9

Memory management

Frankly, it would be nice to forget about memory.

Our programs would just create objects as they please. One after the other, unus
objects would vanish into abysses, while those most needed would slowly move closer |
the top, like meritorious employees of a large corporation who manage once in a while t
catch the attention of a higher officer, and by making themselves indispensable to the
immediate superiors will with a bit of luck, at the end of a busy career, be admitted intc
the inner circle.

But it is not so. Memory is not infinite; it does not harmoniously organize itself into
a continuous spectrum of storage layers with decreasing access speeds, to which obje
would naturally distribute. We do need to fire our useless employees, even if we must ca
it early retirement imposed with regret because of the overall economic situation. Thi
chapter examines who should be thus downsized, how, and by whom.

9.1 WHAT HAPPENS TO OBJECTS

Object-oriented programs create objects. The previous chapter showed how useful it is
rely on dynamic creation to obtain flexible object structures, which automatically adapt tc
the needs of a system’s execution in any particular case.

Object creation
We have seen the basic operation for allocating space to new objects. In its simplest for
it appears as

I x

and its effect was defined as threefold: create a new object; attach it to the refeesmte
initialize its fields.

A variant of the instruction calls an initialization procedure; and you can also create
new objects through routinesone anddeep_cloneSince all these forms of allocation
internally rely on basic creation instructions, we can restrict our attention to theé! farm
without fear of losing generality.

We will now study the effect of such instructions on memory management.

280 MEMORY MANAGEMENT §9.1

Three modes of object management

First it is useful to broaden the scope of the discussion. The form of object management
used for object-oriented computation is only one of three commonly found nstatic,:
stack-basec andfree. The choice between these modes determines how an entity can
become attached to an object.

Recall that an entity is a name in the software text representing a run-time value, or a
succession of run-time values. Such values are either objects or (possibly void) references
to objects. Entities include attributes, formal routine arguments, local entities of routines
and Resul. The termattachec describes associations between entities and objects: at
some stage during execution, an erx is attached to an object O if the valuexis either

O (for x of expanded type) or a reference to O x of reference type). x is attached to

O, itis sometimes convenient to say also that O is attactx. But whereas a reference

is attached to at most one object, an object may be attached to two or more references;
this is the problem of dynamic aliasing, discussed in the previous chapter.

In the static mode, an entity may become attached to at most one run-time object
during the entire execution of the software. This is the scheme promoted by languages
such as Fortran, designed to allow an implementation technique which will allocate space
for all objects (and attach them to the corresponding entities) once and for all, at program

loading time or at the beginning of execution.
The static

5 mode
Objects

/|

FIXED MEMORY AREA

The static mode is simple and supports efficient implementation on the usual
computer architectures. But it presents serious limitations:

« It precludes recursion, since a recursive routine must be permitted to have several
incarnations active at once, each with its own incarnations of the routingiesent

« Italso precludes dynamically created data structures, since the compiler must be able
to deduce the exact size of every data structure from the software text. Each array,
for example, must be statically declared with its exact size. This seriously limits the
modeling power of the language: it is impossible to handle structures that grow and
shrink in response to run-time events, except by allocating the maximum possible
space for each of them — a technique that wastes memory, and is rather dangerous
since just one data structure may cause the whole system execution to fail if its size
has been underestimated.

§9.1 WHAT HAPPENS TO OBJECTS 281

The second scheme of object allocation is the stack-based mode. Here an entity r
at run time become attached to several objects in succession, and the run-time mechan
allocate and deallocate these objects in last-in, first-out order. When an object
deallocated, the corresponding entity becomes attached again to the object to which it
previously attached, if any.

The stack- ;
based mode l
' __—Objects of block+1

5‘(Memory allocated

on entry to block+1

Order of
Objects of block deallocation
7 (on block exit)

Order of allocation
(on block entry)

-
THE STACK -/

K Memory allocated

on entry to block

Dynamic arrays can Stack-based object management was made popular by Algol 60 and is suppor
be created in C (often in conjunction with one or both of the other two modes) in most posteric
}Egifi%gg‘en:‘g'ﬁ; programming languages. Stack-based allocation supports recursion and, if the langu
nism of the “free” PErmits it, arrays whose bounds only become known at run time. In Pascal and
kind, the mode stud-however, the mechanism only applies to variables of basic types and record types —
ied nextsome Pas- tg arrays as it did in Algol. In practice the data structures that developers would most of
cal extensions
support dynamic want to allocate in this fashion are precisely arrays. Even when it applies to arrays, sta
arrays based allocation still does not support complex data structures in their full generality.
To obtain such general data structures, we need the third and last scheme: the
mode, also called heap-based because of the way it is implemented. This is the fi
dynamic mode in which objects are created dynamically through explicit requests. /
entity may become successively attached to any number of objects; the pattern of ob
creations is usually not predictable at compile time. Objects may, furthermore, conte

references to other objects.
The free(heap-
based mode E /-

4,

THE HEAP

The free mode allows us to create the sophisticated dynamic data structures wt
we will need if, as discussed in the previous chapter, we are to take our software syste
to their full modeling power.

282 MEMORY MANAGEMENT §9.1

Using the free mode

The free mode is clearly the most general, and is required for object-oriented computation.
Many non-O-O languages use it too. In particular:

« Pascal uses the static mode for arrays, the stack-based mode for variables of type
other than array or pointer, and the free mode for pointer variables. In the last case
object creation is achieved by a call to a special creation procinew. 3,

e C is similar to Pascal but in addition offers static non-array variables and free arrays.
Dynamic allocation of pointer variables and arrays relies on a library funmalloc.

e PL/I supports all modes.

 Lisp systems have traditionally been highly dynamic, relying for the most part on the
free mode. One of the most important Lisp operations, used repeatedly to construct
lists, iISCONS, which creates a two-field cell, ready to serve as a list element with the
element’s value in the first field and a pointer to the next element in the second field.
HereCONS, rather than explicit creation instructions, will be the principal source of
new objects

Space reclamation in the three modes

The ability to create objects dynamically, as in the stack-based and free modes, raises the
guestion of what to do when an object becomes unused: is it possible to reclaim its memory
space, so as to use it again for one or more new objects in later creation instructions?

In the static mode, the problem does not exist: for every object, there is exactly one
attached entity; execution needs to retain the object’s space as long as the entity is active.
So there is no possibility for reclamation in the proper sense. A related technique is,
however, sometimes used. If you are convinced that the objects attached to two entities
will never be needed at the same time, if these entities need not retain their values between
successive uses, and if space efficiency is a critical problem, you can assign the same
memory location to two or more entities — if you are really sure of what you are doing.
This technique, known zoverlay is still, appallingly enough, practiced manually.

If used at all, overlay should clearly be handled by automatic software tools, as the
potential for errors is too high when programmers control the process themselves. Once
again a major problem is change: a decision to overlay two variables may be correct at a
certain stage of the program'’s evolution, but an unexpected change may suddenly make
it invalid. We will encounter similar problems below, in a more modern context, with
garbage collection.

With the stack-based mode, the objects attached to an entity may be allocated on a
stack. Block-structured language make things particularly simple: object allocation occurs
at the same time for all entities declared in a given block, allowing the use of a single stack
for a whole program. The scheme is elegant indeed, as it just involves two sets of
concomitant events:

§9.1 WHAT HAPPENS TO OBJECTS 283

Allocation and
deallocation in
a block-
structured
language

Detachment

Dynamic Property Static Property Implementation
(event at execution | (location in the Technique

time) software text)

Object allocation Block entry. Push objects (one for

each of the entities loca
to the block) onto stack.

Object deallocation | Block exit. Pop stack.

The simplicity and efficiency of this implementation technique are part of the reasc
why block-structured languages have been so successful.

With the free mode, things cease to be so simple. The problem comes from the v
power of the mechanism: since the pattern of object creation is unknown at compile tin
it is not possible to predict when a given object may become useless.

Detachment

Objects may indeed, in the free mode, become useless to the software at unpredict.
times during execution, so that some mechanism (to be determined later in this discuss
may reclaim the memory they occupy.

The reason is the presence in our execution mode of operations performing what n
be callecdetachmen — the reverse of attachment. The previous chapter studied at leng
how entities can become attached to objects, but did not examine in any detail f
consequences of detachments. Now is the time to correct this.

Detachment only affects entit x of reference types. x is of expanded type, the value

of x is an object O, and there is no way to dexx from O. Note, however, thatx is an
expanded attribute of some class, O represents a subobject of some bigger object BO;
then BO, and with it O, may become unreachable for any of the reasons studied below.
So for the rest of this chapter we may confine our attention to entities of reference types.

o1 02 03 Attachments:
Before After

— vy

The principal causes of detachment are the following, assux andy, entities of
reference type, were initially attached to object: anc O2. The figure illustrates cases
D1 andD2.

D1 « An assignment of the forix := Voic, orx:= vwherev is void, detachex from O1.

284 MEMORY MANAGEMENT §9.1

D2 « An assignment of the form:= z, wherezis attached to an object other than O2,
detacheg from O2.

D3 « Termination of a routine detaches formal arguments from any attached objects.

D4 « A creation instructionl x, attaches to a newly created object, and hence detaches
x if it was previously attached to an object O1.

CaseD3 corresponds to the rule given earlier that the semantics of an assignment
a:= bis exactly the same as that of initializing a formal argumaesfta routiner at the
time of acall.r (..., b, ...), where the position df in the call corresponds to that ®fn
the declaration of.

