization module. Many modules
system will need some kind of initialization — actions such as the opening of certain
or the initialization of certain variables, which the module must execute before it perf
its first directly useful tasks. It may seem a good idea to concentrate all such action
all modules of the system, in a module that initializes everything for everybody. Su
module will exhibit good “temporal cohesion” in that all its actions are executed a
same stage of the system’s execution. But to obtain this temporal cohesion the m
would endanger the autonomy of modules: you will have to grant the initialization mo
authorization to access many separate data structures, belonging to the various mod
the system and requiring specific initialization actions. This means that the author 
initialization module will constantly have to peek into the internal data structures o
other modules, and interact with their authors. This is incompatible with 
decomposability criterion. 

In the object-oriented method, every module will be responsible for the initialization of
its own data structures.
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Composability
Modular composability

Where decomposability was concerned with the derivation of subsystems from o
systems, composability addresses the reverse process: extracting existing so
elements from the context for which they were originally designed, so as to use them
in different contexts.

A modular design method should facilitate this process by yielding softw
elements that will be sufficiently autonomous — sufficiently independent from 
immediate goal that led to their existence — as to make the extraction possible. 

Composability is directly connected with the goal of reusability: the aim is to 
ways to design software elements performing well-defined tasks and usable in w
different contexts. This criterion reflects an old dream: transforming the software d
process into a construction box activity, so that we would build programs by comb
standard prefabricated elements. 

• Example 1: subprogram libraries. Subprogram libraries are designed as sets
composable elements. One of the areas where they have been successful is nu
computation, which commonly relies on carefully designed subroutine librarie
solve problems of linear algebra, finite elements, differential equations etc. 

• Example 2: Unix Shell conventions. Basic Unix commands operate on an inp
viewed as a sequential character stream, and produce an output with the
standard structure. This makes them potentially composable through the | operator
of the command language (“shell”): A | B represents a program which will take A’s
input, have A process it, send the output to B as input, and have it processed by B.
This systematic convention favors the composability of software tools. 

• Counter-example: preprocessors. A popular way to extend the facilities o
programming languages, and sometimes to correct some of their deficiencies

A method satisfies Modular Composability if it favors the production of
software elements which may then be freely combined with each other to
produce new systems, possibly in an environment quite different from the
one in which they were initially developed.
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The figure illustrat-
ing top-down design
was on page 41.

See “ABOUT 
SOFTWARE MAIN
TENANCE”, 1.3, 
page 17.

Understan-
dability
use “preprocessors” that accept an extended syntax as input and map it in
standard form of the language. Typical preprocessors for Fortran and C su
graphical primitives, extended control structures or database operations. Us
however, such extensions are not compatible; then you cannot combine two 
preprocessors, leading to such dilemmas as whether to use graphics or datab

Composability is independent of decomposability. In fact, these criteria are oft
odds. Top-down design, for example, which we saw as a technique favo
decomposability, tends to produce modules that are not easy to combine with modules
coming from other sources. This is because the method suggests developing each 
to fulfill a specific requirement, corresponding to a subproblem obtained at some po
the refinement process. Such modules tend to be closely linked to the immediate c
that led to their development, and unfit for adaptation to other contexts. The me
provides neither hints towards making modules more general than immediately req
nor any incentives to do so; it helps neither avoid nor even just detect commonalit
redundancies between modules obtained in different parts of the hierarchy. 

That composability and decomposability are both part of the requirements 
modular method reflects the inevitable mix of top-down and bottom-up reasoning 
complementarity that René Descartes had already noted almost four centuries a
shown by the contrasting two paragraphs of the Discourse extract at the beginning of part B.

Modular understandability

The importance of this criterion follows from its influence on the maintenance proc
Most maintenance activities, whether of the noble or not-so-noble category, inv
having to dig into existing software elements. A method can hardly be called modula
reader of the software is unable to understand its elements separately.

A method favors Modular Understandability if it helps produce software in
which a human reader can understand each module without having to know
the others, or, at worst, by having to examine only a few of the others.

 

-
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See also, later in this 
chapter, “Self-
Documentation”, 
page 54.

See “Extendibility”, 
page 6.
This criterion, like the others, applies to the modules of a system description a

level: analysis, design, implementation. 

• Counter-example: sequential dependencies. Assume some modules have been 

designed that they will only function correctly if activated in a certain prescri

order; for example, B can only work properly if you execute it after A and before C,

perhaps because they are meant for use in “piped” form as in the Unix not

encountered earlier: 

A | B | C
Then it is probably hard to understand B without understanding A and C too. 

In later chapters, the modular understandability criterion will help us address

important questions: how to document reusable components; and how to index re

components so that software developers can retrieve them conveniently through q
The criterion suggests that information about a component, useful for documentat

for retrieval, should whenever possible appear in the text of the component itself; too

documentation, indexing or retrieval can then process the component to extract the n

pieces of information. Having the information included in each component is preferabl

to storing it elsewhere, for example in a database of information about components. 

Modular continuity

This criterion is directly connected to the general goal of extendibility. As emphasiz

an earlier chapter, change is an integral part of the software construction proces

requirements will almost inevitably change as the project progresses. Continuity m

that small changes should affect individual modules in the structure of the system, 

than the structure itself. 

