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Design by Contract: 
building reliable software
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Equipped with the basic concepts of class, object and genericity, you can by now
software modules that implement possibly parameterized types of data struc
Congratulations. This is a significant step in the quest for better software architectu

But the techniques seen so far are not sufficient to implement the comprehe
view of quality introduced at the beginning of this book. The quality factors on which
have concentrated — reusability, extendibility, compatibility — must not be attaine
the expense of reliability (correctness and robustness). Although, as recalled next, th
reliability concern was visible in many aspects of the discussion, we need more.

The need to pay more attention to the semantic properties of our classes will be
particularly clear if you remember how classes were defined: as implementations of
abstract data types. The classes seen so far consist of attributes and routines, which inde
represent the functions of an ADT specification. But an ADT is more than just a list of
available operations: remember the role played by the semantic properties, as expresse
by the axioms and preconditions. They are essential to capture the true nature of the type’
instances. In studying classes, we have — temporarily — lost sight of this semantic
aspect of the ADT concept. We will need to bring it back into the method if we want our
software to be not just flexible and reusable, but also correct and robust.

Assertions and the associated concepts, explained in this chapter, provide some
answer. Although not foolproof, the mechanisms presented below provide the progra
with essential tools for expressing and validating correctness arguments. The key c
will be Design by Contract: viewing the relationship between a class and its clients 
formal agreement, expressing each party’s rights and obligations. Only through s
precise definition of every module’s claims and responsibilities can we hope to at
significant degree of trust in large software systems. 

In reviewing these concepts, we shall also encounter a key problem of sof
engineering: how to deal with run-time errors — with contract violations. This leads t
subject of exception handling, covered in the next chapter. The distribution of ro
between the two chapters roughly reflects the distinction between the two compone
reliability; as you will recall, correctness was defined as the software’s ability to per
according to its specification, and robustness as its ability to react to cases not inclu
the specification. Assertions (this chapter) generally cover correctness, and exce
(next chapter) generally cover robustness.
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Some important extensions to the basic ideas of Design by Contract will have to
until the presentation of inheritance, polymorphism and dynamic binding, enabling 
go from contracts to subcontracting. 

11.1  BASIC RELIABILITY MECHANISMS

The preceding chapters already introduced a set of techniques that directly address t
of producing reliable software. Let us review them briefly; it would be useless to con
more advanced concepts until we have put in place all the basic reliability mechanis

First, the defining property of object technology is an almost obsessive concern
the structure of software systems. By defining simple, modular, extendible architectu
we make it easier to ensure reliability than with contorted structures as often resul
earlier methods. In particular the effort to limit inter-module communication to the s
minimum was central to the discussion of modularity that got us started; it resulted 
prohibition of such common reliability risks as global variables, and in the definitio
restricted communication mechanisms, the client and inheritance relations. The g
observation is that the single biggest enemy of reliability (and perhaps of software q
in general) is complexity. Keeping our structures as simple as possible is not eno
ensure reliability, but it is a necessary condition. So the discussion of the previous ch
provides the right starting point for the systematic effort of the present one.

Also necessary if not sufficient is the constant emphasis on making our soft
elegant and readable. Software texts are not just written, they are read and rewri
many times; clarity and simplicity of notation, such as have been attempted in
language constructs introduced so far, are a required basis for any more sophis
approach to reliability.

Another indispensable weapon is automatic memory management, specif
garbage collection. The chapter on memory management explained in detail why, for
system that creates and manipulates dynamic data structures, it would be dangerou
on manual reclamation (or no reclamation). Garbage collection is not a luxury; it
crucial reliability-enhancing component of any O-O environment.

The same can be said of another technique presented (in connection with gene
in the last chapter: static typing. Without statically enforced type rules, we would be 
mercy of run-time typing errors.

All these techniques provide the necessary basis, from which we can now t
closer look at what it will take for a software system to be correct and robust.
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11.2  ABOUT SOFTWARE CORRECTNESS

We should first ask ourselves what it means for a software element to be correct. Th
observations and deductions that will help answer this question will seem rather triv
first; but let us not forget the comment (made once by a very famous scientist)
scientific reasoning is nothing but the result of starting from ordinary observations
continuing with simple deductions — only very patiently and stubbornly.

Assume someone comes to you with a 300,000-line C program and asks you “
program correct?”. There is not much you can answer. (If you are a consultant, thoug
answering “no” and charging a high fee. You might just be right.)

To consider the question meaningful, you would need to get not only the pro
but also a precise description of what it is supposed to do — a specification.

The same comment is applicable, of course, regardless of the size of a program
instruction x := y + 1 is neither correct nor incorrect; these notions only make sense 
respect to a statement of what one expects from the instruction — what effect it is int
to have on the state of the program variables. The instruction is correct for the specifi

“Make sure that x and y have different values”

but it is incorrect vis-à-vis the specification

“Make sure that x has a negative value”

(since, assuming that the entities involved are integers, x may end up being non-negativ
after the assignment, depending on the value of y).

These examples illustrate the property that must serve as the starting point o
discussion of correctness:

A software system or software element is neither correct nor incorrect per se
correct or incorrect with respect to a certain specification. Strictly speaking, we shou
discuss whether software elements are correct, but whether they are consistent with their
specifications. This discussion will continue to use the well-accepted term “correctn
but we should always remember that the question of correctness does not apply to so
elements; it applies to pairs made of a software element and a specification.

Software Correctness property

Correctness is a relative notion.
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Mills 1975].
In this chapter we will learn how to express such specifications through assertions,
to help us assess the correctness of our software. But we will go further. It turns ou
only someone who has not practiced the approach will think of this as a paradox) th
writing the specification is a precious first step towards ensuring that the software actually
meets it. So we will derive tremendous benefits from writing the assertions at the 
time as we write the software — or indeed before we write the software. Among
consequences we will find the following:

• Producing software that is correct from the start because it is designed to be c
The title of an article written by Harlan D. Mills (one of the originators 
“Structured Programming”) in the nineteen-seventies provides the right mood: How
to write correct programs and know it. To “know it” means to equip the software, a
the time you write it, with the arguments showing its correctness.

• Getting a much better understanding of the problem and its eventual solutions

• Facilitating the task of software documentation. As we will see later in this cha
assertions will play a central part in the object-oriented approach to document

• Providing a basis for systematic testing and debugging.

The rest of this chapter explores these applications.

A word of warning: C, C++ and some other languages (following the lead of A
W) have an “assert” instruction that tests whether a certain condition holds at a c
stage of the software’s execution, and stops execution if it does not. Although relev
the present discussion, this concept represents only a small part of the use of asser
the object-oriented method. So if like many other software developers you are fa
with such instructions but have not been exposed to the more general picture, alm
the concepts of this chapter will be new.

11.3  EXPRESSING A SPECIFICATION

We can turn the preceding informal observations into a simple mathematical not
borrowed from the theory of formal program validation, and precious for reasoning a
the correctness of software elements.

Correctness formulae

Let A be some operation (for example an instruction or a routine body). A correctness
formula  is an expression of the form

denoting the following property, which may or may not hold:

{P}  A { Q}

[
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Correctness formulae (also called Hoare triples) are a mathematical notation, not 
programming construct; they are not part of our software language, but only design
guide us through this discussion by helping to express properties of software eleme

In { P}  A { Q}  we have seen that A denotes an operation; P and Q are properties of
the various entities involved, also called assertions (the word will be defined m
precisely later). Of the two assertions, P is called the precondition and Q the postcondition.
Here is a trivial correctness formula (which, assuming that x is an integer entity, holds):

The use of correctness formulae is a direct application of the Software Correc
Property. What the Property stated informally — that correctness is only meani
relative to a particular specification — correctness formulae turn into a form th
directly usable for working on the software: from now on the discourse about soft
correctness will not be about individual software elements A, but about triples containing
a software element A, a precondition P and a postcondition Q. The sole aim of the game
is to establish that the resulting { P}  A { Q}  correctness formulae hold.

The number 13 appearing in the postcondition is not a typo! Assuming a correct
implementation of integer arithmetic, the above formula holds: if x >= 9 is true before the
instruction, x >= 13 will be true after the instruction. Of course we can assert more
interesting things: with the given precondition, the most interesting postcondition is the
strongest possible one, here x >= 14; with the given postcondition, the most interesting
precondition is the weakest possible one, here x >= 8. From a formula that holds, you can
always get another one by strengthening the precondition or weakening the postcondition
We will now examine more carefully these notions of “stronger” and “weaker”.

Weak and strong conditions

One way to look at a specification of the form { P}  A { Q}  is to view it as a job description
for A — an ad in the paper, which states “We are looking for someone whose work
be to start from initial situations as characterized by P, and deliver results as defined by Q”.

Here is a small quiz to help you sharpen your understanding of the concepts.

Assume one of your friends is looking for a job and comes across several suc
all with similar salary and benefits, but differing by their Ps and Qs. (Tough times have
encouraged the companies that publish the ads to resort to this notation, which the
for its mathematical compactness since the newspaper charges by the word.
everyone else, your friend is lazy, that is to say, wants to have the easiest possible j
is asking for your advice, always a dangerous situation. What should you recomme
P: choose a job with a weak precondition, or a strong one? Same question for th
postcondition Q. (The answers appear right after this, but do take the time to decid
issue for yourself before turning the page.) 

Meaning of a correctness formula { P}  A { Q}

“ Any execution of A, starting in a state where P holds, will terminate in a 
state where Q holds.”

{ x >= 9}  x := x + 5 {x >= 13}



DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE§11.3336

 the

ases
eal
e

t it is.

ver

rve
tever
,

ad

rdless

ason
ng of
ution

. Any
here
The precondition first. From the viewpoint of the prospective employee —
person who has to perform what has been called A — the precondition P defines the
conditions under which the required job will start or, to put it differently, the set of c
that have to be handled. So a strong P is good news: it means that you only have to d
with a limited set of situations. The stronger the P, the easier for the employee. In fact, th
perfect sinecure is the job defined by

The postcondition has been left unspecified because it does not matter wha
Indeed if you ever see such an ad, do not even bother reading the postcondition; take the
job right away. The precondition False is the strongest possible assertion, since it is ne
satisfied in any state. Any request to execute A will be incorrect, and the fault lies not with
the agent responsible for A but with the requester — the client — since it did not obse
the required precondition, for the good reason that it is impossible to observe it. Wha
A does or does not do may be useless, but is always correct — in the sense, defined earlier
of being consistent with the specification.

The above job specification is probably what a famous police chief of a Southern US city
had in mind, a long time ago, when, asked by an interviewer why he had chosen his
career, he replied: “Obvious — it is the only job where the customer is always wrong”.

For the postcondition Q, the situation is reversed. A strong postcondition is b
news: it indicates that you have to deliver more results. The weaker the Q, the better for
the employee. In fact, the second best sinecure in the world is the job defined, rega
of the precondition, by

The postcondition True is the weakest possible assertion, satisfied by all states.

The notions of “stronger” and “weaker” are formally defined from logic: P1 is said to be
stronger than P2, and P2 weaker than P1, if P1 implies P2 and they are not equal. As every
proposition implies True, and False implies every proposition, it is indeed legitimate to
speak of True as the weakest and False as the strongest of all possible assertions.

Why, by the way, is Sinecure 2 only the “second best” job in the world? The re
has to do with a fine point that you may have noticed in the definition of the meani
{ P} A { Q}  on the preceding page: termination. The definition stated that the exec
must terminate in a state satisfying Q whenever it is started in a state satisfying P. With
Sinecure 1 there are no states satisfying P, so it does not matter what A does, even if it is
a program text whose execution would go into an infinite loop or crash the computer
A will be “correct” with respect to the given specification. With Sinecure 2, however, t

Sinecure 1
{False}  A { …}

Sinecure 2
{ …}  A { True}
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must be a final state; that state does not need to satisfy any specific properties, but 
exist. From the viewpoint of whoever has to perform A: you need to do nothing, but you
must do it in finite time.

Readers familiar with theoretical computing science or program proving techniques will
have noted that the { P}  A {Q}  notation as used here denotes total correctness, which
includes termination as well as conformance to specification. (The property that a
program will satisfy its specification if it terminates is known as partial correctness.) See
[M 1990] for a detailed presentation of these concepts.

The discussion of whether a stronger or weaker assertion is “bad news” or “good n
has taken the viewpoint of the prospective employee. If, changing sides, we start look
the situation as if we were the employer, everything is reversed: a weaker preconditio
be good news, as it means a job that handles a broader set of input cases; so will be a 
postcondition, as it means more significant results. This reversal of criteria is typic
discussions of software correctness, and will reappear as the central notion of this ch
contracts between client and supplier modules, in which a benefit for one is an obliga
for the other. To produce effective and reliable software is to draw up the con
representing the best possible compromise in all applicable client-supplier communications.

11.4  INTRODUCING ASSERTIONS INTO SOFTWARE TEXTS

Once we have defined the correctness of a software element as the consistency
implementation with its specification, we should take steps to include the specifica
together with the implementation, in the software itself. For most of the softw
community this is still a novel idea: we are accustomed to programs as definin
operations that we command our hardware-software machines to execute for us (thehow);
it is less common to treat the description of the software’s purposes (the what) as being
part of the software itself.

To express the specification, we will rely on assertions. An assertion is an expre
involving some entities of the software, and stating a property that these entities
satisfy at certain stages of software execution. A typical assertion might express 
certain integer has a positive value or that a certain reference is not void. 

Mathematically, the closest notion is that of predicate, although the asse
language that we shall use has only part of the power of full predicate calculus. 

Syntactically, the assertions of our notation will simply be boolean expressions,
a few extensions. One of these extensions, the old notation, is introduced later in this
chapter. Another is the use of the semicolon, as in 

n > 0 ; x /= Void

The meaning of the semicolon is equivalent to that of an and. As between
declarations and instructions, the semicolon is actually optional, and we will omit it w
assertion clauses appear on separate lines; just consider that there is an implicand
between successive assertion lines. These conventions facilitate identification o
individual components of an assertion. It is indeed possible, and usually desirable, to
these components individually, as in 
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Positive: n > 0
Not_void: x /= Void

If present, the labels (such as Positive and Not_void in this example) will play a role
in the run-time effect of assertions — to be discussed later in this chapter — but f
moment they are mainly there for clarity and documentation.

The next few sections will review this principal application of assertions: a
conceptual tool enabling software developers to construct correct systems a
document why they are correct. 

11.5  PRECONDITIONS AND POSTCONDITIONS 

The first use of assertions is the semantic specification of routines. A routine is not
piece of code; as the implementation of some function from an abstract data
specification, it should perform a useful task. It is necessary to express this task pre
both as an aid in designing it (you cannot hope to ensure that a routine is correct 
you have specified what it is supposed to do) and, later, as an aid to understanding i

You may specify the task performed by a routine by two assertions associated
the routine: a precondition and a postcondition. The precondition states the properties th
must hold whenever the routine is called; the postcondition states the properties th
routine guarantees when it returns.

A stack class 

An example will enable us to become familiar with the practical use of assertions. I
previous chapter, we saw the outline of a generic stack class, under the form

class STACK [G] feature
… Declaration of the features:
 count, empty, full, put, remove, item

end

An implementation will appear below. Before considering implementation iss
however, it is important to note that the routines are characterized by strong sem
properties, independent of any specific representation. For example: 

• Routines remove and item are only applicable if the number of elements is not ze

• put increases the number of elements by one; remove decreases it by one. 

