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“ Follow the lead of hardware design! It is not right that every new
development should start from scratch. There should be catalogs of software
modules, as there are catalogs of VLSI devices: when we build a new system,
we should be ordering components from these catalogs and combining them,
rather than reinventing the wheel every time. We would write less software,
and perhaps do a better job at that which we do get to write. Wouldn’t then
some of the problems that everybody complains about — the high costs, the
overruns, the lack of reliability — just go away? Why is it not so?” 

You have probably heard remarks of this kind; perhaps you have uttered them yours
early as 1968, at the now famous NATO conference on software engineering, 
McIlroy was advocating “mass-produced software components”. Reusability, as a dream
is not new. 

It would be absurd to deny that some reuse occurs in software development. I
one of the most impressive developments in the industry since the first edition of this
was published in 1988 has been the gradual emergence of reusable components
modest individually but regularly gaining ground; they range from small modules m
to work with Microsoft’s Visual Basic (VBX) and OLE 2 (OCX, now ActiveX) to fu
libraries, also known as “frameworks”, for object-oriented environments.

Another exciting development is the growth of the Internet: the advent of a w
society has eased or in some cases removed some of the logistic obstacles to reuse
only a few years ago, might have appeared almost insurmountable.

But this is only a beginning. We are far from McIlroy’s vision of turning softwa
development into a component-based industry. The techniques of object-ori
software construction make it possible for the first time to envision a state of
discipline, in the not too distant future, in which this vision will have become the rea
for the greatest benefit not just of software developers but, more importantly, of those
need their products — quickly, and at a high level of quality.

In this chapter we will explore some of the issues that must be addresse
reusability to succeed on such a large scale. The resulting concepts will guid
discussion of object-oriented techniques throughout the rest of this book.
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This section is 
based on the more 
extensive discus-
sion of manage-
ment aspects of 
reuse in the book 
“Object Success” 
[M 1995].
4.1  THE GOALS OF REUSABILITY

We should first understand why it is so important to improve software reusability. No 
here for “motherhood and apple pie” arguments: as we will see, the most commonly t
benefits are not necessarily the most significant; by going beyond the obvious w
make sure that our quest for reuse will pursue the right targets, avoid mirages, and
the highest return on our investment.

Expected benefits

From more reusable software you may expect improvements on the following fronts

• Timeliness (in the sense defined in the discussion of software quality factors: s
of bringing projects to completion and products to market). By relying on exis
components we have less software to develop and hence can build it faster.

• Decreased maintenance effort. If someone else is responsible for the software, t
someone is also responsible for its future evolutions. This avoids the competent
developer’s paradox: the more you work, the more work you create for yourself
users of your products start asking you for new functionalities, ports to 
platforms etc. (Other than relying on someone else to do the job, or retiring, the
solution to the competent software developer’s paradox is to become an incompetent
developer so that no one is interested in your products any more — not a so
promoted by this book.)

• Reliability . By relying on components from a reputed source, you have 
guarantee, or at least the expectation, that their authors will have applied a
required care, including extensive testing and other validation techniques; n
mention the expectation, in most cases, that many other application develope
have had the opportunity to try these components before you, and to come acro
remaining bugs. The assumption here is not necessarily that the comp
developers are any smarter than you are; simply that the components they bu
be they graphics modules, database interfaces, sorting algorithms … — are their
official assignment, whereas for you they might just be a necessary but seco
chore for the attainment of your official goal of building an application system i
your own area of development.

• Efficiency. The same factors that favor reusability incite the component develo
to use the best possible algorithms and data structures known in their fie
specialization, whereas in a large application project you can hardly expect to
an expert on board for every field touched on by the development. (Most peop
when they think of the connection between reusability and efficiency, tend to se
reverse effect: the loss of fine-tuned optimizations that results from using ge
solutions. But this is a narrow view of efficiency: in a large project, you can
realistically perform such optimizations on every piece of the development. You
however, aim at the best possible solutions in your group’s areas of excellenc
for the rest rely on someone else’s expertise.)
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• Consistency. There is no good library without a strict emphasis on regular, cohe
design. If you start using such a library — in particular some of the best cu
object-oriented libraries — its style will start to influence, through a natural pro
of osmosis, the style of the software that you develop. This is a great boost 
quality of the software produced by an application group.

• Investment. Making software reusable is a way to preserve the know-how 
inventions of the best developers; to turn a fragile resource into a permanent a

Many people, when they accept reusability as desirable, think only of the 
argument on this list, improving productivity. But it is not necessarily the most impo
contribution of a reuse-based software process. The reliability benefit, for example, 
as significant. It is extremely difficult to build guaranteeably reusable software if every
development must independently validate every single piece of a possibly 
construction. By relying on components produced, in each area, by the best experts a
we can at last hope to build systems that we trust, because instead of redoing
thousands have done before us — and, most likely, running again into the mistake
they made — we will concentrate on enforcing the reliability of our truly new contributi

This argument does not just apply to reliability. The comment on efficiency 
based on the same reasoning. In this respect we can see reusability as standing ap
the other quality factors studied in chapter 1: by enhancing it you have the potential o
enhancing almost all of the other qualities. The reason is economic: if, instead of be
developed for just one project, a software element has the potential of serving aga
again for many projects, it becomes economically attractive to submit it to the 
possible quality-enhancing techniques — such as formal verification, usually
demanding to be cost-effective for most projects but the most mission-critical one
extensive optimization, which in ordinary circumstances can often be dismissed as 
perfectionism. For reusable components, the reasoning changes dramatically; im
just one element, and thousands of developments may benefit.

This reasoning is of course not completely new; it is in part the transpositio
software of ideas that have fundamentally affected other disciplines when they t
from individual craftsmanship to mass-production industry. A VLSI chip is m
expensive to build than a run-of-the-mill special-purpose circuit, but if well done it 
show up in countless systems and benefit their quality because of all the design wo
went into it once and for all.

Reuse consumers, reuse producers

If you examined carefully the preceding list of arguments for reusability, you may h
noted that it involves benefits of two kinds. The first four are benefits you will derive f
basing your application developments on existing reusable components; the last one
making your own software reusable. The next-to-last (consistency) is a little of both.

This distinction reflects the two aspects of reusability: the consumer view, enjoyed
by application developers who can rely on components; and the producer view, available
to groups that build reusability into their own developments.
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Here too “Object 
Success” explores 
the policy issues 
further.
In discussing reusability and reusability policies you should always make sure w
one of these two views you have in mind. In particular, if your organization is ne
reuse, remember that it is essentially impossible to start as a reuse producer. On
meets managers who think they can make development reusable overnight, and 
that no development shall henceforth be specific. (Often the injunction is to 
developing “business objects” capturing the company’s application expertise, and i
general-purpose components — algorithms, data structures, graphics, windowing a
like — since they are considered too “low-level” to yield the real benefits of reuse.) 
is absurd: developing reusable components is a challenging discipline; the only k
way to learn is to start by using, studying and imitating good existing components.
an approach will yield immediate benefits as your developments will take advanta
these components, and it will start you, should you persist in your decision to beco
producer too, on the right learning path.

4.2  WHAT SHOULD WE REUSE?

Convincing ourselves that Reusability Is Good was the easy part (although we nee
clarify what is really good about it). Now for the real challenge: how in the world are
going to get it?

The first question to ask is what exactly we should expect to reuse among the v
levels that have been proposed and applied: reuse of personnel, of specificatio
designs, of “patterns”, of source code, of specified components, of abstracted modu

Reuse of personnel 

The most common source of reusability is the developers themselves. This form of
is widely practiced in the industry: by transferring software engineers from proje
project, companies avoid losing know-how and ensure that previous experience be
new developments. 

This non-technical approach to reusability is obviously limited in scope, if o
because of the high turnover in the software profession. 

Reuse of designs and specifications 

Occasionally you will encounter the argument that we should be reusing designs 
than actual software. The idea is that an organization should accumulate a reposi
blueprints describing accepted design structures for the most common applicati
develops. For example, a company that produces aircraft guidance systems will hav
of model designs summarizing its experience in this area; such documents de
module templates rather than actual modules. 

Reuse Path principle
Be a reuse consumer before you try to be a reuse producer.
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[Gamma 1995]; see 
also [Pree 1994].
This approach is essentially a more organized version of the previous one — 
of know-how and experience. As the discussion of documentation has already sugg
the very notion of a design as an independent software product, having its ow
separate from that of the corresponding implementation, seems dubious, since it is h
guarantee that the design and the implementation will remain compatible througho
evolution of a software system. So if you only reuse the design you run the risk of re
incorrect or obsolete elements. 

