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Frankly, it would be nice to forget about memory. 

Our programs would just create objects as they please. One after the other, u
objects would vanish into abysses, while those most needed would slowly move clo
the top, like meritorious employees of a large corporation who manage once in a wh
catch the attention of a higher officer, and by making themselves indispensable to
immediate superiors will with a bit of luck, at the end of a busy career, be admitted
the inner circle. 

But it is not so. Memory is not infinite; it does not harmoniously organize itself 
a continuous spectrum of storage layers with decreasing access speeds, to which
would naturally distribute. We do need to fire our useless employees, even if we mu
it early retirement imposed with regret because of the overall economic situation.
chapter examines who should be thus downsized, how, and by whom. 

9.1  WHAT HAPPENS TO OBJECTS 

Object-oriented programs create objects. The previous chapter showed how useful
rely on dynamic creation to obtain flexible object structures, which automatically ada
the needs of a system’s execution in any particular case. 

Object creation 

We have seen the basic operation for allocating space to new objects. In its simples
it appears as 

!!  x

and its effect was defined as threefold: create a new object; attach it to the reference x; and
initialize its fields. 

A variant of the instruction calls an initialization procedure; and you can also c
new objects through routines clone and deep_clone. Since all these forms of allocatio
internally rely on basic creation instructions, we can restrict our attention to the form!!  x
without fear of losing generality. 

We will now study the effect of such instructions on memory management.
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Three modes of object management 

First it is useful to broaden the scope of the discussion. The form of object manag
used for object-oriented computation is only one of three commonly found modes: static,
stack-based and free. The choice between these modes determines how an entity
become attached to an object. 

Recall that an entity is a name in the software text representing a run-time value, or a
succession of run-time values. Such values are either objects or (possibly void) reference
to objects. Entities include attributes, formal routine arguments, local entities of routines
and Result. The term attached describes associations between entities and objects: at
some stage during execution, an entity x is attached to an object O if the value of x is either
O (for x of expanded type) or a reference to O (for x of reference type). If x is attached to
O, it is sometimes convenient to say also that O is attached to x. But whereas a reference
is attached to at most one object, an object may be attached to two or more references
this is the problem of dynamic aliasing, discussed in the previous chapter. 

In the static mode, an entity may become attached to at most one run-time 
during the entire execution of the software. This is the scheme promoted by lang
such as Fortran, designed to allow an implementation technique which will allocate 
for all objects (and attach them to the corresponding entities) once and for all, at pro
loading time or at the beginning of execution. 

The static mode is simple and supports efficient implementation on the u
computer architectures. But it presents serious limitations: 

• It precludes recursion, since a recursive routine must be permitted to have s
incarnations active at once, each with its own incarnations of the routine’s entities. 

• It also precludes dynamically created data structures, since the compiler must b
to deduce the exact size of every data structure from the software text. Each
for example, must be statically declared with its exact size. This seriously limit
modeling power of the language: it is impossible to handle structures that grow
shrink in response to run-time events, except by allocating the maximum pos
space for each of them — a technique that wastes memory, and is rather dan
since just one data structure may cause the whole system execution to fail if it
has been underestimated. 

FIXED MEMORY AREA

Objects
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Dynamic arrays can
be created in C 
through the malloc 
function, a mecha-
nism of the “free” 
kind, the mode stud
ied next; some Pas-
cal extensions 
support dynamic 
arrays. 

The free (heap-
based) mode
The second scheme of object allocation is the stack-based mode. Here an enti
at run time become attached to several objects in succession, and the run-time mech
allocate and deallocate these objects in last-in, first-out order. When an obje
deallocated, the corresponding entity becomes attached again to the object to which
previously attached, if any. 

Stack-based object management was made popular by Algol 60 and is supp
(often in conjunction with one or both of the other two modes) in most poste
programming languages. Stack-based allocation supports recursion and, if the lan
permits it, arrays whose bounds only become known at run time. In Pascal a
however, the mechanism only applies to variables of basic types and record types 
to arrays as it did in Algol. In practice the data structures that developers would most
want to allocate in this fashion are precisely arrays. Even when it applies to arrays, 
based allocation still does not support complex data structures in their full generalit

To obtain such general data structures, we need the third and last scheme: th
mode, also called heap-based because of the way it is implemented. This is the
dynamic mode in which objects are created dynamically through explicit requests
entity may become successively attached to any number of objects; the pattern of 
creations is usually not predictable at compile time. Objects may, furthermore, co
references to other objects. 

The free mode allows us to create the sophisticated dynamic data structures 
we will need if, as discussed in the previous chapter, we are to take our software sy
to their full modeling power. 

Objects of block i

Memory allocated
on entry to block i

Memory allocated
on entry to block i+1

Objects of block i+1

Order of allocation
(on block entry)

Order of

(on block exit)

THE STACK

deallocation

 

-

THE HEAP
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Using the free mode 

The free mode is clearly the most general, and is required for object-oriented compu
Many non-O-O languages use it too. In particular: 

• Pascal uses the static mode for arrays, the stack-based mode for variables 
other than array or pointer, and the free mode for pointer variables. In the las
object creation is achieved by a call to a special creation procedure, new. 

• C is similar to Pascal but in addition offers static non-array variables and free a
Dynamic allocation of pointer variables and arrays relies on a library function, malloc. 

• PL/I supports all modes. 

• Lisp systems have traditionally been highly dynamic, relying for the most part o
free mode. One of the most important Lisp operations, used repeatedly to con
lists, is CONS, which creates a two-field cell, ready to serve as a list element with
element’s value in the first field and a pointer to the next element in the second
Here CONS, rather than explicit creation instructions, will be the principal source
new objects 

Space reclamation in the three modes 

The ability to create objects dynamically, as in the stack-based and free modes, rai
question of what to do when an object becomes unused: is it possible to reclaim its m
space, so as to use it again for one or more new objects in later creation instructions

In the static mode, the problem does not exist: for every object, there is exactl
attached entity; execution needs to retain the object’s space as long as the entity is
So there is no possibility for reclamation in the proper sense. A related techniq
however, sometimes used. If you are convinced that the objects attached to two e
will never be needed at the same time, if these entities need not retain their values b
successive uses, and if space efficiency is a critical problem, you can assign the
memory location to two or more entities — if you are really sure of what you are do
This technique, known as overlay is still, appallingly enough, practiced manually. 

If used at all, overlay should clearly be handled by automatic software tools, as the
potential for errors is too high when programmers control the process themselves. Once
again a major problem is change: a decision to overlay two variables may be correct at a
certain stage of the program’s evolution, but an unexpected change may suddenly mak
it invalid. We will encounter similar problems below, in a more modern context, with
garbage collection. 

With the stack-based mode, the objects attached to an entity may be allocate
stack. Block-structured language make things particularly simple: object allocation o
at the same time for all entities declared in a given block, allowing the use of a single
for a whole program. The scheme is elegant indeed, as it just involves two se
concomitant events: 
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Detachment
The simplicity and efficiency of this implementation technique are part of the rea
why block-structured languages have been so successful. 

With the free mode, things cease to be so simple. The problem comes from the
power of the mechanism: since the pattern of object creation is unknown at compile
it is not possible to predict when a given object may become useless. 

Detachment 

Objects may indeed, in the free mode, become useless to the software at unpred
times during execution, so that some mechanism (to be determined later in this discu
may reclaim the memory they occupy.

The reason is the presence in our execution mode of operations performing wha
be called detachment — the reverse of attachment. The previous chapter studied at le
how entities can become attached to objects, but did not examine in any deta
consequences of detachments. Now is the time to correct this. 

Detachment only affects entities x of reference types. If x is of expanded type, the value
of x is an object O, and there is no way to detach x from O. Note, however, that if x is an
expanded attribute of some class, O represents a subobject of some bigger object BO
then BO, and with it O, may become unreachable for any of the reasons studied below
So for the rest of this chapter we may confine our attention to entities of reference types.

The principal causes of detachment are the following, assuming x and y, entities of
reference type, were initially attached to objects O1 and O2. The figure illustrates case
D1 and D2. 

D1 • An assignment of the form x := Void, or x := v where v is void, detaches x from O1.

Dynamic Property 
(event at execution 
time) 

Static Property 
(location in the 
software text) 

Implementation 
Technique

Object allocation Block entry. Push objects (one for 
each of the entities local 
to the block) onto stack.

Object deallocation Block exit. Pop stack.

O1 O2

x y z

O3 Attachments:

Before

✄✄

After
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D2 • An assignment of the form y := z, where z is attached to an object other than O
detaches y from O2.

D3 • Termination of a routine detaches formal arguments from any attached objec

D4 • A creation instruction !!  x, attaches x to a newly created object, and hence detac
x if it was previously attached to an object O1.