Such properties are part of the abstract data type specification, and even peop
do not use any approach remotely as formal as ADTs understand them implicitly. B
common approaches to software construction software texts reveal no trace of 
Through routine preconditions and postconditions you can turn them into ex
elements of the software.

We will express preconditions and postconditions as clauses of routine declar
introduced by the keywords require  and ensure respectively. For the stack class, leavin
the routine implementations blank for the time being, this gives: 
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indexing
description: "Stacks: Dispenser structures with a Last-In, First-Out %

%access policy"

class STACK1 [G] feature -- Access

count: INTEGER
-- Number of stack elements

item: G is
-- Top element

require
not empty

do
…

end
feature -- Status report

empty: BOOLEAN is
-- Is stack empty?

do … end

full: BOOLEAN is
-- Is stack representation full?

do
…

end

feature -- Element change

put (x: G) is
-- Add x on top.

require
not full

do
…

ensure
not empty
item = x
count = old count + 1

end

remove is
-- Remove top element.

require
not empty

do
…

ensure
not full
count = old count – 1

end

end
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Both the require and the ensure clauses are optional; when present, they appea
the places shown. The require appears before the local clause, if present. The nex
sections explain in more detail the meaning of preconditions and postconditions. 

Note the division into several feature clauses, useful to group the features into categories
indicated by the clauses’ header comments. Access, Status report and Element change are
some of a dozen or so standard categories used throughout the libraries and, whenev
applicable, subsequent examples in this book.

Preconditions 

A precondition expresses the constraints under which a routine will function prop
Here:

• put may not be called if the stack representation is full. 

• remove and item may not be applied to an empty stack. 

A precondition applies to all calls of the routine, both from within the class and f
clients. A correct system will never execute a call in a state that does not satis
precondition of the called routine. 

Postconditions 

A postcondition expresses properties of the state resulting from a routine’s execution.

• After a put, the stack may not be empty, its top is the element just pushed, an
number of elements has been increased by one. 

• After a remove, the stack may not be full, and its number of elements has b
decreased by one. 

The presence of a postcondition clause in a routine expresses a guarantee on 
of the routine’s implementor that the routine will yield a state satisfying certain prope
assuming it has been called with the precondition satisfied. 

A special notation, old, is available in postconditions; put and remove use it to
express the changes to count. The notation old e, where e is an expression (in mos
practical cases an attribute), denotes the value that e had on routine entry. Any occurrenc
of e not preceded by old in the postcondition denotes the value of the expression on 
The postcondition of put includes the clause

count = old count + 1

to state that put, when applied to any object, must increase by one the value of the count
field of that object. 

A pedagogical note

If you are like most software professionals who get exposed to these ideas for th
time, you may be itching to know what effect, if any, the assertions have on the exec
of the software, and in particular what happens if one of them gets violated at run tim
if full is true when someone calls put, or empty is true when put terminates one of its
executions. It is too early to give the full answer but as a preview we can use the law
favorite: it depends.

M
e
c
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assertions at run 
time”, page 393.
More precisely, it depends on what you want. You may decide to treat asse
purely as comments, with no effect on the software’s execution; then a run-time ass
violation will remain undetected. But it is also possible to use assertions to check
everything goes according to plan; then during execution the environment 
automatically monitor that all assertions hold when they should, and if one does not 
trigger an exception, usually terminating execution and printing a message indic
clearly what happened. (It is also possible to include an exception handling clause th
try to recover from the exception and continue execution; exception handling is disc
in detail in the next chapter.) To specify the policy that you want — no assertion chec
or assertion monitoring at one of various possible levels — you will use a compil
option, which you can set separately for each class.

The full details of run-time assertion monitoring do appear later in this chapter
it would be a mistake to attach too much importance to this aspect at this stage (one
reasons why you were warned earlier not to think too much about the C notion of ass
if that has been your only exposure to the concept). Other aspects of assertions d
our attention first. We have only started to see assertions as a technique to help us 
software right in the first place; we still have much to discover of their methodological role
as built-in guardians of reliability. The question of what happens if we do fail (in partic
if an assertion, in spite of all our efforts, is not satisfied at some execution insta
important too, but only after we have done all we could to prevent it from arising.

So (although it is never bad to think ahead) you do not need at this point to b
preoccupied by such questions as the possible performance penalty implied by told
construct. Must the run-time system preserve values before we start a routine, jus
able to evaluate an old expression appearing in the postcondition? It depends: in some
circumstances (for example testing and debugging) it will indeed be useful to eva
assertions; in others (for example production runs of fully validated systems) you can
them as mere annotations to the software text.

All that counts for the next few sections is the methodological contribution
assertions, and of the associated method of Design by Contract: as a conceptual 
analysis, design, implementation and documentation, helping us to build softwa
which reliability is built-in , rather than achieved or attempted after the fact thro
debugging; in Mills’s terms, enabling us to build correct programs and know it.

11.6  CONTRACTING FOR SOFTWARE RELIABILITY 

Defining a precondition and a postcondition for a routine is a way to define a contract that
binds the routine and its callers. 

Rights and obligations 

By associating clauses require pre and ensure post with a routine r, the class tells its
clients:

“If you promise to call r  with pre satisfied then I, in return, promise to deliver
a final state in which post is satisfied.”
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In relations between people or companies, a contract is a written documen
serves to clarify the terms of a relationship. It is really surprising that in software, w
precision is so important and ambiguity so risky, this idea has taken so long to im
itself. A precondition-postcondition pair for a routine will describe the contract that
routine (the supplier of a certain service) defines for its callers (the clients of that service).

Perhaps the most distinctive feature of contracts as they occur in human affairs
any good contract entails obligations as well as benefits for both parties — wit
obligation for one usually turning into a benefit for the other. This is true of contr
between classes, too: 

• The precondition binds the client: it defines the conditions under which a call to
routine is legitimate. It is an obligation for the client and a benefit for the supplier.

• The postcondition binds the class: it defines the conditions that must be ensu
the routine on return. It is a benefit for the client and an obligation for the supp

The benefits are, for the client, the guarantee that certain properties will hold
the call; for the supplier, the guarantee that certain assumptions will be satisfied whe
the routine is called. The obligations are, for the client, to satisfy the requirements as
by the precondition; for the supplier, to do the job as stated by the postcondition.

Here is the contract for one of the routines in our example:

Zen and the art of software reliability: guaranteeing more by checking less

Although you may not have noticed it yet, one of the contract rules given goes again
generally accepted wisdom in software engineering; shocking at first to many, it is a
the method’s main contributions to software reliability and deserves emphasis.

The rule reflects the above observation that the precondition is a benefit for the
supplier and is expressed in the bottom-right box of the table: if the client’s part o

put OBLIGATIONS BENEFITS

Client
(Satisfy precondition:)

Only call put (x) on a non-
full stack.

(From postcondition:)

Get stack updated: not 
empty, x on top (item yields 
x, count increased by 1).

Supplier (Satisfy postcondition:)

Update stack representation 
to have x on top (item yields 
x), count increased by 1, 
not empty.

(From precondition:)

Simpler processing thanks 
to the assumption that stack 
is not full.

A
c
r
a
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contract is not fulfilled, that is to say if the call does not satisfy the precondition, the
class is not bound by the postcondition. In this case the routine may do what it ple
return any value; loop indefinitely without returning a value; or even crash the exec
in some wild way. This is the case in which (in reference to the discussion at the beg
of this chapter) “the customer is wrong”.

The first advantage of this convention is that it considerably simplifies 
programming style. Having specified as a precondition the constraints which calls
routine must observe, you, the class developer, may assume when writing the routin
that the constraints are satisfied; you do not need to test for them in the body. So if a 
root function, meant to produce a real number as a result, is of the form

sqrt (x: REAL): REAL is
-- Square root of x

require
x >= 0

do … end

you may write the algorithm for computing the square root without any concern fo
case in which x is negative; this is taken care of by the precondition and becomes
responsibility of your clients. (At first sight this may appear dangerous; but read on.

Actually the method of Design by Contract goes further. Writing the do clause of the
routine under the form

if x < 0 then
“Handle the error, somehow”

else
“Proceed with normal square root computation”

end

is not just unnecessary but unacceptable. This may be expressed as a methodologic

This rule is the reverse of what many software engineering or programm
methodology textbooks advocate, often under the name defensive programming — the
idea that to obtain reliable software you should design every component of a syst
that it protects itself as much as possible. Better check too much, this approach hold
not enough; one is never too careful when dealing with strangers. A redundant 
might not help, but at least it will not hurt.

Design by Contract follows from the opposite observation: redundant checks ca
indeed will hurt. Of course this will at first seem strange; the natural reaction is to t
that an extra check — for example routine sqrt containing the above conditiona
instruction testing for x < 0 even though callers have been instructed to ensure x >= 0 —

Non-Redundancy principle

Under no circumstances shall the body of a routine ever test for the routine’s
precondition.
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may at worst be useless, but cannot possibly cause any damage. Such a co
however, comes from a microscopic understanding of reliability, focused on indivi
software elements such as the sqrt routine. If we restrict our view to the narrow world o
sqrt, then the routine seems more robust with the extra test than without it. But the 
of a system is not restricted to a routine; it contains a multitude of routines in a mul
of classes. To obtain reliable systems we must go from the microscopic view
macroscopic view encompassing the entire architecture.

If we take this global view, simplicity becomes a crucial criterion. As was noted
the beginning of this chapter, complexity is the major enemy of quality. When we b
in this concern, possibly redundant checks do not appear so harmless any 
Extrapolated to the thousands of routines of a medium-size system (or the tens or hu
of thousands of routines of a larger one), the if x < 0 then … of sqrt, innocuous at first
sight, begins to look like a monster of useless complexity. By adding possibly redu
checks, you add more software; more software means more complexity, and in par
more sources of conditions that could go wrong; hence the need for more checks, m
more software; and so on ad infinitum. If we start on this road only one thing is ce
we will never obtain reliability. The more we write, the more we will have to write.

To avoid this infinite chase we should never start it. With Design by Contract yo
invited to identify the consistency conditions that are necessary to the proper function
each client-supplier cooperation (each contract); and to specify, for each one of
conditions, whose responsibility it is to enforce it: the client’s, or the supplier’s. The answ
may vary, and is partly a matter of design style; advice will be given below on how b
choose it. But once you have made the decision, you should stick to it: if a correc
requirement appears in the precondition, indicating that the requirement is part of the c
responsibility, there must not be a corresponding test in the routine; and if it is not 
precondition, then the routine must check for the requirement.

Defensive programming appears in contrast to cover up for the lack of a syste
approach by blindly putting in as many checks as possible, furthering the proble
reliability rather than addressing it seriously.

Redundant checking, it should be noted, is a standard technique in hardware. The
difference is that in a hardware system some object that was found to be in a correct stat
at some point may later have its integrity destroyed because of reasons beyond the contro
of the system itself, such as interference from another system, harmful external event, o
simply wear and tear. For that reason it is normal practice, for example, to have both the
sender and the receiver of an electronic signal check its integrity. 

But no such phenomenon occurs in software: if I can prove or check in some way that a
is non-negative whenever sqrt (a) is called, I do not need to insert a check for x Š≥ 0,
where x is the corresponding formal argument, in the body of sqrt. Nothing will happen
to a between the time it is “sent” by the caller and the time it is “received” (under the name
x) by the routine. Software does not wear out when used for too long; it is not subject to
line loss, to interference or to noise.

Also note that in most cases what is called redundant checking in hardware is not really
redundant: one actually applies different and complementary verifications, such as a
parity check and some other test. Even when the checks are the same they are ofte
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“Modular protec-
tion”, page 45.
applied by different devices, as in the just mentioned case of a sender and receiver tha
both check a signal, or in a redundant computer system where several computers perform
the same computation, with a voting mechanism to resolve discrepancies.

Another drawback of defensive programming is its costs. Redundant checks im
performance penalty — often enough in practice to make developers wary of defe
programming regardless of what the textbooks say. If they do make the effort to in
these checks, removing some of them later to improve performance will be tedious
techniques of this chapter will also leave room for extra checks, but if you choose to e
them you will rely on the development environment to carry them out for you. To rem
them, once the software has been debugged, it suffices to change a compilation 
(details soon). The software itself does not contain any redundant elements.

Aside from performance considerations, however, the principal reason to dis
defensive programming is simply our goal of getting the best possible reliability. F
system of any significant size the individual quality of the various elements involve
not enough; what will count most is the guarantee that for every interaction betwee
elements there is an explicit roster of mutual obligations and benefits — the con
Hence the Zen-style paradox of our conclusion: that to get more reliability the best policy
is often to check less.

Assertions are not an input checking mechanism

It is useful here to emphasize a few properties of the approach which, although impl
the preceding discussion, have been shown by experience to require further explan
The following comments should help address some of the questions that may hav
forming in your mind as you were reading about the basic ideas of Design by Contr

To avoid a common misunderstanding, make sure to note that each of the con
discussed holds between a routine (the supplier) and another routine (its caller): w
concerned about software-to-software communication, not software-to-huma
software-to-outside-world. A precondition will not take care of correcting user input
example in a read_positive_integer routine that expects the interactive user to ente
positive number. Including in the routine a precondition of the form

require

input > 0

would be wishful thinking, not a reliability technique. Here there is no substitute for
usual condition-checking constructs, including the venerable if  … then …; the exception
handling mechanism studied in the next chapter may also be helpful.

Assertions do have a role to play in a solution to this problem of input validatio
line with the criterion of Modular Protection, the method encourages validating any ob
obtained from the outside world — from sensors, from user input, from a network… — as
close to the source of the objects as possible, using “filter” modules if necessary:
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Using filter 
modules
In obtaining information from the outside (communication paths shown in color)
cannot rely on preconditions. But part of the task of the input modules shown in gr
the middle of the figure is to guarantee that no information is passed further to the rig
to the modules responsible for the system’s actual computations — unless it satisf
conditions required for correct processing. In this approach there will be ample u
assertions in the software-to-software communication paths represented by the
dotted lines on the right. The postconditions achieved by the routines of the input mo
will have to match (or exceed, in the sense of “stronger” defined earlier) the preconditions
imposed by the processing routines.

The routines of the filter classes may be compared to security officers in, say, a large
government laboratory. To meet experts from the laboratory and ask them technical
questions, you must submit to screening procedures. But it is not the same person wh
checks your authorization level and answers the questions. The physicists, once you hav
been officially brought into their offices, assume you satisfy the preconditions; and you
will not get much help from the guards on theoretical physics.

Assertions are not control structures

Another common misunderstanding, related to the one just discussed, is to thi
assertions as control structures — as techniques to handle special cases. It should 
by now that this is not their role. If you want to write a routine sqrt that will handle
negative arguments a certain way, and non-negative arguments another way, a require
clause is not what you need. Conditional instructions (if  … then … else …) and related
constructs to deal with various cases (such as Pascal’s case … of … or the inspect
instruction of this book’s notation) are perfectly appropriate for such purposes.

Assertions are something else. They express correctness conditions. If sqrt has its
precondition, a call for which x < 0 is not a special case: it is a bug, plain and simple.

“Bug” is not a very scientific word but is clear enough to anyone in software; we
look for more precise terminology in the next section. For the moment we can pursu
assertion violation rule further by noting a consequence of the contract view:

Assertion Violation rule (1)

A run-time assertion violation is the manifestation of a bug in the software.