The term “continuity” is drawn from an analogy with the notion of a continu

function in mathematical analysis. A mathematical function is continuous if (informa

a small change in the argument will yield a proportionally small change in the result.

the function considered is the software construction method, which you can view

mechanism for obtaining systems from specifications: 

software_construction_method: Specification → System

A method satisfies Modular Continuity if, in the software architectures that
it yields, a small change in a problem specification will trigger a change of
just one module, or a small number of modules.
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Continuity

This will be one of 
our principles of 
style: Symbolic 
Constant Principle, 
page 884.

See “Uniform 
Access”, page 55.
This mathematical term only provides an analogy, since we lack formal notion
size for software. More precisely, it would be possible to define a generally accep
measure of what constitutes a “small” or “large” change to a program; but doing the 
for the specifications is more of a challenge. If we make no pretense of full rigor, how
the concepts should be intuitively clear and correspond to an essential requirement 
modular method. 

• Example 1: symbolic constants. A sound style rule bars the instructions of a progra
from using any numerical or textual constant directly; instead, they rely on sym
names, and the actual values only appear in a constant definition (constant in Pascal
or Ada, preprocessor macros in C, PARAMETER in Fortran 77, constant attributes i
the notation of this book). If the value changes, the only thing to update is
constant definition. This small but important rule is a wise precaution for contin
since constants, in spite of their name, are remarkably prone to change. 

• Example 2: the Uniform Access principle. Another rule states that a single notatio
should be available to obtain the features of an object, whether they are repre
as data fields or computed on demand. This property is sufficiently importan
warrant a separate discussion later in this chapter. 

• Counter-example 1: using physical representations. A method in which program
designs are patterned after the physical implementation of data will yield des
that are very sensitive to slight changes in the environment. 

• Counter-example 2: static arrays. Languages such as Fortran or standard Pas
which do not allow the declaration of arrays whose bounds will only be known a
time, make program evolution much harder. 

Modular protection

A method satisfies Modular Protection if it yields architectures in which the
effect of an abnormal condition occurring at run time in a module will remain
confined to that module, or at worst will only propagate to a few neighboring
modules.
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The question of how 
to handle abnormal 
cases is discussed in 
detail in chapter 12.

Protection 
violation

More on this topic in 
“Assertions are not an 
input checking mech-
anism”, page 346

On exception han-
dling, see chapter 12. 
The underlying issue, that of failures and errors, is central to software engineering
errors considered here are run-time errors, resulting from hardware failures, erro
input or exhaustion of needed resources (for example memory storage). The criterio
not address the avoidance or correction of errors, but the aspect that is directly rele
modularity: their propagation.

• Example: validating input at the source. A method requiring that you make ever
module that inputs data also responsible for checking their validity is good
modular protection. 

• Counter-example: undisciplined exceptions. Languages such as PL/I, CLU, Ada
C++ and Java support the notion of exception. An exception is a special signa
may be “raised” by a certain instruction and “handled” in another, possibly rem
part of the system. When the exception is raised, control is transferred to the ha
(Details of the mechanism vary between languages; Ada or CLU are more discip
in this respect than PL/I.) Such facilities make it possible to decouple the algor
for normal cases from the processing of erroneous cases. But they must be
carefully to avoid hindering modular protection. The chapter on exceptions 
investigate how to design a disciplined exception mechanism satisfying the crite.

3.2  FIVE RULES 

From the preceding criteria, five rules follow which we must observe to en
modularity: 

• Direct Mapping. 

• Few Interfaces. 

• Small interfaces (weak coupling). 

• Explicit Interfaces. 

• Information Hiding. 

The first rule addresses the connection between a software system and the e
systems with which it is connected; the next four all address a common issue —
modules will communicate. Obtaining good modular architectures requires 
communication occur in a controlled and disciplined way. 
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Direct Mapping 

Any software system attempts to address the needs of some problem domain. If yo
a good model for describing that domain, you will find it desirable to keep a c
correspondence (mapping) between the structure of the solution, as provided b
software, and the structure of the problem, as described by the model. Hence the fir

This advice follows in particular from two of the modularity criteria: 

• Continuity: keeping a trace of the problem’s modular structure in the soluti
structure will make it easier to assess and limit the impact of changes. 

• Decomposability: if some work has already been done to analyze the mo
structure of the problem domain, it may provide a good starting point for the mod
decomposition of the software. 

Few Interfaces

The Few Interfaces rule restricts the overall number of communication channels be
modules in a software architecture: 

Communication may occur between modules in a variety of ways. Modules may
each other (if they are procedures), share data structures etc. The Few Interfaces rul
the number of such connections.

More precisely, if a system is composed of n modules, then the number o
intermodule connections should remain much closer to the minimum, n–1, shown as (A)
in the figure, than to the maximum, n (n – 1) /2, shown as (B).

This rule follows in particular from the criteria of continuity and protection: if the
are too many relations between modules, then the effect of a change or of an erro

The modular structure devised in the process of building a software system
should remain compatible with any modular structure devised in the process
of modeling the problem domain.

Every module should communicate with as few others as possible.

 

(A) (B) (C)
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Communication
bandwidth 
between 
modules
propagate to a large number of modules. It is also connected to composability (if you
a module to be usable by itself in a new environment, then it should not depend o
many others), understandability and decomposability. 

Case (A) on the last figure shows a way to reach the minimum number of linksn –
1, through an extremely centralized structure: one master module; everybody else t
it and to it only. But there are also much more “egalitarian” structures, such as (C) which
has almost the same number of links. In this scheme, every module just talks to i
immediate neighbors, but there is no central authority. Such a style of design is a ittle
surprising at first since it does not conform to the traditional model of functional, top-d
design. But it can yield robust, extendible architectures; this is the kind of structure
object-oriented techniques, properly applied, will tend to yield. 