Case D3 corresponds to the rule given earlier that the semantics of an assign
a :=  b is exactly the same as that of initializing a formal argument a of a routine r at the
time of a call t ●r (…, b, …), where the position of b in the call corresponds to that of a in
the declaration of r.

Unreachable objects 

Does detachment mean that the detached object — O1 or O2 on the preceding fig
becomes useless and hence that the runtime mechanisms can reclaim the memory
occupies, then recycle it for other objects? That would be too easy! The entity for w
an object was initially created may have lost all interest in it, but because of dyn
aliasing other references may still be attached to it. For example the last figure may
shown only a partial view of attachments; looking at a broader context might revea
O1 and O2 are still reachable from other objects: 

But this is still not the entire object structure. By getting even more context
might now discover that O4 and O5 are themselves useless, so that in the absence 
references O1 and O2 are not needed after all. 

So the answer to the question “what objects can we reclaim?” must follow fro
global analysis of the entire set of objects created so far. We can identify three 
of object: 

C1 • Objects directly attached to entities of the software text, known (from the lang
rules) to be needed. 

O1 O2

x y z

O3

✄✄

O4
O5
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C2 • Dependents of objects of category C1. (Recall that the direct dependents of a
object are those to which it has references; here we are considering both dire
indirect dependents.) 

C3 • Objects which are in neither of the preceding two categories. 

The objects of category C1 may be called the origins. Together with those of
category C2, the origins make up the set of reachable objects. Those of category C3 ar
unreachable. They correspond to what was informally called “useless objects” abov
more lively if somewhat macabre terminology uses the term “dead objects” for C3
origins and their dependents being then called “live objects”. (Computing scien
however, have not quite managed to reconcile their various metaphors, as the pro
reclaiming dead objects, studied below, is called “garbage collection”.) 

The term “root” is also used for “origin”. But here the latter is preferable because an
O-O system also has a “root object” and a root class. The resulting ambiguity would
not be too damaging since the root object, as seen below, is indeed one of the origins.

The first step towards addressing the problem of memory management under th
mode is to separate the reachable objects from the unreachable ones. To identify rea
objects, we must start from the origins and repeatedly follow all references. So th
question is to identify the origins; the answer depends on the run-time structure de
by the underlying language.

Reachable objects in classical approaches 

Because the unreachability problem is already present in the run-time structure o
classical approaches as Pascal, C and Ada, it is interesting to start with this case.
accurately, this is interesting for the reader who is familiar with one of these approa
If you are not in this category, you may prefer to skip this section and go directly t
next one, which moves right on to the run-time structure of O-O software.) 

The approaches quoted combine the stack-based and free modes of allocation
Ada also support the static mode, but to keep things simple we may ignore static allo
by viewing it as a special case of stack-based allocation: we treat static objects as 
were allocated once and for all, when execution starts, at the bottom of the stack. (T
indeed the way Pascal developers emulate static entities: they declare them 
outermost block.) 

Another common property of these approaches is that entities may denote po
To provide a better preparation for the object-oriented approach of this book, w
instead of pointers we use references (a more abstract notion, as discussed in the p
chapter), let us pretend that the pointers in question are actually references. This m
particular that we disregard the weakly typed nature of pointers in C. 

With these assumptions and simplifications the origins, shown with thick borde
the following figure, are all the objects which are either allocated on the stack or atta
to references allocated on the stack. The reachable objects (including the origins) 
in color, the unreachable objects in black.
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Because the unreachability problem only arises for objects allocated under th
mode, and such objects are always attached to entities of reference types, it is con
to ignore the reclamation problem for objects allocated on the stack (which can be ha
simply by popping the stack at the time of block exit) and to start from the refere
coming from the stack. We may call these references reference origins. They are shown
with thick arrows in the figure. A reference origin is either: 

O1 •The value of a local entity or routine argument of reference type (as with the
two reference origins in the figure). 

O2 •A field of reference type, in an object allocated on the stack (as with the lo
reference origin in the figure). 

As an example, consider the following type and procedure declarations, writte
syntax half-way between Pascal and the notation of the rest of this book (an entity o
reference G is a reference that may become attached to objects of type G): 

type
COMPOSITE =

record

m: INTEGER

r: reference COMPOSITE

end

…

THE STACK

Stack top

Reference origin

Origin
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procedure p is

local

n: INTEGER

c: COMPOSITE

s: reference COMPOSITE

do

…

end

Every execution of p allocates three values on the stack:

The three new values are an integer n, which does not affect the problem of obje
management (since it will disappear when the procedure terminates, and does not r
any other object); a reference s, which is an example of category O1; and an object c of
type COMPOSITE. This object is itself stack-based and its allocated memory may
reclaimed on procedure termination; but it contains a reference field for r, which is an
example of category O2. 

In summary, to determine the reachable objects in a classical approach com
the stack-based and free modes, you can start from the references on the stack (v
of reference types, and reference fields of composite objects), and repeatedly follo
reference fields of the attached objects if any. 

THE STACK

New stack top

Previous stack top

m

r

(COMPOSITE)

c

n

s
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Reachable objects in the object-oriented model 

The object-oriented run-time structure presented in the preceding chapter has 
differences from the one just discussed. 

The execution of any system starts with the creation of one object, called the
object of the system, or just its root (when there is no confusion with the root class, a
notion). Clearly, the root is one of the origins in this case. 

Another set of origins arises because of the possible presence of local entitie
routine. Assume a routine of the form

some_routine is
local

rb1, rb2: BOOK3
eb: expanded BOOK3

do
…
!!  rb1

… Operations possibly involving rb1, rb2 and eb …
end

Whenever a call to some_routine is executed, and for the duration of that executio
the instructions in the routine’s body may refer to rb1, rb2 and eb, and hence to the
attached objects if any. (For eb there is always an attached object, but at various pointsrb1
and rb2 may be void.) This means that such objects must be part of the reachable se
though they are not necessarily dependents of the root. 

Local entities of reference types, such as rb1 and rb2, are similar to the local routine
variables which, in the previous model, were allocated on the stack. Local entiti
expanded types, such as eb, are similar to the stack-based objects. 

THE STACK
Stack top

THE ROOT
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When a call to some_routine terminates, the current incarnations of entities rb1, rb2
and eb disappear. As a result, any attached objects cease to be part of the origin se
does not necessarily mean that they become unreachable, as they may in the me
have become dependents of the root object or other origins.

Assume for example that a is an attribute of the enclosing class and that the wh
text of the routine is: 

some_routine is
local

rb1, rb2: BOOK3
eb: expanded BOOK3

do
!!  rb1; !!  rb2
a := rb1

end

The following figure shows in color the objects that a call to some_routine will create
and the references that it will reattach.

When a call to some_routine terminates, the object O that served as target of the 
is still reachable (otherwise there would have been no call!). The a field of O is now
attached to the BOOK3 object B1 created by the first creation instruction (the one of ta
rb1), which, then, remains reachable. In contrast, the objects B2 and EB that were at
to rb2 and eb during the call now become unreachable: with the routine text as given 
is no possibility that any of the other objects of the system, reachable or not, 
“remember” B2 or EB. 

THE STACK

THE ROOT

(BOOK3)

Stack top before 
and after call

Stack top during 
execution of 
some_routine

rb2
rb1

(BOOK3)

(BOOK3)

a

Objects and references in black 
exist before the call; those in 
color are created by the call.

Objects with  thick borders 
are reachable after the call.

O

B1
B2

EB
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The memory management problem in the object-oriented model 

We may summarize the preceding analysis by defining the origins, and hence 
reachable objects, in the object-oriented framework:

The problem of memory management arises from the unpredictability of
operations which affect the set of reachable objects: creation and detachment. B
these operations are instructions, appearing as part of a system’s control structure
is usually no way to determine with certainty, from a mere examination of the soft
text, the pattern of object creation and detachment at run time. 

More precisely, such a prediction is possible in some cases, for data stru
managed in a strictly controlled way. An example is the LINKED_LIST library class
studied in a later chapter, with the associated class LINKABLE which describes linked list
elements. Instances of LINKABLE are only created through specific procedures 
LINKED_LIST, and can only become unreachable as a result of executing the remove
procedure of that class. For such classes one might envision specific reclam
procedures. (This approach will be explored later in this chapter.) 

But such examples, although important, are only special cases. In the most g
case we must face a difficult question: what do we do about unreachable objects? 

The three answers 

Three general attitudes are possible as to objects that become unreachable:

• Ignore the problem and hope that there will be enough memory to accommoda
objects, reachable or not. This may be called the casual approach. 

• Ask developers to include in every application an algorithm that looks 
unreachable objects, and give them mechanisms to free the corresponding me
This approach is called manual reclamation. 

Definition: origins, reachable and unreachable objects

At any point during the execution of a system, the set of origins is made
of the following objects: 

• The system’s root object. 