External objects Input and validation modules Processing modules
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A precondition violation means that the routine’s caller, although obligated by
contract to satisfy a certain requirement, did not. This is a bug in the client itself
routine is not involved. (“The customer is wrong”.) An outside observer might of co
criticize the contract as too demanding, as with the unsatisfiable require False
precondition or our fictitious Sinecure 1 example (“the customer is always wrong”), but
this is too late to argue over the contract: it is the contract, and the client did not ob
its part of the deal. So if there is a mechanism for monitoring assertions during exec
— as will be introduced shortly — and it detects such a precondition violation, the ro
should not be executed at all. It has stated the conditions under which it can opera
these conditions do not hold; trying to execute it would make no sense.

A postcondition violation means that the routine, presumably called under co
conditions, was not able to fulfill its contract. Here too the distribution of guilt a
innocence is clear, although it is the reverse of the previous one: the bug is in the ro
the caller is innocent.

Errors, defects and other creeping creatures

The appearance of the word “bug” in the preceding analysis of assertion violation c
is a good opportunity to clarify the terminology. In Edsger W. Dijkstra’s view, using
word “bug” is a lame attempt by software people to blame someone else by implyin
mistakes somehow creep into the software from the outside while the develope
looking elsewhere — as if were not the developers who made the mistakes in the first

Yet the term enjoys enduring success, if only because it is colorful and re
understood. Like the rest of the software literature, this book uses it freely. But
appropriate to complement it by more specific (if more stodgy) terms for cases in w
we need precise distinctions.

The causal relation is clear: faults are due to defects, which result from errors.

Assertion violation rule (2)

A precondition violation is the manifestation of a bug in the client.

A postcondition violation is the manifestation of a bug in the supplier.

Terms to denote software woes

An error is a wrong decision made during the development of a software
system.

A defect is a property of a software system that may cause the system to
depart from its intended behavior.

A fault is the event of a software system departing from its intended behavior
during one of its executions.
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Stack 
implemented 
with an array 
(see page 123 
for other 
representations)

For an array-based 
stack implementation 
using inheritance, see 
“IMPLEMENTA-
TION INHERIT-
ANCE”, 24.8, page 
844.
“Bug” usually has the meaning of defect (“are you sure there remains no othe
in this routine?”). This is the interpretation in this book. But in informal discussions
also used in the sense of fault (“We have had bug-free operation for the last three w
or error (“the bug was that I used an unsorted list”).

11.7  WORKING WITH ASSERTIONS

Let us now probe further the use of preconditions and postconditions, continuing
fairly elementary examples. Assertions, some simple, some elaborate, will be perva
the examples of the following chapters.

A stack class

The assertion-equipped STACK class was left in a sketchy form (STACK1). We can now
come up with a full version including a spelled out implementation.

For an effective (directly usable) class we must choose an implementation. Let u
the array implementation illustrated at the beginning of the discussion of abstract data

The array will be called representation and will have bounds 1 and capacity; the
implementation also uses an integer, the attribute count, to mark the top of the stack.

Note that as we discover inheritance we will see how to write deferred classe
cover several possible implementations rather than just one. Even for a class that
particular implementation, for example by arrays as here, we will be able to inherit from
the implementation class ARRAY rather than use it as a client (although some obje
oriented developers will still prefer the client approach). For the moment, however, w
do without any inheritance-related technique.

Here is the class. Recall that if a is an array then the operation to assign value x to its
i-th element is a● put (x, i), and the value of its i-th element is given by a ●item (i) or,
equivalently, a @ i. If, as here, the bounds of the array are 1 and capacity, then i must in
all cases lie between these bounds.

representation

(ARRAY_UP)

“Push” operation:
count := count + 1
representation [count] := x

count

capacity

1
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On the export status
of capacity see exer-
cise E11.4, page 410.
indexing
description: "Stacks: Dispenser structures with a Last-In, First-Out %

%access policy, and a fixed maximum capacity"

class STACK2 [G] creation 

make

feature -- Initialization

make (n: INTEGER) is
-- Allocate stack for a maximum of n elements

require

positive_capacity: n >= 0

do

capacity := n

!!  representation● make (1, capacity)

ensure
capacity_set: capacity = n

array_allocated: representation /= Void

stack_empty: empty

end

feature -- Access

capacity: INTEGER
-- Maximum number of stack elements

count: INTEGER
-- Number of stack elements

item: G is
-- Top element

require
not_empty: not empty -- i.e. count > 0

do
Result := representation @ count

end

feature -- Status report

empty: BOOLEAN is
-- Is stack empty?

do
Result := (count = 0)

ensure
empty_definition: Result = (count = 0)

end
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“CLASS INVARI-
ANTS”, 11.8, page 
364
full: BOOLEAN is
-- Is stack full?

do
Result := (count = capacity)

ensure
full_definition: Result = (count = capacity)

end

feature -- Element change

put (x: G) is
-- Add x on top

require
not_full: not full -- i.e. count < capacity in this representation

do
count := count + 1
representation● put (count, x)

ensure
not_empty: not empty
added_to_top: item = x
one_more_item: count = old count + 1
in_top_array_entry: representation @ count = x

end

remove is
-- Remove top element

require
not_empty: not empty -- i.e. count > 0 

do
count := count – 1

ensure
not_full: not full
one_fewer: count = old count – 1

end

feature { NONE}  -- Implementation

representation: ARRAY [G]

-- The array used to hold the stack elements

invariant

… To be filled in later (see page 365) …
end -- class STACK2

This class text illustrates the simplicity of working with assertions. It is comp
except for the invariant  clause, which will be added later in this chapter. Let us exp
its various properties.
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page 191.

“Feature clause 
header comments
page 889.

“Introducing a more
imperative view”, 
page 145.
This is the first full-fledged class of this chapter, not too far from what you will f
in professional libraries of reusable object-oriented components such as the Base lib
(Apart from the use of inheritance and a few extra features, what still distinguishe
class from its real-life counterparts is the absence of the invariant clause.)

Before studying the assertions, a general note about the structure of the cla
soon as a class has more than two or three features, it becomes essential to orga
features in a coherent way. The notation helps by providing the possibility of inclu
multiple feature clauses. An earlier chapter introduced this facility as a way to spec
different export status for certain features, as done here for the last part of the class, 
-- Implementation to specify that feature representation is secret. But as already
previewed in STACK1 you can take advantage of multiple feature clauses even whe
export status is the same. The purpose is to make the class easier to read, and e
manage, by grouping features into general categories. After each feature keyword appears
a comment (known as the Feature Clause Comment) defining the general role 
features that follow. The categories used in the example are those of STACK1, plus
Initialization for the creation procedure.

The standard feature categories and associated Feature Clause Comments are
the general rules for consistency and organization of reusable library classes. A
complete list appears in the chapter on style rules.

The imperative and the applicative

The assertions of STACK2 illustrate a fundamental concept of which we got a first glimp
when we studied the transition from abstract data types to classes: the difference be
imperative and applicative views.

The assertions in empty and full may have caused you to raise an eyebrow. H
again is the text of full:

full: BOOLEAN is

-- Is stack full?

do

Result := (count = capacity)

ensure

full_definition: Result = (count = capacity)

end

The postcondition expresses that Result has the same value as count = capacity.
(Since both sides of the equality, the entity Result and the expression count = capacity, are
boolean, this means that the function returns true if and only if count is equal to capacity.)
But what is the point of writing this postcondition, one may ask, since the body o
routine (the do clause) says exactly the same thing through the instruc
Result:= (count= capacity), whose only difference with the postcondition clause is its u
of := rather than =? Is the postcondition not redundant?

 
-

”, 
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Actually, there is a big difference between the two constructs, and no redunda
all. The instruction Result := (count = capacity) is a command that we give to our virtua
computer (the hardware-software machine) to change its state in a certain way; it pe
an action. The assertion Result = (count = capacity) does not do anything: it specifies 
property of the expected end state, as visible to the routine’s caller.

The instruction is prescriptive; the assertion is descriptive. The instruction describes
the “how”; the assertion describes the “what”. The instruction is part of 
implementation; the assertion is an element of specification.

The instruction is imperative; the assertion is applicative. These two terms
emphasize the fundamental difference between the worlds of computing and mathem

• Computer operations may change the state of the hardware-software ma
Instructions of common programming languages are commands (imper
constructs) directing the machine to execute such operations.

• Mathematical reasoning never changes anything; as noted in the presentat
abstract data types, taking the square root of the number 2 does not chang
number. Mathematics instead describes how to use properties of known objects
as the number 2, to infer properties of others, such as , obtained from the f
by applying (hence the name) certain mathematical derivations such as square

That the two notations are so close in our example — assignment := and equality =
— should not obscure this fundamental difference. The assertion describes an in
result, and the instruction (the loop body) prescribes a particular way to achieve that 
Someone using the class to write a client module will typically be interested in
assertion but not in the implementation.

The reason for the closeness of notations for assignment and equality is
assignment is indeed in many cases the straightforward way to achieve equality; 
example the chosen implementation, Result := (count = capacity), is indeed the obvious one
But as soon as we move on to more advanced examples the conceptual difference b
the specification and the implementation will be much larger; even in the simple cas
function to compute the square root of a real number x, where the postcondition is jus
something like abs (Result ^ 2 – x) <= tolerance with abs denoting absolute value an
tolerance a tolerance value, the instructions in the function’s body will be far less tr
since they have to implement a general algorithm for the computation of square root

Even for put in class STACK2, the same specification could have led to different
implementations, although the differences are minor; for example the body could be

if  count = capacity then Result := True else Result := False end

perhaps simplified (thanks to the rules of default initialization) into

if  count = capacity then Result := True end

So the presence of related elements in the body and the postcondition is not ev
of redundancy; it is evidence of consistency between the implementation an
specification — that is to say, of correctness as defined at the beginning of this cha

2
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See “Including func-
tions in assertions”,
page 401.

The 
imperative-
applicative 
opposition
In passing, we have encountered a property of assertions that will merit fu
development: their relevance for authors of client classes, whom we should not ask t
routine implementations, but who need a more abstract description of the routine’s
This idea will lead to the notion of short form  discussed later in this chapter as the ba
class documentation mechanism.

A caveat: for practical reasons we will allow assertions to include some seem
imperative elements (functions). This issue will be explored at the end of this chapt

As a summary of this discussion it is useful to list the words that have been us
contrast the two categories of software elements:

A note on empty structures

The precondition of the creation procedure make in class STACK1 requires a comment. It
states n >= 0, hence allowing empty stacks. If n is zero, make will call the creation
procedure for arrays, also named make, with arguments 1 and 0 for the lower and upper
bounds respectively. This is not an error, but follows from a convention regar
ARRAY’s creation procedure: using a first argument greater than the second by one c
an empty array.

A zero n for a stack, or a first creation argument greater than the second for an a
is not wrong but simply means that this particular stack or array should be empty. An
would only occur out of a call attempting to access an element from the structur
example a put for the stack or an item for the array, both of whose preconditions w
always be false for an empty structure (“my customer is always wrong”). 

When you define a general data structure such as a stack or array, you s
determine whether the case of an empty structure is conceptually meaningful. In 
cases it is not: for example most definitions of the notion of tree start from the assumption
that there is at least one node, the root. But if the empty case raises no l
impossibility, as with arrays and stacks, you should plan for it in the design of your
structure, acknowledging that clients will, every once in a while, create empty insta
and should not suffer for it. An application system may for example need a stack n
elements, where n is an upper bound on the number of elements to be stacked, com
by the application just before it creates the stack; in some runs that number may be
This is not an error, simply an extreme case.

The array mechanism of Algol W provides a counter-example. When a dynamically
allocated array has an empty range, the program terminates in error — even if it was a
perfectly valid array which simply happened to be empty on that particular run. This is too
restrictive: an array with zero size is valid, it simply does not allow access to any element.

Implementation Specification

Instruction Expression

How What

Imperative Applicative

Prescription Description
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Precondition design: tolerant or demanding?

Central to Design by Contract is the idea, expressed as the Non-Redundancy pri
that for any consistency condition that could jeopardize a routine’s proper functionin
should assign enforcement of this condition to only one of the two partners in the con

Which one? In each case you have two possibilities:

• Either you assign the responsibility to clients, in which case the condition will ap
as part of the routine’s precondition.

• Or you appoint the supplier, in which case the condition will appear in a conditi
instruction of the form if condition then …, or an equivalent control structure, in th
routine’s body.

We can call the first attitude demanding and the second one tolerant. The STACK2
class illustrates the demanding style; a tolerant version of the class would have ro
with no preconditions, such as

remove is

-- Remove top element

do

if  empty then

print ("Error: attempt to pop an empty stack")

else

count := count – 1

end

end

In the analogy with human contracts we can think of the demanding styl
characterizing an experienced contractor who expects his clients to “do their home
before calling on him; he has no trouble finding business, and will reject request
appear too broad or unreasonable. The tolerant style evokes the image of a 
established consulting practice, whose owner is so desperate for business that he w
anything, having put in his driveway a big sign:

T
p

W
r
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Page 344.
Which is the better style? To a certain extent this is a matter of personal choic
opposed to the Non-Redundancy principle, which was absolute in stating that it is never
acceptable to deal with a correctness condition on both the client and supplier sid
strong case can be made, however, for the demanding style illustrated by STACK2,
especially in the case of software meant to be reusable — and in O-O developme
should always write our software with the goal of ultimately making it reusable.

At first the tolerant style might appear better for both reusability and reliability; a
all the demanding approach appears to put more responsibility on the clients, and th
typically many clients for a single supplier — even more so for a reusable class. Is 
preferable, then, to let the supplier take care of the correctness conditions once and
rather than require every client to do it for itself?

If we look more closely at the issue this reasoning does not hold. The correc
conditions describe what the routine requires to be able to do its job properly. The to
remove on the facing page is a good counter-example: what can a poor stack-po
routine do for an empty stack? It makes a brave attempt by outputting an error me
but this is clearly inadequate: a specialized utility module such as a stack handler h
business messing up the system’s user output. We could try something more sophis
but remove simply does not have the proper context; the focus of class STACK2 is too
narrow to determine what to do in the case of an empty stack. Only the client — a module
using stacks in some application, for example the parsing module in a compiler —
enough information to decide what an attempt to pop an empty stack really means:
normal although useless request that we should simply ignore, executing a null oper
Or is it an error, and if so, how should we handle it: raise an exception, correct the situ
before trying again, or (the least likely answer) output a user-visible error message?

In the square root example, you may remember the fictitious routine text quot
the discussion preceding the Non-Redundancy principle:

if x < 0 then
“Handle the error, somehow”

else
“Proceed with normal square root computation”

end

NO PRECONDITION
TOO BIG

OR TOO SMALL!
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The operative word is “somehow”. The then clause is incantation more tha
software: there is really no good general-purpose technique for handling the x < 0 case.
Here again a general-purpose routine has no clue. Only the client author can know
the call means in this case — an error in the software, a case in which the expected
is 0, a reason to trigger an exception…

In this case as in the attempt at a tolerant remove, the position of the routine is no
unlike that of a postman asked to deliver a postcard with no delivery address and no
address: the case falls outside of the contract, and there is no good way to decide wha

In the spirit of Design by Contract, the demanding approach to precondition d
does not attempt to produce routines that are all things to all clients. Instead, it insis
each routine do a well-defined job and do it well (correctly, efficiently, generally eno
to be reusable by many clients…), and specify clearly what cases it cannot handle. In f
you cannot hope that the routine will do its job well unless you have carefully
circumscribed that job. A factotum routine, which wants to do a computation and c
for abnormal cases and take corrective actions and notify the client and produce a
anyway, will most likely fail to fulfill any of these goals properly.