Small Interfaces 

The Small Interfaces or “Weak Coupling” rule relates to the size of intermo
connections rather than to their number: 

An electrical engineer would say that the channels of communication betw
modules must be of limited bandwidth:

The Small Interfaces requirement follows in particular from the criteria of contin
and protection.

An extreme counter-example is a Fortran practice which some readers will recogni
the “garbage common block”. A common block in Fortran is a directive of the form 

COMMON /common_name/ variable1,… variablen

indicating that the variables listed are accessible not just to the enclosing module b
to any other module which includes a COMMON directive with the same common_name.
It is not infrequent to see Fortran systems whose every module includes an ide
gigantic COMMON directive, listing all significant variables and arrays so that ev
module may directly use every piece of data. 

If two modules communicate, they should exchange as little information as
possible

z

x, y
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The Body of a block 
is a sequence of 
instructions. The syn-
tax used here is com
patible with the 
notation used in sub
sequent chapters, so 
it is not exactly 
Algol’s. “ --” intro-
duces a comment. 

On clusters see 
chapter 28. The
O-O alternative to 
nesting is studied in
“The architectural 
role of selective 
exports”, page 209.
The problem, of course, is that every module may also misuse the common dat
hence that modules are tightly coupled to each other; the problems of modular cont
(propagation of changes) and protection (propagation of errors) are particularly n
This time-honored technique has nevertheless remained a favorite, no doubt acco
for many a late-night debugging session.

Developers using languages with nested structures can suffer from similar trou
With block structure as introduced by Algol and retained in a more restricted form
Pascal, it is possible to include blocks, delimited by begin … end pairs, within other
blocks. In addition every block may introduce its own variables, which are o
meaningful within the syntactic scope of the block. For example:

local-- Beginning of block B1
x, y: INTEGER

do

… Instructions of B1 …

local -- Beginning of block B2
z: BOOLEAN

do
… Instructions of B2 …

end --- of block B2

local -- Beginning of block B3
y, z: INTEGER

do
… Instructions of B3 …

end -- of block B3

… Instructions of B1 (continued) …

end -- of block B1

Variable x is accessible to all instructions throughout this extract, whereas the
variables called z (one BOOLEAN, the other INTEGER) have scopes limited to B2 and B3
respectively. Like x, variable y is declared at the level of B1, but its scope does not includ
B3, where another variable of the same name (and also of type INTEGER) locally takes
precedence over the outermost y. In Pascal this form of block structure exists only f
blocks associated with routines (procedures and functions).

With block structure, the equivalent of the Fortran garbage common block is
practice of declaring all variables at the topmost level. (The equivalent in C-b
languages is to introduce all variables as external.) 

Block structure, although an ingenious idea, introduces many opportunitie
violate the Small Interfaces rule. For that reason we will refrain from using it in the ob
oriented notation devised later in this book, especially since the experience of Simu
object-oriented Algol derivative supporting block structure, shows that the ability to 
classes is redundant with some of the facilities provided by inheritance. The archite

-

-
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Data sharing
of object-oriented software will involve three levels: a system is a set of clusters; a c
is a set of classes; a class is a set of features (attributes and routines). Clust
organizational tool rather than a linguistic construct, can be nested to allow a p
leader to structure a large system in as many levels as necessary; but classes as
features have a flat structure, since nesting at either of those levels would 
unnecessary complication.

Explicit Interfaces

With the fourth rule, we go one step further in enforcing a totalitarian regime upon
society of modules: not only do we demand that any conversation be limited to
participants and consist of just a few words; we also require that such conversation
be held in public and loudly!

Behind this rule stand the criteria of decomposability and composability (if you n
to decompose a module into several submodules or compose it with other module
outside connection should be clearly visible), continuity (it should be easy to find out
elements a potential change may affect) and understandability (how can you undersA
by itself if B can influence its behavior in some devious way?). 

One of the problems in applying the Explicit Interfaces rule is that there is mo
intermodule coupling than procedure call; data sharing, in particular, is a sour
indirect coupling: 

Assume that module A modifies and module B uses the same data item x. Then A and
B are in fact strongly coupled through x even though there may be no apparent connect
such as a procedure call, between them. 

Whenever two modules A and B communicate, this must be obvious from the
text of A or B or both.

Module
A

Module
B

Data
item

x

modifies accesses
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Hiding
Information Hiding 

The rule of Information Hiding may be stated as follows:

Application of this rule assumes that every module is known to the rest of
world (that is to say, to designers of other modules) through some official descrip
or public properties.

Of course, the whole text of the module itself (program text, design text) could s
as the description: it provides a correct view of the module since it is the module! The
Information Hiding rule states that this should not in general be the case: the descr
should only include some of the module’s properties. The rest should remain non-pub
or secret. Instead of public and secret properties, one may also talk of exported and p
properties. The public properties of a module are also known as the interface of the
module (not to be confused with the user interface of a software system). 

The fundamental reason behind the rule of Information Hiding is the contin
criterion. Assume a module changes, but the changes apply only to its secret ele
leaving the public ones untouched; then other modules who use it, called its clients, will
not be affected. The smaller the public part, the higher the chances that changes
module will indeed be in the secret part.

We may picture a module supporting Information Hiding as an iceberg; only th
— the interface — is visible to the clients. 