• Any object attached to a local entity or formal argument of a
routine currently being executed (including the local entity Result
for a function).

Any dependent, direct or indirect, of these origins is reachable. Any other
object is unreachable; it is possible to reclaim the memory it occupies (for
example to recycle it for other objects) without affecting the correct
semantics of the system’s execution. 
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• Include in the development environment (as part of the so-called runtime sys
automatic mechanisms that will detect and reclaim unreachable objects. T
called automatic garbage collection. 

The rest of this chapter discusses these approaches. 

9.2  THE CASUAL APPROACH 

The first approach consists in forgetting about the problem: abandon dead objects t
fate. Execute creation instructions as needed, and do not worry about what may
happen to those objects that have thus been allocated. 

Can the casual approach be justified? 

One case in which the casual approach presents no particular problem is that of s
that do not create many objects, such as small-scale tests or experiments. 

More interesting is the case of systems that may in fact create many objects, 
such a way that it is possible to guarantee that none or very few of them be
unreachable. As with the static allocation scheme, no objects are ever retired
difference is that creation occurs at execution time. 

This case provides a good justification for the casual approach, as there is no ne
reclamation. The number of objects created may still be too big for the available me
but no reclamation policy would alleviate the problem if there is nothing to reclaim.

Some real-time programs follow this scheme: for efficiency reasons, they crea
needed objects statically or at initialization time, avoiding any non-predictable patter
dynamic object creation. 

This method has its advocates, who usually are involved in the construction of “
real-time” systems demanding guaranteed sub-millisecond response times to ex
events (such as a missile detection), and who as a consequence insist that the 
execute every operation must be fully predictable. But then memory management i
a small part of what we must give up: predictability requires the absence of any ki
object allocation (creation instruction, malloc, recursion, possibly any call of a routin
with local entities) after initialization; and it assumes a dedicated, single-user, si
processing machine, with no preemptive operating system call and in fact no ope
system in the usual sense of the term. In such environments people sometimes ch
program in assembly language, as they fear the additional unpredictability of com
generated code. All this, of course, restricts the discussion to a tiny (although stra
part of the software development world.

Do we care about memory any more? 

Another argument sometimes heard to justify the casual approach is the incre
availability of large memory spaces, and the decreasing cost of memory. 
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The memory involved may be virtual as well as real. On a virtual memory sys
both primary and secondary memory are divided into blocks called pages; when pr
memory is needed, blocks of primary memory that have not been frequently use
moved to secondary memory (“paged out”). If such a system is used to run object-or
systems, pages that contain reachable objects will tend to be paged out and leav
memory space to frequently used ones. 

If we indeed had almost infinite amounts of almost free memory, we could sa
ourselves (as suggested at the very beginning of this chapter) with the casual app
Unfortunately this is not the case. 

One reason is that in practice virtual memory is not really equivalent to real mem
If you store large numbers of objects in virtual memory, where a minority of reach
objects are interspersed with a majority of unreachable ones, the system’s executio
constantly cause pages to be moved in and out, a phenomenon known as thrashing which
leads to dramatic degradation of time performance. Indeed, virtual memory systems
it harder to separate the space and time aspects of efficiency. 

But there is a more serious limitation to the casual approach. Even systems 
large memory have limits; it is always surprising to see how quickly programmers
reach them. And as was pointed out in the more general discussion of efficiency, har
advances — in time or in space — should be put to good use. Larger memories are 
to be used, not wasted. 

As soon as you move beyond the case discussed above in which it is poss
prove that only a small number of objects will become unreachable, you will have to
the reclamation problem. 

A byte here, a byte there, and soon we will be talking real corpses 

It is time to lend our ears to the sad and edifying story of the London Ambulance Ser

The London Ambulance Service, said to be the largest in the world, serves a
of about 1500 square kilometers, a resident population of almost seven million peop
an even larger daytime population. Every day it handles over five thousand patien
receives between two and three thousand calls. 

As you may have guessed from the somber tone of this introduction, computer
more to the point computer software) got involved at some stage. At more than one
in fact: several attempted systems were discarded as inadequate without being e
into actual use, the latest in 1991, having burned seven and half million pounds. T
1992 a new system, developed at a cost of a million pounds, was put into operation. 
made headlines again; on October 28 and 29, television and press reports were anno
that twenty lives had been lost because of the system’s inadequacy; in one particul
an ambulance crew is said to have radioed base on reaching the location of their 
ask why the undertaker had got there first. The Service’s chief executive resigned a
inquiry commission was appointed. 
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(named in the 
report) which pro-
duced the system. 
The Service did not immediately scrap the computerized system but switched
hybrid mode — partly manual, partly relying on the system. According to the offi
report: 

This [hybrid] system operated with reasonable success from the afternoon of 27 October
up to the early hours of 4 November. However, shortly after 2AM on 4 November the syste
slowed significantly and, shortly after this, locked up altogether. Attempts were made to re-boo
(switch off and restart workstations) in the manner that staff had previously been instructed
XX to do in these circumstances. This re-booting failed to overcome the problem with the res
that calls in the system could not be printed out and mobilizations via [the system] from incident
summaries could not take place. Management and staff […] reverted fully to a manual, paper-
based system with voice or telephone mobilization.

What caused the system to fail in such a dismal way that it could not be kept ev
an adjunct to a manual operation? The inquiry report identifies several reasons, bu
is the clincher: 

The Inquiry Team has concluded that the system crash was caused by a minor progra
error. 

In carrying out some work on the system some three weeks previously the XX programm
inadvertently left in the system a piece of program code that caused a small amount of m
within the file server to be used up and not released every time a vehicle mobilization
generated by the system. 

Over a three week period these activities had gradually used up all available memory thus c
the system to crash. This programming error should not have occurred and was caused
carelessness and lack of quality assurance of program code changes. Given the nature of the fault
it is unlikely that it would have been detected through conventional programmer or user te.

The reader will be the judge of how accurate it is to call the programming e
“minor”, especially in view of the crucial last comments (that the error would have b
hard to find through testing), which will be discussed again below. 

For anyone wondering whether the casual approach may be good enough, and
generally for anyone who may be tempted to dismiss memory management as “j
implementation issue”, the twenty victims of the London Ambulance Service will s
as a sobering reminder of the seriousness of the problems covered by this chapter.

9.3  RECLAIMING MEMORY: THE ISSUES 

If we go beyond the casual approach and its simplistic assumptions, we must find ho
when to reclaim memory. This in fact involves two issues: 

• How we will find out about dead elements (detection). 

• How the associated memory is actually reclaimed (reclamation). 

For each of these tasks, we may look for a solution at any one of two possible leve

• The language implementation level — compiler and runtime system, providing
support common to all software written in a certain language in a cer
computing environment.

• The application level — application programs, intended to solve specific proble
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In the first case the selected memory management functions will be han
automatically by the hardware-software machine. In the second case, each appl
developer has to take care of these functions on his own.

There is in fact a third possible level, in-between these two: working at
component manufacturing level, that is to say handling memory management functi
in the general-purpose reusable library classes in an object-oriented environment
the application level, you can only use the programming language’s official mechan
(rather than enjoying direct access to hardware and operating system facilities); bu
the language implementation level, you can address the memory management prob
part of it, once and for all for all applications.

Given two tasks and three possibilities for each, we are in principle faced with
possibilities. Actually, only four or so make sense. We will review those which
actually available in existing systems. 

9.4  PROGRAMMER-CONTROLLED DEALLOCATION

One popular solution is to provide a reclamation facility at the implementation level, w
passing on the detection problem to software developers. 

This is certainly the easiest solution for language implementers: all they have 
is to provide a primitive, say reclaim, such that a●  reclaim tells the runtime system that th
object attached to a is no longer needed and the corresponding memory cells ma
recycled for new objects. 

This is the solution adopted by such non object-oriented languages as P
(dispose procedure), C (free), PL/I (FREE), Modula-2 and Ada; you will also find it in
most of the “hybrid object-oriented languages”, in particular C++ and Objective-C. 

This solution is favored by many programmers, especially in the C world, who
to feel in full control of what happens. As a typical reaction here is a Usenet mes
posted on the comp.lang.objective-c discussion group in response to a suggestion t
Objective-C could benefit from automatic reclamation:

I say a big NO! Leaving an unreferenced object around is BAD PROGRAMMING. Object
pointers ARE like ordinary pointers — if you [allocate an object] you should be
responsible for it, and free it when its finished with (didn't your mother always tell you to
put your toys away when you'd finished with them?).

For serious software development this attitude is not defensible. Grow
developers must be prepared let someone else play with their “toys” for two rea
reliability and ease of development. 