These comments are also applicable to a related form of reuse: reuse of specific

To a certain extent, one can view the progress of reusability in recent years, aid
progress in the spread of object technology and aiding it in return, as resulting in par
the downfall of the old idea, long popular in software engineering circles, that the 
reuse worthy of interest is reuse of design and specification. A narrow form of that
was the most effective obstacle to progress, since it meant that all attempts to build
components could be dismissed as only addressing trivial needs and not touching th
difficult aspects. It used to be the dominant view; then a combination of theore
arguments (the arguments of object technology) and practical achievements
appearance of successful reusable components) essentially managed to defeat it.

“Defeat” is perhaps too strong a term because, as often happens in such dispu
result takes a little from both sides. The idea of reusing designs becomes much
interesting with an approach (such as the view of object technology developed i
book) which removes much of the gap between design and implementation. The
difference between a module and a design for a module is one of degree, not of na
module design is simply a module of which some parts are not fully implemented; 
fully implemented module can also serve, thanks to abstraction tools, as a module d
With this approach the distinction between reusing modules (as discussed below
reusing designs tends to fade away.

Design patterns

In the mid-nineteen-nineties the idea of design patterns started to attract considerabl
attention in object-oriented circles. Design patterns are architectural ideas appl
across a broad range of application domains; each pattern makes it possible to b
solution to a certain design issue.

Here is a typical example, discussed in detail in a later chapter. The issue: how to
provide an interactive system with a mechanism enabling its users to undo a prev
executed command if they decide it was not appropriate, and to reexecute an u
command if they change their mind again. The pattern: use a class COMMAND with a
precise structure (which we will study) and an associated “history list”. We will encou
many other design patterns.

One of the reasons for the success of the design pattern idea is that it was mo
an idea: the book that introduced the concept, and others that have followed, came
catalog of directly applicable patterns which readers could learn and apply.

Design patterns have already made an important contribution to the developm
object technology, and as new ones continue to be published they will help develop

-
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See “Programs 
with holes”, page 
506.

See also “Formats 
for reusable compo-
nent distribution”, 
page 79 below.
benefit from the experience of their elders and peers. How can the general idea con
to reuse? Design patterns should not encourage a throwback to the “all that counts is
design reuse” attitude mentioned earlier. A pattern that is only a book pattern, however
elegant and general, is a pedagogical tool, not a reuse tool; after all, computing s
students have for three decades been learning from their textbooks about relationa
optimization, Gouraud shading, AVL trees, Hoare’s Quicksort and Dijkstra’s shortest
algorithm without anyone claiming that these techniques were breakthrough
reusability. In a sense, the patterns developed in the past few years are only incre
additions to the software professional’s bag of standard tricks. In this view the
contribution is the patterns themselves, not the idea of pattern.

As most people who have looked carefully at the pattern work have recognized
a view is too limited. There seems to be in the very notion of pattern a truly 
contribution, even if it has not been fully understood yet. To go beyond their m
pedagogical value, patterns must go further. A successful pattern cannot just be a
description: it must be a software component, or a set of components. This goal ma
seem remote at first because many of the patterns are so general and abstract as
impossible to capture in actual software modules; but here the object-oriented m
provides a radical contribution. Unlike earlier approaches, it will enable us to b
reusable modules that still have replaceable, not completely frozen elements: modul
serve as general schemes (patterns is indeed the appropriate word) and can be adapte
various specific situations. This is the notion of behavior class (a more picturesque term
is programs with holes); it is based on O-O techniques that we will study in later chapt
in particular the notion of deferred class. Combine this with the idea of group
components intended to work together — often known as frameworks or more simply as
libraries — and you get a remarkable way of reconciling reusability with adaptabi
These techniques hold, for the pattern movement, the promise of exerting, beyo
new-bag-of-important-tricks effect, an in-depth influence on reusability practices.

Reusability through the source code 

Personnel, design and specification forms of reuse, useful as they may be, ignore
goal of reusability. If we are to come up with the software equivalent of the reusable
of older engineering disciplines, what we need to reuse is the actual stuff of whic
products are made: executable software. None of the targets of reuse seen so far —
designs, specifications — can qualify as the off-the-shelf components ready to be inc
in a new software product under development. 

If what we need to reuse is software, in what form should we reuse it? The 
natural answer is to use the software in its original form: source text. This approac
worked very well in some cases. Much of the Unix culture, for example, originally sp
in universities and laboratories thanks to the on-line availability of the source c
enabling users to study, imitate and extend the system. This is also true of the Lisp w

The economic and psychological impediments to source code dissemination
the effect that this form of reuse can have in more traditional industrial environments
a more serious limitation comes from two technical obstacles: 
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More on distribu-
tion formats below.
• Identifying reusable software with reusable source removes information hiding
no large-scale reuse is possible without a systematic effort to protect reusers
having to know the myriad details of reused elements.

• Developers of software distributed in source form may be tempted to vio
modularity rules. Some parts may depend on others in a non-obvious way, vio
the careful limitations which the discussion of modularity in the previous cha
imposed on inter-module communication. This often makes it difficult to reuse s
elements of a complex system without having to reuse everything else. 

A satisfactory form of reuse must remove these obstacles by supporting abstr
and providing a finer grain of reuse. 

Reuse of abstracted modules 

All the preceding approaches, although of limited applicability, highlight import
aspects of the reusability problem: 

• Personnel reusability is necessary if not sufficient. The best reusable componen
useless without well-trained developers, who have acquired sufficient experien
recognize a situation in which existing components may provide help. 

• Design reusability emphasizes the need for reusable components to be of suffic
high conceptual level and generality — not just ready-made solutions to sp
problems. The classes which we will encounter in object technology may be vie
as design modules as well as implementation modules. 

• Source code reusability serves as a reminder that software is in the end defin
program texts. A successful reusability policy must produce reusable program elem

The discussion of source code reusability also helps narrow down our search f
proper units of reuse. A basic reusable component should be a software element.
there we can of course go to collections of software elements.) That element should b
module of reasonable size, satisfying the modularity requirements of the previous cha
in particular, its relations to other software, if any, should be severely limited to facil
independent reuse. The information describing the module’s capabilities, and serv
primary documentation for reusers or prospective reusers, should be abstract: rather than
describing all the details of the module (as with source code), it should, in accordanc
the principle of Information Hiding, highlight the properties relevant to clients.

The term abstracted module will serve as a name for such units of reuse, consist
of directly usable software, available to the outside world through a description w
contains only a subset of each unit’s properties. 

The rest of part B of this book is devoted to devising the precise form of su
abstracted modules; part C will then explore their properties.

The emphasis on abstraction, and the rejection of source code as the vehicle for reuse, d
not necessarily prohibit distributing modules in source form. The contradiction is only
apparent: what is at stake in the present discussion is not how we will deliver modules to
their reusers, but what they will use as the primary source of information about them. It
may be acceptable for a module to be distributed in source form but reused on the basi
of an abstract interface description.
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4.3  REPETITION IN SOFTWARE DEVELOPMENT 

To progress in our search for the ideal abstracted module, we should take a closer 
the nature of software construction, to understand what in software is most subject to

Anyone who observes software development cannot but be impressed b
repetitive nature. Over and again, programmers weave a number of basic patterns: s
searching, reading, writing, comparing, traversing, allocating, synchronizin…
Experienced developers know this feeling of déjà vu, so characteristic of their trade.

A good way to assess this situation (assuming you develop software, or direct p
who do) is to answer the following question:

Table searching is defined here as the problem of finding out whether a certain elemen
x appears in a table t of similar elements. The problem has many variants, depending on
the element types, the data structure representation for t, the choice of searching
algorithm. 

Chances are you or your colleagues will indeed have tackled this problem o
more times. But what is truly remarkable is that — if you are like others in the profe
— the program fragment handling the search operation will have been written a
lowest reasonable level of abstraction: by writing code in some programming lang
rather than calling existing routines. 

To an observer from outside our field, however, table searching would see
obvious target for widely available reusable components. It is one of the most resea
areas of computing science, the subject of hundreds of articles, and many books s
with volume 3 of Knuth’s famous treatise. The undergraduate curriculum of all comp
science departments covers the most important algorithms and data structures. Ce
not a mysterious topic. In addition:

• It is hardly possible, as noted, to write a useful software system which doe
include one or (usually) several cases of table searching. The investment nee
produce reusable modules is not hard to justify. 

• As will be seen in more detail below, most searching algorithms follow a com
pattern, providing what would seem to be an ideal basis for a reusable solution

4.4  NON-TECHNICAL OBSTACLES

Why then is reuse not more common? 

Most of the serious impediments to reuse are technical; removing them will b
subject of the following sections of this chapter (and of much of the rest of this book)
of course there are also some organizational, economical and political obstacles. 