The designer of every module must select a subset of the module’s properties
as the official information about the module, to be made available to authors
of client modules.

 

Secret Part

Public Part
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See chapter 6, in par-
ticular “Abstract 
data types and infor-
mation hiding”, 
page 144. 

See the comments on 
conditional correct-
ness on page 4.
As a typical example, consider a procedure for retrieving the attributes assoc
with a key in a certain table, such as a personnel file or the symbol table of a compile
procedure will internally be very different depending on how the table is stored (sequ
array or file, hash table, binary or B-Tree etc.). Information hiding implies that uses o
procedure should be independent of the particular implementation chosen. That way
modules will not suffer from any change in implementation. 

Information hiding emphasizes separation of function from implementation. Bes
continuity, this rule is also related to the criteria of decomposability, composability
understandability. You cannot develop the modules of a system separately, co
various existing modules, or understand individual modules, unless you know pre
what each of them may and may not expect from the others. 

Which properties of a module should be public, and which ones secret? As a g
guideline, the public part should include the specification of the module’s functiona
anything that relates to the implementation of that functionality should be kept secr
as to preserve other modules from later reversals of implementation decisions. 

This first answer is still fairly vague, however, as it does not tell us what is
specification and what is the implementation; in fact, one might be tempted to rever
definition by stating that the specification consists of whatever public properties
module has, and the implementation of its secrets! The object-oriented approach wi
us a much more precise guideline thanks to the theory of abstract data types. 

To understand information hiding and apply the rule properly, it is importan
avoid a common misunderstanding. In spite of its name, information hiding doe
imply protection in the sense of security restrictions — physically prohibiting authors
client modules from accessing the internal text of a supplier module. Client authors
well be permitted to read all the details they want: preventing them from doing so m
reasonable in some circumstances, but it is a project management decision which d
necessarily follow from the information hiding rule. As a technical requirem
information hiding means that client modules (whether or not their authors are perm
to read the secret properties of suppliers) should only rely on the suppliers’ p
properties. More precisely, it should be impossible to write client modules whose co
functioning depends on secret information. 

In a completely formal approach to software construction, this definition would be stated
as follows. To prove the correctness of a module, you will need to assume some
properties about its suppliers. Information hiding means that such proofs are only
permitted to rely on public properties of the suppliers, never on their secret properties. 

Consider again the example of a module providing a table searching mecha
Some client module, which might belong to a spreadsheet program, uses a table, an
on the table module to look for a certain element in the table. Assume further th
algorithm uses a binary search tree implementation, but that this property is secret 
part of the interface. Then you may or may not allow the author of the table sear
module to tell the author of the spreadsheet program what implementation he has u
tables. This is a project management decision, or perhaps (for commercially rel
software) a marketing decision; in either case it is irrelevant to the question of inform
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By default “Ada” 
always means the mo
widespread form of the
language (83), not the
more recent Ada 95. 
Chapter 33 presents 
both versions.
hiding. Information hiding means something else: that even if the author of the
spreadsheet program knows that the implementation uses a binary search tree, he sh
be unable to write a client module which will only function correctly with th
implementation — and would not work any more if the table implementation was cha
to something else, such as hash coding. 

One of the reasons for the misunderstanding mentioned above is the very
“information hiding”, which tends to suggest physical protection. “Encapsulatio
sometimes used as a synonym for information hiding, is probably preferable in
respect, although this discussion will retain the more common term. 

As a summary of this discussion: the key to information hiding is not manage
or marketing policies as to who may or may not access the source text of a modu
strict language rules to define what access rights a module has on properties o
suppliers. As explained in the next chapter, “encapsulation languages” such as Ad
Modula-2 made the first steps in the right direction. Object technology will bring a m
complete solution.

3.3  FIVE PRINCIPLES

From the preceding rules, and indirectly from the criteria, five principles of softw
construction follow: 

• The Linguistic Modular Units principle.

• The Self-Documentation principle.

• The Uniform Access principle. 

• The Open-Closed principle. 

• The Single Choice principle. 

Linguistic Modular Units

The Linguistic Modular Units principle expresses that the formalism used to des
software at various levels (specifications, designs, implementations) must suppo
view of modularity retained:

The language mentioned may be a programming language, a design langu
specification language etc. In the case of programming languages, modules sho
separately compilable. 

Linguistic Modular Units principle

Modules must correspond to syntactic units in the language used.

st 
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“About documen-
tation”, page 14. 
What this principle excludes at any level — analysis, design, implementation 
combining a method that suggests a certain module concept and a language that d
offer the corresponding modular construct, forcing software developers to perform m
translation or restructuring. It is indeed not uncommon to see companies hoping to
certain methodological concepts (such as modules in the Ada sense, or object-o
principles) but then implement the result in a programming language such as Pasc
which does not support them. Such an approach defeats several of the modularity c

• Continuity: if module boundaries in the final text do not correspond to the log
decomposition of the specification or design, it will be difficult or impossible
maintain consistency between the various levels when the system evolves. A c
of the specification may be considered small if it affects only a small numbe
specification modules; to ensure continuity, there must be a direct correspon
between specification, design and implementation modules. 

• Direct Mapping: to maintain a clear correspondence between the structure o
model and the structure of the solution, you must have a clear syntac
identification of the conceptual units on both sides, reflecting the division sugge
by your development method.

• Decomposability: to divide system development into separate tasks, you ne
make sure that every task results in a well-delimited syntactic unit; at
implementation stage, these units must be separately compilable. 