The reliability issue 

Assume developers are in control of deallocating objects with a reclaim mechanism. The
possibility of an erroneous reclaim is always lurking, especially in the presence 
complex data structures. In particular, as the software evolves, a reclaim that used to be
justified may become incorrect. 
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This figure origi-
nally appeared on 
page 226. dispose, 
as noted, is the name
of the Pascal proce
dure for what is 
called reclaim in 
this discussion.
Such a mistake causes what is known as the dangling reference problem: the case in
which an object keeps, in one of its fields, a reference to another object which has
reclaimed. If the system then tries to use the reference after that object’s memory ar
been recycled to hold wholly unrelated information, the result will usually be a run-
crash or (worse yet) erroneous and erratic behavior. 

This type of error is known to be the source of some of the most common and 
bugs in the practice of C and derived languages. Programmers in these lang
particularly fear such bugs because of the difficulty of tracing down their sourc
difficulty that is easy to understand: if the programmer forgot to note that a ce
reference was still attached to an object, and as a result wrongly issued a reclaim on the
object, it is often because the missed reference came from a completely different p
the software. If so there will be a great conceptual and physical distance between th
(the wrong reclaim) and its manifestation (a crash or other abnormal behavior due t
attempt to follow an incorrect reference); the latter may occur long after the former
in a seemingly unrelated part of the system. In addition the bug may be hard to repr
if the operating system does not always allocate memory in the same way.

Dismissing the issue, as in the Usenet message reproduced above, by claimi
only “BAD PROGRAMMING” leads to such situations, does nothing to help. To er
human; to err when programming a computer is inevitable. Even in a moderately com
application, no developer can be trusted, or trust himself, to keep track of all run
objects. This is a task for computers, not people.

Many a C or C++ programmer has spent many a night trying to figure out wh
the world could have happened to one of his “toys”. It is not rare to see a project repe
delayed by such mysterious memory bugs.

The ease of development issue 

Even if we were able to avoid erroneous reclaim calls, the question remains of how
realistic it would be to ask developers to handle object reclamation. The snag is
assuming you have positively identified an object that is up for reclamation, just rele
that object is usually not sufficient, as it may itself contain references to other objec

Take the structure shown by the figure at the top of the next page, the same on
in the previous chapter to describe the dynamic nature of object structures. Assum
have correctly deduced that you may reclaim the top object. Then in the absence 
other references you may also reclaim the other two objects, which it references d
in one case and indirectly in the other. Not only may you reclaim them, you should do so:
how good would it be to reclaim only part of a structure? In Pascal terminology th
sometimes called the recursive dispose problem: if the reclaim operations are to mak
any sense, they must recursively apply to a whole data structure, not just to an indi
object. But of course you need to make sure that no references remain to the other 
from the outside. This is an arduous and error-prone task. 

 
-



MEMORY MANAGEMENT §9.4296

id)

irect
set of
o other
ion. 

pport
, and
uch a
ntrate
bage

mory
 such
ulting
 —

word
o
, as a

n the
tware

Direct and 
indirect self-
reference
In this figure all the objects are of the same type. Consider now an entity x attached
to an object O of type MY_TYPE, with the class declaration 

class MY_TYPE feature
attr1: TYPE_1
attr2: TYPE_2

end

Every object of type MY_TYPE, such as O, contains references which (unless vo
are attached to objects of types TYPE_1 and TYPE_2. Reclaiming O may imply that these
two objects should also be reclaimed, as well as any of their own direct or ind
dependents. Implementing the recursive dispose in this case means writing a 
reclamation procedures, one for each type of objects that may contain references t
objects. The result will be a set of mutually recursive procedures of great complicat

All this leads to disaster. It is indeed not uncommon, in languages that do not su
automatic garbage collection, to see a large part of the text of an “application” system
a large part of the development effort, being devoted to memory management. S
situation is unacceptable. As an application developer, you should be able to conce
on your job — solving application problems —, not become a bookkeeper or gar
collector (whichever metaphor is more appropriate). 

Needless to say, the increased software complexity resulting from manual me
management results in decreased quality. In particular, it hampers readability and
other properties as ease of error detection and ease of modification. The res
complexity further compounds the problem highlighted in the previous section
reliability. The more complex a system, the more likely it is to contain errors. The s
of Damocles of a possible erroneous reclaim is always hanging over your head, likely t
fall at the worst possible time: when the system goes from testing to production and
result, starts creating bigger and more intricate object structures. 

The conclusion is clear. Except in tightly controlled situations (as discussed i
next section), manual memory management is not appropriate for serious sof
development — at least if there is any concern for quality. 

(PERSON1)

"Almaviva"name

landlord

loved

(PERSON1)

"Figaro”name

landlord

loved

(PERSON1)

"Susanna" name

landlord

loved
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 The next section is
“AUTOMATIC 
MEMORY MAN-
AGEMENT”, 9.6, 
page 301. 

See illustrations of 
linked lists and 
LINKABLE objects 
on the next page.
9.5  THE COMPONENT-LEVEL APPROACH

(This section describes a solution useful in a specific case only; you may skip it on
reading.)

Before we move on to more ambitious schemes such as automatic ga
collection, it is interesting to look at a solution which may be described as a respon
alternative to the previous one, avoiding some of its drawbacks. 

This solution is only applicable within an object-oriented, bottom-up approac
software design, where data structures are not developed “on the spot” as program
them, but built as reusable classes: general-purpose implementations of abstra
types, with all the associated operations — features. 

What sets the object-oriented approach apart with respect to memory manage
Part of the novelty, rather than technical, is organizational: with the method’s empha
reuse of libraries, there now stands between the application developers an
implementers of the base technology (compiler and development tools), a third gro
people responsible for writing reusable components that implement the main
structures. Its members — who may of course participate at times in the othe
activities — may be called the component manufacturers. 

The component manufacturers have total control over all uses of a given clas
so are in a better position to find an acceptable solution to the memory manag
problem for all instances of that class. 

If the pattern of allocation and deallocation for the class is simple enough
component manufacturers may be able to find an efficient solution which does not
require the underlying runtime system to provide a specific reclaim routine; they can
express everything in terms of higher-level concepts. This may be called the compo
level approach. 

Managing space for a linked list 

Here is an example of the component-level approach. Consider a class LINKED_LIST,
describing lists that consist of a header and any number of linked cells, thems
instances of a class LINKABLE. The allocation and deallocation pattern for linked lists
simple. The objects of concern are the “linkable” cells. In this example, the compo
manufacturers (the people responsible for classes LINKED_LIST and LINKABLE) know
exactly how linkables are created — by the insertion procedures — and how linkable
become dead — as a result of the deletion procedures. So they can mana
corresponding space in a specific way.

Let us assume that LINKED_LIST has only two insertion procedures, put_right and
put_left, which insert a new element at the left and right of the current cursor pos
Each will need to create exactly one new LINKABLE object; they are the basic source 
allocation due to LINKED_LIST. A typical implementation is:
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put_right (v: ELEMENT_TYPE) is
-- Insert an element of value v to the right of cursor position.

require
…

local
new: LINKABLE

do
!!  new● make (v)
 active● put_linkable_right (new)
… Instructions to update other links …

end

The creation instruction !!  new● make (v) directs the language implementation lev
to allocate memory for a new object. 

In the same way that we control where objects are created, we know exactly 
they can become unreachable: through one of the deletion procedures. Let us assum
such procedures remove, remove_right, remove_left; there may also be others such 
remove_all_occurrences (which removes all occurrences of a certain value) and wipe_out
(which remove all elements), but we may assume that they internally rely on the first 
each of which makes exactly one LINKABLE unreachable. Procedure remove, for
example, may have the following form: 

remove is
-- Delete element at cursor position.

do
…
 previous● put_linkable_right (next)
… Instructions to update other links …
active := next

end

These deletion procedures provide the exact context for detecting unreac
objects and, if desired, putting them aside for later reuse. In the absence of any aut
scheme for releasing memory, the component manufacturer may safely conserve m
by avoiding the allocation requested by an insertion when previous deletions have c
unreachable LINKABLE objects and stored them somewhere for later reuse. 

Assume we keep these instances of LINKABLE in a data structure called available;
we will see below how to represent it. Then we may replace the creation instructions
as !! new● make (v) in put_right and put_left by 

new := fresh (v)

where fresh is a new secret function of LINKED_LIST, which will return a ready-for-use
linkable. Function fresh will attempt to obtain its result from the available list, and will
only perform a creation if the list is empty.

active

v

activeprevious
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later methodologica
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whether it is proper
for function fresh to 
produce a side effec.
Elements will be fed into available by the deletion procedures. For example, t
body of remove should now be of the form 

do

recycle (active)

-- The rest as before:

… Instructions to update links: previous, next, first_element, active …

where recycle, a new procedure of LINKED_LIST, plays the opposite role of fresh: adding
its argument to the list of available objects. This procedure will be secret (not expor
any client) since it is for internal use only.