Unreachable objects

Does detachment mean that the detached object — O1 or O2 on the preceding figure —
becomes useless and hence that the runtime mechanisms can reclaim the memory space it
occupies, then recycle it for other objects? That would be too easy! The entity for which
an object was initially created may have lost all interest in it, but because of dynamic
aliasing other references may still be attached to it. For example the last figure may have
shown only a partial view of attachments; looking at a broader context might reveal that
01 and O2 are still reachable from other objects:

Detachment is
not always
death

o1 02 03

—

04 4* L_OS J

-

But this is still not the entire object structure. By getting even more context, we
might now discover that O4 and O5 are themselves useless, so that in the absence of other
references O1 and O2 are not needed after all.

So the answer to the question “what objects can we reclaim?” must follow from a
global analysis of the entire set of objects created so far. We can identify three kinds
of object:

C1 - Objects directly attached to entities of the software text, known (from the language
rules) to be needed.

§9.1 WHAT HAPPENS TO OBJECTS 285

C2 « Dependents of objects of categcCl. (Recall that the direct dependents of an
object are those to which it has references; here we are considering both direct
indirect dependents.)

C3 « Objects which are in neither of the preceding two categories.

The objects of categorCl may be called theworigins. Together with those of
categoryC2, the origins make up the setreachable objects. Those of category C3 are
unreachable. They correspond to what was informally called “useless objects” above. |
more lively if somewhat macabre terminology uses the term “dead objects” for C3, tl
origins and their dependents being then called “live objects”. (Computing scientist
however, have not quite managed to reconcile their various metaphors, as the proces
reclaiming dead objects, studied below, is called “garbage collection”.)

The term “root” is also used for “origin”. But here the latter is preferable because an
0-0O system also has a “root object” and a root class. The resulting ambiguity would
not be too damaging since the root object, as seen below, is indeed one of the origins.

The first step towards addressing the problem of memory management under the f
mode is to separate the reachable objects from the unreachable ones. To identify react
objects, we must start from the origins and repeatedly follow all references. So the fi
guestion is to identify the origins; the answer depends on the run-time structure defir
by the underlying language.

Reachable objects in classical approaches

Because the unreachability problem is already present in the run-time structure of st
classical approaches as Pascal, C and Ada, it is interesting to start with this case. (M
accurately, this is interesting for the reader who is familiar with one of these approach
If you are not in this category, you may prefer to skip this section and go directly to tl
next one, which moves right on to the run-time structure of O-O software.)

The approaches quoted combine the stack-based and free modes of allocation. C
Ada also support the static mode, but to keep things simple we may ignore static allocat
by viewing it as a special case of stack-based allocation: we treat static objects as if t
were allocated once and for all, when execution starts, at the bottom of the stack. (Thi
indeed the way Pascal developers emulate static entities: they declare them in
outermost block.)

Another common property of these approaches is that entities may denote pointe
To provide a better preparation for the object-oriented approach of this book, whe
instead of pointers we use references (a more abstract notion, as discussed in the pre
chapter), let us pretend that the pointers in question are actually references. This mear
particular that we disregard the weakly typed nature of pointers in C.

With these assumptions and simplifications the origins, shown with thick borders c
the following figure, are all the objects which are either allocated on the stack or attact
to references allocated on the stack. The reachable objects (including the origins) apy
in color, the unreachable objects in black.

286 MEMORY MANAGEMENT §9.1

Live objectgin
color) and
dead objectéin
black) in a
combined
stack-based
and free model

THE STACK

Stack top

—

— U
— Reference origin

Because the unreachability problem only arises for objects allocated under the free
mode, and such objects are always attached to entities of reference types, it is convenient
to ignore the reclamation problem for objects allocated on the stack (which can be handled
simply by popping the stack at the time of block exit) and to start from the references
coming from the stack. We may call these referereference origins. They are shown
with thick arrows in the figure. A reference origin is either:

O1 +The value of a local entity or routine argument of reference type (as with the top
two reference origins in the figure).

02 + A field of reference type, in an object allocated on the stack (as with the lowest
reference origin in the figure).

As an example, consider the following type and procedure declarations, written in a
syntax half-way between Pascal and the notation of the rest of this book (an entity of type
reference G is a reference that may become attached to objects 0G): >e

type
COMPOSITE=
record
m: INTEGER
r: reference COMPOSITE
end

§9.1 WHAT HAPPENS TO OBJECTS 287

Entity
allocation fora
procedure

procedurepis
local
n: INTEGER
c: COMPOSITE
s: reference COMPOSITE
do

end

Every execution op allocates three values on the stack:

THE STACK
New stack top ¢
r .
clm
(COMPOSITE;

n

Previous stack top

The three new values are an inten, which does not affect the problem of object
management (since it will disappear when the procedure terminates, and does not refe
any other object); a referens, which is an example of categcO1; and an objecc of
type COMPOSITL This object is itself stack-based and its allocated memory may b
reclaimed on procedure termination; but it contains a reference fier, which is an
example of categorO2.

In summary, to determine the reachable objects in a classical approach combin
the stack-based and free modes, you can start from the references on the stack (varie
of reference types, and reference fields of composite objects), and repeatedly follow
reference fieldsof theattache objects if any.

288 MEMORY MANAGEMENT §9.1

Reachable objects in the object-oriented model

The object-oriented run-time structure presented in the preceding chapter has a few
differences from the one just discussed.

> Reachability
4 > — in the object-
THE ROOT <« oriented model
THE STACK
Stack top H4=
1 » v
» |
-l
77

The execution of any system starts with the creation of one object, called the root
object of the system, or just its root (when there is no confusion with the root class, a static
notion). Clearly, the root is one of the origins in this case.

Another set of origins arises because of the possible presence of local entities in a
routine. Assume a routine of the form

some_routings
local
rbl, rb2: BOOK3
eb: expandedBOOK3
do

M rbl
... Operations possibly involvingbl, rb2 andeb...
end

Whenever a call teome_routinds executed, and for the duration of that execution,
the instructions in the routine’s body may referribd, rb2 and eb, and hence to the
attached objects if any. (Febthere is always an attached object, but at various paifts
andrb2 may be void.) This means that such objects must be part of the reachable set, even
though they are not necessarily dependents of the root.

Local entities of reference types, suchtasandrb?2, are similar to the local routine
variables which, in the previous model, were allocated on the stack. Local entities of
expanded types, such als are similar to the stack-based objects.

§9.1 WHAT HAPPENS TO OBJECTS 289

When a call tsome_routinderminates, the current incarnations of entitlels rb2
andebdisappear. As a result, any attached objects cease to be part of the origin set. -
does not necessarily mean that they become unreachable, as they may in the mean
have become dependents of the root object or other origins.

Assume for example thatis an attribute of the enclosing class and that the whole
text of the routine is:

some_routines
local
rbl, rb2: BOOKS3
eb expandedBOOK3
do
Nrb1; ! rb2
a:=rbl
end
The following figure shows inolorthe objects that a call tmme_routinavill create
and the references that it will reattach.

Objects 41—
attached to E >

y

local entities THE ROOT -
o
+—
a
> EB y Bl
Stack top during B2
execution of)
some_routine]
@®ooky| 1 =573 7
1 >
rb2 (BOOK3 *
rbl
»
Stacktop before Objects and references in blgck
and after call exist before the calthose in
color are created by the call
Obijects witlf thick bordefs
THE STACK are reachable after the call

When a call tsome_routinderminates, the object O that served as target of the cal
is still reachable (otherwise there would have been no call!).aTheld of O is now
attached to thBOOK3object B1 created by the first creation instruction (the one of targe
rb1), which, then, remains reachable. In contrast, the objects B2 and EB that were attac
to rb2 andebduring the call now become unreachable: with the routine text as given the
is no possibility that any of the other objects of the system, reachable or not, cot
“remember” B2 or EB.

290 MEMORY MANAGEMENT §9.1

The memory management problem in the object-oriented model

We may summarize the preceding analysis by defining the origins, and hence of the
reachable objects, in the object-oriented framework:

Definition: origins, reachable and unreachable objects

At any point during the execution of a system, the sefrigins is made
of the following objects:

e The system’s root object.

* Any object attached to a local entity or formal argument of a
routine currently being executed (including the local erfligsult
for a function).

Any dependent, direct or indirect, of these origingeechable Any other
object is unreachabile; it is possible to reclaim the memory it occupies (for
example to recycle it for other objects) without affecting the cofrect

semantics of the system’s execution.

The problem of memory management arises from the unpredictability of the
operations which affect the set of reachable objects: creation and detachment. Because
these operations are instructions, appearing as part of a system’s control structures, there
is usually no way to determine with certainty, from a mere examination of the software
text, the pattern of object creation and detachment at run time.

More precisely, such a prediction is possible in some cases, for data strutbout linked lists
managed in a strictly controlled way. An example is thieKED_LIST library class Se€'Linked list rep-
studied in a later chapter, with the associated ¢l&$&ABLE which describes linked Iistﬁfgtnaé'gsb's‘ézﬂzm
elements. Instances dfINKABLE are only created through specific procedures sections
LINKED_LIST, and can only become unreachable as a result of executingrthee
procedure of that class. For such classes one might envision specific reclamation

procedures. (This approach will be explored later in this chapter.)

But such examples, although important, are only special cases. In the most general
case we must face a difficult question: what do we do about unreachable objects?

The three answers

Three general attitudes are possible as to objects that become unreachable:

« Ignore the problem and hope that there will be enough memory to accommodate all
objects, reachable or not. This may be callecctimial approach

* Ask developers to include in every application an algorithm that looks for
unreachable objects, and give them mechanisms to free the corresponding memory.
This approach is calleshanual reclamation

§9.2 THE CASUAL APPROACH 291

 Include in the development environment (as part of the so-called runtime systel
automatic mechanisms that will detect and reclaim unreachable objects. This
calledautomatic garbage collectio.