• Composability: how could we combine anything other than modules w
unambiguous syntactic boundaries? 

• Protection: you can only hope to control the scope of errors if modules
syntactically delimited. 

Self-Documentation

Like the rule of Information Hiding, the Self-Documentation principle governs how
should document modules:

What this precludes is the common situation in which information about the mo
is kept in separate project documents.

The documentation under review here is internal  documentation about components of
the software, not user documentation about the resulting product, which may require
separate products, whether paper, CD-ROM or Web pages — although, as noted in th
discussion of software quality, one may see in the modern trend towards providing more
and more on-line help a consequence of the same general idea.

The most obvious justification for the Self-Documentation principle is the crite
of modular understandability. Perhaps more important, however, is the role of

Self-Documentation principle

The designer of a module should strive to make all information about the
module part of the module itself.
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“Using assertions 
for documentation: 
the short form of a 
class”, page 390. See 
also chapter 23 and 
its last two exercises

Also known as the 
Uniform Reference 
principle. 
principle in helping to meet the continuity criterion. If the software and its documenta
are treated as separate entities, it is difficult to guarantee that they will remain comp
— “in sync” — when things start changing. Keeping everything at the same p
although not a guarantee, is a good way to help maintain this compatibility.

Innocuous as this principle may seem at first, it goes against much of wha
software engineering literature has usually suggested as good software develo
practices. The dominant view is that software developers, to deserve the title of sof
engineers, need to do what other engineers are supposed to: produce a kilogram o
for every gram of actual deliverable. The encouragement to keep a record of the so
construction process is good advice — but not the implication that software an
documentation are different products. 

Such an approach ignores the specific property of software, which again and 
comes back in this discussion: its changeability. If you treat the two products as sep
you risk finding yourself quickly in a situation where the documentation says one t
and the software does something else. If there is any worse situation than havi
documentation, it must be having wrong documentation.

A major advance of the past few years has been the appearance of quality standards for
software, such as ISO certification, the “2167” standard and its successors from the US
Department of Defense, and the Capability Maturity Model of the Software Engineering
Institute. Perhaps because they often sprang out of models from other disciplines, they
tend to specify a heavy paper trail. Several of these standards could have a stronger effe
on software quality (beyond providing a mechanism for managers to cover their bases in
case of later trouble) by enforcing the Self-Documentation principle.

This book will draw on the Self-Documentation principle to define a method
documenting classes — the modules of object-oriented software construction —
includes the documentation of every module in the module itself. Not that the modis
its documentation: there is usually too much detail in the software text to make it su
as documentation (this was the argument for information hiding). Instead, the m
should contain its documentation.

In this approach software becomes a single product that supports multiple views.
One view, suitable for compilation and execution, is the full source code. Another i
abstract interface documentation of each module, enabling software developers to
client modules without having to learn the module’s own internals, in accordance wit
rule of Information Hiding. Other views are possible.

We will need to remember this rule when we examine the question of ho
document the classes of object-oriented software construction.

Uniform Access 

Although it may at first appear just to address a notational issue, the Uniform Ac
principle is in fact a design rule which influences many aspects of object-oriented d
and the supporting notation. It follows from the Continuity criterion; you may also v
it as a special case of Information Hiding. 

.
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Let x be a name used to access a certain data item (what will later be called an o
and f the name of a feature applicable to x. (A feature is an operation; this terminology wi
also be defined more precisely.) For example, x might be a variable representing a ba
account, and f the feature that yields an account’s current balance. Uniform Ac
addresses the question of how to express the result of applying f to x, using a notation that
does not make any premature commitment as to how f is implemented.

In most design and programming languages, the expression denoting the appl
of f to x depends on what implementation the original software developer has chos
feature f: is the value stored along with x, or must it be computed whenever requeste
Both techniques are possible in the example of accounts and their balances:

A1 • You may represent the balance as one of the fields of the record describing
account, as shown in the figure. With this technique, every operation that cha
the balance must take care of updating the balance field.

A2 • Or you may define a function which computes the balance using other fields o
record, for example fields representing the lists of withdrawals and deposits. 
this technique the balance of an account is not stored (there is no balance field) but
computed on demand.

A common notation, in languages such as Pascal, Ada, C, C++ and Java, usesx ● f in
case A1 and f (x) in case A2.

Choosing between representations A1 and A2 is a space-time tradeoff: one
economizes on computation, the other on storage. The resolution of this tradeoff in
of one of the solutions is typical of representation decisions that developers often re
at least once during a project’s lifetime. So for continuity’s sake it is desirable to ha
feature access notation that does not distinguish between the two cases; then if you
charge of x’s implementation and change your mind at some stage, it will not be nece
to change the modules that use f. This is an example of the Uniform Access principle.

deposits_list

withdrawals_list

balance

(A1)

(A2)
deposits_list

withdrawals_list
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In its general form the principle may be expressed as:

Few languages satisfy this principle. An older one that did was Algol W, where 
the function call and the access to a field were written a (x). Object-oriented languages
should satisfy Uniform Access, as did the first of them, Simula 67, whose notation x ● f
in both cases. The notation developed in part C will retain this convention.

The Open-Closed principle 

Another requirement that any modular decomposition technique must satisfy is the O
Closed principle:

The contradiction between the two terms is only apparent as they correspond to
of a different nature: 

• A module is said to be open if it is still available for extension. For example, it sh
be possible to expand its set of operations or add fields to its data structures.