How many times over the past six months did you, or people working for you,
write some program fragment for table searching?
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See [M 1995].
The NIH syndrome 

An often quoted psychological obstacle to reuse is the famous Not Invented Here (“N
syndrome. Software developers, it is said, are individualists, who prefer to redo every
by themselves rather than rely on someone else’s work. 

This contention (commonly heard in managerial circles) is not borne ou
experience. Software developers do not like useless work more than anyone else. W
good, well-publicized and easily accessible reusable solution is available, it gets reu

Consider the typical case of lexical and syntactic analysis. Using parser gene
such as the Lex-Yacc combination, it is much easier to produce a parser for a com
language or a simple programming language than if you must program it from scratch
result is clear: where such tools are available, competent software developers rou
reuse them. Writing your own tailor-made parser still makes sense in some cases
the tools mentioned have their limitations. But the developers’ reaction is usually to g
default to one of these tools; it is when you want to use a solution not based on the re
mechanisms that you have to argue for it. This may in fact cause a new syndrom
reverse of NIH, which we may call HIN (Habit Inhibiting Novelty): a useful but limite
reusable solution, so entrenched that it narrows the developers’ outlook and 
innovation, becomes counter-productive. Try to convince some Unix developers to
parser generator other than Yacc, and you may encounter HIN first-hand.

Something which may externally look like NIH does exist, but often it is simply 
developers’ understandably cautious reaction to new and unknown components.
may fear that bugs or other problems will be more difficult to correct than with a solu
over which they have full control. Often such fears are justified by unfortunate ea
attempts at reusing components, especially if they followed from a management ma
to reuse at all costs, not accompanied by proper quality checks. If the new compone
of good quality and provide a real service, fears will soon disappear. 

What this means for the producer of reusable components is that quality is even
important here than for more ordinary forms of software. If the cost of a non-reusable
of-a-kind solution is N, the cost R of a solution relying on reusable components is ne
zero: there is a learning cost, at least the first time; developers may have to ben
software to accommodate the components; and they must write some interfacing sof
however small, to call them. So even if the reusability savings

and other benefits of reuse are potentially great, you must also convince the can
reusers that the reusable solution’s quality is good enough to justify relinquishing co

This explains why it is a mistake to target a company’s reusability policy to the potential
reusers (the consumers, that is to say the application developers). Instead you should put
the heat on the producers, including people in charge of acquiring external components,
to ensure the quality and usefulness of their offering. Preaching reuse to application

r
R
N----=
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developers, as some companies do by way of reusability policy, is futile: because
application developers are ultimately judged by how effectively they produce their
applications, they should and will reuse not because you tell them to but because you hav
done a good enough job with the reusable components (developed or acquired) that it wil
be profitable for their applications to rely on these components.

The economics of procurement 

A potential obstacle to reuse comes from the procurement policy of many 
corporations and government organizations, which tends to impede reusability effo
focusing on short-term costs. US regulations, for example, make it hard for a govern
agency to pay a contractor for work that was not explicitly commissioned (normal
part of a Request For Proposals). Such rules come from a legitimate concern to p
taxpayers or shareholders, but can also discourage software builders from applyi
crucial effort of generalization to transform good software into reusable components.

On closer examination this obstacle does not look so insurmountable. As the co
for reusability spreads, there is nothing to prevent the commissioning agency 
including in the RFP itself the requirement that the solution must be general-purpos
reusable, and the description of how candidate solutions will be evaluated agains
criteria. Then the software developers can devote the proper attention to the general
task and be paid for it. 

Software companies and their strategies 

Even if customers play their part in removing obstacles to reuse, a potential pro
remains on the side of the contractors themselves. For a software company, the
constant temptation to provide solutions that are purposely not reusable, for fear of not
getting the next job from the customer — because if the result of the current job 
widely applicable the customer may not need a next job! 

I once heard a remarkably candid exposé of this view after giving a talk on reus
object technology. A high-level executive from a major software house came to te
that, although intellectually he admired the ideas, he would never implement them 
own company, because that would be killing the goose that laid the golden egg: mor
90% of the company’s business derived from renting manpower — providing analyst
programmers on assignment to customers — and the management’s objective was t
the figure to 100%. With such an outlook on software engineering, one is not like
greet with enthusiasm the prospect of widely available libraries of reusable compon

The comment was notable for its frankness, but it triggered the obvious retort: i
at all possible to build reusable components to replace some of the expensive serv
a software house’s consultants, sooner or later someone will build them. At that t
company that has refused to take this route, and is left with nothing to sell b
consultants’ services, may feel sorry for having kept its head buried in the sand. 
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It is hard not to think here of the many engineering disciplines that used to be he
labor-intensive but became industrialized, that is to say tool-based — with pa
economic consequences for companies and countries that did not understand early 
what was happening. To a certain extent, object technology is bringing a similar change
to the software trade. The choice between people and tools need not, however,
exclusive one. The engineering part of software engineering is not identical to th
mass-production industries; humans will likely continue to play the key role in
software construction process. The aim of reuse is not to replace humans by tools 
is often, in spite of all claims, what has happened in other disciplines) but to chang
distribution of what we entrust to humans and to tools. So the news is not all bad
software company that has made its name through its consultants. In particular: 

• In many cases developers using sophisticated reusable components may still b
from the help of experts, who can advise them on how best to use the compo
This leaves a meaningful role for software houses and their consultants.

• As will be discussed below, reusability is inseparable from extendibility: g
reusable components will still be open for adaptation to specific cases. Consu
from a company that developed a library are in an ideal position to perform 
tuning for individual customers. So selling components and selling services ar
necessarily exclusive activities; a components business can serve as a basi
service business. 

• More generally, a good reusable library can play a strategic role in the policy
successful software company, even if the company sells specific solutions r
than the library itself, and uses the library for internal purposes only. If the lib
covers the most common needs and provides an extendible basis for the
advanced cases, it can enable the company to gain a competitive edge in c
application areas by developing tailored solutions to customers’ needs, faster 
lower cost than competitors who cannot rely on such a ready-made basis.

Accessing components 

Another argument used to justify skepticism about reuse is the difficulty of the compo
management task: progress in the production of reusable software, it is said, would
in developers being swamped by so many components as to make their life worse 
the components were not available. 

Cast in a more positive style, this comment should be understood as a warn
developers of reusable software that the best reusable components in the world are 
if nobody knows they exist, or if it takes too much time and effort to obtain them. 
practical success of reusability techniques requires the development of adequate da
of components, which interested developers may search by appropriate keywords 
out quickly whether some existing component satisfies a particular need. Net
services must also be available, allowing electronic ordering and immediate downlo
of selected components. 
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These goals do raise technical and organizational problems. But we must keep
in proportion. Indexing, retrieving and delivering reusable components are engine
issues, to which we can apply known tools, in particular database technology; there
reason why software components should be more difficult to manage than cus
records, flight information or library books.

Reusability discussions used to delve forever into the grave question “how i
world are we going to make the components available to developers?”. After the adv
in networking of the past few years, such debates no longer appear so momentou
the World-Wide Web, in particular, have appeared powerful search tools (AltaV
Yahoo…) which have made it far easier to locate useful information, either on the Int
or on a company’s Intranet. Even more advanced solutions (produced, one may e
with the help of object technology) will undoubtedly follow. All this makes it increasin
clear that the really hard part of progress in reusability lies not in organizing reu
components, but in building the wretched things in the first place.

A note about component indexing 

On the matter of indexing and retrieving components, a question presents itself, 
borderline between technical and organizational issues: how should we associate in
information, such as keywords, with software components? 

The Self-Documentation principle suggests that, as much as possible, inform
about a module — indexing information as well as other forms of module document
— should appear in the module itself rather than externally. This leads to an imp
requirement on the notation that will be developed in part C of this book to write software
components, called classes. Regardless of the exact form of these classes, we mu
ourselves with a mechanism to attach indexing information to each component. 

The syntax is straightforward. At the beginning of a module text, you will be inv
to write an indexing clause of the form 

indexing
index_word1: value, value, value…
index_word2: value, value, value…
…
… Normal module definition (see part C) …

Each index_word is an identifier; each value is a constant (integer, real etc.), a
identifier, or some other basic lexical element.

There is no particular constraint on index words and values, but an indus
standards group, an organization or a project may wish to define their own conven
Indexing and retrieval tools can then extract this information to help software devel
find components satisfying certain criteria.

As we saw in the discussion of Self-Documentation, storing such information in
module itself — rather than in an outside document or database — decreas
likelihood of including wrong information, and in particular of forgetting to update 
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information when updating the module (or conversely). Indexing clauses, modest a
may seem, play a major role in helping developers keep their software organize
register its properties so that others can find out about it.