The routine author does not try to outsmart his clients; if he is not sure of wha
routine is supposed to do in a certain abnormal situation, he excludes it explicitly thr
the precondition. This attitude is more generally a consequence of the overall theme
book: building software systems as sets of modules that mind their own business.

If you read the supplementary mathematical section in the chapter on abstract data types
you may have noted the similarity between the present discussion and the arguments fo
using partial functions in the mathematical model, rather than special error values such
as ωINTEGER. The two ideas are indeed very close, and Design by Contract is in part the
application to software construction of the concept of partial function, so remarkably
flexible and powerful in formal specification.

A word of caution: the demanding approach is only applicable if the precondit
remain reasonable. Otherwise the job of writing a module would become easy: start
routine with require  False so that, as we have seen, any routine body will be correct. W
does “reasonable” concretely mean for the precondition of a routine? Here is a 
precise characterization:

Reasonable Precondition principle

Every routine precondition (in a “demanding” design approach) must satisfy
the following requirements:

• The precondition appears in the official documentation distributed to
authors of client modules.

• It is possible to justify the need for the precondition in terms of the
specification only.
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The first requirement will be supported by the notion of short form studied late
this chapter. The second requirement excludes restrictions meant only for the sup
convenience in implementing the routine. For example when you want to pop a sta
precondition not empty is a logical requirement that can be justified “in terms of t
specification only”, through the simple observation that in an empty stack there is no
to pop; and when you want to compute the real square root of a number, the precon
x >= 0 is a direct result of the mathematical property that negative real numbers d
have real square roots.

Some restrictions may arise from the general kind of implementation selected
example the presence of require not full as precondition to the push operation put in
STACK2 is due to the decision of using an array for the implementation of stacks. But
a case does not violate the principle, as the bounded nature of STACK2 stacks has been
made part of the specification: the class does not claim to represent arbitrary stac
only stacks of finite maximum capacity (as expressed for example in the indexing clause
of the class). The abstract data type serving as specification of this class is not the
general notion of stack, but the notion of bounded stack.

In general, it is desirable to avoid bounded structures; even a stack implemented by array
can use array resizing. This is the case with the most commonly used stack class in th
Base libraries, which follows the STACK2 style but without a notion of capacity; a stack
that overflows its current capacity resizes itself silently to accommodate the new
elements.

Preconditions and export status

You may have noted the need for a supplementary requirement on preconditions, which d
figure in the Reasonable Precondition principle: to be satisfiable by the clients, the preco
must not use features that are hidden from the clients as a result of export restrictions.

Assume for example the following situation:

-- Warning: this is an invalid class, for purposes of illustration only.
class SNEAKY feature

tricky is
require

accredited
do

…
end

feature { NONE}

accredited: BOOLEAN is do … end

end -- class SNEAKY

The specification for tricky states that any call to that procedure must satisfy 
condition expressed by the boolean function accredited. But whereas the class export
tricky to all clients, it keeps accredited secret, so that clients have no way of finding o

n 

T 
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before a call, whether the call is indeed correct. This clearly unacceptable situation is
in human contracts, to a deal in which the supplier would impose some condition
stated explicitly in the contract, and hence could reject a client’s request as inc
without giving the client any way to determine in advance whether it is correct.

The reason why the Reasonable Precondition principle does not cover such c
that here a methodological principle does not suffice: we need a language rule
enforced by compilers, not left to the decision of developers.

The rule must take into account all possible export situations, not just t
illustrated above in which a feature is available to all clients (tricky) or to no client
(accredited). As you will recall from the discussion of information hiding, it is al
possible to make a feature available to some clients only, by declaring it in a feature 
appearing as feature { A, B, …} , which makes it available only to A, B, … and their
descendants. Hence the language rule:

With this rule every client that is in a position to call the feature will also be 
position to check for its precondition. The rule makes class SNEAKY invalid, since tricky
is generally exported (available to all clients); you can turn it into a valid class by ma
accredited also generally exported. If tricky had appeared in a feature clause starting w
feature { A, B, C} , then accredited would have to be exported at least to A, B and C (by
appearing in the same feature clause as tricky, or by appearing in a clause of the for
feature { A, B, C} , or feature { A, B, C, D, …} , or just feature). Any violation of this rule
is a compile-time error. Class SNEAKY, for example, will be rejected by the compiler.

There is no such rule for postconditions. It is not an error for some clauses
postcondition clause to refer to secret features, or features that are not as broadly e
as the enclosing routine; this simply means that you are expressing properties 
routine’s effect that are not directly usable by clients. This was the case with thput
procedure in STACK2, which had the form

put (x: G) is
-- Add x on top

require
 not full

do
…

ensure
… Other clauses …
in_top_array_entry: representation @ count = x

end

Precondition Availability rule

Every feature appearing in the precondition of a routine must be available to
every client to which the routine is available.

“
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The last postcondition clause indicates that the array entry at index count contains
the element just pushed. This is an implementation property; even though put is generally
available (exported to all clients), array representation is secret. But there is nothing
wrong with the postcondition; it simply includes, along with properties that are dire
useful to clients (the “Other clauses”), one that is only meaningful for someone who rea
the entire class text. Such secret clauses will not appear in the “short” form of the cla
the documentation for client authors.

A tolerant module

(On first reading you may skip this section or just look through it quickly.)

The simple but unprotected basic modules may not be robust enough for u
arbitrary clients. In some cases there will be a need for new classes to serve as 
interposed not between the software and the external world (as with filters of the
discussed earlier in this chapter) but between software and other software: po
careless clients on one side, unprotected classes on the other.

Although we have seen that this is generally not the right approach, it is use
examine how classes will look if we do decide to use the tolerant style in a specific
Class STACK3, appearing next, illustrates the idea. Because the class needs to set i
error codes, it is convenient to rely on a property of the notation that has not 
introduced yet: “unique” integer constants. If you declare a set of attributes as

a, b, c, …: INTEGER is unique

the effect is to define a, b, c … as integer constants with consecutive positive values. Th
values will be assigned by the compiler, and are guaranteed to be different for all con
thus declared, relieving you of having to invent separate codes. By convention, co
attributes such as these have names beginning with an upper-case letter, with the
lower case, as in Underflow.

Here, using this technique, is a tolerant version of our earlier stack class. Make
to note that this class text (which you may just skim through on first reading) is incl
here only to make sure you understand the tolerant style; it is not an example of the
generally recommended design — for reasons that will be discussed below, bu
probably be clear enough as you browse through the text.

indexing

description: "Stacks: Dispenser structures with a Last-In, First-Out %

%access policy, and a fixed maximum capacity; %

%tolerant version, setting an error code in case %

%of impossible operations."

class STACK3 [G] creation 

make

t 
 

4.
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feature -- Initialization

make (n: INTEGER) is
-- Allocate stack for a maximum of n elements if n > 0;
-- otherwise set error to Negative_size.
-- No precondition!

do
if capacity >= 0 then

capacity := n
!!  representation ● make (capacity)

else
error := Negative_size

end
ensure

error_code_if_impossible: (n < 0) = (error = Negative_size)
no_error_if_ possible: (n >= 0) = (error = 0)
capacity_set_if_no_error: (error = 0) implies (capacity = n)
allocated_if_no_error: (error = 0) implies (representation /= Void)

end

feature -- Access

item: G is
-- Top element if present; otherwise the type’s default value.
-- with error set to Underflow.
-- No precondition!

do
if not empty then

check representation /= Void end
Result := representation●item
error := 0

else
error := Underflow

-- In this case the result is the default value
end

ensure
error_code_if_impossible: (old empty) = (error = Underflow)
no_error_if_ possible: (not (old empty)) = (error = 0)

end

feature -- Status report

empty: BOOLEAN is
-- Number of stack elements

do
Result := (capacity = 0) or else representation● empty

end
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error: INTEGER
-- Error indicator, set by various features to a non-zero value 
-- if they cannot do their job

full: BOOLEAN is
-- Number of stack elements

do
Result := (capacity = 0) or else representation● full

end

Overflow, Underflow, Negative_size: INTEGER is unique
-- Possible error codes

feature -- Element change

put (x: G) is
-- Add x on top if possible; otherwise set error code.
-- No precondition!

do
if  full then

error := Overflow
else

check representation /= Void end
representation●put (x); error := 0

end
ensure

error_code_if_impossible: (old full) = (error = Overflow)
no_error_if_possible: (not old full) = (error = 0)
not_empty_if_no_error: (error = 0) implies not empty
added_to_top_if_no_error: (error = 0) implies item = x
one_more_item_if_no_error: (error = 0) implies count = old count + 1

end

remove is
-- Remove top element if possible; otherwise set error.
-- No precondition!

do
if  empty then

error := Underflow
else

check representation /= Void end
representation●remove
error := 0

end
ensure

error_code_if_impossible: (old empty) = (error = Underflow)
no_error_if_possible: (not old empty) = (error = 0)
not_full_if_no_error: (error = 0) implies not full
one_fewer_item_if_no_error: (error = 0) implies count = old count – 1

end
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feature { NONE}  -- Implementation

representation: STACK2 [G]
-- The unprotected stack used as implementation

capacity: INTEGER

-- The maximum number of stack elements
end -- class STACK3

The operations of this class have no preconditions (or, more accurately, haveTrue
as their preconditions). For those that may result in abnormal situations, the postcon
has been refined to distinguish between correct and erroneous processing. An op
such as s● remove, where s is a STACK3, will set s● error to 0 or to Underflow (which, from
the rules on unique values, is known to be strictly positive) and, in the latter cas
nothing else. It is still the caller’s responsibility to check for s● error after the call. As
noted, a general-purpose module such as STACK3 has no way to decide what to do in th
case of an erroneous popping attempt: produce an error message, take corrective a… 

Such filter modules serve to separate algorithmic techniques to deal with no
cases and techniques for handling errors. This is the distinction between correctne
robustness explained at the beginning of this book: writing a module that perf
correctly in legal cases is one task; making sure that other cases are also pro
decently is another. Both are necessary, but they should be handled separately. Fa
do so is one of the principal reasons why so many software systems are hope
complex: any algorithm that does anything useful also takes care of checking tha
applicable, and for good measure tries to handle the cases in which it is not. Such so
soon mushrooms into a total mess.

A few technical comments apply to this example: 

• An instance of STACK3 is not an array but a structure containing a refere
(representation) to an instance of STACK2, itself containing a reference to an arra
These two indirections, detrimental to efficiency, can be avoided through inherit
as studied in later chapters.

• The boolean operator or else is similar to or  but ignores the second operand if it do
not affect the result and trying to evaluate it could cause trouble.

• The check instruction used in put and remove serves to state that a certain asserti
is satisfied. It will be studied later in this chapter.

Finally, you will have noted the heaviness of STACK3, especially if you compare it
to the simplicity that STACK2 achieves with its precondition. STACK3 is good evidence
that a tolerant style may lead to uselessly complex software. The demanding sty
contrast, follows from the general spirit of Design by Contract. Trying to handle
possible (and impossible) cases is not necessarily the best way to help your clie
instead you build classes that impose possibly strict but reasonable usage conditio
describe these conditions precisely as part of the official documentation for the clas
actually make life easier for the clients. This has been called the tough love approach: you
can often serve your clients better by being more restrictive.
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Better an efficient supplier that states its functionally justified limitations tha
overzealous one that tries to second-guess its clients, making possibly inappro
decisions for abnormal cases, and sacrificing simplicity and efficiency.

For modules whose clients are other software modules, the demanding appro
usually the right one. A possible exception is the case of modules intended for c
whose authors use a non-O-O language and may not have understood the basic c
of Design by Contract.

The tolerant approach remains useful for software elements that deal not with other
software elements but with data coming from the outside world, such as user input, or
sensor data. Then, as noted earlier, filter modules are often necessary to separate th
actual processing modules (the physicists in our metaphor) from those which simply
qualify data and reject anything that is not appropriate (the guards). This separation of
concerns is essential for maintaining the simplicity of software elements on both sides.
STACK3 provides an idea of what such modules may look like.

11.8  CLASS INVARIANTS

Preconditions and postconditions describe the properties of individual routines. Th
also a need for expressing global properties of the instances of a class, which m
preserved by all routines. Such properties will make up the class invariant, capturin
deeper semantic properties and integrity constraints characterizing a class.

Definition and example 

Consider again the earlier implementation of stacks by arrays, the one withou
protections (STACK2): 

class STACK2 [G] creation
make 

feature

… make, empty, full, item, put, remove …
capacity: INTEGER

count: INTEGER

feature { NONE}  -- Implementation

representation: ARRAY [G]
end

The attributes of the class — array representation and integers capacity and count
— constitute the stack representation. Although routine preconditions and postcond
given earlier, express some of the semantic properties of stacks, they fail to expres
important consistency properties linking the attributes. For example, count should always
remain between 0 and capacity:

0 <= count; count <= capacity

(implying also that capacity >= 0), and capacity should be the array size:
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capacity = representation● capacity

A class invariant is such an assertion, expressing general consistency constrain
apply to every class instance as a whole; this is different from preconditions
postconditions, which characterize individual routines. 

The above assertions involve only attributes. Invariants may also expres
semantic relations between functions, or between functions and attributes. For ex
the invariant for STACK2 may include the following property describing the connecti
between empty and count: 

empty = (count = 0)

In this example, the invariant assertion links an attribute and a function; it is
particularly interesting as it merely repeats an assertion that appears in the postco
of the function (here empty). More useful assertions are those which involve either o
attributes, as above, or more than one function.

Here is another typical example. Assume — in line with previous examples de
with the notion of bank account — that we have a class BANK_ACCOUNT with features
deposits_list, withdrawals_list and balance. Then the invariant for such a class cou
include a clause of the form:

consistent_balance: deposits_list● total – withdrawals_list● total = balance

where the function total gives the cumulated value of a list of operations (deposits
withdrawals). This states the basic consistency condition between the values acc
through features deposits_list, withdrawals_list and balance.

Form and properties of class invariants 

Syntactically, a class invariant is an assertion, appearing in the invariant  clause of the
class, after the features and just before the end, as in 

class STACK4 [G] creation

… As in STACK2 …
feature

… As in STACK2 …
invariant

count_non_negative: 0 <= count

count_bounded: count <= capacity

consistent_with_array_size: capacity = representation●capacity

empty_if_no_elements: empty = (count = 0)

item_at_top: (count > 0) implies (representation● item (count) = item)

end

An invariant for a class C is a set of assertions that every instance of C will satisfy at
all “stable” times. Stable times are those in which the instance is in an observable s
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• On instance creation, that is to say after execution of !!  a or !!  a●make (…), where a
is of type C. 

• Before and after every remote call a● r (…) to a routine r of the class. 

The following figure, showing the life of an object, helps put the notions of invar
and stable time in place.

Life as an object, to tell the truth, is not that thrilling (in case you ever wonder
At the beginning — left of the figure — you do not exist. You are begot by a crea
instruction !!  a or !!  a● make (…), or a clone, and reach your first station in life. Then thing
get quite boring: through some reference a, clients use you, one after the other, b
applying operations of the form a ●f (…) where f  is a feature of your generating class. An
so on forever, or at least until execution terminates.

The invariant is the characteristic property of the states represented by gray sq
in the figure — S1 etc. These are the “stable times” mentioned above: those at whi
object is observable from the outside, in the sense that a client can apply a featur
They include:

• The state that results from the creation of an object (S1 in the figure).