• A module is said to be closed if it is available for use by other modules. This ass
that the module has been given a well-defined, stable description (its interface 
sense of information hiding). At the implementation level, closure for a module 
implies that you may compile it, perhaps store it in a library, and make it avail
for others (its clients) to use. In the case of a design or specification module, clo
a module simply means having it approved by management, adding it to the pro
official repository of accepted software items (often called the project baseline), and
publishing its interface for the benefit of other module authors. 

The need for modules to be closed, and the need for them to remain open, ar
different reasons. Openness is a natural concern for software developers, as they kn
it is almost impossible to foresee all the elements — data, operations — that a modu
need in its lifetime; so they will wish to retain as much flexibility as possible for fut
changes and extensions. But it is just as necessary to close modules, especially 
project manager’s viewpoint: in a system comprising many modules, most will depen
some others; a user interface module may depend on a parsing module (for p
command texts) and on a graphics module, the parsing module itself may depen

Uniform Access principle

All services offered by a module should be available through a uniform
notation, which does not betray whether they are implemented through
storage or through computation.

Open-Closed principle

Modules should be both open and closed.
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lexical analysis module, and so on. If we never closed a module until we were s
includes all the needed features, no multi-module software would ever reach comp
every developer would always be waiting for the completion of someone else’s job.

With traditional techniques, the two goals are incompatible. Either you kee
module open, and others cannot use it yet; or you close it, and any change or extens
trigger a painful chain reaction of changes in many other modules, which relied o
original module directly or indirectly. 

The two figures below illustrate a typical situation where the needs for open
closed modules are hard to reconcile. In the first figure, module A is used by client
modules B, C, D, which may themselves have their own clients (E, F, …).

Later on, however, the situation is disrupted by the arrival of new clients — B' and
others — which need an extended or adapted version of A, which we may call A': 

With non-O-O methods, there seem to be only two solutions, equally unsatisfac

N1 • You may adapt module A so that it will offer the extended or modifie
functionality (A' ) required by the new clients. 

N2 • You may also decide to leave A as it is, make a copy, change the module’s na
to A' in the copy, and perform all the necessary adaptations on the new mo
With this technique A' retains no further connection to A.

B A C E

D
Client of

F A'

G

IH

B A C E

D
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Exercise E3.6, page
66, asks you to dis-
cuss how much nee
will remain for con-
figuration manage-
ment in an O-O 
context.
The potential for disaster with solution N1 is obvious. A may have been around fo
a long time and have many clients such as B, C and D. The adaptations needed to satis
the new clients’ requirements may invalidate the assumptions on the basis of whic
old ones used A; if so the change to A may start a dramatic series of changes in clien
clients of clients and so on. For the project manager, this is a nightmare come
suddenly, entire parts of the software that were supposed to have been finished and
off ages ago get reopened, triggering a new cycle of development, testing, debuggin
documentation. If many a software project manager has the impression of livin
Sisyphus syndrome — the impression of being sentenced forever to carry a rock to t
of the hill, only to see it roll back down each time — it is for a large part because of t
problems caused by this need to reopen previously closed modules. 

On the surface, solution N2 seems better: it avoids the Sisyphus syndrome sinc
does not require modifying any existing software (anything in the top half of the
figure). But in fact this solution may be even more catastrophic since it only postpone
day of reckoning. If you extrapolate its effects to many modules, many modifica
requests and a long period, the consequences are appalling: an explosion of variant
original modules, many of them very similar to each other although never quite iden

In many organizations, this abundance of modules, not matched by abundan
available functionality (many of the apparent variants being in fact quasi-clones), cr
a huge configuration management problem, which people attempt to address through 
use of complex tools. Useful as these tools may be, they offer a cure in an area wh
first concern should be prevention. Better avoid redundancy than manage it.

Configuration management will remain useful, of course, if only to find the modules
which must be reopened after a change, and to avoid unneeded module recompilations.

But how can we have modules that are both open and closed? How can we kA
and everything in the top part of the figure unchanged, while providing A' to the bottom
clients, and avoiding duplication of software? The object-oriented method will off
particularly elegant contribution thanks to inheritance. 

The detailed study of inheritance appears in later chapters, but here is a prev
the basic idea. To get us out of the change or redo dilemma, inheritance will allow us to
define a new module A' in terms of an existing module A by stating the differences only
We will write A' as 

class A' inherit

A
redefine f, g, … end

feature
f is …
g is …
…
u is …
…

end

 

d 
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where the feature clause contains both the definition of the new features specific toA',
such as u, and the redefinition of those features (such as f, g, …) whose form in A' is
different from the one they had in A. 

The pictorial representation for inheritance will use an arrow from the heir (the
class, here A') to the parent (here A): 

Thanks to inheritance, O-O developers can adopt a much more incremental app
to software development than used to be possible with earlier methods. 

One way to describe the open-closed principle and the consequent object-or
techniques is to think of them as a organized hacking. “Hacking” is understood here as 
slipshod approach to building and modifying code (not in the more recent sense of bre
into computer networks, which, organized or not, no one should condone). The hacke
seem bad but often his heart is pure. He sees a useful piece of software, which is almost
able to address the needs of the moment, more general than the software’s original p
Spurred by a laudable desire not to redo what can be reused, our hacker starts mo
the original to add provisions for new cases. The impulse is good but the effect is of
pollute the software with many clauses of the form if  that_special_case then…, so that
after a few rounds of hacking, perhaps by a few different hackers, the software 
resembling a chunk of Swiss cheese that has been left outside for too long in August
tastelessness of this metaphor may be forgiven on the grounds that it does its best to
the presence in such software of both holes and growth).