Dealing with recycled objects

To implement fresh and recycle, we may, among other possible choices, repres
available as a stack: fresh will pop from and recycle will push onto the stack. Let us
introduce a class STACK_OF_LINKABLES for the occasion and add the following secr
features to LINKED_LIST: 

available: STACK_OF_LINKABLES 

fresh (v: ELEMENT_TYPE): LINKABLE is

-- A new element with value v, for reuse in an insertion

do

if  available● empty then

-- No choice but to perform an actual allocation

!! Result● make (v)

else

-- Reuse previously discarded linkable

Result := available●item; Result●put (v); available● remove

end

end

recycle (dead: LINKABLE) is

-- Return dead to the available list.

require

dead /= Void

do

available● put (dead)

end

We may declare class STACK_OF_LINKABLES as follows: 

 
l 

 

t
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Exercise E9.3, page 
316, and E9.4. On 
once functions see 
“CONSTANTS OF 
CLASS TYPES”, 
18.3, page 646. 
class
STACK_OF_LINKABLES 

feature { LINKED_LIST}
item: LINKABLE

-- Element at top

empty: BOOLEAN is
-- Is there no item?

do
Result := (item = Void)

end

put (element: LINKABLE) is
-- Add element on top.

require
 element /= Void

do
element● put_right (item); item := element

end

remove is
-- Remove last item added.

require
not empty

do
item := item●right

end
end

The stack representation, as pictured, takes advantage of the right field already present
in every LINKABLE to link all recycled elements without using any extra space. LINKABLE
must export right and put_right to STACK_OF_LINKABLES as well as LINKED_LIST. 

Feature available, as declared, is an attribute of the class. This means that 
linked list will have its own stack of linkables. It is of course a better use of space, if a
given system contains several lists, to share the pool of recycled linkables over the
system. The technique to do this, once functions, will be introduced later; making
available a once function means that only one instance of the class will exist throug
a given system execution, achieving the desired goal.

Discussion 

This example shows what the component-level approach can do to alleviate the pr
of space reclamation by treating it at the component manufacturing level. It assume
the underlying language implementation does not offer the automatic mecha
described in the next sections; rather than burdening application programs with me
management problems, with all the risks discussed earlier, the solution presented a
both detection and reclamation to the basic reusable classes. 

item
right

r

(top of stack)

Stack elements
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From [Schweitzer 
1991], page 57. 
The drawbacks and benefits are clear. Problems of manual memory manag
(reliability risks, tediousness) do not magically vanish; coming up with a foolpr
memory management scheme for a particular data structure, as done above for linke
is hard. But instead of letting each application developer cope with the issue, we a
this job to component manufacturers; it should fit well in their general task of chise
out high-quality reusable components. The extra effort is justified by the benefi
having good components available for frequent use by many different applications.

The component-level approach assumes a data structure whose patterns of c
and obsolescence are simple and perfectly understood. This covers only certain ca
many structures the pattern is unpredictable or too complicated. When the appro
applicable, it provides a better solution, when the underlying language system do
offer automatic memory management, than letting each application developer t
handle the problem manually, or not handle it at all.

9.6  AUTOMATIC MEMORY MANAGEMENT

None of the approaches seen so far is fully satisfactory. A general solution to the pr
of memory management for objects involves doing a serious job at the lang
implementation level. 

The need for automatic techniques 

A good O-O environment should offer an automatic memory management mecha
which will detect and reclaim unreachable objects, allowing application develope
concentrate on their job — application development. 

The preceding discussion should suffice to show how important it is to have s
facility available. In the words of Michael Schweitzer and Lambert Strether: 

An object-oriented program without automatic memory management is
roughly the same as a pressure cooker without a safety valve: sooner or later
the thing is sure to blow up! 

Many development environments advertized as O-O still do not support 
mechanisms. They may have other features which make them attractive at first; and 
they may work nicely on small systems. But for serious development you run the ris
they will let you down as soon as the application reaches real size. To summarize
form of concrete advice:

Two major approaches are applicable to automatic memory management: refe
counting and garbage collection. They are both worth examining, although the secon
is by far the more powerful and generally applicable. 

In choosing an O-O environment — or just an O-O language compiler —
for production development, restrict your attention to solutions that offer
automatic memory management.
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Exercise E9.1, page 
316.
What exactly is reclamation? 

One technical point before we look at reference counting and garbage collection. Wi
form of automatic storage management, the question arises of what it concretely 
for the mechanism to “reclaim” an object which it has detected as being unreachable
interpretations are possible: 

• The mechanism may add the object’s memory to a “free cell list” which it consta
maintains, in line with the techniques used by the earlier component-level sch
A subsequent creation instruction (!!  x…) will then look first in this list to find space
for the desired new object; only if the list is empty, or contains no appropriate
will the instruction require memory from the underlying operating system. This 
be called the internal free list approach. 

• Alternatively, reclaiming an object may mean returning the associated memo
the operating system. In practice, this solution will usually include some aspec
the first: to avoid the overhead of repeated system calls, reclaimed objects
temporarily be kept in a list, whose contents are returned to the operating s
whenever their combined size reaches a certain threshold. This may be call
actual reclamation approach. 

Although both solutions are possible, long-running systems (in particular sys
that must run forever) require actual reclamation. The reason is easy to under
assume an application which never stops creating objects, of which a large proportio
eventually become unreachable, so that there is an upper bound on the total num
objects reachable at any one time, even though the total number of created object
the beginning of a session is unbounded. Then with the internal free list approac
possible to have a situation where the application will forever keep asking for 
memory even though its actual memory needs are not growing. An exercise at the 
this chapter asks you to construct a pattern that will exhibit this behavior.

It would be frustrating to have automatic memory management and still 
ourselves in the London Ambulance Service situation — encroaching byte by byte o
available memory for no good reason, until execution runs out of space and ends in disaster. 

9.7  REFERENCE COUNTING 

The idea behind the first automatic memory management technique, reference cou
is simple. In every object, we keep a count of the number of references to the object
this count becomes null, the object may be recycled. 

This solution is not hard to implement (at the language implementation level)
must update the reference count of any object in response to all operations that can
the object, attach a new reference to it and detach a reference from it. 

Any operation that creates an object must initialize its reference count to one.
is the case in particular with the creation instruction !!  a, which creates an object an
attaches it to a. (The case of clone will be studied shortly.)
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Any operation that attaches a new reference to an object O must increas
reference count by one. Such attachment operations are of two kinds (where the va
a is a reference attached to O): 

A1 • b := a (assignment). 

A2 • x● r (…, a, …), where r is some routine (argument passing).

Any operation which detaches a reference from O must decrease its reference
by one. Such detachment operations are of two kinds: 

D1 • Any assignment a := b. Note that this is also an attachment operation (A1) for the
object attached to b. (So if b was also attached to O we will both increment a
decrement O’s count, leaving it unchanged — the desired outcome.)

D2 • Termination of a routine call of the form x ● r (…, a, …). (If a occurs more than
once in the list of actual arguments we must count one detachment per occurre

After such an operation, the implementation must also check whether O’s refe
count has reached value zero; if so, it may reclaim the object.

Finally the case of clone must be handled carefully. The operation a := clone (b),
which duplicates the object OB attached to b, if any, and attaches the resulting new obje
OA to a, must not duplicate the reference count. Instead, it must initialize the refer
count of OA to one; in addition, if OB had any non-void reference fields, it must incr
by one, for every such field, the reference count of the attached object. (If two or 
fields are attached to a single object, its reference count will be increased as many 

One obvious drawback of reference counting is the performance overhead in
time and space. For every operation on references the implementation will now ex
an arithmetic operation — and, in the detachment case, a conditional instructio
addition, every object must be extended with an extra field to hold the count.

But there is an even more serious problem which makes reference cou
unfortunately, of little practical use. (“Unfortunately” because this technique is not
hard to implement.) The problem is cyclic structures. Consider once again our s
example of a structure with mutually referring objects:

"Almaviva"name

landlord

loved_one

"Figaro"name

landlord

loved_one

"Susanna"

landlord

loved_one

O
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✄
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O3O2
4

1 2
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See the bibliographi-
cal notes on page 
315 for references on 
garbage collection. 
The objects in the right part of the figure, O1, O2 and O3, contain cyclic refere
to each other; assume that no outside object other than O contains a reference to
these objects. The corresponding reference counts have been displayed below each

Now assume that (as suggested by the ) the reference from O to O1 is det
for example because a routine call with target O executes the instruction 

a := Void

Then the three objects on the right have become unreachable. But the refe
counting mechanism will never detect this situation: the above instruction decrease
count to three; after that the reference counts of the three colored objects will stay p
forever, preventing them from being reclaimed. 