• The states immediately before and after a call of the form a● some_routine (…)
executed by a client.

Here the context is sequential computation, but the ideas will transpose to concurrent
systems in a later chapter.

 !!  a● make (…)
S1

S2

S3

S4

a● f (…)

a● g (…)

a● f (…)

 

n 
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An invariant that varies

In spite of its name, the invariant does not need to be satisfied at all times, although
STACK4 example it does remain true after the initial creation. In the more general ca
is perfectly acceptable for a procedure g to begin by trying to work towards its goal — it
postcondition — and in the process to destroy the invariant (as in human affairs, try
do something useful may disrupt the established order of things); then it spends the 
part of its execution scurrying to restore the invariant without losing too much of wha
ground has been gained. At some intermediate stages, such as the instant marked 
figure, the invariant will not hold; this is fine as long as the procedure reestablishe
invariant before terminating its execution.

Who must preserve the invariant?

Qualified calls, of the form a● f (…), executed on behalf of a client, are the only ones t
must always start from a state satisfying the invariant and leave a state satisfyin
invariant; there is no such rule for unqualified calls of the form f (…), which are not
directly executed by clients but only serve as auxiliary tools for carrying out the nee
qualified calls. As a consequence, the obligation to maintain the invariant applies o
the body of features that are exported either generally or selectively; a secret feat
one that is available to no client — is not affected by the invariant.

From this discussion follows the rule that precisely defines when an assertio
correct invariant for a class:

Note that in this rule: 

• Every class is considered to have a creation procedure, defined as a null opera
not explicitly specified. 

• The state of an object is defined by all its fields (the values of the class attribut
this particular instance). 

• The precondition of a routine may involve the initial state and the arguments. 

Invariant rule

An assertion I is a correct class invariant for a class C if and only if it meets
the following two conditions: 

E1 • Every creation procedure of C, when applied to arguments satisfying
its precondition in a state where the attributes have their default
values, yields a state satisfying I . 

E2 • Every exported routine of the class, when applied to arguments and a
state satisfying both I and the routine’s precondition, yields a state
satisfying I. 
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• The postcondition may only involve the final state, the initial state (through theold
notation) and, in the case of a function, the returned value, given by the prede
entity Result. 

• The invariant may only involve the state. 

Assertions may use functions, but such functions are an indirect way of referring to the
attributes — to the state.

A mathematical statement of the Invariant rule appears later in this chapter.

You can use the Invariant rule as a basis for answering a question that comes
light of earlier discussions: what would it mean if an invariant clause turned out t
violated during system execution? We saw before that a precondition violation signa
error (a “bug”) in the client, a postcondition violation an error in the supplier. The an
will be for invariants as for postconditions; you have all the elements for deriving
property by yourself.

The role of class invariants in software engineering

Property E2 indicates that we may consider the invariant as being implicitly ad
(anded) to both the precondition and postcondition of every exported routine. S
principle the notion of invariant is superfluous: we could do without it by enriching
preconditions and postconditions of all routines in the class.

Such a transformation is of course not desirable. It would complicate the ro
texts; but more importantly, we would lose the deeper meaning of the invariant, w
transcends individual routines and applies to the class as a whole. One should 
consider that the invariant applies not only to the routines actually written in the clas
also to any ones that might be added later, thus serving as control over future evolu
the class. This will be reflected in the inheritance rules.

In the view of software development introduced at the beginning of this book
accept that change is inevitable, and we try to control it. Some aspects of a so
system, and of its individual components — classes — may be expected to change
than others. Adding, removing or changing features, in particular, is a frequent and n
event. In this volatile process one will want to cling to properties that, although they
change too — for we can hardly guarantee that any aspect of a system will remain 
eternity — will change far less often. Invariants, because they capture the fundam
semantic constraints applying to a class, play this role.

The STACK2 example illustrates the basic ideas, but to appreciate the full powe
the concept of invariant you should be on the lookout for further examples of invarian
the rest of this book. To me the notion of the invariant is one of the most illumina
concepts that can be learned from the object-oriented method. Only when I have d
the invariant (for a class that I write) or read and understood it (for someone else’s 
do I feel that I know what the class is about.
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Invariants and contracting

Invariants have a clear interpretation in the contract metaphor. Human contracts
contain references to general clauses or regulations that apply to all contracts w
certain category; think of a city’s zoning regulations, which apply to all house-buil
contracts. Invariants play a similar role for software contracts: the invariant of a 
affects all the contracts between a routine of the class and a client. 

Let us probe further. It was noted above that we may consider the invariant as
added to both the precondition and postcondition of every exported routine. Let body be
the body of a routine (the set of instructions in its do clause), pre its precondition, post its
postcondition and INV the class invariant. The correctness requirement on the routine
be expressed, using the notation introduced earlier in this chapter, as:

{ INV and pre}  body { INV and post}

(As you will remember this means: any execution of body, started in any state in which
INV and pre both hold, will terminate in a state in which both INV and post hold.)

For the supplier author — the person who writes body — is the invariant good news
or bad news, that is to say, does it make the job easier or harder?

The answer, as you will have figured out from the earlier discussion, is: b
Remember our lazy job applicant, who wanted a strong precondition and a weak
postcondition. Here adding INV makes stronger or equal both the precondition and 
postcondition. (From the rules of logic, a and b always implies a, that is to say, is stronge
than or equal to a.) So, if you are in charge of implementing the body, the invariant:

• Makes your job easier: in addition to the official precondition pre, you may
assume that the initial state satisfies INV, further restricting the set of cases th
you must handle.

• Makes your job harder: in addition to your official postcondition post, you must
ensure that the final state satisfies INV.

These observations are consistent with the view of the invariant as a ge
consistency condition that applies to the class as a whole, and hence to all of its ro
As the author of such a routine, you have the benefit of being permitted to take
condition for granted at the start of the routine; but you have the obligation to ensur
the routine will satisfy it again on termination — so that the next routine to be exec
on the same object can in turn take it for granted.

The class BANK_ACCOUNT mentioned above, with the invariant clause

deposits_list● total – withdrawals_list● total = balance

provides a good example. If you have to add a routine to the class, this clause giv
the guarantee that the features deposits_list, withdrawals_list and balance have consistent
values, so you do not need to check this property (and then, as we have seen, you must not
check it). But it also means that you must write the routine so that, whatever else it
it will leave the object in a state that again satisfies the property. So a procedure withdraw,

T
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used to record a withdrawal operation, should not just update withdrawals_list: it must
also, if balance is an attribute, update the value of balance to take the withdrawal into
account and restore the invariant, enabling any other routine called later on the same
to benefit from the same original assumption that facilitated the work of withdraw.

Rather than an attribute, balance could be a function, whose body computes and returns
the value of deposits_list● total – withdrawals_list● total; in this case procedure withdraw
does not need to do anything special to maintain the invariant. The ability to switch at will
between the two representations without affecting the client is an illustration of the
principle of Uniform Access.

This example shows the idea of class invariant as a transposition to software o
of the rules of polite behavior: that if you use a shared facility — say an office kitche
you should leave it for others, after each use, in the state in which you would like to
it when you start.

11.9  WHEN IS A CLASS CORRECT?

Although we still have to see a few more constructs involving assertions, it is use
take a brief pause and examine some of the implications of what we have learned
preconditions, postconditions and invariants. This section does not introduce any
constructs, but describes some of the theoretical background. Even on your first rea
think you should get familiar with these ideas as they are central to a proper understa
of the method, and will be precious when we try to figure out how to use inheritance

The correctness of a class 

With preconditions, postconditions and invariants, we can now define precisely w
means for a class to be correct. 

The basis for the answer appeared at the beginning of this chapter: a class, li
other software element, is correct or incorrect not by itself but with respect 
specification. By introducing preconditions, postconditions and invariants we have g
ourselves a way to include some of the specification in the class text itself. This pro
a basis against which to assess correctness: the class is correct if and only
implementation, as given by the routine bodies, is consistent with the precondi
postconditions and invariant. 

The notation { P}  A { Q}  introduced at the beginning of this chapter helps express
precisely. Remember that the meaning of such a correctness formula is: wheneveA is
executed in a state satisfying P, the execution will terminate in a state satisfying Q.

Let C be a class, INV its class invariant. For any routine r of the class, call prer (xr)

and postr  (xr) its precondition and postcondition; xr denotes the possible arguments ofr,

to which both the precondition and the postcondition may refer. (If the preconditio
postcondition is missing from the routine text, then prer  or postr  is just True.) Call Bodyr
the body of routine r. 

d 
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Finally, let DefaultC be the assertion expressing that the attributes of C have the

default values of their types. For example DefaultSTACK2, referring to the earlier stack

class, is the assertion 

representation = Void
capacity = 0
count = 0

These notations permit a general definition of class correctness:

This rule — previewed informally in the BANK_ACCOUNT example — is a
mathematical statement of the earlier informal diagram showing the lifecycle of a ty
object, which is worth looking at again:

Condition C1 means that any creation procedure (such as make in the figure), when
called with its precondition satisfied, must yield an initial state (S1 in the figure) 
satisfies the invariant and the procedure’s postcondition. Condition C2 expresses that any
exported routine r (such as f or g in the figure), if called in a state (S1, S2 or S3) satisfyi
both its precondition and the invariant, must terminate in a state that satisfies bo
postcondition and the invariant.

Definition: class correctness

A class is correct with respect to its assertions if and only if: 

C1 • For any valid set of arguments xp to a creation procedure p: 

{ DefaultC and prep (xp)}  Bodyp  { postp (xp) and INV}  

C2 • For every exported routine r and any set of valid arguments xr:

{ prer (xr ) and INV}  Bodyr { postr (xr) and INV}

 !!  a●make (…)
S1

S2

S3

S4

a● f (…)

a● g (…)

a● f (…)
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If we focus on invariants, we may look at the preceding definition of class correctness
as working by induction on the set of instances of a class. Rule C1 is the base step of the
induction, stating that the invariant holds for all newborn objects — those which directly
result from a creation instruction. Rule C2 is the induction step, through which we
determine that if a certain generation of instances satisfies the invariant, then the nex
generation — the set of instances obtained by applying exported features to the member
of the current generation — will also satisfy it. Since by starting from newborn objects
and going from generation to generation through exported features we obtain all possible
instances of the class, the mechanism enables us to determine that all instances satis
the invariant.

Two practical observations: 

• If the class has no creation clause, we may consider that it has a single impli
creation procedure nothing with an empty body. Applying rule C1 to Bnothing then

means that DefaultC must imply INV: the default values must satisfy the invariant

• A requirement of the form { P}  A { Q}  does not commit A in any way for cases in
which P is not initially satisfied. So the notation is in line with the property discus
in detail earlier in this chapter: the contract is not binding on the routine if the c
fails to observe its part of the deal. Accordingly, the definition of class correct
leaves the routines of the class free to do as they please for any call that viola
precondition or the invariant. 

What has just been described is how to define the correctness of a class. In practic
we may also want to check whether a given class is indeed correct. This issue will
discussed later in this chapter.

The role of creation procedures

The discussion of invariants yields a better understanding of the notion of creation proc

A class invariant expresses the set of properties that objects (instances of the
must satisfy in what has been called the stable moments of their lifetime. In partic
these properties must hold upon instance creation. 

The standard object allocation mechanism initializes fields to the default values 
corresponding attribute types; these values may or may not satisfy the invariant. If 
specific creation procedure is required; it should set the values of the attributes so
satisfy the invariant. So creation may be seen as the operation that ensures that all in
of a class start their lives in a correct mode — one in which the invariant is satisfied.

The first presentation of creation procedures introduced them as a way to ans
more mundane (and obvious) question: how do I override the default initialization ru
they do not suit me for a particular class, or if I want to provide my clients with more 
one initialization mechanism? But with the introduction of invariants and the theore
discussion summarized by rule C1, we also see the more profound role of creati
procedures: they are here to make sure that any instance of the class, when it starts
already satisfies the fundamental rules of its caste — the class invariant.
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Arrays revisited 

The library class ARRAY was sketched in the previous chapter. Only now, however,
we in a position to give its definition properly. The notion of array fundamentally requ
preconditions, postconditions and an invariant.

Here is a better sketch with assertions. Preconditions express the basic requi
on array access and modification: indices should be in the permitted range. The inv
shows the relation between count, lower and upper; it would allow count to be
implemented as a function rather than an attribute.

indexing

description: "Sequences of values, all of the same type or of a conforming one, %

%accessible through integer indices in a contiguous interv"

class ARRAY [G] creation

make

feature -- Initialization

make (minindex, maxindex: INTEGER) is

-- Allocate array with bounds minindex and maxindex

-- (empty if minindex > maxindex).

require

meaningful_bounds: maxindex >= minindex – 1

do

…
ensure

exact_bounds_if_non_empty: (maxindex >= minindex) implies

((lower = minindex) and (upper = maxindex))

conventions_if_empty: (maxindex < minindex) implies

((lower = 1) and (upper = 0))

end

feature -- Access

lower, upper, count: INTEGER

-- Minimum and maximum legal indices; array size.

infix  "@", item (i: INTEGER): G is

-- Entry of index i 

require

index_not_too_small: lower <= i

index_not_too_large: i <= upper

do … end
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feature -- Element change

put (v: G; i: INTEGER) is
-- Assign v to the entry of index i

require

index_not_too_small: lower <= i

index_not_too_large: i <= upper

do

…
ensure

element_replaced: item (i) = v

end

invariant  

consistent_count: count = upper – lower + 1

non_negative_count: count >= 0 

end -- class ARRAY

The only part left blank is the implementation of routines item and put. Because
efficient array manipulation will require low-level system access, the routines 
actually be implemented using external clauses, introduced in a later chapter.

11.10  THE ADT CONNECTION

A class — you have heard this quite a few times by now — is an implementation 
abstract data type, whether formally specified or (as in many cases) just impl
understood. As noted at the beginning of this chapter, we may view assertions as a 
re-introduce into the class the semantic properties of the underlying ADT. Let us pe
our understanding of assertion concepts by clarifying the connection of assertions 
components of an abstract data type specification.

Not just a collection of functions 

As studied in the ADT chapter, an abstract data type is made of four elements:

• The name of the type, possibly with generic parameters (TYPES paragraph).

• The list of functions with their signatures (FUNCTIONS paragraph).

• The axioms (AXIOMS paragraph) expressing properties of the functions’ resul

• The restrictions on the functions’ applicability (PRECONDITIONS paragraph)

Simple-minded applications of abstract data types often overlook the last two p
This removes much of the appeal of the approach, since preconditions and axioms e
the semantic properties of the functions. If you omit them and simply view “stack
encapsulating the (not specified further) operations put, remove etc., you retain the
benefits of information hiding, but that is all. The notion of stack becomes an empty 

s 
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with no semantics other than suggested by the operation names. (And in the appro
this book that is of little comfort, since for reasons of structure, consistency and reusa
we deliberately choose general names — put, remove, item … — rather than concrete
type-specific names such as push, pop and top.)

This risk transposes to programming in an O-O language: the routines whic
supposed to implement the operations of the corresponding abstract data types c
principle perform just about any operations. Assertions avert that risk by bringing
semantics back in. 