The organized form of hacking will enable us to cater to the variants with
affecting the consistency of the original version.

A word of caution: nothing in this discussion suggests disorganized hacking.
In particular:

• If you have control over the original software and can rewrite it so that it will add
the needs of several kinds of client at no extra complication, you should do so.

F A'

G

IH

B A C E

D Inherits from

Client of
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• Neither the Open-Closed principle nor redefinition in inheritance is a way to add
design flaws, let alone bugs. If there is something wrong with a module, you should
fix it — not leave the original as it is and try to correct the problem in a der
module. (The only potential exception to this rule is the case of flawed softw
which you are not at liberty to modify.) The Open-Closed principle and assoc
techniques are intended for the adaptation of healthy modules: modules
although they may not suffice for some new uses, meet their own well-def
requirements, to the satisfaction of their own clients.

Single Choice

The last of the five modularity principles may be viewed as a consequence of bo
Open-Closed and Information Hiding rules. 

Before examining the Single Choice principle in its full generality, let us look 
typical example. Assume you are building a system to manage a library (in the
software sense of the term: a collection of books and other publications, not sof
modules). The system will manipulate data structures representing publications. You
have declared the corresponding type as follows in Pascal-Ada syntax: 

type PUBLICATION =

record

author, title: STRING;

publication_year: INTEGER

case pubtype: (book, journal, conference_proceedings) of

book: (publisher: STRING);

journal: (volume, issue: STRING);

proceedings: (editor, place: STRING)   -- Conference proceedings

end

This particular form uses the Pascal-Ada notion of “record type with variants
describe sets of data structures with some fields (here author, title, publication_year)
common to all instances, and others specific to individual variants.

The use of a particular syntax is not crucial here; Algol 68 and C provide an equivalent
mechanism through the notion of union type. A union type is a type T defined as the union
of pre-existing types A, B, …: a value of type T is either a value of type A, or a value of
type B, … Record types with variants have the advantage of clearly associating a tag, here
book, journal, conference_proceedings, with each variant.

Let A be the module that contains the above declaration or its equivalent u
another mechanism. As long as A is considered open, you may add fields or introduce n
variants. To enable A to have clients, however, you must close the module; this means
you implicitly consider that you have listed all the relevant fields and variants. Let B be a
typical client of A. B will manipulate publications through a variable such as 

p: PUBLICATION
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and, to do just about anything useful with p, will need to discriminate explicitly between
the various cases, as in: 

case p of

book: … Instructions which may access the field p ● publisher …
journal: … Instructions which may access fields p● volume, p● issue …
proceedings: … Instructions which may access fields p● editor, p● place …

end

The case instruction of Pascal and Ada comes in handy here; it is of cours
purpose that its syntax mirrors the form of the declaration of a record type with var
Fortran and C will emulate the effect through multi-target goto instructions (switch in C).
In these and other languages a multi-branch conditional instruction (if  … then … elseif
… elseif … else … end) will also do the job. 

Aside from syntactic variants, the principal observation is that to perform su
discrimination every client must know the exact list of variants of the notion of publica
supported by A. The consequence is easy to foresee. Sooner or later, you will realiz
need for a new variant, such as technical reports of companies and universities. Th
will have to extend the definition of type PUBLICATION in module A to support the new
case. Fair enough: you have modified the conceptual notion of publication, so you s
update the corresponding type declaration. This change is logical and inevitable
harder to justify, however, is the other consequence: any client of A, such as B, will also
require updating if it used a structure such as the above, relying on an explicit list of
for p. This may, as we have seen, be the case for most clients. 

What we observe here is a disastrous situation for software change and evo
a simple and natural addition may cause a chain reaction of changes across man
modules. 

The issue will arise whenever a certain notion admits a number of variants. He
notion was “publication” and its initial variants were book, journal article, confere
proceedings; other typical examples include: 

• In a graphics system: the notion of figure, with such variants as polygon, c
ellipse, segment and other basic figure types.

• In a text editor: the notion of user command, with such variants as line insertion
deletion, character deletion, global replacement of a word by another.

• In a compiler for a programming language, the notion of language construct,
such variants as instruction, expression, procedure.

In any such case, we must accept the possibility that the list of variants, alth
fixed and known at some point of the software’s evolution, may later be changed b
addition or removal of variants. To support our long-term, software engineering vie
the software construction process, we must find a way to protect the software’s structure
against the effects of such changes. Hence the Single Choice principle:
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See “DYNAMIC 
BINDING”, 14.4, 
page 480.

See the second figu
on page 58.
By requiring that knowledge of the list of choices be confined to just one module
prepare the scene for later changes: if variants are added, we will only have to upd
module which has the information — the point of single choice. All others, in partic
its clients, will be able to continue their business as usual. 

Once again, as the publications example shows, traditional methods do not pr
a solution; once again, object technology will show the way, here thanks to two techn
connected with inheritance: polymorphism and dynamic binding. No sneak previe
this case, however; these techniques must be understood in the context of the full m

The Single Choice principle prompts a few more comments: 

• The number of modules that know the list of choices should be, according t
principle, exactly one. The modularity goals suggest that we want at most one
module to have this knowledge; but then it is also clear that at least one module must
possess it. You cannot write an editor unless at least one component of the s
has the list of all supported commands, or a graphics system unless at lea
component has the list of all supported figure types, or a Pascal compiler unl
least one component “knows” the list of Pascal constructs.