The rest of this chapter discusses these approaches.

9.2 THE CASUAL APPROACH

The first approach consists in forgetting about the problem: abandon dead objects to tt
fate. Execute creation instructions as needed, and do not worry about what may I
happen to those objects that have thus been allocated.

Can the casual approach be justified?

One case in which the casual approach presents no particular problem is that of syst
that do not create many objects, such as small-scale tests or experiments.

More interesting is the case of systems that may in fact create many objects, bu
such a way that it is possible to guarantee that none or very few of them becol
unreachable. As with the static allocation scheme, no objects are ever retired; |
difference is that creation occurs at execution time.

This case provides a good justification for the casual approach, as there is no neec
reclamation. The number of objects created may still be too big for the available memo
but no reclamation policy would alleviate the problem if there is nothing to reclaim.

Some real-time programs follow this scheme: for efficiency reasons, they create
needed objects statically or at initialization time, avoiding any non-predictable patterns
dynamic object creation.

This method has its advocates, who usually are involved in the construction of “har
real-time” systems demanding guaranteed sub-millisecond response times to extel
events (such as a missile detection), and who as a consequence insist that the tim
execute every operation must be fully predictable. But then memory management is o
a small part of what we must give up: predictability requires the absence of any kind
object allocation (creation instructiomalloc, recursion, possibly any call of a routine
with local entities) after initialization; and it assumes a dedicated, single-user, sing|
processing machine, with no preemptive operating system call and in fact no operat
system in the usual sense of the term. In such environments people sometimes choo:s
program in assembly language, as they fear the additional unpredictability of compile
generated code. All this, of course, restricts the discussion to a tiny (although stratec
part of the software development world.

Do we care about memory any more?

Another argument sometimes heard to justify the casual approach is the increas
availability of large memory spaces, and the decreasing cost of memory.

292 MEMORY MANAGEMENT §9.2

The memory involved may be virtual as well as real. On a virtual memory system,
both primary and secondary memory are divided into blocks called pages; when primary
memory is needed, blocks of primary memory that have not been frequently used are
moved to secondary memory (“paged out”). If such a system is used to run object-oriented
systems, pages that contain reachable objects will tend to be paged out and leave main
memory space to frequently used ones.

If we indeed had almost infinite amounts of almost free memory, we could satisfy
ourselves (as suggested at the very beginning of this chapter) with the casual approach.
Unfortunately this is not the case.

One reason is that in practice virtual memory is not really equivalent to real memory.
If you store large numbers of objects in virtual memory, where a minority of reachable
objects are interspersed with a majority of unreachable ones, the system’s execution will
constantly cause pages to be moved in and out, a phenomenon krthrashing which
leads to dramatic degradation of time performance. Indeed, virtual memory systems make
it harder to separate the space and time aspects of efficiency.

But there is a more serious limitation to the casual approach. Even systems \See“Efficiency”,
large memory have limits; it is always surprising to see how quickly programmerspage !
reach them. And as was pointed out in the more general discussion of efficiency, har
advances — in time or in space — should be put to good use. Larger memories are bought
to be used, not wasted.

As soon as you move beyond the case discussed above in which it is possible to
prove that only a small number of objects will become unreachable, you will have to face
the reclamation problem.

A byte here, a byte there, and soon we will be talking real corpses

Itis time to lend our ears to the sad and edifying story of the London Ambulance Service.

The London Ambulance Service, said to be the largest in the world, serves ar For the source of
of about 1500 square kilometers, a resident population of almost seven million peopthis information and
. of the quotes which
an even larger daytime population. Every day it handles over five thousand patienk,ow, see the bib-
receives between two and three thousand calls. liographic note,.
page31Et.
As you may have guessed from the somber tone of this introduction, computers .. ._.

more to the point computer software) got involved at some stage. At more than one stage,
in fact: several attempted systems were discarded as inadequate without being ever put
into actual use, the latest in 1991, having burned seven and half million pounds. Then in
1992 a new system, developed at a cost of a million pounds, was put into operation. It soon
made headlines again; on October 28 and 29, television and press reports were announcing
that twenty lives had been lost because of the system’s inadequacy; in one particular case
an ambulance crew is said to have radioed base on reaching the location of their call, to
ask why the undertaker had got there first. The Service’s chief executive resigned and an
inquiry commission was appointed.

§9.3 RECLAIMING MEMORY: THE ISSUES 293

“XX" in this quota-
tion and the next
stands for the soft-
ware company
(named in the
reporf which pro-
duced the syste.n

The Service did not immediately scrap the computerized system but switched tc
hybrid mode — partly manual, partly relying on the system. According to the officia
report:

This[hybrid] system operated with reasonable success from the afternoon of 27 October 19

up to the early hours of 4 Novem. Howeve, shortly after 2AM on 4 November the system

slowed significantly ar, shortly after thi, locked up altogeth. Attempts were made to re-boot

(switch off and restart workstatic) in the manner that staff had previously been instructed by

XX to do in these circumstan. This re-booting failed to overcome the problem with the result

that calls in the system could not be printed out and mobilizatior[the systel] from incident

summaries could not take ple. Management and ste[...] reverted fully to a manu, paper-
based system with voice or telephone mobiliziition

What caused the system to fail in such a dismal way that it could not be kept even
an adjunct to a manual operation? The inquiry report identifies several reasons, but h
is the clincher:

The Inquiry Team has concluded that the system crash was caused by a minor programn
error.

In carrying out some work on the system some three weeks previously the XX programmer
inadvertently left in the system a piece of program code that caused a small amount of mem
within the file server to be used up and not released every time a vehicle mobilization w
generated by the syst. m

Over a three week period these activities had gradually used up all available memory thus caus
the system to cra. This programming error should not have occurred and was caused b
carelessness and lack of quality assurance of program code cl. Given the nature of the fault

it is unlikely that it would have been detected through conventional programmer or use. testin

The reader will be the judge of how accurate it is to call the programming errc
“minor”, especially in view of the crucial last comments (that the error would have bee
hard to find through testing), which will be discussed again below.

For anyone wondering whether the casual approach may be good enough, and n
generally for anyone who may be tempted to dismiss memory management as “just
implementation issue”, the twenty victims of the London Ambulance Service will serv
as a sobering reminder of the seriousness of the problems covered by this chapter.

9.3 RECLAIMING MEMORY: THE ISSUES

If we go beyond the casual approach and its simplistic assumptions, we must find how :
when to reclaim memory. This in fact involves two issues:

» How we will find out about dead elemendetection).
« How the associated memory is actually reclainreclamation).
For each of these tasks, we may look for a solution at any one of two possible levels:

« The language implementation level — compiler and runtime system, providing tf
support common to all software written in a certain language in a certai
computing environment.

» The application level — application programs, intended to solve specific problems

294 MEMORY MANAGEMENT §9.4

In the first case the selected memory management functions will be handled
automatically by the hardware-software machine. In the second case, each application
developer has to take care of these functions on his own.

There is in fact a third possible level, in-between these two: working at the
component manufacturing level, that is to say handling memory management functions
in the general-purpose reusable library classes in an object-oriented environment. As at
the application level, you can only use the programming language’s official mechanisms
(rather than enjoying direct access to hardware and operating system facilities); but as at
the language implementation level, you can address the memory management problem, or
part of it, once and for all for all applications.

Given two tasks and three possibilities for each, we are in principle faced with nine
possibilities. Actually, only four or so make sense. We will review those which are
actually available in existing systems.

9.4 PROGRAMMER-CONTROLLED DEALLOCATION

One popular solution is to provide a reclamation facility at the implementation level, while
passing on the detection problem to software developers.

This is certainly the easiest solution for language implementers: all they have to do
is to provide a primitive, sareclairr, such thaa. reclairr tells the runtime system that the
object attached ta is no longer needed and the corresponding memory cells may be
recycled for new objects.

This is the solution adopted by such non object-oriented languages as Pascal
(disposi procedure), Cfree), PL/I (FREE), Modula-2 and Ada; you will also find it in
most of the “hybrid object-oriented languages”, in particular C++ and Objective-C.

This solution is favored by many programmers, especially in the C world, who like
to feel in full control of what happens. As a typical reaction here is a Usenet message,
posted on theccomy.lang.objective- discussion group in response to a suggestion that
Objective-C could benefit from automatic reclamation:

| say a big N(! Leaving an unreferenced object around is BAD PROGRAMNM. Object Posting by lan
pointers ARE like ordinary pointers — if ydallocate an obje] you should be Stephensc, 11 May
responsible for , and free it when its finished wi(didn't your mother always tell you to 199t

put your toys away when you'd finished with t?):m
For serious software development this attitude is not defensible. Grown-up

developers must be prepared let someone else play with their “toys” for two reasons:
reliability and ease of development.

The reliability issue

Assume developers are in control of deallocating objects weclaim mechanism. The
possibility of an erroneoureclaim is always lurking, especially in the presence of
complex data structures. In particular, as the software evolveclaim that used to be
justified may become incorrect.

§9.4 PROGRAMMER-CONTROLLED DEALLOCATION 295

This figure origi-
nally appeared on
page22¢€. dispos,,

as note,, isthe name
of the Pascal proce-
dure for what is
calledreclairrin

this discussica

Such a mistake causes what is known adangling referenc problem: the case in
which an object keeps, in one of its fields, a reference to another object which has b
reclaimed. If the system then tries to use the reference after that object’'s memory area
been recycled to hold wholly unrelated information, the result will usually be a run-tim
crash or (worse yet) erroneous and erratic behavior.