Class features vs. ADT functions

To understand the relation between assertions and ADTs we need first to establ
relation between class features and their ADT counterparts — the ADT’s functions
earlier discussion introduced three categories of function: creators, queries
commands. As you will recall, the category of a function

f : A × B × … → X

depended on where the ADT, say T, appeared among the types A, B, … X involved in this
signature:

• If T appears on the right only, f is a creator; in the class it yields a creation procedu

• If T appears only on the left of the arrow, f is a query, providing access to properti
of instances of the class. The corresponding features are either attributes or fun
(collectively called queries, for classes as well as ADTs).

• If T appears on both the left and the right, f is a command function, which yields 
new object from one or more existing objects. Often f will be expressed, at the
implementation stage, by a procedure (also called a command) which modifi
object, rather than creating a new object as a function would do.

Expressing the axioms 

From the correspondence between ADT functions and class features we can ded
correspondence between semantic ADT properties and class assertions: 

• A precondition for one of the specification’s functions reappears as precond
clauses for the corresponding routine. 

• An axiom involving a command function, possibly with one or more qu
functions, reappears as postcondition clauses of the corresponding procedure

• Axioms involving only query functions reappear as postconditions of 
corresponding functions or (especially if more than one function is involved, or
least one of the queries is implemented as an attribute) as clauses of the invar

• Axioms involving constructor functions reappear in the postcondition of 
corresponding creation procedure. 

At this point you should go back to the preconditions and axioms of the ADT STACK
and compare them with the assertions of class STACK4 (including those of STACK2).
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The abstraction function

It is instructive to think of the preceding observations in terms of the following figu
inspired by the discussion in [Hoare 1972a], which pictures the notion “C is a correct
implementation of A”.

A is an abstract data type, and C as a class implementing it. For an abstract functi
af of the ADT specification — of which we assume for simplicity that it yields a re
also of type A — there will be a concrete feature cf in the class.

The arrows labeled a represent the abstraction function which, for any instance of
the class, or “concrete object”, yields the abstract object (instance of the ADT) th
represents. As will be seen, this function is usually partial, and the inverse relati
usually not a function.

The implementation is correct if (for all functions af applicable to abstract data type
and their implementations cf) the diagram is commutative, that is to say: 

where; is the composition operator between functions; in other words, for any 
functions f and g, f ; g is the function h such that h (x) = g ( f (x)) for every applicable x.
(The composition f ; g is also written g ° f with the order of the operands reversed.)

The property states that for every concrete object CONC_1, it does not mat
which order you apply the transformation (abstract af or concrete cf) and the abstraction;
the two paths, represented by dotted lines, lead to the same abstract object ABST_
result is the same whether you:

• Apply the concrete transformation cf, then abstract the result, yielding a (cf (CONC_1)).

• Abstract first, then apply the abstract transformation af, yielding af (a (CONC_1)).

Class-ADT Consistency property

(cf ; a) = (a ; af)

 

a a

af

cf
CONC_1

ABST_1

CONC_2

ABST_2

Concrete objects (instances of the class C)

Abstract objects (instances of the ADT A)
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Implementation invariants 

Certain assertions appear in invariants although they have no direct counterparts
abstract data type specifications. These assertions involve attributes, including 
secret attributes which, by definition, would be meaningless in the abstract data ty
simple example is the following properties appearing in the invariant of STACK4: 

count_non_negative: 0 <= count

count_bounded: count <= capacity

Such assertions constitute the part of the class invariant known as
implementation invariant . They serve to express the consistency of the representa
chosen in the class (here by attributes count, capacity and representation) vis-à-vis the
corresponding abstract data type. 

The figure on the previous page helps understand the concept of implemen
invariant. It illustrates the characteristic properties of the abstraction functioa
(represented by the vertical arrows), which we should explore a little further.

First, is it correct to talk about a as being the abstraction function, as suggested by
the upwards arrows representing a in the preceding figure? Recall that a function (part
or total) maps every source element to at most one target element, as opposed to th
general case of a relation which has no such restriction. If we go downwards rathe
upwards in the figure and examine the inverse of a, which we may call the representation
relation, we will usually find it not to be a function, since there are in general m
possible representations of a given abstract object. In the array implementatio
represents every stack as a pair <representation, count>, an abstract stack has man
different representations, as illustrated by the figure on the facing page; they all ha
same value for count and for the entries of array representation between indices 1 and
count, but the size capacity of the array can be any value greater than or equal to count,
and the array positions beyond index count may contain arbitrary values.

Since the class interface is restricted to the features directly deduced from the A
functions, clients have no way of distinguishing between the behaviors of several co
objects that all represent the same abstract object (that is to say, all have the same a value).
Note in particular that procedure remove in STACK4 does its job simply by executing

count := count – 1

without bothering to clear the previous top entry, now at index count + 1; changing an
entry of index higher than count modifies a concrete stack object CS, but has no effect on
the associated abstract stack a (CS).

So the implementation relation is usually not a function. But its inverse 
abstraction function a (the upwards arrows in both figures) is indeed a function since e
concrete object represents at most one abstract object. In the stack example, eve
<representation, count> pair represents just one abstract stack (the stack with count
elements, given, from the bottom up, by the entries of representation at indices 1 to count). 
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Both of the concrete stacks in this figure are implementations of the abstract 
consisting of three elements of values 342, –133 and 5 from the bottom up. That a is a
function is a universal requirement: if the same concrete object could be interpre
implementing more than one abstract object, the chosen representation wou
ambiguous and hence inadequate. So it is proper that the arrow associated with a points
up in all the figures depicting connections between abstract and concrete types
discussion for inheritance will suggest a similar convention.)

The abstraction function a is usually a partial function: not every possible concret
object is a valid representation of an abstract object. In the example, not 
<representation, count> pair is a valid representation of an abstract stack;
representation is an array of capacity three and count has value 4, they do not togethe
represent a stack. Valid representations (members of the domain of the abstr
function) are those pairs for which count has a value between zero and the size of the ar
This property is the implementation invariant.

In mathematical terms, the implementation invariant is the characteristic functio
the domain of the abstraction function, that is to say, the property that defines when
function is applicable. (The characteristic function of a subset A is the boolean property
that is true on A and false elsewhere.)

The implementation invariant is the one part of the class’s assertions that h
counterpart in the abstract data type specification. It relates not to the abstract dat
but to its representation. It defines when a candidate concrete object is indee
implementation of one (and then only one) abstract object.

342

–133

5

representation

count = 3

capacity = 6

1342

–133

8870

451

0

5

representation

count = capacity = 3

1342

–133
5

count = 3
Abstract
stack object

CS1

CS2a a

Concrete
stack objects
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11.11  AN ASSERTION INSTRUCTION

The uses of assertions seen so far — preconditions, postconditions and class invari
are central components of the method. They establish the connection between 
oriented software construction and the underlying theory (abstract data types). 
invariants, in particular, cannot be understood, or even discussed, in a non-O-O app

Some other uses of assertions, although less specific to the method, are also p
in a systematic software development process and should be part of our notation
include the check instruction, as well as loop correctness constructs (loop invariant
variant) which will be reviewed in the next section.

The check instruction serves to express the software writer’s conviction tha
certain property will be satisfied at certain stages of the computation. Syntactically
construct is an instruction, written under the form

check
assertion_clause1
assertion_clause2
…
assertion_clausen

end

Including this instruction in the text of a routine is a way to state that:

“Whenever control reaches this instruction at execution time, the assertion
shown (as given by its assertion clauses) will hold.”

This is a way to reassure yourself that certain properties are satisfied, and (even
importantly) to make explicit for future readers of your software the hypotheses on w
you have been relying. Writing software requires making frequent assumptions 
properties of the objects of your system; as a trivial but typical example, any functio
of the form sqrt (x), where sqrt is a routine requiring a non-negative argument, relies
the assumption that x is positive or zero. This assumption may be immediately obvi
from the context, for example if the call is part of a conditional instruction of the form

if  x >= 0 then y := sqrt (x) end

but the justification may also be more indirect, based for example on an earlier instru
that computed x as the sum of two squares:

x := a ^2 + b^2

The check instruction makes it possible to express such an assumption if it is
immediately obvious from the context, as in

x := a ^2 + b^2
… Other instructions …

check 
x >= 0

-- Because x was computed above as a sum of square
end

y := sqrt (x)
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No if  … then … protects the call to sqrt in this example; the check indicates that the
call is correct. It is good practice to include, as here, a comment stating the reason in
to support the assumption (“-- Because x…”). The extra two steps of indentation for th
instruction are also part of the recommended style; they suggest that the instruction
meant, in normal circumstances, to affect the algorithmic progression of the routine

This example is typical of what is probably the most useful application of the check
instruction: adding such an instruction just before a call to a routine that has a c
precondition (here we may assume that sqrt has a precondition requiring its argument 
be non-negative), when you are convinced that the call satisfies the precondition b
is not immediately obvious from the context. As another example assume s is a stack and
you include in your code a call 

s● remove

at a position where you are certain that s is not empty, for example because the call h
been preceded by n “ put” and m “ remove” instructions with n > m. Then there is no need
to protect the call by an if  not s●empty then…; but if the reason for the correctness of th
call is not immediately obvious from the context, you may want to remind the reade
the omission of any protection was a conscious decision, not an oversight. You
achieve this by adding before the call the instruction

check not s● empty end

A variant of this case occurs when you write a call of the form x● f with the certainty
that x is not void, so that you do not need to enclose this call in a conditional instructif
x /= Void then …, but the non-vacuity argument is not obvious from the context. 
encountered this in the procedures put and remove of our “protected stack” class STACK3.
The body of put used a call to the corresponding procedure in STACK2, as follows:

if full then
error := Overflow

else
check representation /= Void end

representation●put (x); error := 0
end

Here a reader might think the call representation● put (x) in the else potentially
unsafe since it is not preceded by a test for representation /= Void. But if you examine the
class text you will realize that if full is false then capacity must be positive and henc
representation cannot be void. This is an important and not quite trivial property, wh
should be part of the implementation invariant of the class. In fact, with a fully st
implementation invariant, we should rewrite the check instruction as:

check 

representation_exists: representation /= Void

-- Because of clause representation_exists_if_not_full of the

-- implementation invariant.

end

y 
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In ordinary approaches to software construction, although calls and other oper
often (as in the various preceding examples) rely for their correctness on va
assumptions, these assumptions remain largely implicit. The developer will con
himself that a certain property always holds at a certain point, and will put this analy
good use in writing the software text; but after a while all that survives is the text
rationale is gone. Someone — even the original author, a few months later — who 
to understand the software, perhaps to modify it, will not have access to the assum
and will have to figure out from scratch what in the world the author may have h
mind. The check instruction helps avoid this problem by encouraging you to docum
your non-trivial assumptions.

As with the other assertion mechanisms of this chapter, the benefit goes beyond helping
you get things right in the first place, to helping you find that you got them wrong. You
can, using a compilation option, turn the check into a true executable instruction, which
will do nothing if all its assertion clauses are true, but will produce an exception and stop
execution if any of them is false. So if one of your assumptions was actually not justified
you should find out quickly. The mechanisms for enabling check-checking will be
reviewed shortly.

11.12  LOOP INVARIANTS AND VARIANTS

Our last assertion constructs help us get loops right. They nicely complemen
mechanisms seen so far, but are not really specific to the object-oriented method, 
all right to skip this section on first reading.

Loop trouble

The ability to repeat a certain computation an arbitrary number of times wit
succumbing to exhaustion, indeed without experiencing any degradation whatsoe
the principal difference between the computational abilities of computers and tho
humans. This is why loops are so important; just imagine what you could do in a lan
that only has the other two principal control structures, sequencing and condi
instructions, but no loops (and no support for recursive routine calls, the other 
mechanism permitting iterative computations).

But with power comes risk. Loops are notoriously hard to get right. Typical tro
includes:

• “Off-by-one” errors (performing one iteration too many or too few).

• Improper handling of borderline cases such as empty structures: for example 
may work properly on a large array, but fail when the array has zero or one ele

• Failure to terminate (“infinite looping”) in some cases.

Binary search — a staple of Computing Science 101 courses — is a good illust
of how tricky loops can be even when they appear trivial. Consider an array t of integers
assumed to be in increasing order and indexed from 1 to n; binary search is a way to decid
whether a certain integer value x appears in the array: if the array has no elements,
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answer is no; if the array has one element, the answer is yes if and only if that eleme
value x; otherwise compare x to the element at the array’s middle position, and repea
the lower or higher half depending on whether that element is greater or lesser thanx. The
four loop algorithms below all attempt to implement this simple idea; unfortunately al
wrong, as you are invited to check by yourself by finding, for each of them, a case in w
it will not work properly.

Recall that t @ m denotes the element at index i in array t. The // operator denotes integer
division, for example 7 // 2 and 6 //2 have value 3. The loop syntax is explained next but
should be self-explanatory; the from  clause introduces the loop initialization.

BS1

from
i := 1; j := n

until  i = j loop
m := (i + j ) // 2 
if  t @ m <= x then

i := m 
else 

j := m
end

end
Result := (x = t @ i)

BS2

from
i := 1; j := n; found := false

until  i = j and not found loop
m := (i + j ) // 2 
if  t @ m < x then

i := m + 1
elseif t @ m = x then

found := true 
else

 j := m – 1
end

end
Result := found

BS3

from
i := 0; j := n
until  i = j loop

m := (i + j + 1 ) // 2 
if  t @ m <= x then

i := m + 1
else

j := m
end

end
if  i >= 1 and i <= n then

Result := (x = t @ i)
else

Result := false
end

BS4

from
i := 0; j := n + 1

until  i = j loop
m := (i + j ) // 2 
if  t @ m <= x then

i := m + 1
else 

j := m
end

end
if  i >= 1 and i <= n then

Result := (x = t @ i)
else

Result := false
end
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The judicious use of assertions can help avoid such problems. A loop may ha
associated assertion, the loop invariant (not to be confused with the class invariant for t
enclosing class); it may also have a loop variant, not an assertion but an intege
expression. The invariant and variant will help us guarantee that a loop is correct.

To understand these notions it is necessary to realize that a loop is always a 
compute a certain result by successive approximations.

Take the trivial example of computing the maximum value of an array of inte
using the obvious algorithm:

maxarray (t: ARRAY [INTEGER]): INTEGER is

-- The highest of the values in the entries of t

require

t ●capacity >= 1

local

i: INTEGER

do

from

i := t ●lower

Result := t @ lower

until i = t● upper loop

i := i + 1

Result := Result● max (t @ i)

end

end

We initialize i to the array’s lower bound i := t● lower and the entity Result
representing the future result to the value of the associated entry t @ lower. (We know that
this entry exists thanks to the routine’s precondition, which states that the array has a
one element.) Then we iterate until i has reached the upper bound, at each stage increa
i by one and replacing Result by the value of t @ i, the element at index i, if higher than
the previous value of Result. (We rely on a max function for integers: a● max (b), for two
integers a and b, is the maximum of their values.)
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successive slice
This computation works by successive approximations. We approach the array

successive slices: [lower, lower], [ lower, lower+1], [ lower, lower+2] and so on up to the
full approximation [lower, upper].

The invariant property is that at each stage through the loop Result is the maximum

of the current approximation of the array. This is true after the initialization, since
instructions in the from  clause ensure that Result is the maximum of the first

approximation, the trivial slice [lower, lower] consisting of just one element. Then on ea

iteration we extend the slice by one element — improving our approximation of the 

— and make sure to maintain the invariant by updating Result if the new value is higher
than the previous maximum. At the end, the approximation covers the entire array

since we have maintained invariant the property that Result is the maximum of the curren

approximation we know that it now is the maximum of the array as a whole.