Formats for reusable component distribution

Another question straddling the technical-organizational line is the form under whic
should distribute reusable components: source or binary? This is a touchy issue, so 
limit ourselves to examining a few of the arguments on both sides.

For a professional, for-profit software developer, it often seems desirable to pro
buyers of reusable components with an interface description (the short form discussed in
a later chapter) and the binary code for their platform of choice, but not the source 
This protects the developer’s investment and trade secrets. 

Binary is indeed the preferred form of distribution for commercial applicat
programs, operating systems and other tools, including compilers, interpreters
development environments for object-oriented languages. In spite of recurring attac
the very idea, emanating in particular from an advocacy group called the Leagu
Programming Freedom, this mode of commercial software distribution is unlikel
recede much in the near future. But the present discussion is not about ordinary to
application programs: it is about libraries of reusable software components. In tha
one can also find some arguments in favor of source distribution.

For the component producer, an advantage of source distribution is that it 
porting efforts. You stay away from the tedious and unrewarding task of adapting sof
to the many incompatible platforms that exist in today’s computer world, relying ins
on the developers of object-oriented compilers and environments to do the job for
(For the consumer this is of course a counter-argument, as installation from source
require more work and may cause unforeseen errors.)

Some compilers for object-oriented languages may let you retain some of the portability
benefit without committing to full source availability: if the compiler uses C as
intermediate generated code, as is often the case today, you can usually substitut
portable C code for binary code. It is then not difficult to devise a tool that obscures the
C form, making it almost as difficult to reverse-engineer as a binary form.

Also note that at various stages in the history of software, dating back to UNCOL
(UNiversal COmputing Language) in the late fifties, people have been defining low-level
instruction formats that could be interpreted on any platform, and hence could provide a
portable target for compilers. The ACE consortium of hardware and software companies
was formed in 1988 for that purpose. Together with the Java language has come the
notion of Java bytecode, for which interpreters are being developed on a number of
platforms. But for the component producer such efforts at first represent more work, not
less: until you have the double guarantee that the new format is available on every
platform of interest and that it executes target code as fast as platform-specific solutions,
you cannot forsake the old technology, and must simply add the new target code forma
to those you already support. So a solution that is advertized as an end-all to all portability
problems actually creates, in the short term, more portability problems.
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Perhaps more significant, as an argument for source code distribution, i
observation that attempts to protect invention and trade secrets by removing the 
form of the implementation may be of limited benefit anyway. Much of the hard wor
the construction of a good reusable library lies not in the implementation but in the d
of the components’ interfaces; and that is the part that you are bound to release a
This is particularly clear in the world of data structures and algorithms, where most 
necessary techniques are available in the computing science literature. To de
successful library, you must embed these techniques in modules whose interfac
make them useful to the developers of many different applications. This interface d
is part of what you must release to the world.

Also note that, in the case of object-oriented modules, there are two form
component reuse: as a client or, as studied in later chapters, through inheritanc
second form combines reuse with adaptation. Interface descriptions (short form
sufficient for client reuse, but not always for inheritance reuse. 

Finally, the educational side: distributing the source of library modules is a good
to provide models of the producer’s best engineering, useful to encourage consum
develop their own software in a consistent style. We saw earlier that the res
standardization is one of the benefits of reusability. Some of it will remain even if c
developers only have access to the interfaces; but nothing beats having the full tex

Be sure to note that even if source is available it should not serve as the primary
documentation tool: for that role, we continue to use the module interface. 

This discussion has touched on some delicate economic issues, which condi
part the advent of an industry of software components and, more generally, the pr
of the software field. How do we provide developers with a fair reward for their eff
and an acceptable degree of protection for their inventions, without hamperin
legitimate interests of users? Here are two opposite views: 

• At one end of the spectrum you will find the positions of the League 
Programming Freedom: all software should be free and available in source for

• At the other end you have the idea of superdistribution, advocated by Brad Cox in
several articles and a book. Superdistribution would allow users to dupl
software freely, charging them not for the purchase but instead for each use. Im
a little counter attached to each software component, which rings up a few pe
every time you make use of the component, and sends you a bill at the end 
month. This seems to preclude distribution in source form, since it would be too
to remove the counting instructions. Although JEIDA, a Japanese consortiu
electronics companies, is said to be working on hardware and software mecha
to support the concept, and although Cox has recently been empha
enforcement mechanisms built on regulations (like copyright) rather 
technological devices, superdistribution still raises many technical, logi
economic and psychological questions.
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Any comprehensive approach to reusability must, along with the technical aspects
with the organizational and economical issues: making reusability part of the soft
development culture, finding the right cost structure and the right format for compo
distribution, providing the appropriate tools for indexing and retrieving components.
surprisingly, these issues have been the focus of some of the main reusability initi
from governments and large corporations\, such as the STARS program of thUS
Department of Defense (Software Technology for Adaptable, Reliable Systems) and the
“software factories” installed by some large Japanese companies. 

Important as these questions are in the long term, they should not detrac
attention from the main roadblocks, which are still technical. Success in reuse requires th
right modular structures and the construction of quality libraries containing the te
thousands of components that the industry needs.

The rest of this chapter concentrates on the first of these questions; it examine
common notions of module are not appropriate for large-scale reusability, and defin
requirements that a better solution — developed in the following chapters — must sa

4.5  THE TECHNICAL PROBLEM

What should a reusable module look like?

Change and constancy 

Software development, it was mentioned above, involves much repetition. To under
the technical difficulties of reusability we must understand the nature of that repetiti

Such an analysis reveals that although programmers do tend to do the same k
things time and time again, these are not exactly the same things. If they were, the solutio
would be easy, at least on paper; but in practice so many details may change as to
any simple-minded attempt at capturing the commonality. 

A telling analogy is provided by the works of the Norwegian painter Edvard Munch, the
majority of which may be seen in the museum dedicated to him in Oslo, the birthplace of
Simula. Munch was obsessed with a small number of profound, essential themes: love
anguish, jealousy, dance, death… He drew and painted them endlessly, using the same
pattern each time, but continually changing the technical medium, the colors, the
emphasis, the size, the light, the mood. 

Such is the software engineer’s plight: time and again composing a new vari
that elaborates on the same basic themes. 

Take the example mentioned at the beginning of this chapter: table searching. True,
the general form of a table searching algorithm is going to look similar each time: start at
some position in the table t; then begin exploring the table from that position, each ti
checking whether the element found at the current position is the one being sough
if not, moving to another position. The process terminates when it has either foun
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element or probed all the candidate positions unsuccessfully. Such a general pa
applicable to many possible cases of data representation and algorithms for
searching, including arrays (sorted or not), linked lists (sorted or not), sequential 
binary trees, B-trees and hash tables of various kinds.

It is not difficult to turn this informal description into an incompletely refin
routine: 

has (t: TABLE, x: ELEMENT): BOOLEAN is
-- Is there an occurrence of x in t?

local
pos: POSITION

do
from

pos := INITIAL_POSITION (x, t)
until

EXHAUSTED (pos, t) or else FOUND ( pos, x, t)

loop
pos := NEXT (pos, x, t)

end

Result:= not EXHAUSTED (pos, t)

end

(A few clarifications on the notation: from  … until  … loop … end describes a loop,
initialized in the from  clause, executing the loop clause zero or more times, an
terminating as soon as the condition in the until clause is satisfied. Result denotes the
value to be returned by the function. If you are not familiar with the or else operator, just
accept it as if it were a boolean or.)

Although the above text describes (through its lower-case elements) a ge
pattern of algorithmic behavior, it is not a directly executable routine since it contain
upper case) some incompletely refined parts, corresponding to aspects of the
searching problem that depend on the implementation chosen: the type of table ele
(ELEMENT), what position to examine first (INITIAL_POSITION), how to go from a
candidate position to the next (NEXT), how to test for the presence of an element a
certain position (FOUND), how to determine that all interesting positions have be
examined (EXHAUSTED).

Rather than a routine, then, the above text is a routine pattern, which you can
turn into an actual routine by supplying refinements for the upper-case parts.

The reuse-redo dilemma 

All this variation highlights the problems raised by any attempt to come up with gen
purpose modules in a given application area: how can we take advantage of the co
pattern while accommodating the need for so much variation? This is not jus
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implementation problem: it is almost as hard to specify the module so that client module
can rely on it without knowing its implementation. 

These observations point to the central problem of software reusability, w
dooms simplistic approaches. Because of the versatility of software — its very softness —
candidate reusable modules will not suffice if they are inflexible. 