This type of error is known to be the source of some of the most common and na
bugs in the practice of C and derived languages. Programmers in these langua
particularly fear such bugs because of the difficulty of tracing down their source,
difficulty that is easy to understand: if the programmer forgot to note that a certa
reference was still attached to an object, and as a result wrongly isreclaim on the
object, it is often because the missed reference came from a completely different par
the software. If so there will be a great conceptual and physical distance between the e
(the wrongreclair) and its manifestation (a crash or other abnormal behavior due to &
attempt to follow an incorrect reference); the latter may occur long after the former, al
in a seemingly unrelated part of the system. In addition the bug may be hard to reprod
if the operating system does not always allocate memory in the same way.

Dismissing the issue, as in the Usenet message reproduced above, by claiming
only “BAD PROGRAMMING” leads to such situations, does nothing to help. To err is
human; to err when programming a computer is inevitable. Even in a moderately compl
application, no developer can be trusted, or trust himself, to keep track of all run-tin
objects. This is a task for computers, not people.

Many a C or C++ programmer has spent many a night trying to figure out what |
the world could have happened to one of his “toys”. Itis not rare to see a project repeate
delayed by such mysterious memory bugs.

The ease of development issue

Even if we were able to avoid erronecreclaim calls, the question remains of how

realistic it would be to ask developers to handle object reclamation. The snag is tt
assuming you have positively identified an object that is up for reclamation, just releasi
that object is usually not sufficient, as it may itself contain references to other objects.

Take the structure shown by the figure at the top of the next page, the same one L
in the previous chapter to describe the dynamic nature of object structures. Assume
have correctly deduced that you may reclaim the top object. Then in the absence of
other references you may also reclaim the other two objects, which it references direc
in one case and indirectly in the other. Not only may you reclaim thenshoulc do so:
how good would it be to reclaim only part of a structure? In Pascal terminology this
sometimes called threcursive dispos problem: if the reclaim operations are to make
any sense, they must recursively apply to a whole data structure, not just to an individ
object. But of course you need to make sure that no references remain to the other obj
from the outside. This is an arduous and error-prone task.

296 MEMORY MANAGEMENT §9.4

name"Almaviva" _Dirt_act and
landlord indirect self-
e reference
loved |
(PERSON)
name| "Figaro” "Susanna'| name
landlord landlord
loved - - loved
(PERSON). (PERSON).

In this figure all the objects are of the same type. Consider now an x attached
to an object O of typMY _TYPE, with the class declaration

class MY_TYPEfeature
attrl: TYPE_1
attr2: TYPE_2
end

Every object of typiMY_TYPI, such as O, contains references which (unless void)
are attached to objects of tyfTYPE andTYPE .. Reclaiming O may imply that these
two objects should also be reclaimed, as well as any of their own direct or indirect
dependents. Implementing the recursive dispose in this case means writing a set of
reclamation procedures, one for each type of objects that may contain references to other
objects. The result will be a set of mutually recursive procedures of great complication.

All this leads to disaster. It is indeed not uncommon, in languages that do not support
automatic garbage collection, to see a large part of the text of an “application” system, and
a large part of the development effort, being devoted to memory management. Such a
situation is unacceptable. As an application developer, you should be able to concentrate
on your job — solving application problems —, not become a bookkeeper or garbage
collector (whichever metaphor is more appropriate).

Needless to say, the increased software complexity resulting from manual memory
management results in decreased quality. In particular, it hampers readability and such
other properties as ease of error detection and ease of modification. The resulting
complexity further compounds the problem highlighted in the previous section —
reliability. The more complex a system, the more likely it is to contain errors. The sword
of Damocles of a possible erronecreclaimis always hanging over your head, likely to
fall at the worst possible time: when the system goes from testing to production and, as a
result, starts creating bigger and more intricate object structures.

The conclusion is clear. Except in tightly controlled situations (as discussed in the
next section), manual memory management is not appropriate for serious software
development — at least if there is any concern for quality.

§9.5 THE COMPONENT-LEVEL APPROACH 297

9.5 THE COMPONENT-LEVEL APPROACH

The next sectionis (This section describes a solution useful in a specific case only; you may skip it on fi

“AUTOMATIC
MEMORY MAN-
AGEMENT", 9.6,
page 30.

See illustrations of
linked lists and
LINKABLEOobjects
on the next page.

reading.)

Before we move on to more ambitious schemes such as automatic garbe
collection, it is interesting to look at a solution which may be described as a responsil
alternative to the previous one, avoiding some of its drawbacks.

This solution is only applicable within an object-oriented, bottom-up approach t
software design, where data structures are not developed “on the spot” as programs r
them, but built as reusable classes: general-purpose implementations of abstract
types, with all the associated operations — features.

What sets the object-oriented approach apart with respect to memory manageme
Part of the novelty, rather than technical, is organizational: with the method’s emphasis
reuse of libraries, there now stands between the application developers and
implementers of the base technology (compiler and development tools), a third group
people responsible for writing reusable components that implement the main de
structures. Its members — who may of course participate at times in the other tv
activities — may be called ttcomponent manufacturers.

The component manufacturers have total control over all uses of a given class,
sSo are in a better position to find an acceptable solution to the memory managem
problem for all instances of that class.

If the pattern of allocation and deallocation for the class is simple enough, tt
component manufacturers may be able to find an efficient solution which does not ev
require the underlying runtime system to provide a spereclaim routine; they can
express everything in terms of higher-level concepts. This may be called the compone
level approach.

Managing space for a linked list

Here is an example of the component-level approach. Consider eLINKED LIST,
describing lists that consist of a header and any number of linked cells, themsel\
instances of a clalLINKABLE. The allocation and deallocation pattern for linked lists is
simple. The objects of concern are the “linkable” cells. In this example, the compone
manufacturers (the people responsible for claLINKED LISTandLINKABLE) know
exactly how linkables are created — by the insertion procedures — and how linkables
become dead — as a result of the deletion procedures. So they can manage
corresponding space in a specific way.

Let us assume thLINKED_LISThas only two insertion procedur¢ut_right and
put_lef, which insert a new element at the left and right of the current cursor positiol
Each will need to create exactly one nLINKABLE object; they are the basic source of
allocation due tLINKED_LIST. A typical implementation is:

298 MEMORY MANAGEMENT §9.5

put_right(v: ELEMENT_TYP) is
-- Insert an element of valwv to the right of cursor position.

require L”\(')*éjz%t'—E
local
new: LINKABLE
do
Il new make(v)
active put_linkable_righi(new)
... Instructions to update other linl...
end

The creation instructio!! new make(v) directs the language implementation level
to allocate memory for a new object.

In the same way that we control where objects are created, we know exactly where
they can become unreachable: through one of the deletion procedures. Let us assume three
such procedureremovs, remove_righ, remove_le; there may also be others such as
remove_all occurrence(which removes all occurrences of a certain value)wipe out
(which remove all elements), but we may assume that they internally rely on the first three,
each of which makes exactly orLINKABLE unreachable. Proceduirremove, for
example, may have the following form:

removeis
-- Delete element at cursor position.

do ‘/_ R

previous put_llnkable_ngh'(nex.') previous active next
... Instructions to update other lin...

active:= next
end

These deletion procedures provide the exact context for detecting unreachable
objects and, if desired, putting them aside for later reuse. In the absence of any automatic
scheme for releasing memory, the component manufacturer may safely conserve memory,
by avoiding the allocation requested by an insertion when previous deletions have created
unreachabl(LINKABLE objects and stored them somewhere for later reuse.

Assume we keep these instance LINKABLE in a data structure calleavailable;
we will see below how to represent it. Then we may replace the creation instructions such
as!! new make(v) in put_rightandput_lef by

new:= fresh(v)

wherefrest is a new secret function LINKED_LIST, which will return a ready-for-use
linkable. Functiorfreshwill attempt to obtain its result from ttavailable list, and will
only perform a creation if the list is empty.

§9.5 THE COMPONENT-LEVEL APPROACH

299

Elements will be fed intavailable by the deletion procedures. For example, the
body ofremove¢ should now be of the form

do
recycle(active)
-- The rest as before:
... Instructions to update linkprevious, nex, first_elemer, active ...

whererecycle, a new procedure LINKED_LIST, plays the opposite role frest: adding
its argument to the list of available objects. This procedure will be secret (not exported
any client) since it is for internal use only.

Dealing with recycled objects

To implementfrest and recycl, we may, among other possible choices, represen
available as a stackfrest will pop from andrecycle will push onto the stack. Let us

features t(LINKED LIST:

ExerciseE23.1,

page 80 i(based on
later methodological
discussior), asks
you to discuss
whether it is proper
for functionfrest to
produce aside effect

available STACK_OF_LINKABLES

fresh(v: ELEMENT_TYP): LINKABLEIs
-- A new element with valuy, for reuse in an insertion

do
if available emptythen
-- No choice but to perform an actual allocation
I Resultmake(v)
else
-- Reuse previously discarded linkable
Result:= availableitem; Resultput (v); available remove
end
end

recycle(deac LINKABLE) is
-- Returndeac to the available list.
require
dead/= Void
do
available put (deac)
end

We may declare claiSTACK _OF LINKABLE as follows:

introduce a clasSTACK_ _OF_ LINKABLE for the occasion and add the following secret

300 MEMORY MANAGEMENT §9.5

class
STACK_OF_LINKABLES
feature {LINKED_LIST} item right
item: LINKABLE (top of stack)
-- Element at top
empt: BOOLEANis right

-- Is there no item?
do Stack elements
Result:= (item= Voic)
end right
put(elemer: LINKABLE) is
-- Add elemen on top.
require
elemen’/= Void

do
elementput_right(item); item:= element
end
removeis
-- Remove last item added.
require
not empty
do
item:= item.right
end

end

The stack representation, as pictured, takes advantageright field already present
in everyLINKABLE to link all recycled elements without using any extra sgLINKABLE
must exporright andput_rightto STACK_OF_ LINKABLE as well asLINKED LIS

Featureavailable, as declared, is an attribute of the class. This means that g35RiseEo 3 page
linked list will have its own stack of linkables. It is of course a better useaakes|if a 316, and 0.4.On
given system contains several lists, to share the pool of recycled linkables over the once functions see

. ‘ . . : . . “CONSTANTS OF
system. The technique to do thionce functior, will be introduced later; maklngCLASSTYPES,,
available a once function means that only one instance of the class will exist throuc1s.3, page 646

a given system execution, achieving the desired goal.