• Like many of the other rules and principles studied in this chapter, the princip
about distribution of knowledge in a software system. This question is inde
crucial to the search for extendible, reusable software. To obtain solid, du
system architectures you must take stringent steps to limit the amount of inform
available to each module. By analogy with the methods employed by certain h
organizations, we may call this a need-to-know policy: barring every module from
accessing any information that is not strictly required for its proper functioning.

• You may view the Single Choice principle as a direct consequence of the O
Closed principle. Consider the publications example in light of the figure 
illustrated the need for open-closed modules: A is the module which includes the
original declaration of type PUBLICATION; the clients B, C, … are the modules that
relied on the initial list of variants; A' is the updated version of A offering an extra
variant (technical reports). 

• You may also understand the principle as a strong form of Information Hiding.
designer of supplier modules such as A and A' seeks to hide information (regardin
the precise list of variants available for a certain notion) from the clients. 

Single Choice principle

Whenever a software system must support a set of alternatives, one and only
one module in the system should know their exhaustive list.

re 
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3.4  KEY CONCEPTS INTRODUCED IN THIS CHAPTER 

• The choice of a proper module structure is the key to achieving the aim
reusability and extendibility. 

• Modules serve for both software decomposition (the top-down view) and soft
composition (bottom-up).

• Modular concepts apply to specification and design as well as implementation

• A comprehensive definition of modularity must combine several perspectives
various requirements may sometimes appear at odds with each other, as
decomposability (which encourages top-down methods) and composability (w
favors a bottom-up approach). 

• Controlling the amount and form of communication between modules i
fundamental step in producing a good modular architecture. 

• The long-term integrity of modular system structures requires information hid
which enforces a rigorous separation of interface and implementation. 

• Uniform access frees clients from internal representation choices in their supp

• A closed module is one that may be used, through its interface, by client modu

• An open module is one that is still subject to extension. 

• Effective project management requires support for modules that are both ope
closed. But traditional approaches to design and programming do not permit th

• The principle of Single Choice directs us to limit the dissemination of exhaus
knowledge about variants of a certain notion.

3.5  BIBLIOGRAPHICAL NOTES 

The design method known as “structured design” [Yourdon 1979] emphasized the
importance of modular structures. It was based on an analysis of module “cohesion
“coupling”. But the view of modules implicit in structured design was influenced by
traditional notion of subroutine, which limits the scope of the discussion. 

The principle of uniform access comes originally (under the name “unif
reference”) from [Geschke 1975]. 

The discussion of uniform access cited the Algol W language, a successor to 
60 and forerunner to Pascal (but offering some interesting mechanisms not retai
Pascal), designed by Wirth and Hoare and described in [Hoare 1966]. 

Information hiding was introduced in two milestone articles by David Parnas [Parnas
1972] [Parnas 1972a].
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Configuration management tools that will recompile the modules affected
modifications in other modules, based on an explicit list of module dependencies
based on the ideas of the Make tool, originally for Unix [Feldman 1979]. Recent tools —
there are many on the market — have added considerable functionality to the basic

Some of the exercises below ask you to develop metrics to evaluate quantita
the various informal measures of modularity developed in this chapter. For some r
in O-O metrics, see the work of Christine Mingins [Mingins 1993] [Mingins 1995] and
Brian Henderson-Sellers [Henderson-Sellers 1996a].

EXERCISES

E3.1  Modularity in programming languages

Examine the modular structures of any programming language which you know we
assess how they support the criteria and principles developed in this chapter. 

E3.2  The Open-Closed principle (for Lisp programmers) 

Many Lisp implementations associate functions with function names at run time r
than statically. Does this feature make Lisp more supportive of the Open-Closed prin
than more static languages? 

E3.3  Limits to information hiding

Can you think of circumstances where information hiding should not be applied to
relations between modules? 

E3.4  Metrics for modularity (term project) 

The criteria, rules and principles of modularity of this chapter were all introduced thr
qualitative definitions. Some of them, however, may be amenable to quantitative ana
The possible candidates include: 

• Modular continuity. 

• Few Interfaces. 

• Small Interfaces. 

• Explicit Interfaces. 

• Information Hiding. 

• Single Choice. 

Explore the possibility of developing modularity metrics to evaluate how modul
software architecture is according to some of these viewpoints. The metrics shou
size-independent: increasing the size of a system without changing its modular str
should not change its complexity measures. (See also the next exercise.) 
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E3.5  Modularity of existing systems

Apply the modularity criteria, rules and principles of this chapter to evaluate a syste
which you have access. If you have answered the previous exercise, apply any pr
modularity metric. 

Can you draw any correlations between the results of this analysis (qualita
quantitative or both) and assessments of structural complexity for the systems under
based either on informal analysis or, if available, on actual measurements of debu
and maintenance costs? 

E3.6  Configuration management and inheritance

(This exercise assumes knowledge of inheritance techniques described in the rest
book. It is not applicable if you have read this chapter as part of a first, sequential re
of the book.) 

The discussion of the open-closed principle indicated that in non-object-orie
approaches the absence of inheritance places undue burden on configuration mana
tools, since the desire to avoid reopening closed modules may lead to the creation
many module variants. Discuss what role remains for configuration management
object-oriented environment where inheritance is present, and more generally how the u
of object technology affects the problem of configuration management. 

If you are familiar with specific configuration management tools, discuss how 
interact with inheritance and other principles of O-O development. 
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