Because of this problem, reference counting is only applicable to structures w
are guaranteed never to include any cycle. This makes it unsuitable as a general-p
mechanism at the language implementation level, since it is impossible to guarante
arbitrary systems will not create cyclic structures. So the only application that would 
to remain is as a technique to be used by library developers at the comp
manufacturing level. Unfortunately if the component-level techniques of the prev
section are not applicable it is usually because the structures at hand are too compl
in particular because they contain cycles. 

9.8  GARBAGE COLLECTION 

The most general technique, and in fact the only fully satisfactory one, is auto
garbage collection, or just garbage collection for short. 

The garbage collection mechanism 

A garbage collector is a facility included in the runtime system for a programm
language. (The runtime system, or just runtime for short, is a component o
programming language’s implementation; it complements the compiler by providing
mechanisms needed at execution time to support the execution of software systems
in the language.) The garbage collector will take care of both detecting and recla
unreachable objects, without the need for explicit handling by application softwar
although application software may have various facilities at its disposal to contro
collector’s operation. 

A detailed exploration of garbage collection techniques would justify a book o
own (which remains to be written). Let us take a look at the general principles of ga
collectors and the problems that they raise, focusing on the properties that are d
relevant to application developers.

✄
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Garbage collector requirements

A garbage collector should, of course, be correct. This is actually two requirements

It is just as easy to write a sound collector (never collect any object) as a comple
(collect all objects); the difficulty is of course to achieve both properties in a single pro

Soundness is an absolute requirement: better no garbage collector than one 
once in a while, steals an active object from your application! You must be able to
memory management blindly; in fact, you should be able to forget about it most of the
being content enough to know that someone, somehow, collects the mess in your so
the same way someone, somehow, collects the garbage in your office while you are
— but does not take away your books, your computer, or the family pictures on your

Completeness is desirable too, since without it you may still face the problem th
garbage collector was supposed to solve: memory wasted on useless objects. But h
may be able to accept less than perfection: a quasi-complete collector could still be useful
if it collects the bulk of the garbage while occasionally missing an object or two.

Let us refine and improve this observation. In reality you will  want any industrial-
grade collector to be complete, lest you get back to the uncertainties of environment
no memory management. Completeness is in practice just as necessary as soundn
less pressing if we rephrase the definition as: “every unreachable object will ultimately be
collected”. Suppose that we can make the collection process more efficient o
through an algorithm that eventually collects every unreachable object but may l
getting to some of them: such a scheme would be acceptable for most application
is the idea of “generation scavenging” algorithms discussed below, which for efficien
sake spend most of their efforts scanning the memory areas most likely to co
unreachable objects, and take care of the remaining areas at less frequent intervals

If we start considering such tradeoffs it will be necessary to characterize a garbage
collector, beyond the yes-no criteria of soundness and completeness, by a more quantitativ
property which we may call timeliness: the time it takes — both the average value and the
upper bound will be interesting — between the moment an object becomes unreachable
and the moment the collector, assumed to be both sound and complete, reclaims it.

The definition of soundness illuminates the difficulties associated with garb
collection for some languages, and the respective roles of a language an
implementation. Why, for example, is garbage collection usually not available for C
The reasons most commonly cited are cultural: in the C world each developer is sup
to take care of his toys (in Stephenson’s words); he simply does not trust any auto
mechanism to manage his own business. But if this were the true reason, rather 
posteriori justification, C++ environments could at least offer garbage collection a
option, and most do not.

Garbage collector properties

Soundness: every collected object is unreachable.

Completeness: every unreachable object will be collected.
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The origins are the 
objects directly 
attached to entities 
of the software text. 
See “Reachable 
objects in the object-
oriented model”, 
page 288. 
The real issue is language design, not compiling technology or even cu
attitudes. C++, in the C tradition, is rather weakly typed, providing casts — type
conversions — through which you can refer to an object of a certain type through an
of another type, with few restrictions on possible type combinations. The syntax

(OTHER_TYPE) x
denotes x viewed as an entity of type OTHER_TYPE, related or not to the true type of x.
Good C++ books censure the wilder applications of this common practice,
methodological aspersions are of no use to the compiler writer, who must deal wi
language as defined. Now imagine the following scenario: a reference to an object o
useful type, say NUCLEAR_SUBMARINE, is temporarily cast into an integer; the garba
collector jumps in and examines the value, seeing nothing but the most innocent-lo
of integers; finding no other reference to the object, it reclaims it; but now the pro
casts the integer back to its true vocation of nuclear submarine reference; and it t
access the now inexistent object, with consequences of great sorrow to all affected

Various techniques have been proposed around this problem. Because they u
involve some restrictions on the use of the language, they have not found their way
common commercial offerings. The Java language may be viewed as a form of C++ 
has dramatically restricted the type system — going so far as to remove generici
multiple inheritance — to make garbage collection possible at last in a C-based wo

With a carefully designed type system, it is of course possible to provide the w
power of multiple inheritance and genericity while ensuring type safety and lang
support for efficient garbage collection.

Garbage collection basis 

Let us come now to how a garbage collector works.

The basic algorithm usually includes two phases, at least conceptually: mar
sweep. The mark phase, starting from the origins, follows references recursivel
traverse the active part of the structure, marking as reachable all the objects it enco
The sweep phase traverses the whole memory structure, reclaiming unmarked el
and unmarking everything. 

As with reference counting, objects must include an extra field, used here fo
marking; but the space overhead is negligible, since one bit suffices per object. As w
seen when we study dynamic binding, implementation of O-O facilities requires that 
object carry some extra internal information (such as its type) in addition to its of
fields corresponding to the attributes of the generating class. This information typ
occupies one or two words per object; the marking bit can usually be squeezed into 
these extra words, so that in practice there is no observable overhead. 

All-or-nothing collection 

When should the garbage collector be triggered? 

Classical garbage collectors are activated on demand and run to completion. In
words the garbage collector is inactive as long as there is some memory left 
application; when the application runs out of memory, it triggers an entire gar
collection cycle — mark phase followed by sweep phase. 
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This technique may be called the all-or-nothing approach. Its advantage is t
causes no overhead as long as there is enough memory; the program is only penal
memory management when it has exceeded available resources. 

But all-or-nothing garbage collection has a serious potential drawback: a com
mark-sweep cycle may take a long time — especially in a virtual memory environme
which filling the memory means filling a very large virtual address space, which
garbage collector will then have to traverse entirely, all that time preventing
application from proceeding.

This scheme may be acceptable for batch applications, although with a high ra
virtual to real memory thrashing may cause serious performance degradation if a s
creates many objects and a large proportion of them become unreachable. All-or-n
garbage collection will not work, however, for interactive or real-time systems. Imag
missile interception system which has a 50-millisecond window to react when an e
missile is fired. Assume everything works fine until the software runs out of memor
which stage it defers to the garbage collector; but — bad luck — this is precisely whe
missile comes in! Even in less life-threatening applications, such as a interactive sys
it is not pleasant to use a tool (for example a text editor) which, once in a while,
unpredictably hung for ten minutes or so because the underlying implementatio
entered a garbage collection cycle. 

In such cases the problem is not necessarily the global effect of garbage coll
on efficiency: a certain overall performance penalty may be perfectly tolerable to 
and developers as the price to pay for the gain in reliability and convenience afford
automatic garbage collection. But such a penalty should be evenly spread; wha
usually not be acceptable is the unpredictable bursts of memory management a
caused by the all-or-nothing approach. Better a tortoise than a hare which, once in a
and without warning, takes a half-hour nap. Reference counting, were it not for its
flaw, would satisfy this observation that uniformly slow is often preferable to usually
but occasionally unpredictable. 

Of course the penalty, besides being uniform, must also be small. If the applic
without a garbage collector is a indeed a hare, no one will really settle for a tortoise;
we can accept is a somewhat less agile hare. A good garbage collector will ha
overhead of 5% to 15%. Although some managers, developers and users will screa
this is unacceptable, I know very few applications that cannot tolerate this kind of 
especially in light of the obvious observation that in the absence of garbage collectio
software will have to perform manual reclamation, which does not come for free e
(even if we concentrate on execution overhead only and disregard the overhe
development time and the reliability problems). Unfortunately most of the 
benchmarks that exist in this area end up, in their effort to measure the measu
comparing the incomparable: a system executed with no garbage collection and no m
reclamation, versus one running with garbage collection. Even under this unfavo
light, however, a performance cost in the quoted range makes garbage collection s

This discussion has identified the two complementary efficiency issues for gar
collectors: overall performance and incrementality. 
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Advanced approaches to garbage collection 

A good collector should provide good performance both overall and incremen
making itself suitable for interactive or even real-time applications. 