A frozen module forces you into the reuse or redo dilemma: reuse the module
exactly as it is, or redo the job completely. This is often too limiting. In a typical situa
you discover a module that may provide you with a solution for some part of your cu
job, but not necessarily the exact solution. Your specific needs may require 
adaptation of the module’s original behavior. So what you will want to do in such a
is to reuse and redo: reuse some, redo some — or, you hope, reuse a lot and redo a
Without this ability to combine reuse and adaptation, reusability techniques ca
provide a solution that satisfies the realities of practical software development. 

So it is not by accident that almost every discussion of reusability in this book
considers extendibility (leading to the definition of the term “modularity”, which cov
both notions and provided the topic of the previous chapter). Whenever you start lo
for answers to one of these quality requirements, you quickly encounter the other. 

This duality between reuse and adaptation was also present in the earlier disc
of the Open-Closed principle, which pointed out that a successful software comp
must be usable as it stands (closed) while still adaptable (open).

The search for the right notion of module, which occupies the rest of this chapte
the next few, may be characterized as a constant attempt to reconcile reusabili
extendibility, closure and openness, constancy and change, satisfying today’s nee
trying to guess what tomorrow holds in store. 

4.6  FIVE REQUIREMENTS ON MODULE STRUCTURES 

How do we find module structures that will yield directly reusable components w
preserving the possibility of adaptation? 

The table searching issue and the has routine pattern obtained for it on the previou
page illustrate the stringent requirements that any solution will have to meet. We ca
this example to analyze what it takes to go from a relatively vague recognitio
commonality between software variants to an actual set of reusable modules. Such 
will reveal five general issues: 

• Type Variation. 

• Routine Grouping. 

• Implementation Variation. 

• Representation Independence. 

• Factoring Out Common Behaviors. 
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Type Variation

The has routine pattern assumes a table containing objects of a type ELEMENT. A
particular refinement might use a specific type, such as INTEGER or BANK_ACCOUNT,
to apply the pattern to a table of integers or bank accounts. 

But this is not satisfactory. A reusable searching module should be applicab
many different types of element, without requiring reusers to perform manual chang
the software text. In other words, we need a facility for describing type-paramete
modules, also known more concisely as generic modules. Genericity (the ability for
modules to be generic) will turn out to be an important part of the object-oriented me
an overview of the idea appears later in this chapter. 

Routine Grouping 

Even if it had been completely refined and parameterized by types, the has routine pattern
would not be quite satisfactory as a reusable component. How you search a table d
on how it was created, how elements are inserted, how they are deleted. So a se
routine is not enough by itself as a unit or reuse. A self-sufficient reusable module w
need to include a set of routines, one for each of the operations cited — creation, ins
deletion, searching. 

This idea forms the basis for a form of module, the “package”, found in what ma
called the encapsulation languages: Ada, Modula-2 and relatives. More on this belo

Implementation Variation 

The has pattern is very general; there is in practice, as we have seen, a wide vari
applicable data structures and algorithms. Such variety indeed that we cannot ex
single module to take care of all possibilities; it would be enormous. We will need a fa
of modules to cover all the different implementations. 

A general technique for producing and using reusable modules will have to su
this notion of module family. 

Representation Independence 

A general form of reusable module should enable clients to specify an operation w
knowing how it is implemented. This requirement is called Representation Independ

Assume that a client module C from a certain application system — an ass
management program, a compiler, a geographical information system… — needs to
determine whether a certain element x appears in a certain table t (of investments, of
language keywords, of cities). Representation independence means here the abilitC
to obtain this information through a call such as 

present:= has (t, x)
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without knowing what kind of table t is at the time of the call. C’s author should only need
to know that t is a table of elements of a certain type, and that x denotes an object of tha
type. Whether t is a binary search tree, a hash table or a linked list is irrelevant for him
should be able to limit his concerns to asset management, compilation or geog
Selecting the appropriate search algorithm based on t’s implementation is the business o
the table management module, and of no one else. 

This requirement does not preclude letting clients choose a specific implemen
when they create a data structure. But only one client will have to make this initial ch
after that, none of the clients that perform searches on t should ever have to ask what exa
kind of table it is. In particular, the client C containing the above call may have receiv
t from one of its own clients (as an argument to a routine call); then for C the name t is just
an abstract handle on a data structure whose details it may not be able to access.

You may view Representation Independence as an extension of the ru
Information Hiding, essential for smooth development of large systems: implement
decisions will often change, and clients should be protected. But Represen
Independence goes further. Taken to its full consequences, it means protecting a mo
clients against changes not only during the project lifecycle but also during execution —
a much smaller time frame! In the example, we want has to adapt itself automatically to
the run-time form of table t, even if that form has changed since the last call. 

Satisfying Representation Independence will also help us towards a related prin
encountered in the discussion of modularity: Single Choice, which directed us to
away from multi-branch control structures that discriminate among many variants, a

if “ t is an array managed by open hashing” then
“Apply open hashing search algorithm”

elseif “ t is a binary search tree” then
“Apply binary search tree traversal”

elseif
(etc.)

end

It would be equally unpleasant to have such a decision structure in the module
(we cannot reasonably expect a table management module to know about all prese
future variants) as to replicate it in every client. The solution is to hide the multi-bra
choice completely from software developers, and have it performed automatically b
underlying run-time system. This will be the role of dynamic binding, a key component
of the object-oriented approach, to be studied in the discussion of inheritance. 

Factoring Out Common Behaviors

If Representation Independence reflects the client’s view of reusability — the abili
ignore internal implementation details and variants –, the last requirement, Factorin
Common Behaviors, reflects the view of the supplier and, more generally, the vie
developers of reusable classes. Their goal will be to take advantage of any commo
that may exist within a family or sub-family of implementations. 
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The variety of implementations available in certain problem areas will usu
demand, as noted, a solution based on a family of modules. Often the family is so
that it is natural to look for sub-families. In the table searching case a first attem
classification might yield three broad sub-families: 

• Tables managed by some form of hash-coding scheme. 

• Tables organized as trees of some kind. 

• Tables managed sequentially.

Each of these categories covers many variants, but it is usually possible to
significant commonality between these variants. Consider for example the fami
sequential implementations — those in which items are kept and searched in the o
their original insertion.

Possible representations for a sequential table include an array, a linked list 
file. But regardless of these differences, clients should be able, for any sequen
managed table, to examine the elements in sequence by moving a (fictitious) cursor
indicating the position of the currently examined element. In this approach we may re
the searching routine for sequential tables as: 

has (t: SEQUENTIAL_TABLE; x: ELEMENT): BOOLEAN is
-- Is there an occurrence of x in t?

do
from start until

after or else found (x)
loop

forth
end
Result:= not after

end

S
t
i

SEQUENTIAL_
TABLE

ARRAY_
TABLE

LINKED_
TABLE

FILE_
TABLE

TABLE

HASH_
TABLE

TREE_
TABLE
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This form relies on four routines which any sequential table implementation wi
able to provide: 

• start, a command to move the cursor to the first element if any. 

• forth, a command to advance the cursor by one position. (Support for forth is of
course one of the prime characteristics of a sequential table implementation.) 

• after, a boolean-valued query to determine if the cursor has moved past th
element; this will be true after a start if the table was empty. 

• found (x), a boolean-valued query to determine if the element at cursor position
value x. 

At first sight, the routine text for has at the bottom of the preceding page resemb
the general routine pattern used at the beginning of this discussion, which co
searching in any table (not just sequential). But the new form is not a routine patter
more; it is a true routine, expressed in a directly executable notation (the notation u
illustrate object-oriented concepts in part C of this book). Given appropriate
implementations for the four operations start, forth, after and found which it calls, you can
compile and execute the latest form of has. 

For each possible sequential table representation you will need a representat
the cursor. Three example representations are by an array, a linked list and a file.

The first uses an array of capacity items, the table occupying positions 1 to count.
Then you may represent the cursor simply as an integer index ranging from 1 to count + 1.
(The last value is needed to represent a cursor that has moved “after” the last item.) 

The second representation uses a linked list, where the first cell is accessible th
a reference first_cell and each cell is linked to the next one through a reference right. Then
you may represent the cursor as a reference cursor. 

afteritem

index count1

forth

v1 v2 v3 v5v4

 

count1 capacity

v1 v2 v3 v5

index=3

v4
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The third representation uses a sequential file, in which the cursor simply repre

the current reading position.

The implementation of the four low-level operations start, forth, after and found will
be different for each variant. The following table gives the implementation in each 
(The notation t @ i denotes the i-th element of array t, which would be written t [ i] in

Pascal or C; Void denotes a void reference; the Pascal notation f↑, for a file f, denotes the
element at the current file reading position.)