Ingredients for a provably correct loop

The simple example of computing an array’s maximum illustrates the general sche
loop computation, which applies to the following standard situation. You have determ

that the solution to a certain problem is an element belonging to an n-dimensional surface

POST: to solve the problem is to find an element of POST. In some cases POST has just

one element — the solution — but in general there may be more than one accept
solution. Loops are useful when you have no way of shooting straight at POST but you see

an indirect strategy: aiming first into an m-dimensional surface INV that includes POST (for

m > n); then approaching POST, iteration by iteration, without ever leaving INV. The

following figure illustrates this process.

s

lower upper

Array sliceArray element



DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE §11.12384

state

des
y
igure

t.
e
 the

he
r

lysis,
cs we

 loop 
omputation 
from [M 1990])
A loop computation has the following ingredients:

• A goal post, the postcondition, defined as a property that any satisfactory end 
of the computation must satisfy. Example: “Result is the maximum value in the
array”. The goal is represented in the figure by the set of states POST satisfying post.

• An invariant property inv, which is a generalization of the goal, that is to say inclu
the goal as a special case. Example: “Result is the maximum value in a non-empt
array slice beginning at the lower bound”. The invariant is represented in the f
by the set of states INV satisfying inv.

• An initial point init which is known to be in INV, that is to say to satisfy the invarian
Example: the state in which the value of i is the array’s lower bound and the valu
of Result is that of the array element at that index, satisfying the invariant since
maximum of a one-element slice is the value of the element.

• A transformation body which, starting from a point in INV but not in POST, yields a
point closer to POST and still in INV. In the example this transformation extends t
array slice by one element, and replaces Result by the value of that element if highe
than the previous Result. The loop body in function maxarray is an implementation
of that transformation.

• An upper bound on the number of applications of body necessary to bring a point in
INV to POST. This will be the variant, as explained next.

Computations by successive approximations are a mainstay of numerical ana
but the idea applies more broadly. An important difference is that in pure mathemati
accept that a series of approximations may have a limit even though it cannot reach it
through a finite number of approximations: the sequence 1, 1/2, 1/3, 1/4, …, 1/n, … has

INV

POST

init

body

body

body

body

body
body

A
c
(
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The invariant of class 
ARRAY appeared on
page 374.
limit 0 but no element of the sequence has value zero. In computing, we want to s
results on our screen during our lifetime, so we insist that all approximation sequ
reach their goal after a finite number of iterations.

Computer implementations of numerical algorithms also require finite convergence: even
when the mathematical algorithm would only converge at infinity, we cut off the
approximation process when we feel that we are close enough.

The practical way to guarantee termination of a loop process is to associate wi
loop an integer quantity, the loop variant, which enjoys the following properties:

• The variant is always non-negative.

• Any execution of the loop body (the transformation called body in the figure)
decreases the variant.

Since a non-negative integer quantity cannot decrease forever, your ability to e
such a variant for one of your loops guarantees that the loop will always terminate
variant is an upper bound, for each point in the sequence, of the maximum num
applications of body that will land the point in POST. In the array maximum computation
a variant is easy to find: t ●upper – i. This satisfies both conditions:

• Because the routine precondition requires t ●capacity to be positive (that is to say, th
routine is only applicable to non-empty arrays) and the invariant of class ARRAY
indicates that capacity = upper – lower + 1, the property i <= t ● upper (part of the
loop’s invariant) will always be satisfied when i is initialized to t ● lower.

• Any execution of the loop body performs the instruction i := i + 1, reducing the
variant by one.

In this example the loop is simply an iteration over a sequence of integer value
finite interval, known in common programming languages as a “for loop” or a “DO loo
termination is not difficult to prove, although one must always check the details (her
example, that i always starts no greater than t ● upper because of the routine’s
precondition). For more sophisticated loops, the number of iterations is not that ea
determine in advance, so ascertaining termination is more of a challenge; the
universal technique is to find a variant.

One more notion is needed to transform the scheme just outlined into a softwar
describing a loop: we need a simple way of determining whether a certain iteratio
reached the goal (the postcondition) post. Because the iteration is constrained to rema
within INV, and POST is part of INV, it is usually possible to find a condition exit such that
an element of INV belongs to POST if and only if it satisfies exit. In other words, the
postcondition post and the invariant inv are related by

post = inv and exit

so that we can stop the loop — whose intermediate states, by construction, always 
inv — as soon as exit is satisfied. In the maxarray example, the obvious exit condition is
i = t ● upper: if this property is true together with the invariant, which states that Result is
the maximum value in the array slice [t ● lower, i], then Result is the maximum value in the
array slice [t ● lower, t ● upper], hence in the entire array — the desired postcondition.
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The syntax for loops follows directly from the preceding rationale. It will include 
elements listed as necessary:

• A loop invariant inv — an assertion.

• An exit condition exit, whose conjunction with inv achieves the desired goal.

• A variant var — an integer expression.

• A set of initialization instructions init, which always produces a state that satisf
inv and makes var non-negative.

• A set of body instructions body which, when started in a state where inv holds and
var is non-negative, preserves the invariant and decreases the variant while ke
it non-negative (so that the resulting state still satisfies inv and has for var a value
that is less than before but has not gone below zero).

The loop syntax combining these ingredients is straightforward:

from

init

invariant

inv

variant

var

until

exit

loop

body

end

The invariant  and variant  clauses are optional. The from  clause is required (but the
init instructions may be empty). The effect of this instruction is to execute theinit
instructions and then, zero or more times, the body instructions; the latter are execute
only as long as exit is false.

In Pascal, C etc. the loop would be a “while” loop, since the loop body is exec
zero or more times, unlike the “repeat … until ” loop for which the body is always
executed at least once. Here the test is an exit condition, not a continuation conditio
the loop syntax includes room for initialization. So the equivalent in Pascal of from init
until exit loop body end is

init;

while not exit do body
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With a variant and an invariant the loop for maxarray appears as

from
i := t● lower; Result := t @ lower

invariant
-- Result is the maximum of the elements of t at indices t ●lower to i.

variant
t ● lower – i

until
i = t● upper

loop
i := i + 1

Result := Result● max (t @ i)

end

Note that the invariant is expressed informally as a comment; the discussion se
of this chapter will explain this limitation of the assertion language.

Here is another example, first shown without variant or invariant. The purpose o
following function is to compute the greatest common divisor (gcd) of two posi
integers a and b with Euclid’s algorithm:

gcd (a, b: INTEGER): INTEGER is

-- Greatest common divisor of a and b

require
a > 0; b > 0

local
x, y: INTEGER

do
from

x := a; y := b

until

x = y

loop
if  x > y then x := x – y else y := y – x end

end
Result := x

ensure
-- Result is the greatest common divisor of a and b

end

How do we know that function gcd ensures its postcondition — that it indee
computes the greatest common divisor of a and b? One way to check this is to note tha
the following property is true after loop initialization and preserved by every iteration

,
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x > 0; y > 0

-- The pair <x, y> has the same greatest common divisor as the pair <a, b>

This will serve as our loop invariant inv. Clearly, INV is satisfied after execution o
the from  clause. Also, if inv is satisfied before an execution of the loop body 

if  x > y then x := x – y else y := y – x end

under the loop continuation condition x /= y, then inv will still be satisfied after execution
of this instruction; this is because replacing the greater of two positive non-equal nu
by their difference leaves them positive and does not change their gcd. 

We have shown inv to be satisfied before the first iteration and preserved by ev
iteration. It follows that on loop exit, when x = y becomes true, inv still holds; that is to say:

x = y and “The pair <x, y> has the same greatest common divisor as the pair <a, b>”

which implies that the gcd is x because of the mathematical property that the gcd of 
integer x and itself is x.

How do we know that the loop will always terminate? We need a variant. If x is
greater than y, the loop body replaces x by x – y; if y is greater than x, it replaces y by y –
x. We cannot choose x as a variant, because we cannot be sure that an arbitrary
iteration will decrease x; nor can we be sure that it will decrease y, so y is also not an
appropriate variant. But we can be sure that it will decrease either x or y, and hence their
maximum x●max (y); this maximum will never become negative, so it provides the sou
variant. We may now write the loop with all its clauses: 

from

x := a; y := b

invariant

x > 0; y > 0

-- The pair <x, y> has the same greatest common divisor as the pair <a, b>

variant

x● max (y)

until

x = y

loop

if x > y then x := x – y else y := y – x end

end

As noted, the invariant  and variant  clauses in loops are optional. When prese
they help clarify the purpose of a loop and check its correctness. Any non-trivial loop
be characterized by an interesting invariant and variant; many of the exampl
subsequent chapters include variants and invariants, providing insights into the unde
algorithms and their correctness. 
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11.13  USING ASSERTIONS

We have now seen all the constructs involving assertions and should review a
benefits that we can derive from them. There are four main applications: 

• Help in writing correct software. 

• Documentation aid. 

• Support for testing, debugging and quality assurance. 

• Support for software fault tolerance. 

Only the last two assume the ability to monitor assertions at run time.

Assertions as a tool for writing correct software 

The first use is purely methodological and perhaps the most important. It has 
explored in detail in the preceding sections: spelling out the exact requirements on
routine, and the global properties of classes and loops, helps developers produce s
that is correct the first time around, as opposed to the more common approach of try
debug software into correctness. The benefits of precise specifications and a syst
approach to program construction cannot be overemphasized. Throughout this 
whenever we encounter a program element, we shall seek to express as preci
possible the formal properties of that element. 

The key idea runs through this chapter: the principle of Design by Contract. To use
features from a certain module is to contract out for services. Good contracts are
which exactly specify the rights and obligations of each party, and the limits to these rights
and obligations. In software design, where correctness and robustness are so import
need to spell out the terms of the contracts as a prerequisite to enforcing them. Ass
provide the means to state precisely what is expected from and guaranteed to each
these arrangements. 

Using assertions for documentation: the short form of a class

The second use is essential in the production of reusable software elements and
generally, in organizing the interfaces of modules in large software syst
Preconditions, postconditions and class invariants provide potential clients of a m
with basic information about the services offered by the module, expressed in a co
and precise form. No amount of verbose documentation can replace a set of ca
expressed assertions, appearing in the software itself.

To learn how a particular project ignored this rule and lost an entire space mission at a
cost of $500 million, see the very last section of this chapter.

The automatic documentation tool short uses assertions as an important compon
in extracting from a class the information that is relevant to potential clients. The 
form of a class is a high-level view of the class. It only includes the information th
useful to authors of client classes; so it does not show anything about secret feature
for public features, it does not show the implementation (the do clauses). But the short
form does retain the assertions, which provide essential documentation by statin
contracts that the class offers to its clients. 
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Here is the short form of class STACK4:

indexing

description: "Stacks: Dispenser structures with a Last-In, First-Out %

%access policy, and a fixed maximum capacity"

class interface STACK4 [G] creation 

make

feature -- Initialization

make (n: INTEGER) is

-- Allocate stack for a maximum of n elements

require

non_negative_capacity: n >= 0

ensure

capacity_set: capacity = n

end

feature -- Access

capacity: INTEGER

-- Maximum number of stack elements

count: INTEGER

-- Number of stack elements

item: G is

-- Top element

require

not_empty: not empty -- i.e. count > 0

end

feature -- Status report

empty: BOOLEAN is

-- Is stack empty?

ensure

empty_definition: Result = (count = 0)

end

full: BOOLEAN is

-- Is stack full?

ensure

full_definition: Result = (count = capacity)

end
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feature -- Element change

put (x: G) is
-- Add x on top

require
not_full: not full

ensure
not_empty: not empty
added_to_top: item = x
one_more_item: count = old count + 1

end

remove is
-- Remove top element

require
not_empty: not empty -- i.e. count > 0 

ensure
not_full: not full
one_fewer: count = old count – 1

end

invariant

count_non_negative: 0 <= count
count_bounded: count <= capacity
empty_if_no_elements: empty = (count = 0)

end -- class interface STACK4

This short form is not a syntactically valid class text (hence the use of class interface
rather than the usual class to avoid any confusion), although it is easy to turn it into a va
deferred class, a notion to be seen in detail in our study of inheritance.

In the ISE environment, you obtain the short form of a class by clicking on the
corresponding button in a Class Tool displaying a class; you can generate plain text, as
well as versions formated for a whole host of formats such as HTML (for Web browsing),
RTF (Microsoft’s Rich Text Format), FrameMaker’s MML, TEX, troff and others. You
can also define your own format, for example if you are using some text processing tool
with its specific conventions for specifying fonts and layout.

If you compare the short form’s assertions to those of the class, you will notice th
the clauses involving representation have disappeared, since that attribute is not export

The short form of documentation is particularly interesting for several reasons:

• The documentation is at a higher level of abstraction than what it describe
essential requirement for quality documentation. The actual implementa
describing the how, has been removed, but the assertions, explaining the what (or in
some cases the why) are still there. Note that the header comments of routines, w
complement assertions by giving a less formal explanation of each rout
purpose, are retained, as well as the description entry of the indexing clause.
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• A direct consequence of the Self-Documentation principle studied in our revie
modularity concepts, the short form treats documentation not as a separate p
but as information contained in the software itself. This means that there is onl
product to maintain, a requirement that runs through this book. There is also
result, a much better chance that the documentation will be correct, since by h
everything at the same place you decrease the risk of forgetting to updat
documentation after a change to the software, or conversely.

• The short form can be extracted from the class by automatic tools. So
documentation is not something that you have to write; instead it is something
you ask “the computer” to produce, at the click of a mouse button, when you ne

It is interesting to compare this approach with the notion of package interface pr
in Ada (“specification part”), where you write a module (package) in two parts:
interface and the implementation. Java uses a similar mechanism. The interface of a
package has some similarities to the short form of a class, but also significant differe

• There are no assertions, so all the “specification” that you can give is in the fo
type declarations and comments.

• The interface is not produced by a tool but written separately. So the develope
to state many things twice: the headers of routines, their signatures, any h
comments, declarations of public variables. This forced redundancy is tedio
would be even more so with assertions) and, as always, raises the ri
inconsistency, as you may change one of the two parts and forget to update the

The short form (complemented by its variant the flat-short form, which deals 
inheritance and is studied in a later chapter) is a principal contribution of the ob
oriented method. In the daily practice of O-O development it appears all the time no
as a tool for documenting software, particularly reusable libraries, but also as the sta
format in which developers and managers study existing designs, prepare new de
and discuss proposed designs.

The reason for the central role of the short form in O-O development is that it fin
fulfills the goal defined by the analysis of reusability requirements at the beginning o
book. There we arrived at the requirement for abstracted modules as the basic unit of reuse
A class in its short (or flat-short) form is the abstracted module that we have been seeking.

Monitoring assertions at run time

It is time now to deal in full with the question “what is the effect of assertions at run tim
As previewed at the beginning of this chapter, the answer is up to the developer, bas
compilation option. To set that option, you should not, of course, have to change the
class texts; you will rely instead on the Ace file. Recall that an Ace file, written in Lace, a
you to describe how to assemble and compile a system. 

Recall too that Lace is just one possible control language for assembling O-O systems
not an immutable component of the method. You will need something like Lace, even
if it is not exactly Lace, to go from individual software components to complete
compilable systems.