Discussion

This example shows what the component-level approach can do to alleviate the problem
of space reclamation by treating it at the component manufacturing level. It assumes that
the underlying language implementation does not offer the automatic mechanisms
described in the next sections; rather than burdening application programs with memory
management problems, with all the risks discussed earlier, the solution presented assigns
both detection and reclamation to the basic reusable classes.

§9.6 AUTOMATIC MEMORY MANAGEMENT 301

From [Schweitzer
1991, page 5.

The drawbacks and benefits are clear. Problems of manual memory managem
(reliability risks, tediousness) do not magically vanish; coming up with a foolproo
memory management scheme for a particular data structure, as done above for linked |
is hard. But instead of letting each application developer cope with the issue, we ass
this job to component manufacturers; it should fit well in their general task of chiselin
out high-quality reusable components. The extra effort is justified by the benefits «
having good components available for frequent use by many different applications.

The component-level approach assumes a data structure whose patterns of cree
and obsolescence are simple and perfectly understood. This covers only certain cases
many structures the pattern is unpredictable or too complicated. When the approacl
applicable, it provides a better solution, when the underlying language system does
offer automatic memory management, than letting each application developer try
handle the problem manually, or not handle it at all.

9.6 AUTOMATIC MEMORY MANAGEMENT

None of the approaches seen so far is fully satisfactory. A general solution to the probl
of memory management for objects involves doing a serious job at the langua
implementation level.

The need for automatic techniques

A good O-O environment should offer an automatic memory management mechani
which will detect and reclaim unreachable objects, allowing application developers
concentrate on their job — application development.

The preceding discussion should suffice to show how important it is to have suct
facility available. In the words of Michael Schweitzer and Lambert Strether:

An object-oriented program without automatic memory management is
roughly the same as a pressure cooker without a safety: sooner or later
the thing is sure to blow i 9

Many development environments advertized as O-O still do not support suc
mechanisms. They may have other features which make them attractive at first; and ind
they may work nicely on small systems. But for serious development you run the risk tt
they will let you down as soon as the application reaches real size. To summarize in
form of concrete advice:

In choosing an O-O environment — or just an O-O language compiler —
for production development, restrict your attention to solutions that pffer
automatic memory management.

Two major approaches are applicable to automatic memory management: refere
counting and garbage collection. They are both worth examining, although the second «
is by far the more powerful and generally applicable.

302 MEMORY MANAGEMENT §9.7

What exactly is reclamation?

One technical point before we look at reference counting and garbage collection. With any
form of automatic storage management, the question arises of what it concretely means
for the mechanism to “reclaim” an object which it has detected as being unreachable. Two
interpretations are possible:

* The mechanism may add the object's memory to a “free cell list” which it constantly
maintains, in line with the techniques used by the earlier component-level scheme.
A subsequent creation instructic!! x...) will then look first in this list to find space
for the desired new object; only if the list is empty, or contains no appropriate cell,
will the instruction require memory from the underlying operating system. This may
be called th internal free list approach.

« Alternatively, reclaiming an object may mean returning the associated memory to
the operating system. In practice, this solution will usually include some aspects of
the first: to avoid the overhead of repeated system calls, reclaimed objects will
temporarily be kept in a list, whose contents are returned to the operating system
whenever their combined size reaches a certain threshold. This may be called the
actual reclamation approach.

Although both solutions are possible, long-running systems (in particular sysExerciseE9.1, page
that must run forever) require actual reclamation. The reason is easy to under31¢.
assume an application which never stops creating objects, of which a large proportic
eventually become unreachable, so that there is an upper bound on the total humber of
objects reachable at any one time, even though the total number of created objects since
the beginning of a session is unbounded. Then with the internal free list approach it is
possible to have a situation where the application will forever keep asking for more
memory even though its actual memory needs are not growing. An exercise at the end of
this chapter asks you to construct a pattern that will exhibit this behavior.

It would be frustrating to have automatic memory management and still find
ourselves in the London Ambulance Service situation — encroaching byte by byte on the
available memory for no good reason, until execution runs out of spaceds in disaster.

9.7 REFERENCE COUNTING

The idea behind the first automatic memory management technique, reference counting,
is simple. In every object, we keep a count of the number of references to the object; when
this count becomes null, the object may be recycled.

This solution is not hard to implement (at the language implementation level). We
must update the reference count of any object in response to all operations that can create
the object, attach a new reference to it and detach a reference from it.

Any operation that creates an object must initialize its reference count to one. This
is the case in particular with the creation instruct!! a, which creates an object and
attaches it t@. (The case oclone will be studied shortly.)

§9.7 REFERENCE COUNTING 303

Uncollectible
cyclic structure

Any operation that attaches a new reference to an object O must increase
reference count by one. Such attachment operations are of two kinds (where the valu
a is areference attached to O):

Al e b:= a (assignment).
A2 x.r (...,a,...), wherer is some routine (argument passing).

Any operation which detaches a reference from O must decrease its reference cc
by one. Such detachment operations are of two kinds:

D1 « Any assignmena := b. Note that this is also an attachment operation for the
object attached h. (So if b was also attached to O we will both increment and
decrement O’s count, leaving it unchanged — the desired outcome.)

D2 « Termination of a routine call of the forar (..., a, ...). (If a occurs more than
once in the list of actual arguments we must count one detachment per occurrenc

After such an operation, the implementation must also check whether O’s referen
count has reached value zero; if so, it may reclaim the object.

Finally the case oclone must be handled carefully. The operata := clone(b),
which duplicates the object OB attachew, if any, and attaches the resulting new object
OA to a, must not duplicate the reference count. Instead, it must initialize the referen
count of OA to one; in addition, if OB had any non-void reference fields, it mustincreas
by one, for every such field, the reference count of the attached object. (If two or mc
fields are attached to a single object, its reference count will be increased as many tim

One obvious drawback of reference counting is the performance overhead in b
time and space. For every operation on references the implementation will now exec
an arithmetic operation — and, in the detachment case, a conditional instruction.
addition, every object must be extended with an extra field to hold the count.

But there is an even more serious problem which makes reference countir
unfortunately, of little practical use. (“Unfortunately” because this technique is not to
hard to implement.) The problem is cyclic structures. Consider once again our staj
example of a structure with mutually referring objects:

O
- v o1
name"Almaviva" :I
landlord —
loved_one —
" 4
02 03
name "Figaro" "Susanna’| name
landlord landlord

Y

loved_one loved_one

A

304 MEMORY MANAGEMENT §9.8

The objects in the right part of the figure, O1, 02 and O3, contain cyclic references
to each other; assume that no outside object other than O contains a reference to any of
these objects. The corresponding reference counts have been displayed below each object.

Now assume that (as suggested bythe) the reference from O to O1 is detached,
for example because a routine call with target O executes the instruction

a = Void

Then the three objects on the right have become unreachable. But the reference
counting mechanism will never detect this situation: the above instruction decreases O1's
count to three; after that the reference counts of the three colored objects will stay positive
forever, preventing them from being reclaimed.

Because of this problem, reference counting is only applicable to structures which
are guaranteed never to include any cycle. This makes it unsuitable as a general-purpose
mechanism at the language implementation level, since it is impossible to guarantee that
arbitrary systems will not create cyclic structures. So the only application that would seem
to remain is as a technique to be used by library developers at the component
manufacturing level. Unfortunately if the component-level techniques of the previous
section are not applicable it is usually because the structures at hand are too complex, and
in particular because they contain cycles.

9.8 GARBAGE COLLECTION

The most general technique, and in fact the only fully satisfactory one, is automatic
garbage collection, or just garbage collection for short.

The garbage collection mechanism

A garbage collector is a facility included in the runtime system for a programming
language. (The runtime system, or just runtime for short, is a component of the
programming language’s implementation; it complements the compiler by providing the
mechanisms needed at execution time to support the execution of software systems written
in the language.) The garbage collector will take care of both detecting and reclaiming
unreachable objects, without the need for explicit handling by application software —
although application software may have various facilities at its disposal to control the
collector’s operation.

A detailed exploration of garbage collection techniques would justify a book o0See the bibliographi-
own (which remains to be written). Let us take a look at the general principles of ga|<361|:f10tes on page
collectors and the problems that they raise, focusing on the properties that are dg;ggg;eze&?;;% on
relevant to application developers.

§9.8 GARBAGE COLLECTION 305

Garbage collector requirements

A garbage collector should, of course, be correct. This is actually two requirements:

Garbage collector properties

Soundnes: every collected object is unreachable.
Completenes: every unreachable objecilitbe collected.