The challenge of reusability here is to avoid unneeded duplication of softwar
taking advantage of the commonality between variants. If identical or near-iden
fragments appear in different modules, it will be difficult to guarantee their integrity
to ensure that changes or corrections get propagated to all the needed places; onc

configuration management problems may follow.

All sequential table variants share the has function, differing only by their
implementation of the four lower-level operations. A satisfactory solution to 
reusability problem must include the text of has in only one place, somehow associat
with the general notion of sequential table independently of any choice of represen

To describe a new variant, you should not have to worry about has any more; all you will
need to do is to provide the appropriae versions of start, forth, after and found. 

start forth after found (x)

Array i := 1 i := i + 1 i > count t @ i = x

Linked list c := first_
cell

c := c ●  right c = Void c ●  item = x

File rewind read end_of_file f↑ = x

v1
Void

cursorfirst_cell

right v2 right v3 right v5v4 right

v2 v3 v4 v5

File reading position

v1
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4.7  TRADITIONAL MODULAR STRUCTURES 

Together with the modularity requirements of the previous chapter, the five requirem
of Type Variation, Routine Grouping, Implementation Variation, Representa
Independence and Factoring Out Common Behaviors define what we may expect fro
reusable components — abstracted modules.

Let us study the pre-O-O solutions to understand why they are not sufficient —
also what we should learn and keep from them in the object-oriented world. 

Routines 

The classical approach to reusability is to build libraries of routines. Here the term routine
denotes a software unit that other units may call to execute a certain algorithm, 
certain inputs, producing certain outputs and possibly modifying some other 
elements. A calling unit will pass its inputs (and sometimes outputs and mod
elements) in the form of actual arguments. A routine may also return output in the form
of a result; in this case it is known as a function. 

The terms subroutine, subprogram and procedure are also used instead of routine. The
first two will not appear in this book except in the discussion of specific languages (the
Ada literature talks about subprograms, and the Fortran literature about subroutines.)
“Procedure” will be used in the sense of a routine which does not return a result, so that
we have two disjoint categories of routine: procedures and functions. (In discussions of
the C language the term “function” itself is sometimes used for the general notion of
routine, but here it will always denote a routine that returns a result.) 

Routine libraries have been successful in several application domains, in part
numerical computation, where excellent libraries have created some of the earliest s
stories of reusability. Decomposition of systems into routines is also what one ob
through the method of top-down, functional decomposition. The routine library appr
indeed seems to work well when you can identify a (possibly large) set of indivi
problems, subject to the following limitations: 

R1 • Each problem admits a simple specification. More precisely, it is possibl
characterize every problem instance by a small set of input and output argume

R2 • The problems are clearly distinct from each other, as the routine approach do
allow putting to good use any significant commonality that might exist — excep
reusing some of the design. 

R3 • No complex data structures are involved: you would have to distribute them am
the routines using them, losing the conceptual autonomy of each module. 

The table searching problem provides a good example of the limitation
subroutines. We saw earlier that a searching routine by itself does not have enough c
to serve as a stand-alone reusable module. Even if we dismissed this objection, ho
we would be faced with two equally unpleasant solutions: 

• A single searching routine, which would try to cover so many different cases th
would require a long argument list and would be very complex internally. 
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through the Ada no-
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chapter 33. Note 
again that by de-
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Ada 83. (Ada 95 re-
tains packages with 
a few additions.)
• A large number of searching routines, each covering a specific case and dif
from some others by only a few details in violation of the Factoring Out Comm
Behaviors requirement; candidate reusers could easily lose their way in such a

More generally, routines are not flexible enough to satisfy the needs of reuse
have seen the intimate connection between reusability and extendibility. A reu
module should be open to adaptation, but with a routine the only means of adaptatio
pass different arguments. This makes you a prisoner of the Reuse or Redo dilemma
you like the routine as it is, or you write your own. 

Packages 

In the nineteen-seventies, with the progress of ideas on information hiding and
abstraction, a need emerged for a form of module more advanced than the routin
result may be found in several design and programming languages of the period; th
known are CLU, Modula-2 and Ada. They all offer a similar form of module, known
Ada as the package. (CLU calls its variant the cluster, and Modula the module.
discussion will retain the Ada term.)

Packages are units of software decomposition with the following properties: 

P1 • In accordance with the Linguistic Modular Units principle, “package” is a const
of the language, so that every package has a name and a clear syntactic scop

P2 • Each package definition contains a number of declarations of related elements
as routines and variables, hereafter called the features of the package. 

P3 • Every package can specify precise access rights governing the use of its featu
other packages. In other words, the package mechanism supports information h

P4 • In a compilable language (one that can be used for implementation, not
specification and design) it is possible to compile packages separately. 

Thanks to P3, packages deserve to be seen as abstracted modules. Their 
contribution is P2, answering the Routine Grouping requirement. A package may con
any number of related operations, such as table creation, insertion, searching and d
It is indeed not hard to see how a package solution would work for our example pro
Here — in a notation adapted from the one used in the rest of this book for object-or
software — is the sketch of a package INTEGER_TABLE_HANDLING describing a
particular implementation of tables of integers, through binary trees:

package INTEGER_TABLE_HANDLING feature

type INTBINTREE is

record 

-- Description of representation of a binary tree, for example

info: INTEGER

left, right: INTBINTREE

end
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new: INTBINTREE is 
-- Return a new INTBINTREE, properly initialized.

do … end

has (t: INTBINTREE; x: INTEGER): BOOLEAN is
-- Does x appear in t?

do … Implementation of searching operation … end

put (t: INTBINTREE; x: INTEGER) is 
-- Insert x into t.

do … end

remove (t: INTBINTREE; x: INTEGER) is 
-- Remove x from t.

do … end

end -- package INTEGER_TABLE_HANDLING 

This package includes the declaration of a type (INTBINTREE), and a number of
routines representing operations on objects of that type. In this case there is no ne
variable declarations in the package (although the routines may have local variable

Client packages will now be able to manipulate tables by using the various fea
of INTEGER_TABLE_HANDLING. This assumes a syntactic convention allowing a clie
to use feature f from package P; let us borrow the CLU notation: P$f. Typical extracts from
a client of INTEGER_TABLE_HANDLING may be of the form:

-- Auxiliary declarations:
x: INTEGER; b: BOOLEAN

-- Declaration of t using a type defined in INTEGER_TABLE_HANDLING:
t: INTEGER_TABLE_HANDLING$INTBINTREE

-- Initialize t as a new table, created by function new of the package: 
t := INTEGER_TABLE_HANDLING$new

-- Insert value of x into table, using procedure put from the package:
INTEGER_TABLE_HANDLING$put (t, x)

-- Assign True or False to b, depending on whether or not x appears in t
-- for the search, use function has from the package:

b := INTEGER_TABLE_HANDLING$has (t, x)

Note the need to invent two related names: one for the module, here INTEGER_
TABLE_HANDLING, and one for its main data type, here INTBINTREE. One of the key
steps towards object orientation will be to merge the two notions. But let us not antic

A less important problem is the tediousness of having to write the package name (here
INTEGER_TABLE_HANDLING) repeatedly. Languages supporting packages solve this
problem by providing various syntactic shortcuts, such as the following Ada-like form:

with  INTEGER_TABLE_HANDLING then
… Here has means INTEGER_TABLE_HANDLING$has, etc. …

end
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See “Using asser-
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page 390 and 
“Showing the inter-
face”, page 805.
Another obvious limitation of packages of the above form is their failure to deal 
the Type Variation issue: the module as given is only useful for tables of integers. W
shortly see, however, how to correct this deficiency by making packages generic.

The package mechanism provides information hiding by limiting clients’ rights
features. The client shown on the preceding page was able to declare one of it
variables using the type INTBINTREE from its supplier, and to call routines declared 
that supplier; but it has access neither to the internals of the type declaration (the record
structure defining the implementation of tables) nor to the routine bodies (theido
clauses). In addition, you can hide some features of the package (variables, 
routines) from clients, making them usable only within the text of the package.

Languages supporting the package notion differ somewhat in the details of their
information hiding mechanism. In Ada, for example, the internal properties of a type such
as INTBINTREE will be accessible to clients unless you declare the type as private . 

Often, to enforce information hiding, encapsulation languages will invite you
declare a package in two parts, interface and implementation, relegating such 
elements as the details of a type declaration or the body of a routine to the implemen
part. Such a policy, however, results in extra work for the authors of supplier mod
forcing them to duplicate feature header declarations. With a better understand
Information Hiding we do not need any of this. More in later chapters. 

Packages: an assessment 

Compared to routines, the package mechanism brings a significant improvement 
modularization of software systems into abstracted modules. The possibility of gath
a number of features under one roof is useful for both supplier and client authors: 

• The author of a supplier module can keep in one place and compile together 
software elements relating to a given concept. This facilitates debugging and ch
In contrast, with separate subroutines there is always a risk of forgetting to u
some of the routines when you make a design or implementation change; you 
for example update new, put and has but forget remove. 