A first requirement is to give developers some control over the activation and
activation of collector cycles. In particular, the environment’s libraries should offer proced

collection_off

collection_on

collect_now

such that a call to the first specifies that no collector cycle should start until further n
a call to the second resumes normal operation; and a call to the third immediately tr
a complete cycle. Then if a system contains a time-critical section, which must n
subject to any unpredictable delay, the developer will put a call to collection_off at the
beginning of the section and a call to collection_on at the end; and at any point where th
application is known to be idle (for example during certain input or output operations
developer may, if useful, include a call to collect_now. 

A more advanced technique, used in some form by most modern garbage colle
is known as generation scavenging. It follows from the experimental observation th
“old objects will stay around”: the more garbage collection cycles an object has surv
the better chance it has of surviving many more cycles or even remaining fo
reachable. This property is precious since the sweep part of garbage collection te
consume a considerable amount of time, so that the collector will greatly benefit from
information allowing it to examine certain categories less frequently than others. 

Generation scavenging will detect objects that have existed for more than a c
number of cycles. This is called tenuring (by analogy with the mechanisms that prote
instances of the real-life class PROFESSOR once they have survived a few cycles 
university politics). Tenured objects will be set aside and handled by a separate coll
process, which will run less frequently than the collector of “young” objects. 

Generation scavenging helps incrementality, but does not fully achieve it, since
remains a need to perform full collections occasionally. 

Practical implementations of generation scavenging use many variations on
basic idea. In particular, it is common to divide objects not just into young and old
into several generations, with different policies for collecting the various generat
These ideas have a considerable effect on the overall performance of garbage coll

Parallel garbage collection algorithms 

To obtain a full solution to the incrementality problem, an attractive idea (if the under
operating system supports multiprocessing) is to assign garbage collection to a se
thread of control. This is known as on-the-fly, or parallel, garbage collection. 

With on-the-fly garbage collection, execution of an O-O system involves 
separate threads (often corresponding to two separate processes of the operating s
the application and the collector. Only the application can allocate memory, thr
creation instructions; only the collector can free memory, through reclaim operations. 
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The collector will run continuously, repeatedly executing a mark phase followe
a sweep phase to detect and pick up the application’s unreachable objects. Think
endless New York ticker-tape parade, forever marching through the streets of the cit
application is the parade, generously scattering, wherever it passes, objects of all 
the garbage collector is the cleaning squad which follows at a short distance, gather
that has been left.

The separate threads of control need not be physically distinct processes.
modern operating systems they can be threads; or, to avoid the overhead of sw
between processes or even threads, they may be plain coroutines. Even so, howe
the-fly garbage collection tends in practice to have unsatisfactory overall perform
This is regrettable since the method’s incrementality is indeed (with Dijkstra’s algori
see the reference in the bibliographic notes) quite good. 

In my opinion (the proper word here, since this comment reflects hope, n
scientifically established result) parallel garbage collection remains the solution o
future, but will require cooperation from the hardware. Rather than stealing time from
processor which handles the application, garbage collection should be handled
separate processor, entirely devoted to that task and designed so as to interfere as
possible with the processor or processors devoted to the application. 

This idea requires changes to the dominant hardware architectures and so 
likely to be widely implemented soon. But in an answer to the sometimes asked qu

“What kind of hardware support would be most useful for object technology?”

the presence of a separate garbage collection processor should, I believe, be the fi
on the wish list. 

9.9  PRACTICAL ISSUES OF GARBAGE COLLECTION 

An environment providing automatic memory management through garbage colle
must not only use excellent garbage collection algorithms but also provide a few fac
which, although not central to a theory of memory management, are essential f
practical use of the environment. 

Class MEMORY 

Several of the required facilities can be provided in the form of features callabl
application software. As always in such cases (facilities to be used by developer
need to tune or adapt a basic mechanism of the method and language) the most con
approach is to group these features in a class, which we will call MEMORY. Then any class
that needs these facilities will inherit from MEMORY. 

A similar approach will be used for adapting the exception handling mechanism (class
EXCEPTIONS) and the concurrency mechanism (class CONCURRENCY). 

Among the features of class MEMORY will be the procedures discussed earlier f
stopping the collection mechanism, resuming it, and triggering a full collect
collection_off, collection_on, collect_now.

-
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A disposal mechanism 

Another important procedure of MEMORY is dispose (not to be confused with its Pasca
namesake, which frees memory). It addresses an important practical problem som
called finalization. If the garbage collector reclaims an object that is associated with s
external resources, you may wish to specify a certain action — such as freein
resources — to be executed at reclamation time. A typical example is a class FILE, whose
instances will represent files of the operating system. It is desirable to have a w
specifying that whenever the garbage collector reclaims an instance of FILE that has
become unreachable it will call a certain procedure to close the associated physical fi

More generally let us assume a procedure dispose which executes the operation
needed at the time an instance of the class is reclaimed. With a manual appro
memory management no particular problem would arise: it would suffice to include a
to dispose just before every call to reclaim. The “destructors” of C++ take care of both
operations: dispose and reclaim. With a garbage collector, however, the software does
directly control (for all the good reasons that we have explored) the moment at whi
object is reclaimed; so it is impossible to include explicit calls to dispose at the right places. 

The answer relies on the power of object technology and in particular on inheri
and redefinition. (These techniques are studied in later chapters but their applicatio
is simple enough to be understandable without a detailed grasp of their principles.)
MEMORY has a procedure dispose, whose body performs no action at all: 

dispose is
-- Action to be taken in case of reclamation by garbage collector;
-- nothing by default.
-- Called automatically by garbage collector.

do
end

Then any class which requires special dispose actions whenever the col
reclaims one of its instances will redefine procedure dispose to perform these actions. Fo
example, assuming that class FILE has a boolean attribute opened and a procedure close,
both with the obvious semantics, it will redefine dispose appropriately: 

dispose is
-- Action to be taken in case of reclamation by garbage collector:
-- close the associated file if open.
-- Called automatically by garbage collector.

do
if  opened then

close
end

end

As the comments indicate, the rule is that any object reclamation will cause a c
dispose — either the original empty procedure for the (by far commonest) case in w
no redefinition has occurred in the generating class, or the redefined version. 
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Garbage collection and external calls 

A well-engineered object-oriented environment with garbage collection must ad
another practical problem. O-O software will in many cases have to interact with soft
written in other languages. In a later chapter we will see how best to ensure this inter
with the non-O-O world. 

If your software indeed uses calls to routines written in other languages (c
external routines in the rest of this discussion), you may have to pass to these rou
references to objects. This causes a potential danger with respect to memory manag
Assume that an external routine is of the following form (transposed to the approp
foreign language): 

r (x: SOME_TYPE) is

do

…
a := x

…
end

where a is an entity which may retain its value between successive activations of r; for
example a could be a global or “static” variable in traditional languages, or a class attri
in our O-O notation. Consider a call r (y), where y is attached to some object O1. Then
is possible that some time after the call O1 becomes unreachable from the object-o
side while there is still a reference to it (from a) in the external software. The garbag
collector could — and eventually should — reclaim O1, but this is wrong.

For such cases we must provide procedures, callable from the external sof
which will protect a retained object from the collector, and terminate such protec
These procedures may be called under the form 

adopt (a)

wean (a)

and should be part of any interface library supporting the communication between o
oriented and external software. The C interface library of the mechanism described
next section supports such a facility. “Adopting” an object takes it off the reach o
reclamation mechanism; “weaning” it makes it reclaimable again. 

Passing objects to non-object-oriented languages and retaining references to
from the foreign side of the border is of course risky business. But it is not always po
to avoid it. For example an object-oriented project may need a special interface be
the O-O language and an existing database management system; in such cases y
need to let the other side retain information about your objects. Such low-
manipulations should never appear in normal application software, but shoul
encapsulated in utility classes, written with particular care so as to hide the details
the rest of the software and protect it against possible trouble.
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9.10  AN ENVIRONMENT WITH MEMORY 
MANAGEMENT 

As a conclusion let us take a peek at how one particular environment — the one pre
more broadly in the last chapter of this book — handles memory management. Th
give an example of practical, state-of-the-art approaches to the problem.

Basics

Memory management is automatic. The environment includes a garbage collector, 
is always on by default. It is sufficiently unobtrusive to have caused users to call an
“what should I do to turn on the garbage collector?”, only to be told that it is already on
In normal usage, including interactive applications, you will not notice it. You can tu
off through collection_off as discussed earlier.

Unlike the collectors found in many other environments, the garbage collector
not just free memory for reuse by further object allocations in the same system exec
but actually returns it to the operating system for use by other applications (at lea
operating systems that do provide a mechanism to free memory for good). We hav
how essential that property was, especially for systems that must run permanently o
long time.

Additional engineering goals presided over the garbage collector design: effi
memory collection; small memory overhead; incremental behavior (avoiding blockin
application for any significant period of time).

Challenges

The garbage collector must face the following issues, following from the prac
constraints on object allocation in a modern, O-O environment:

• O-O routines can call external functions, in particular C functions, which have 
own needs for memory allocation. We must therefore consider that there ar
distinct kinds of memory: object memory and external memory.