It is just as easy to write a sound collector (never collect any object) as a complete ¢
(collect all objects); the difficulty is of course to achieve both properties in a single produ

Soundness is an absolute requirement: better no garbage collector than one wh
once in a while, steals an active object from your application! You must be able to tru
memory management blindly; in fact, you should be able to forget about it most of the tin
being content enough to know that someone, somehow, collects the mess in your softw
the same way someone, somehow, collects the garbage in your office while you are g
— but does not take away your books, your computer, or the family pictures on your de

Completeness is desirable too, since without it you may still face the problem that t
garbage collector was supposed to solve: memory wasted on useless objects. But her
may be able to accept less than perfection: a quasi-complete collector dbbkdusteful
if it collects the bulk of the garbage while occasionally missing an object or two.

Let us refine and improve this observation. In reality will want any industrial-
grade collector to be complete, lest you get back to the uncertainties of environments w
no memory management. Completeness is in practice just as necessary as soundnes
less pressing if we rephrase the definition as: “every unreachable objeultimately be
collected”. Suppose that we can make the collection process more efficient over
through an algorithm that eventually collects every unreachable object but may lag
getting to some of them: such a scheme would be acceptable for most applications. 1
is the idea of “generation scavenging” algorithms discussed below, which for efficiency
sake spend most of their efforts scanning the memory areas most likely to cont:
unreachable objects, and take care of the remaining areas at less frequent intervals.

If we start considering such tradeoffs it will be necessary to characterize a garbage
collector, beyond the yes-no criteria of soundness and completeness, by a more quantitative
property which we may céetimeliness: the time it takes — both the average value and the
upper bound will be interesting — between the moment an object becomes unreachable
and the moment the collector, assumed to be both sound and complete, reclaims it.

The definition of soundness illuminates the difficulties associated with garbag
collection for some languages, and the respective roles of a language and
implementation. Why, for example, is garbage collection usually not available for C+4
The reasons most commonly cited are cultural: in the C world each developer is suppo
to take care of his toys (in Stephenson’s words); he simply does not trust any autom:
mechanism to manage his own business. But if this were the true reason, rather the
posteriori justification, C++ environments could at least offer garbage collection as :
option, and most do not.

306 MEMORY MANAGEMENT §9.8

The real issue is language design, not compiling technology or even cultural
attitudes. C++, in the C tradition, is rather weakly typed, proviccast: — type
conversions — through which you can refer to an object of a certain type through an entity
of another type, with few restrictions on possible type combinations. The syntax

(OTHER_TYP) x

denotesx viewed as an entity of tyfOTHER_TYP, related or not to the true type x.f

Good C++ books censure the wilder applications of this common practice, but
methodological aspersions are of no use to the compiler writer, who must deal with the
language as defined. Now imagine the following scenario: a reference to an object of some
useful type, saNUCLEAR_SUBMARIN, is temporarily cast into an integer; the garbage
collector jumps in and examines the value, seeing nothing but the most innocent-looking
of integers; finding no other reference to the object, it reclaims it; but now the program
casts the integer back to its true vocation of nuclear submarine reference; and it tries to
access the now inexistent object, with consequences of great sorrow to all affected.

Various techniqgues have been proposed around this problem. Because they usually
involve some restrictions on the use of the language, they have not found their ways into
common commercial offerings. The Java language may be viewed as a form of C++ which
has dramatically restricted the type system — going so far as to remove genericity and
multiple inheritance — to make garbage collection possible at last in a C-based world.

With a carefully designed type system, it is of course possible to provide the whole
power of multiple inheritance and genericity while ensuring type safety and language
support for efficient garbage collection.

Garbage collection basis

Let us come now to how a garbage collector works.

The basic algorithm usually includes two phases, at least conceptually: mar|The origins are the
sweep.The mark phase, starting from the origins, follows references recursivelggfccﬁsegfggzmes
traverse the active part of the structure, marking as reachable all the objects it encoof the software te. t
The sweep phase traverses the whole memory structure, reclaiming unmarked el¢See'Reachable

and unmarking everything. gﬁjeer::ttg;nnzgzgpject-

As with reference counting, objects must include an extra field, used here fopage 28.
marking; but the space overhead is negligible, since one bit suffices per object. As will be
seen when we study dynamic binding, implementation of O-O facilities requires that every
object carry some extra internal information (such as its type) in addition to its official
fields corresponding to the attributes of the generating class. This information typically
occupies one or two words per object; the marking bit can usually be squeezed into one of
these extra words, so that in practice there is no observable overhead.

All-or-nothing collection

When should the garbage collector be triggered?

Classical garbage collectors are activated on demand and run to completion. In other
words the garbage collector is inactive as long as there is some memory left to the
application; when the application runs out of memory, it triggers an entire garbage
collection cycle — mark phase followed by sweep phase.

§9.8 GARBAGE COLLECTION 307

This technique may be called the all-or-nothing approach. Its advantage is tha
causes no overhead as long as there is enough memory; the program is only penalize
memory management when it has exceeded available resources.

But all-or-nothing garbage collection has a serious potential drawback: a comple
mark-sweep cycle may take a long time — especially in a virtual memory environment
which filling the memory means filling a very large virtual address space, which th
garbage collector will then have to traverse entirely, all that time preventing th
application from proceeding.

This scheme may be acceptable for batch applications, although with a high ratio
virtual to real memory thrashing may cause serious performance degradation if a syst
creates many objects and a large proportion of them become unreachable. All-or-noth
garbage collection will not work, however, for interactive or real-time systems. Imagine
missile interception system which has a 50-millisecond window to react when an enel
missile is fired. Assume everything works fine until the software runs out of memory,
which stage it defers to the garbage collector; but — bad luck — this is precisely when t
missile comes in! Even in less life-threatening applications, such as a interactive syste
it is not pleasant to use a tool (for example a text editor) which, once in a while, ge
unpredictably hung for ten minutes or so because the underlying implementation t
entered a garbage collection cycle.

In such cases the problem is not necessarily the global effect of garbage collect
on efficiency: a certain overall performance penalty may be perfectly tolerable to use
and developers as the price to pay for the gain in reliability and convenience afforded
automatic garbage collection. But such a penalty should be evenly spread; what v
usually not be acceptable is the unpredictable bursts of memory management acti
caused by the all-or-nothing approach. Better a tortoise than a hare which, once in a wl
and without warning, takes a half-hour nap. Reference counting, were it not for its fa
flaw, would satisfy this observation that uniformly slow is often preferable to usually fa:
but occasionally unpredictable.

Of course the penalty, besides being uniform, must also be small. If the applicati
without a garbage collector is a indeed a hare, no one will really settle for a tortoise; wi
we can accept is a somewhat less agile hare. A good garbage collector will have
overhead of 5% to 15%. Although some managers, developers and users will scream
this is unacceptable, | know very few applications that cannot tolerate this kind of co
especially in light of the obvious observation that in the absence of garbage collection
software will have to perform manual reclamation, which does not come for free eith
(even if we concentrate on execution overhead only and disregard the overhead
development time and the reliability problems). Unfortunately most of the fev
benchmarks that exist in this area end up, in their effort to measure the measura
comparing the incomparable: a system executed with no garbage collection and no mat
reclamation, versus one running with garbage collection. Even under this unfavoral
light, however, a performance cost in the quoted range makes garbage collection shin

This discussion has identified the two complementary efficiency issues for garba
collectors:overall perormanct andincrementality.

308 MEMORY MANAGEMENT §9.8

Advanced approaches to garbage collection

A good collector should provide good performance both overall and incrementally,
making itself suitable for interactive or even real-time applications.

A first requirement is to give developers some control over the activation and de-
activation of collector cycles. In particular, the environment’s libraries should offer procedures

collection_off

collection_on

collect_now
such that a call to the first specifies that no collector cycle should start until further notice;
a call to the second resumes normal operation; and a call to the third immediately triggers
a complete cycle. Then if a system contains a time-critical section, which must not be
subject to any unpredictable delay, the developer will put a cicollection_of at the
beginning of the section and a callcollection o1 at the end; and at any point where the
application is known to be idle (for example during certain input or output operations) the
developer may, if useful, include a callcollect_nov.

A more advanced technique, used in some form by most modern garbage collectors,
is known asgeneration scavengin. It follows from the experimental observation that
“old objects will stay around”: the more garbage collection cycles an object has survived,
the better chance it has of surviving many more cycles or even remaining forever
reachable. This property is precious since the sweep part of garbage collection tends to
consume a considerable amount of time, so that the collector will greatly benefit from any
information allowing it to examine certain categories less frequently than others.

Generation scavenging will detect objects that have existed for more than a certain
number of cycles. This is calldéenuring (by analogy with the mechanisms that protect
instances of the real-life claaPROFESSO once they have survived a few cycles of
university politics). Tenured objects will be set aside and handled by a separate collection
process, which will run less frequently than the collector of “young” objects.

Generation scavenging helps incrementality, but does not fully achieve it, since there
remains a need to perform full collections occasionally.

Practical implementations of generation scavenging use many variations on this
basic idea. In particular, it is common to divide objects not just into young and old, but
into several generations, with different policies for collecting the various generations.
These ideas have a considerable effect on the overall performance of garbage collection.

Parallel garbage collection algorithms

To obtain a full solution to the incrementality problem, an attractive idea (if the underlying
operating system supports multiprocessing) is to assign garbage collection to a separate
thread of control. This is known on-the-fly, orparallel, garbage collection.

With on-the-fly garbage collection, execution of an O-O system involves two
separate threads (often corresponding to two separate processes of the operating system):
the application and the collector. Only the application can allocate memory, through
creation instructions; only the collector can free memory, threeclain operations.