• For client authors, it is obviously easier to find and use a set of related facilit
they are all in one place. 

The advantage of packages over routines is particularly clear in cases such as o
example, where a package groups all the operations applying to a certain data struc

But packages still do not provide a full solution to the issues of reusability. As no
they address the Routine Grouping requirement; but they leave the others unanswe
particular they offer no provision for factoring out commonality. You will have noted 
INTEGER_TABLE_HANDLING, as sketched, relies on one specific choice 
implementation, binary search trees. True, clients do not need to be concerned wi
choice, thanks to information hiding. But a library of reusable components will nee
provide modules for many different implementations. The resulting situation is ea
foresee: a typical package library will offer dozens of similar but never identical mod
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rest of this book, is 
Ada-like rather than 
exact Ada. The REAL 
type is called FLOAT 
in Ada; semicolons 
have been removed.
in a given area such as table management, with no way to take advantage 
commonality. To provide reusability to the clients, this technique sacrifices reusabili
the suppliers’ side. 

Even on the clients’ side, the situation is not completely satisfactory. Every use
table by a client requires a declaration such as the above: 

t: INTEGER_TABLE_HANDLING$INTBINTREE 

forcing the client to choose a specific implementation. This defeats the Represen
Independence requirement: client authors will have to know more about implementa
of supplier notions than is conceptually necessary. 

4.8  OVERLOADING AND GENERICITY

Two techniques, overloading and genericity, offer candidate solutions in the effort to 
more flexibility to the mechanisms just described. Let us study what they can contri

Syntactic overloading 

Overloading is the ability to attach more than one meaning to a name appearin
program. 

The most common source of overloading is for variable names: in almos
languages, different variables may have the same name if they belong to different m
(or, in the Algol style of languages, different blocks within a module).

More relevant to this discussion is routine overloading, also known as operato
overloading, which allows several routines to share the same name. This possib
almost always available for arithmetic operators (hence the second name): the
notation, a + b, denotes various forms of addition depending on the types of a and b
(integer, single-precision real, double-precision real). But most languages do not tr
operation such as "+ "  as a routine, and reserve it for predefined basic types — integer
and the like. Starting with Algol 68, which allowed overloading the basic opera
several languages have extended the overloading facility beyond language built-
user-defined operations and ordinary routines. 

In Ada, for example, a package may contain several routines with the same na
long as the signatures of these routines are different, where the signature of a rou
defined here by the number and types of its arguments. (The general notion of sig
also includes the type of the results, if any, but Ada resolves overloading on the ba
the arguments only.) For example, a package could contain several square function

square (x: INTEGER): INTEGER is do … end
square (x: REAL): REAL is do … end
square (x: DOUBLE): DOUBLE is do … end
square (x: COMPLEX): COMPLEX is do … end

Then, in a particular call of the form square (y), the type of y will determine which
version of the routine you mean. 
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A package could similarly declare a number of search functions, all of the form

has (t: “SOME_TABLE_TYPE”; x: ELEMENT) is do … end

supporting various table implementations and differing by the actual type used in li
“SOME_TABLE_TYPE”. The type of the first actual argument, in any client’s call to has,
suffices to determine which routine is intended. 

These observations suggest a general characterization of routine overloading,
will be useful when we later want to contrast this facility with genericity:

What does routine overloading really bring to our quest for reusability? Not muc
is a syntactic facility, relieving developers from having to invent different names
various implementations of an operation and, in essence, placing that burden o
compiler. But this does not solve any of the key issues of reusability. In partic
overloading does nothing to address Representation Independence. When you write 

has (t, x)

you must have declared t and so (even if information hiding protects you from worryin
about the details of each variant of the search algorithm) you must know exactly wha
of table t is! The only contribution of overloading is that you can use the same name 
cases. Without overloading each implementation would require a different name, a

has_binary_tree (t, x)

has_hash (t, x)

has_linked (t, x)

Is the possibility of avoiding different names a benefit after all? Perhaps not. A 
rule of software construction, object-oriented or not, is the principle of non-deception:
differences in semantics should be reflected by differences in the text of the software
is essential to improve the understandability of software and minimize the risk of e
If the has routines are different, giving them the same name may mislead a reader 
software into believing that they are the same. Better force a little more wordiness o
client (as with the above specific names) and remove any danger of confusion. 

The further one looks into this style of overloading, the more limited it appears.
criterion used to disambiguate calls — the signature of argument lists — has no par
merit. It works in the above examples, where the various overloads of square and has are
all of different signatures, but it is not difficult to think of many cases where the signa
would be the same. One of the simplest examples for overloading would seem to b
graphics system, a set of functions used to create new points, for example under th

p1 := new_point (u, v)

Role of overloading

Routine overloading is a facility for clients. It makes it possible to write the
same client text when using different implementations of a certain concept.
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There are two basic ways to specify a new point: through its cartesian coordinx
and y (the projections on the horizontal axis), and through its polar coordinates ρ and θ
(the distance to the origin, and the angle with the horizontal axis). But if we over
function new_point we are in trouble, since both versions will have the signature

new_point (p, q: REAL): POINT

This example and many similar ones show that type signature, the criterio
disambiguating overloaded versions, is irrelevant. But no better one has been prop

The recent Java language regrettably includes the form of syntactic overloading just
described, in particular to provide alternative ways to create objects.

Semantic overloading (a preview)

The form of routine overloading described so far may be called syntactic overloading.
The object-oriented method will bring a much more interesting technique, dyn
binding, which addresses the goal of Representation Independence. Dynamic bindin
be called semantic overloading. With this technique, you will be able to write th
equivalent of has (t, x), under a suitably adapted syntax, as a request to the machine
executes your software. The full meaning of the request is something like this: 

Dear Hardware-Software Machine:

Please look at what t is; I know that it must be a table, but not what table
implementation its original creator chose — and to be honest about it I’d much
rather remain in the dark. After all, my job is not table management but
investment banking [or compiling, or computer-aided-design etc.]. The chief
table manager here is someone else. So find out for yourself about it and, once
you have the answer, look up the proper algorithm for has for that particular
kind of table. Then apply that algorithm to determine whether x appears in t,
and tell me the result. I am eagerly waiting for your answer.

I regret to inform you that, beyond the information that t is a table of some kind
and x a potential element, you will not get any more help from me.

With my sincerest wishes,

Your friendly application developer.

Unlike syntactic overloading, such semantic overloading is a direct answer t
Representation Independence requirement. It still raises the specter of violatin
principle of non-deception; the answer will be to use assertions to characterize the
common semantics of a routine that has many different variants (for example, the co
properties which characterize has under all possible table implementations). 

Because semantic overloading, to work properly, requires the full baggage of o
orientation, in particular inheritance, it is understandable that non-O-O languages s
Ada offer syntactic overloading as a partial substitute in spite of the problems ment
above. In an object-oriented language, however, providing syntactic overloading on 
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dynamic binding can be confusing, as is illustrated by the case of C++ and Java whic
allow a class to introduce several routines with the same name, leaving it to the co
and the human reader to disambiguate calls. 

Genericity

Genericity is a mechanism for defining parameterized module patterns, whose para
represent types.

This facility is a direct answer to the Type Variation issue. It avoids the need
many modules such as 

INTEGER_TABLE_HANDLING

ELECTRON_TABLE_HANDLING

ACCOUNT_TABLE_HANDLING

by enabling you instead to write a single module pattern of the form 

TABLE_HANDLING [G]

where G is a name meant to represent an arbitrary type and known as a formal generic
parameter. (We may later encounter the need for two or more generic parameters, b
the present discussion we may limit ourselves to one.) 

Such a parameterized module pattern is known as a generic module, although it is
not really a module, only a blueprint for many possible modules. To obtain one of 
actual modules, you must provide a type, known as an actual generic parameter, to
replace G; the resulting (non-generic) modules are written for example 

TABLE_HANDLING [INTEGER]

TABLE_HANDLING [ELECTRON]

TABLE_HANDLING [ACCOUNT]

using types INTEGER, ELECTRON and ACCOUNT respectively as actual generi
parameters. This process of obtaining an actual module from a generic module (th
say, from a module pattern) by providing a type as actual generic parameter will be k
as generic derivation; the module itself will be said to be generically derived. 

Two small points of terminology. First, generic derivation is sometimes called generic
instantiation, a generically derived module then being called a generic instance. This
terminology can cause confusion in an O-O context, since “instance” also denotes the
run-time creation of objects (instances) from the corresponding types. So for genericity
we will stick to the “derivation” terminology.