• All objects are not created equal. Arrays and strings have a variable size; instan
other classes have a fixed size.

• Finally, as noted, it is not enough to free memory for reuse by the O-O applica
we must also be able to give it back for good to the operating system.

For these reasons, memory allocation cannot rely on the standard malloc system call
which, among other limitations, does not return memory to the operating system. In
the environment asks the operating system’s kernel for memory chunks and allo
objects in these chunks using its own mechanisms.
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Object movement

The need to return memory to the operating system is the source of one of the most d
parts of the mechanism: garbage collection can move objects around.

This property has by far caused the most headaches in the implementation 
collector. But it has also made the mechanism robust and practical; without it there w
be no way to use garbage collection for long-running, mission-critical systems.

If you stay within the O-O world you need not think about object movement, ex
as a guarantee that your system will not expand forever, even if it keeps creating
objects (provided the total size of reachable objects is bounded). But you will ne
consider this property if you also use external routines, written for example in C, and
objects to them. If the C side stores somewhere, in the form of a plain address
pointer), a reference to an object from the O-O world, you may be in trouble if it trie
use it without protection ten minutes later: by then the object may have moved elsew
and the address may contain something completely different, or nothing at all. A s
library mechanism solves the issue: the C function should “access” the object and a
it through the appropriate macro, which will find the object wherever it is.

Garbage collection mechanism

Here is an outline of the algorithm used by the garbage collector.

Rather than a single algorithm the solution actually relies on a combination of 
algorithms, used together (for some of them) or independently. Each activation o
collector selects an algorithm or algorithm combination based on such criteria a
urgency of the memory need. The basic algorithms include generation scavenging,
and-sweep and memory compaction, plus a few others less relevant to this discuss

The idea behind generation scavenging was described earlier in this chapte
concentrate on young objects, since they have the greatest likelihood of yie
collectable garbage. A main advantage of this algorithm is that it need not explore a
objects, but only those which can be reached from local entities, and from old ob
containing references to young objects. Each time the algorithm processes a gene
all the surviving objects become older; when they reach a given age, they are tenu
the next generation. The algorithm looks for the right tradeoff between low tenure ag
many old objects) and high tenure age (too frequent scavengings).

The algorithm still needs, once in a while, to perform a full mark-and-sweep to find
any unreachable objects that generation scavenging may have missed. There are tw
mark recursively explores and marks the reachable objects; sweep traverses applicable
memory and collects the marked objects.

Memory compaction compacts memory, returning unused parts to the opera
system, at the lowest possible cost. The algorithm divides the memory into n blocks and
takes n–1 cycles to compact them all.
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Bulimia and anorexia

Since operating system calls (allocate memory, return memory) are expensive
memory compaction algorithm is conservative: rather than returning all the blocks
have been freed, it will keep a few of them around to build a small reserve of ava
memory. This way if the application starts shortly afterwards to allocate objects aga
memory will be readily available, without any need to call the operating system.

Without this technique, the fairly frequent case of a bulimic-anorexic applicatio
an application that regularly goes into a mad allocation binge, followed by a purge p
during which it gets rid of many objects — would cause the memory manage
mechanism constantly to get memory from the operating system, return it, then ask

Garbage collector operation

The garbage collector gets into action when one of the two operations that re
memory, a creation instruction (!! x…) or a clone, triggers it. The trigger criterion is n
just that the application has run out of memory: preferring prevention to cure
mechanism may activate itself when it detects various conditions in advance of a
memory exhaustion.

If the primary allocation area is full, the collector will execute a scavenging cycl
most cases this will free enough memory for the current needs. If not, the next ste
go through a full mark-and-sweep collection cycle, generally followed by mem
compaction. Only if all this fails to provide the required space will the application, 
last resort, ask the operating system for more memory, if it is still not possible to all
a new object.

The main algorithms are incremental, and their time consumption is a few perc
the application’s execution time. Internal statistics keep track of the memory allo
and help determine the proper algorithm to call.

You can tune the collector’s behavior by setting various parameters; in partic
selecting the speed option will cause the algorithms not to try to collect all availab
memory (through the compaction mechanism described above) but instead to c
operating system’s allocation facilities earlier. This optimizes speed over compac
The various parameter-setting mechanisms are obtained, like collection_off, collect_now
and dispose, from class MEMORY.

The memory management mechanism resulting from the combination of all 
techniques has made it possible to develop and run successfully the kind of 
ambitious applications which need to create many objects, create them fast, and 
remaining careful about overall usage of space) let someone else worry abo
mundane consequences.
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9.11  KEY CONCEPTS INTRODUCED IN THIS CHAPTER 

• There are three basic modes of object creation: static, stack-based and free. T
is characteristic of object-oriented languages but also occurs elsewhere, for ex
in Lisp, Pascal (pointers and new), C (malloc), Ada (access types).

• In programs that create many objects, objects may become unreachable;
memory space is lost, leading to memory waste and, in extreme cases, failure
lack of space even though some space is not used. 

• The issue may be safely ignored in the case of programs that create few unrea
objects, or few objects altogether as compared to the available memory size. 

• In all other cases (highly dynamic data structures, limited memory resources)
solution will involve two components: detection of dead objects, and reclamation of
the associated space. 

• Either task may be handled by the language implementation, the compo
manufacturing level or application programs. 

• Leaving application programs in charge of detection is cumbersome and dang
So is a memory reclamation operation in a high-level language. 

• In some contexts, it is possible to provide simple memory management a
component level. Detection is handled by the components; reclamation, by eith
components or the language implementation. 

• Reference counting is inefficient, and does not work for cyclic structures. 

• Garbage collection is the most general technique. It is possible to keep its pot
overhead on normal system execution acceptably low and, through suffici
incremental algorithms, not visible in normal interactive applications. 

• Generation scavenging improves the efficiency of garbage collection algorithms 
using the observation that many objects die (become unreachable) young.

• A good memory management mechanism should return unused space not just
current application but to the operating system.

• A practical memory management scheme was described, offering a combinat
algorithms and ways for application developers to tune the mechanism, inclu
turning garbage collection off and on in sensitive sections.

9.12  BIBLIOGRAPHICAL NOTES 

A broader perspective on the different models of object creation, discussed a
beginning of this chapter, is provided by the “contour model” of programming language
execution, which may be found in [Johnston 1971]. 

The information about the London Ambulance Service fiasco comes from
extensive set of messages posted on the Risks forum (comp.risks Usenet newsgroup)
moderated by Peter G. Neumann, in April and October of 1992. I relied particular
several messages by Brian Randell — quoting journal articles (The Independent, 29 and
30 October 1992) and BBC bulletins — as well as Trevor Jenkins, Jean Ramaekers
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Jones, Tony Lezard, and Paul Johnson (to whom I am grateful for bringing this exa
to my attention). The primary comp.risks issue on this topic is 14.48; see also 13.38, 13.
13.43, 14.02. The newsgroup archives are accessible through the World-Wide Web at
http://catless.ncl.ac.uk/Risks.

A parallel garbage collection algorithm was introduced in [Dijkstra 1978].
[Cohen 1984] discusses the performance issues of such algorithms. Gener
scavenging was introduced in [Ungar 1984]. 

The garbage collection mechanism of ISE’s environment sketched at the end o
chapter was built by Raphaël Manfredi and refined by Fabrice Franceschi (w
technical report served as the basis for the presentation here) and Xavier Le Vourc

EXERCISES

E9.1  Patterns of object creation

In the discussion of automatic memory management it was pointed out that the “in
free list” approach (in which the space of reclaimed objects is not physically return
the operating system, but kept in a list for use by future creation instructions) may 
the memory allocated to an application to grow forever even though the actual me
requirement is bounded, whereas the “actual reclamation” approach (in which a re
operation actually returns memory) would result in bounded memory usage. Dev
pattern of object creation and reclamation which exhibits this problem. 

You may describe such a pattern as a sequence o1 o2 o3 … where each oi is either 1,

indicating the allocation of one memory unit, or –n (for some integer n), indicating the
reclamation of n memory units. 

E9.2  What level of reclamation?

The component level policy, if implemented in a language like Pascal or C whe
operating system dispose or free facility is available, could use this facility directly rathe
than managing its own free list for every type of data structure. Discuss the pros an
of both approaches. 

E9.3  Sharing the stack of available elements

(This exercise assumes familiarity with the results of chapter 18.) Rewrite the feature
available, giving the stack of available elements in the component-level approach, s
the stack will be shared by all linked lists of a certain type. (Hint : use a once function.)

E9.4  Sharing more

(This exercise assumes that you have solved the previous one, and that you have 
to chapter 18.) Is it possible to make the available stack shared by linked lists of all types
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