§9.9 PRACTICAL ISSUES OF GARBAGE COLLECTION 309

The collector will run continuously, repeatedly executing a mark phase followed b
a sweep phase to detect and pick up the application’s unreachable objects. Think of
endless New York ticker-tape parade, forever marching through the streets of the city. T
application is the parade, generously scattering, wherever it passes, objects of all kir
the garbage collector is the cleaning squad which follows at a short distance, gathering
that has been left.

The notion of corou- The separate threads of control need not be physically distinct processes. W
g’l}ié’:’ji':nb;iemm' modern operating systems they can be threads; or, to avoid the overhead of switct
concurrency chap- between processes or even threads, they may be plain coroutines. Even so, however
ter. See*Corou- the-fly garbage collection tends in practice to have unsatisfactory overall performanc
tines”, page 1012 This is regrettable since the method’s incrementality is indeed (with Dijkstra’s algorithn

see the reference in the bibliographic notes) quite good.

In my opinion (the proper word here, since this comment reflects hope, not
scientifically established result) parallel garbage collection remains the solution of tl
future, but will require cooperation from the hardware. Rather than stealing time from tl
processor which handles the application, garbage collection should be handled b
separate processor, entirely devoted to that task and designed so as to interfere as litt
possible with the processor or processors devoted to the application.

This idea requires changes to the dominant hardware architectures and so is
likely to be widely implemented soon. But in an answer to the sometimes asked quest

“What kind of hardware support would be most useful for object techr?”logy

the presence of a separate garbage collection processor should, | believe, be the first
on the wish list.

9.9 PRACTICAL ISSUES OF GARBAGE COLLECTION

An environment providing automatic memory management through garbage collecti
must not only use excellent garbage collection algorithms but also provide a few faciliti
which, although not central to a theory of memory management, are essential for |
practical use of the environment.

ClassMEMORY’

Several of the required facilities can be provided in the form of features callable |
application software. As always in such cases (facilities to be used by developers w
See need to tune or adapt a basic mechanism of the method and language) the most conve
e€'ADVANCED . . :
EXCEPTION HAN- @pproach is to group these features in a class, which we wMEMOR). Then any class

DLING",12.6, page that needs these facilities will inherit frcMEMOR\.
431 aboutEXCEP-

TIONS and A similar approach will be used for adapting the exception handling mechanism (class
“REQUESTING EXCEPTION) and the concurrency mechanism (CICONCURRENC).

SPECIAL SER- . . .
VICE”, 30.8, page Among the features of claMEMOR\ will be the procedures discussed earlier for

99¢ aboutCON- stopping the collection mechanism, resuming it, and triggering a full collection
CURRENC collection_of, collection_ol, collect_nov.

310 MEMORY MANAGEMENT §9.9

A disposal mechanism

Another important procedure MEMOR) is disposi (not to be confused with its Pascal
namesake, which frees memory). It addresses an important practical problem sometimes
calledfinalizatior. If the garbage collector reclaims an object that is associated with some
external resources, you may wish to specify a certain action — such as freeing the
resources — to be executed at reclamation time. A typical example is FILE, whose
instances will represent files of the operating system. It is desirable to have a way of
specifying that whenever the garbage collector reclaims an instarFILE that has
become unreachable itilvcall a certain procedure to close the associated physical file.

More generally let us assume a procecdispos: which executes the operations
needed at the time an instance of the class is reclaimed. With a manual approach to
memory management no particular problem would arise: it would suffice to include a call
to disposejust before every call treclairr. The “destructors” of ++ take care of both
operationsdispos:andreclaim. With a garbage collector, however, the software does not
directly control (for all the good reasons that we have explored) the moment at which an
objectis reclaimed; soitis impossible to include explicit caldisposiat the right places.

The answer relies on the power of object technology and in particular on inheritance
and redefinition. (These techniques are studied in later chapters but their application here
is simple enough to be understandable without a detailed grasp of their principles.) Class
MEMORN\ has a proceduidisposi, whose body performs no action at all:

disposeis
-- Action to be taken in case of reclamation by garbage collector;
-- nothing by default.
-- Called automatically by garbage collector.
do
end

Then any class which requires special dispose actions whenever the collector
reclaims one of its instances will redefine procecdisposito perform these actions. For
example, assuming that cleFILE has a boolean attribuopenei and a procedurclose,
both with the obvious semantics, it will redefidispos: appropriately:

disposeis

-- Action to be taken in case of reclamation by garbage collector:
-- close the associated file if open.
-- Called automatically by garbage collector.

do
if openecthen

close

end

end

As the comments indicate, the rule is that any object reclamation will cause a call to
disposi — either the original empty procedure for the (by far commonest) case in which
no redefinition has occurred in the generating class, or the redefined version.

8§9.9 PRACTICAL

ISSUES OF GARBAGE COLLECTION 311

See’INTERFAC-
ING WITH NON-O-
O SOFTWARE”,
13.1, page 439

Garbage collection and external calls

A well-engineered object-oriented environment with garbage collection must addre
another practical problem. O-O software will in many cases have to interact with softwa
written in other languages. In a later chapter we will see how best to ensure this interact
with the non-O-O world.

If your software indeed uses calls to routines written in other languages (calle
external routine in the rest of this discussion), you may have to pass to these routin
references to objects. This causes a potential danger with respect to memory managen
Assume that an external routine is of the following form (transposed to the appropric
foreign language):

r (xx: SOME_TYP) is
do

end

wherea is an entity which may retain its value between successive activatica; forf
examplea could be a global or “static” variable in traditional languages, or a class attribu
in our O-O notation. Consider a cr (y), wherey is attached to some object O1. Then it
is possible that some time after the call O1 becomes unreachable from the object-orier
side while there is still a reference to it (frca) in the external software. The garbage
collector could — and eventually should — reclaim O1, but this is wrong.

For such cases we must provide procedures, callable from the external softwa
which will protect a retained object from the collector, and terminate such protectio
These procedures may be called under the form

adopt(a)
wear (a)

and should be part of any interface library supporting the communication between obje
oriented and external software. The C interface library of the mechanism described in-
next section supports such a facility. “Adopting” an object takes it off the reach of tt
reclamation mechanism; “weaning” it makes it reclaimable again.

Passing objects to non-object-oriented languages and retaining references to tt
from the foreign side of the border is of course risky business. But it is not always possil
to avoid it. For example an object-oriented project may need a special interface betwe
the O-O language and an existing database management system; in such cases you
need to let the other side retain information about your objects. Such low-lev
manipulations should never appear in normal application software, but should |
encapsulated in utility classes, written with particular care so as to hide the details frc
the rest of the software and protect it against possible trouble.

312 MEMORY MANAGEMENT §9.10

9.10 AN ENVIRONMENT WITH MEMORY
MANAGEMENT

As a conclusion let us take a peek at how one particular environment — the one presented
more broadly in the last chapter of this book — handles memory management. This will
give an example of practical, state-of-the-art approaches to the problem.

Basics

Memory management is automatic. The environmentincludes a garbage collector, which
is always on by default. It is sufficiently unobtrusive to have caused users to call and ask
“what should | do to turn on the garbage colle?”, only to be told that it is already on!

In normal usage, including interactive applications, you will not notice it. You can turn it
off throughcollection_of as discussed earlier.

Unlike the collectors found in many other environments, the garbage collector does
not just free memory for reuse by further object allocations in the same system execution,
but actually returns it to the operating system for use by other applications (at least on
operating systems that do provide a mechanism to free memory for good). We have seen
how essential that property was, especially for systems that must run permanently or for a
long time.

Additional engineering goals presided over the garbage collector design: efficient
memory collection; small memory overhead; incremental behavior (avoiding blocking the
application for any significant period of time).

Challenges

The garbage collector must face the following issues, following from the practical
constraints on object allocation in a modern, O-O environment:

« O-0 routines can call external functions, in particular C functions, which have their
own needs for memory allocation. We must therefore consider that there are two
distinct kinds of memory: object memory and external memory.

« All objects are not created equal. Arrays and strings have a variable size; instances of
other classes have afixed size.

« Finally, as noted, it is not enough to free memory for reuse by the O-O application:
we must also be able to give it back for good to the operating system.

For these reasons, memory allocation cannot rely on the stemallocsystem call
which, among other limitations, does not return memory to the operating system. Instead,
the environment asks the operating system’s kernel for memory chunks and allocates
objects in these chunks using its own mechanisms.

§9.10 AN ENVIRONMENT WITH MEMORY MANAGEMENT 313

Object movement

The need to return memory to the operating system is the source of one of the most deli
parts of the mechanism: garbage collection can move objects around.

This property has by far caused the most headaches in the implementation of
collector. But it has also made the mechanism robust and practical; without it there wot
be no way to use garbage collection for long-running, mission-critical systems.

If you stay within the O-O world you need not think about object movement, excef
as a guarantee that your system will not expand forever, even if it keeps creating n
objects (provided the total size of reachable objects is bounded). But you will need
consider this property if you also use external routines, written for example in C, and pz
objects to them. If the C side stores somewhere, in the form of a plain address (z
pointer), a reference to an object from the O-O world, you may be in trouble if it tries |
use it without protection ten minutes later: by then the object may have moved elsewhe
and the address may contain something completely different, or nothing at all. A simg
library mechanism solves the issue: the C function should “access” the object and acc
it through the appropriate macro, which will find the object wherever it is.

Garbage collection mechanism

Here is an outline of the algorithm used by the garbage collector.