Another possible source of confusion is “parameter”. A routine may have formal
arguments, representing values which the routine’s clients will provide in each call. The
literature commonly uses the term parameter (formal, actual) as a synonym for argumen
(formal, actual). There is nothing wrong in principle with either term, but if we have both
routines and genericity we need a clear convention to avoid any misunderstanding. The
convention will be to use “argument” for routines only, and “parameter” (usually in the
form “generic parameter” for further clarification) for generic modules only. 
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Internally, the declaration of the generic module TABLE_HANDLING will resemble
that of INTEGER_TABLE_HANDLING above, except that it uses G instead of INTEGER
wherever it refers to the type of table elements. For example: 

package TABLE_HANDLING [G] feature
type BINARY_TREE is

record
info: G
left, right: BINARY_TREE

end
has (t: BINARY_TREE; x: G): BOOLEAN

-- Does x appear in t?
do … end

put (t: BINARY_TREE; x: G) is
-- Insert x into t.
do … end

(Etc.)
end -- package TABLE_HANDLING 

It is somewhat disturbing to see the type being declared as BINARY_TREE, and
tempting to make it generic as well (something like BINARY_TREE [G]). There is no
obvious way to achieve this in a package approach. Object technology, however
merge the notions of module and type, so the temptation will be automatically fulfi
We will see this when we study how to integrate genericity into the object-oriented w

It is interesting to define genericity in direct contrast with the definition given ea
for overloading:

What help does genericity bring us towards realizing the goals of this cha
Unlike syntactic overloading, genericity has a real contribution to make since as 
above it solves one of the main issues, Type Variation. The presentation of o
technology in part C of this book will indeed devote a significant role to genericity. 

Basic modularity techniques: an assessment 

We have obtained two main results. One is the idea of providing a single syntactic h
such as the package construct, for a set of routines that all manipulate similar objec
other is genericity, which yields a more flexible form of module. 

All this, however, only covers two of the reusability issues, Routine Grouping 
Type Variation, and provides little help for the other three — Implementation Varia
Representation Independence and Factoring Out Common Behaviors. Generic
particular, does not suffice as a solution to the Factoring issue, since making a m

Role of genericity
Genericity is a facility for the authors of supplier modules. It makes it
possible to write the same supplier text when using the same implementation
of a certain concept, applied to different kinds of object. 

-
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generic defines two levels only: generic module patterns, parameterized and henc
to variation, but not directly usable; and individual generic derivations, usable directl
closed to further variation. This does not allow us to capture the fine differences tha
exist between competing representations of a given general concept. 

On Representation Independence, we have made almost no progress. None
techniques seen so far — except for the short glimpse that we had of semantic overl
— will allow a client to use various implementations of a general notion without know
which implementation each case will select.

To answer these concerns, we will have to turn to the full power of obj
oriented concepts. 

4.9  KEY CONCEPTS INTRODUCED IN THIS CHAPTER 

• Software development is a highly repetitive activity, involving frequent use
common patterns. But there is considerable variation in how these patterns ar
and combined, defeating simplistic attempts to work from off-the-shelf compone

• Putting reusability into practice raises economical, psychological and organizat
problems; the last category involves in particular building mechanisms to in
store and retrieve large numbers of reusable components. Even more impo
however, are the underlying technical problems: commonly accepted notion
module are not adequate to support serious reusability.

• The major difficulty of reuse is the need to combine reuse with adaptation.
“reuse or redo” dilemma is not acceptable: a good solution must make it possi
retain some aspects of a reused module and adapt others. 

• Simple approaches, such as reuse of personnel, reuse of designs, source cod
and subroutine libraries, have experienced some degree of success in s
contexts, but all fall short of providing the full potential benefits of reusability. 

• The appropriate unit of reuse is some form of abstracted module, providin
encapsulation of a certain functionality through a well-defined interface. 

• Packages provide a better encapsulation technique than routines, as they g
data structure and the associated operations. 

• Two techniques extend the flexibility of packages: routine overloading, or the r
of the same name for more than one operation; genericity, or the availabili
modules parameterized by types. 

• Routine overloading is a syntactic facility which does not solve the important is
of reuse, and harms the readability of software texts. 

• Genericity helps, but only deals with the issue of type variation. 

• What we need: techniques for capturing commonalities within groups of related
structure implementations; and techniques for isolating clients from having to k
the choice of supplier variants. 
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4.10  BIBLIOGRAPHICAL NOTES

The first published discussion of reusability in software appears to have been McIlroy’s
1968 Mass-Produced Software Components, mentioned at the beginning of this chapte
His paper [McIlroy 1976] was presented in 1968 at the first conference on softw
engineering, convened by the NATO Science Affairs Committee. (1976 is the date 
proceedings, [Buxton 1976], whose publication was delayed by several years.) McIlr
advocated the development of an industry of software components. Here is an extr

Software production today appears in the scale of industrialization somewhere
below the more backward construction industries. I think its proper place is
considerably higher, and would like to investigate the prospects for mass-
production techniques in software…
When we undertake to write a compiler, we begin by saying “What table
mechanism shall we build?” . Not “What mechanism shall we use?” …
My thesis is that the software industry is weakly founded [ in part because of]
the absence of a software components subindustry… Such a components
industry could be immensely successful.

One of the important points argued in the paper was the necessity of module fam
discussed above as one of the requirements on any comprehensive solution to reu

Rather than the word “module”, McIlroy’s text used “routine”; in light of this chapter’s
discussion, this is — with the hindsight of thirty years of further software engineering
development — too restrictive.

A special issue of the IEEE Transactions on Software Engineering edited by
Biggerstaff and Perlis [Biggerstaff 1984] was influential in bringing reusability to the
attention of the software engineering community; see in particular, from that is
[Jones 1984], [Horowitz 1984], [Curry 1984], [Standish 1984] and [Goguen 1984]. The
same editors included all these articles (except the first mentioned) in an expa
two-volume collection [Biggerstaff 1989]. Another collection of articles on reuse 
[Tracz 1988]. More recently Tracz collected a number of his IEEE Computer columns
into a useful book [Tracz 1995] emphasizing the management aspects.

One approach to reuse, based on concepts from artificial intelligence, is embod
the MIT Programmer’s Apprentice project; see [Waters 1984] and [Rich 1989],
reproduced in the first and second Biggerstaff-Perlis collections respectively. Rathe
actual reusable modules, this system uses patterns (called clichés and plans) representing
common program design strategies.

Three “encapsulation languages” were cited in the discussion of packages:
Modula-2 and CLU. Ada is discussed in a later chapter, whose bibliography section
references to Modula-2, CLU, as well as Mesa and Alphard, two other encapsu
languages of the “modular generation” of the seventies and early eighties. The equi
of a package in Alphard was called a form.

The most important characteristic of a software components industry is that
it will offer families of [modules] for a given job.
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An influential project of the nineteen-eighties, the US Department of Defen
STARS, emphasized reusability with a special concern for the organizational aspe
the problem, and using Ada as the language for software components. A num
contributions on this approach may be found in the proceedings of the 1985 STARS
Industry conference [NSIA 1985].

The two best-known books on “design patterns” are [Gamma 1995] and [Pree 1994].

[Weiser 1987] is a plea for the distribution of software in source form. That artic
however, downplays the need for abstraction; as pointed out in this chapter, it is po
to keep the source form available if needed but use a higher-level form as the d
documentation for the users of a module. For different reasons, Richard Stallma
creator of the League for Programming Freedom, has been arguing that the sourc
should always be available; see [Stallman 1992].

[Cox 1992] describes the idea of superdistribution.

A form of overloading was present in Algol 68 [van Wijngaarden 1975]; Ada (which
extended it to routines), C++ and Java, all discussed in later chapters, make extens
of the mechanism.

Genericity appears in Ada and CLU and in an early version of the Z specific
language [Abrial 1980]; in that version the Z syntax is close to the one used for gener
in this book. The LPG language [Bert 1983] was explicitly designed to explore genericity
(The initials stand for Language for Programming Generically.)

The work cited at the beginning of this chapter as the basic reference on 
searching is [Knuth 1973]. Among the many algorithms and data structures textbo
which cover the question, see [Aho 1974], [Aho 1983] or [M 1978].

Two books by the author of the present one explore further the questio
reusability. Reusable Software [M 1994a], entirely devoted to the topic, provides desig
and implementation principles for building quality libraries, and the comp
specification of a set of fundamental libraries. Object Success [M 1995] discusses
management aspects, especially the areas in which a company interested in reuse
exert its efforts, and areas in which efforts will probably be wasted (such as prea
reuse to application developers, or rewarding reuse). See also a short article on the topic,
[M 1996].
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