Rather than a single algorithm the solution actually relies on a combination of bas
algorithms, used together (for some of them) or independently. Each activation of t
collector selects an algorithm or algorithm combination based on such criteria as t
urgency of the memory need. The basic algorithms include generation scavenging, me
and-sweep and memory compaction, plus a few others less relevant to this discussion

The idea behincgeneration scavengin was described earlier in this chapter:
concentrate on young objects, since they have the greatest likelihood of yieldil
collectable garbage. A main advantage of this algorithm is that it need not explore all t
objects, but only those which can be reached from local entities, and from old obje
containing references to young objects. Each time the algorithm processes a general
all the surviving objects become older; when they reach a given age, they are tenure
the next generation. The algorithm looks for the right tradeoff between low tenure age (t
many old objects) and high tenure age (too frequent scavengings).

The algorithm still needs, once in a while, to perform amark-and-sweey to find
any unreachable objects that generation scavenging may have missed. There are two s
mark recursively explores and marks the reachable objsweeptraverses applicable
memory and collects the marked objects.

Memory compaction compacts memory, returning unused parts to the operatin
system, at the lowest possible cost. The algorithm divides the memoin blocks and
takesn—1 cycles to compact them all.

314 MEMORY MANAGEMENT §9.10

Bulimia and anorexia

Since operating system calls (allocate memory, return memory) are expensive, the
memory compaction algorithm is conservative: rather than returning all the blocks that
have been freed, it will keep a few of them around to build a small reserve of available
memory. This way if the application starts shortly afterwards to allocate objects again the
memory will be readily available, without any need to call the operating system.

Without this technique, the fairly frequent case of a bulimic-anorexic application —
an application that regularly goes into a mad allocation binge, followed by a purge period
during which it gets rid of many objects — would cause the memory management
mechanism constantly to get memory from the operating system, return it, then ask again.

Garbage collector operation

The garbage collector gets into action when one of the two operations that request
memory, a creation instructiol!! x...) or a clone, triggers it. The trigger criterion is not
just that the application has run out of memory: preferring prevention to cure, the
mechanism may activate itself when it detects various conditions in advance of actual
memory exhaustion.

If the primary allocation area is full, the collector will execute a scavenging cycle. In
most cases this will free enough memory for the current needs. If not, the next step is to
go through a full mark-and-sweep collection cycle, generally followed by memory
compaction. Only if all this fails to provide the required space will the application, as a
last resort, ask the operating system for more memory, if it is still not possible to allocate
a new object.

The main algorithms are incremental, and their time consumption is a few percent of
the application’s execution time. Internal statistics keep track of the memory allocated
and help determine the proper algorithm to call.

You can tune the collector’s behavior by setting various parameters; in particular,
selecting thespee option will cause the algorithms not to try to collect all available
memory (through the compaction mechanism described above) but instead to call the
operating system'’s allocation facilities earlier. This optimizes speed over compactness.
The various parameter-setting mechanisms are obtaineccollection _of, collect now
anddispos,, from classMEMOR\.

The memory management mechanism resulting from the combination of all these
techniqgues has made it possible to develop and run successfully the kind of large,
ambitious applications which need to create many objects, create them fast, and (while
remaining careful about overall usage of space) let someone else worry about the
mundane consequences.

§9.11 KEY CONCEPTS INTRODUCED IN THIS CHAPTER 315

9.11 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

« There are three basic modes of object creation: static, stack-based and free. The
is characteristic of object-oriented languages but also occurs elsewhere, for exam
in Lisp, Pascal (pointers amew), C (malloc), Ada (access types).

« In programs that create many objects, objects may become unreachable; tt
memory space is lost, leading to memory waste and, in extreme cases, failure fr
lack of space even though some space is not used.

* The issue may be safely ignored in the case of programs that create few unreach:
objects, or few objects altogether as compared to the available memory size.

* In all other cases (highly dynamic data structures, limited memory resources), a
solution will involve two componentdetectior of dead objects, arreclamatior of
the associated space.

» Either task may be handled by the language implementation, the compone
manufacturing level or application programs.

» Leaving application programs in charge of detection is cumbersome and dangero
So is a memory reclamation operation in a high-level language.

« In some contexts, it is possible to provide simple memory management at t
component level. Detection is handled by the components; reclamation, by either
components or the language implementation.

» Reference counting is inefficient, and does not work for cyclic structures.

» Garbage collection is the most general technique. It is possible to keep its poten
overhead on normal system execution acceptably low and, through sufficient
incremental algorithms, not visible in normal interactive applications.

» Generation scavengilimproves the efficiency of garbage collection algorithms by
using the observation that many objects die (become unreachable) young.

* A good memory management mechanism should return unused space not just to
current application but to the operating system.

« A practical memory management scheme was described, offering a combination
algorithms and ways for application developers to tune the mechanism, includir
turning garbage collection off and on in sensitive sections.

9.12 BIBLIOGRAPHICAL NOTES

A broader perspective on the different models of object creation, discussed at 1
beginning of this chapter, is provided by tlcontour model” of programming language
execution, which may be found [Johnston 197..|

The information about the London Ambulance Service fiasco comes from a
extensive set of messages posted on the Risks facomyprrisks Usenet newsgroup)
moderated by Peter G. Neumann, in April and October of 1992. | relied particularly ¢
several messages by Brian Randell — quoting journal artiThe Independe, 29 and
30 October 1992) and BBC bulletins — as well as Trevor Jenkins, Jean Ramaekers, J

316 MEMORY MANAGEMENT 8E9.1

Jones, Tony Lezard, and Paul Johnson (to whom | am grateful for bringing this example
to my attention). The primaicomy.risks issue on this topic is 14.48; see also 13.38, 13.42,
13.43, 14.02. The newsgroup archives are accessible through the WorlcWeb at
http://catles.ncl.ac.uk/Risks

A parallel garbage collection algorithm was introducerl [Dijkstra 1978.
[Cohen 1984] discusses the performance issues of such algorithms. Generation
scavenging was introducec [Ungar 1984.

The garbage collection mechanism of ISE’s environment sketched at the end of this
chapter was built by Raphaél Manfredi and refined by Fabrice Franceschi (whose
technical report served as the basis for the presentation here) and Xavier Le Vourch.

EXERCISES

E9.1 Patterns of object creation

In the discussion of automatic memory management it was pointed out that the “intwhat exactly is
free list” approach (in which the space of reclaimed objects is not physically returnreclamation?”,
the operating system, but kept in a list for use by future creation instructions) may 29¢ 302-

the memory allocated to an application to grow forever even though the actual memory
requirement is bounded, whereas the “actual reclamation” approach (in which a reclaim
operation actually returns memory) would result in bounded memory usage. Devise a
pattern of object creation and reclamation which exhibits this problem.

You may describe such a pattern as a sequoy 05 05 ... Where eaclo, is either 1,

indicating the allocation of one memory unit,—n (for some intege¢ n), indicating the
reclamation on memory units.

E9.2 What level of reclamation?

The component level policy, if implemented in a language like Pascal or C whel"THE COMPO-
operating systerdispos: orfree facility is available, could use this facility directly rathexgg‘géigﬁk o5
than managing its own free list for every type of data structure. Discuss the pros antage 297, T
of both approaches.

E9.3 Sharing the stack of available elements

(This exercise assumes familiarity with the results of chel8) Rewrite the feature
available, giving the stack of available elements in the component-level approach, so that
the stack will be shared by all linked lists of a certain tyHint: use a once function.)

E9.4 Sharing more

(This exercise assumes that you have solved the previous one, and that you have read up
to chapte18.) Is it possible to make ttavailablestack shared by linked lists of all types?

	9 9 Memory management
	9.1 WHAT HAPPENS TO OBJECTS
	Object creation
	Three modes of object management
	The static mode
	The stack- based mode
	The free (heap- based) mode

	Using the free mode
	Space reclamation in the three modes
	Allocation and deallocation in a block- structured...

	Detachment
	Detachment

	Unreachable objects
	Detachment is not always death

	Reachable objects in classical approaches
	Live objects (in color) and dead objects (in black...
	Entity allocation for a procedure

	Reachable objects in the object-oriented model
	Reachability in the object- oriented model
	Objects attached to local entities

	The memory management problem in the object-orient...
	Definition: origins, reachable and unreachable obj...

	The three answers

	9.2 THE CASUAL APPROACH
	Can the casual approach be justified?
	Do we care about memory any more?
	A byte here, a byte there, and soon we will be tal...

	9.3 RECLAIMING MEMORY: THE ISSUES
	9.4 PROGRAMMER-CONTROLLED DEALLOCATION
	The reliability issue
	The ease of development issue
	Direct and indirect self- reference

	9.5 THE COMPONENT-LEVEL APPROACH
	Managing space for a linked list
	Dealing with recycled objects
	Discussion

	9.6 AUTOMATIC MEMORY MANAGEMENT
	The need for automatic techniques
	What exactly is reclamation?

	9.7 REFERENCE COUNTING
	Uncollectible cyclic structure

	9.8 GARBAGE COLLECTION
	The garbage collection mechanism
	Garbage collector requirements
	Garbage collector properties

	Garbage collection basis
	All-or-nothing collection
	Advanced approaches to garbage collection
	Parallel garbage collection algorithms

	9.9 PRACTICAL ISSUES OF GARBAGE COLLECTION
	Class MEMORY
	A disposal mechanism
	Garbage collection and external calls

	9.10 AN ENVIRONMENT WITH MEMORY MANAGEMENT
	Basics
	Challenges
	Object movement
	Garbage collection mechanism
	Bulimia and anorexia
	Garbage collector operation

	9.11 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
	9.12 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E9.1 Patterns of object creation
	E9.2 What level of reclamation?
	E9.3 Sharing the stack of available elements
	E9.4 Sharing more