L
w
“
t
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A qualified call is a 
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to a plain internal call 
f. See “Qualified and 
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page 186.
Here is how to adapt a simple Ace (the one used as example in the or
presentation of Lace) to set some assertion-monitoring options:

system painting root
GRAPHICS

default
assertion (require )

cluster
base_library: " \library\base"
graphical_library: " \library\graphics"

option
assertion (all): BUTTON, COLOR_BITMAP

end
painting_application: " \user \application"

option
assertion (no)

end
end -- system painting

The default clause indicates that for most classes of the system only precondi
will be checked (require). Two clusters override this default: graphical_library, which
will monitor all assertions (all), but only for classes BUTTON and COLOR_BITMAP; and
painting_application, which has disabled any assertion checking for all its classes. 
illustrates how to define an assertion monitoring level for the system as a whole, for a
classes of a cluster, or for some classes only.

The following assertion checking levels may appear between parenthes
assertion (…):

• no: do not execute anything for assertions. In this mode assertions have no
effect on execution than comments.

• require: check that preconditions hold on routine entry.

• ensure: check that postconditions hold on routine exit.

• invariant : check that class invariants hold on routine entry and exit for quali
calls.

• loop: check that loops invariants hold before and after every loop iteration, and
variants decrease while remaining non-negative.

• check: execute check instructions by checking that the corresponding asserti
hold. all is a synonym for check.

Excluding no, each of these levels implies the previous ones; in particular it doe
make sense to monitor postconditions unless you also monitor preconditions, sin
principles of Design by Contract indicate that a routine is required to ensur
postcondition only if it was called with its precondition satisfied (otherwise “the custo
is wrong”). This explains why check and all are synonyms.
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If turned on, assertion monitoring will have no visible effect, except for the C
cycles that it takes away from your computation, as long as the assertions that it mo
all evaluate to true. But having any assertion evaluate to false is a rather serious
which will usually lead to termination. Actually it will trigger an exception, but unless y
have taken special measures to catch the exception (see next) everything will sto
exception history table will be produced, of the general form

Failure: object: O2 class: YOUR_CLASS routine: your_routine

Cause: precondition violation, clause: not_too_small

Called by: object: O2 class: YOUR_CLASS routine: his_routine

Called by: object: O1 class: HER_CLASS routine: her_routine

…
This gives the call chain, starting from the routine that caused the exception

object to which is was applied and its generating class. Objects are identified by in
codes. The form shown here is only a sketch; the discussion of exceptions will give a
complete example of the exception history table.

The optional labels that you can add to the individual clauses of an assertion, s
not_too_small in

your_routine (x: INTEGER) is

require

not_too_small: x >= Minimum_value

…
prove convenient here, since they will be listed in the exception trace, helping you id
what exactly went wrong.

How much assertion monitoring?

What level of assertion tracing should you enable? The answer is a tradeoff betwe
following considerations: how much you trust the correctness of your software; 
crucial it is to get the utmost efficiency; how serious the consequences of an unde
run-time error can be.

In extreme cases, the situation is clear:

• When you are debugging a system, or more generally testing it prior to release
should enable assertion monitoring at the highest level for the classes of the s
(although not necessarily for the libraries that it uses, as explained next). This a
is one of the principal contributions to software development of the me
presented in this book. Until they have actually had the experience of testing a 
assertion-loaded system using the assertion monitoring mechanisms descri
this section, few people realize the power of these ideas and how profoundly
affect the practice of software development.

• If you have a fully trusted system in an efficiency-critical application area —
kind where every microsecond counts — you may consider removing all monito
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Second Assertion 
Violation rule, page 
347.

See the class text 
starting on page 373.
The last advice is somewhat paradoxical since in the absence of formal pr
techniques (see the discussion section of this chapter) it is seldom possible to “t
system fully” — except by monitoring its assertions. This is a special case of a ge
observation made with his customary eloquence by C.A.R. Hoare:

It is absurd to make elaborate security checks on debugging runs, when no trust
is put in the results, and then remove them in production runs, when an erroneous
result could be expensive or disastrous. What would we think of a sailing
enthusiast who wears his life-jacket when training on dry land but takes it off as
soon as he goes to sea?

An interesting possibility is the option that only checks preconditions: assertion
(require ). In production runs — that is to say, past debugging and quality assurance
has the advantage of avoiding catastrophes that would result from undetected c
routines outside of their requirements, while costing significantly less in run-t
overhead than options that also check postconditions and invariants. (Invarian
particular, can be quite expensive to monitor since the method suggests writing
invariants that include all relevant consistency conditions on a class, and the invar
checked on entry and exit for every qualified call.)

Precondition checking is indeed the default compilation option if you do not inc
a specific assertion option in your Ace, so that the clause default assertion (require)
appearing in the example Ace for system painting was not necessary.

This option is particularly interesting for libraries. Remember the basic rule
assertion violations: a violated precondition indicates an error in the client; a vio
postcondition or invariant indicates an error in the supplier. So if you are relying
reusable libraries that you assume to be of high quality, it is generally not desira
monitor their postconditions and invariants: this would mean that you suspect the lib
themselves, and although the possibility of a library error is of course always op
should only be investigated (for a widely used library coming from a reputable sou
once you have ruled out the presence, a priori much more likely, of an error in your own
client software. But even for a perfect library it is useful to check preconditions: the goal
is to find errors in client software.

Perhaps the most obvious example is array bound checking. In the ARRAY class we
saw that put, item and the latter’s synonym infix  "@" all had the precondition clauses

index_not_too_small: lower <= i

index_not_too_large: i <= upper

Enabling precondition checking for the class solves a well-known problem of
software that uses arrays: the possibility of an out-of-bounds array access, whic
usually scoop some memory area containing other data or code, causing ravages
compilers for conventional programming languages offer special compilation optio
monitor array access at run time. But in object technology, just as we treat arrays th
general notions of class and object rather than special constructs, we can handle
bound monitoring through the general mechanism for precondition checking. Just 
version of ARRAY compiled with assertion (require).
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From [Hoare 1981]; 
slightly abridged.
Should bounds always be checked? Hoare thinks so:

In our Algol compiler every occurrence of every subscript of every array element
was on every occasion checked at run time against the declared bounds. Many
years later we asked our customers whether they wished us to provide an option
to switch off these checks in the interest of efficiency in production runs.
Unanimously they urged us not to — they already knew how frequently index
errors occur on production runs where failure could be disastrous. I note with
fear and horror that even today, language designers and users have not learned
this lesson. In any respectable branch of engineering, failure to observe such
elementary precautions would have long been against the law.

These comments should be discussed not just for arrays but for preconditio
general. If indeed “index errors frequently occur on production runs” this must be tr
other precondition violations too.

One may defend a less extreme position. (Some might of course see here an a
at self-preservation, coming from a “language designer” who has provided a way to
off assertion checking, through Lace options such as assertion (no), and presumably does
not like being branded as acting “against the law”.) First, a company which del
software in which precondition errors “frequently occur on production runs” probably
a problem with its software quality practices, which run-time assertion monitoring wil
solve. Monitoring addresses the symptoms (faults in the terminology introduced earlier in
this chapter), not the cause (defects and errors). True, assertion monitoring is in 
case beneficial to the software’s end-users: however unpleasant it is to have a syst
its interruption with some message spouting insults about preconditions and 
venomous beasts unknown to a layman, this is better than continuing operatio
producing bad results. But in the long term a practice of always delivering systems
some level of assertion monitoring also has negative effects: it can encourage a
developers, even unconsciously, a happy-go-lucky attitude towards correctness, ju
by the knowledge that if an error remains it will be caught by the users through an ass
violation, reported to the supplier, and fixed for the following release. So can’t we
testing right now and start shipping?

It is hard to give an absolute answer to the question “should we leave some as
monitoring on?” without some knowledge of the performance overhead of asse
monitoring. If adding some monitoring multiplied the execution time by ten, few pe
outside of the mission-critical-computing community would support Hoare’s view; if
overhead were two percent, few people would disagree with it. In practice, of cours
penalty will be somewhere in-between.

How much is it, by the way? This clearly depends on what the software does an
many assertions it has, but it is possible to give empirical observations. In ISE’s expe
the cost for monitoring preconditions (the default option, including of course array bo
checking) is on the order of 50%. What is frustrating is that more than 75% of that c
due not to precondition checking per se but to the supporting machinery of monit
calls — recording every routine entry and every routine exit — so that if a precond
fails the environment can say which one and where. (A message of the form Execution
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Page 15.
stopped because some assertion was violated somewhere would not be very useful.) This
may be called the Precondition Checking Paradox: precondition checking is by itself c
enough, but to get it you have to pay for something else. As to postcondition and inv
checking, they can bring the penalty to 100% to 200%. (Although circumstances 
preconditions are often relatively simple consistency conditions such as x > 0 or a /= Void,
whereas many postconditions and invariants express more advanced semantic prop

One might fear that bringing performance into this discussion may lead
compromising on correctness, against the principle expressed at the beginning of this

Necessary as tradeoffs between quality factors may be, one factor stands out
from the rest: correctness. There is never any justification for compromising on
correctness for the sake of other concerns, such as efficiency. If the software
does not perform its function, the rest is useless. 

Considering performance when we decide whether to leave assertion monitori
is not, however, a violation of this principle. The point is not to sacrifice correctnes
efficiency, but to determine what we should do for systems that are not correct —
obviously because we have not worked hard enough at making them correct.

In fact, efficiency may be part of correctness. Consider a meteorological system
takes twelve hours to predict the next-day’s weather (two hours would be more use
course). The system has been thoroughly optimized; in particular it does not have ru
checking for array bound violations or other such faults. It has also undergone c
development and extensive testing. Now assume that adding the run-time c
multiplies the execution time by two, giving a forecasting system that takes 24 hou
predict tomorrow’s weather. Would you enable these checks? No.

Although the examples that first come to mind when discussing such performance vs.
safety issues tend to be of the Patriot-against-Scud variety, I prefer the weather forecastin
example because here one cannot dismiss the efficiency issue offhand by saying “just buy
a faster microprocessor”. In meteorological computing, the hardware tends already to be
the fastest parallel computer available on the market.

Let us not stop here but ask the really hard questions. Assume the original ru
time of twelve hours was with checking enabled. Would you disable it to get a six-hou
forecast? Now assume that you also have the option of applying the improved efficie
keep the same running time but use a more accurate forecasting model (since you can affor
more grid points); would you do it? I think that in either case, if offered “an option to switch
off the checks in the interest of efficiency in production runs”, almost everyone will say yes

So in the end the choice of assertion monitoring level at production time is n
simple as Hoare’s rule suggests. But a few precise and strict principles do hold:

• Remember that a software system should be made reliable before it begins operation.
The key is to apply the reliability techniques described in the software engine
literature, including those which appear in this chapter and throughout this boo

• If you are a project manager, never let the developers assume that the production
versions will have checks turned on. Make everyone accept that — especially f
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370.
biggest production runs, those which by nature make the consequences of po
errors most frightening — all checks may be off.

• Make sure that during development assertion checking is always turned on a
at the precondition level.

• Perform extensive testing with all the checks enabled. Also turn all checks on 
soon as any bug is encountered during development.

• For the standard production versions, decide whether to choose a no-check v
or a protected version (usually at the precondition level) based on your asses
from an engineering perspective, of the relative weight of the three factors cit
the beginning of this discussion: how much you trust the correctness of 
software (meaning in part how hard you have worked at making it correct and
convincing yourself and others that it is); how crucial it is to get the utm
efficiency; and how serious the consequences of an undetected run-time error c

• If you decide to go for a no-check version, also include in your delivery a ver
that checks at least for preconditions. That way, if the system starts exhib
abnormal behavior against all your expectations, you can ask the users — th
least who have not been killed by the first erroneous production runs — to swit
the checking version, helping you find out quickly what is wrong.

Used in this way, run-time assertion monitoring provides a remarkable aid for qu
weeding out any errors that may have survived a systematic software construction process.

11.14  DISCUSSION

The assertion mechanism presented in this chapter raises some delicate issues, w
must now examine.

Why run-time monitoring?

Should we really have to check assertions at run time? After all we were able, 
assertions, to give a theoretical definition of what it means for a class to be correct:
creation procedure should ensure the invariant, and every routine body, when start
state satisfying the precondition and the invariant, should maintain the invarian
ensure the postcondition. This means that we should simply prove the m + n
corresponding properties mathematically (for m creation procedures and n exported
routines), and then do away with run-time assertion monitoring.

We should, but we cannot. Although mathematical program proving has bee
active area of research for many years, and has enjoyed some successes, it is not 
today to prove the correctness of realistic software systems written in full-fled
programming languages.

We would also need a more extensive assertion language. The IFL sublanguage
discussed below, could be used as part of a multi-tier proof strategy.
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Even if proof techniques and tools eventually become available, one may su
that run-time checks will not go away, if only to cope with hard-to-predict events such
hardware faults, and to make up for possible bugs in the proof software itself — in 
words to apply the well-known engineering technique of multiple independent checking.

The expressive power of assertions

As you may have noted, the assertion language that we have used is essentia
language of boolean expressions, extended with a few concepts such as old. As a result,
we may find it too restrictive when we would like to include in our classes some o
properties that were easy to express in the mathematical notation for abstract data 

The assertions for stack classes provide a good example of what we can and 
say. We found that many of the preconditions and axioms from the original A
specification of chapter 6 gave assertion clauses; for example the axiom

A4 • not empty (put (s, x))

gives the postcondition not empty in procedure put. But in some cases we do not have t
immediate counterpart in the class. None of the postconditions for remove in the stack
classes given so far includes anything to represent the axiom

A2 • remove (put (s, x)) = s

We can of course add an informal property to the postcondition by reso
to a comment: 

remove is
-- Remove top element

require
not_empty: not empty -- i.e. count > 0 

do
count := count – 1

ensure
not_full: not full

one_fewer: count = old count – 1

LIFO_policy: -- item is the last element pushed (by put)
-- and not yet removed, if any.

end

Similar informal assertions, syntactically expressed as comments, appeared 
loop invariants for maxarray and gcd.

In such a case, two of the principal uses of assertions discussed earlier r
applicable at least in part: help in composing correct software, and help in documen
(an assertion clause that is syntactically a comment will appear in the short form)
other uses, in particular debugging and testing, assume the ability to evaluate ass
and do not apply any more.
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It would be preferable to express all assertions formally. The best way to reac
goal is to extend the assertion language so that it can describe arbitrary propertie
requires the ability to describe complex mathematical objects such as sets, sequ
functions and relations, and including the full power of first-order predicate calcu
which allows quantified expressions (“for all” and “there exists”). Formal specifica
languages exist which provide at least part of this expressive power. The best know
Z, VDM, Larch and OBJ-2; both Z and VDM have had object-oriented extensions, 
as Object-Z, in recent years, and the last two were close to O-O concepts alread
bibliographic notes to chapter 6 provide references.

Including a full specification language into the language of this book would h
completely changed its nature. The language is meant to be simple, easy to 
applicable to all areas of software construction, and implementable efficiently (with a
run-time performance similar to that of Fortran and C, and a fast compilation proces

Instead, the assertion mechanism is an engineering tradeoff: it includes en
formal elements to have a substantial effect on software quality; but stops at the po
diminishing return — the threshold beyond which the benefits of more formality m
start being offset by the decrease of learnability, simplicity and efficiency.

Determining that threshold is clearly a matter of personal judgment. I have been surprised
that, for the software community at large, the threshold has not moved since the first edition
of this book. Our field needs more formality, but the profession has not realized it yet.

So for the time being, and probably for quite a while, assertions will remain boo
expressions extended with a few mechanisms such as the old expression in postconditions
The limitation is not as stringent as it seems at first, because boolean expressions 
function calls.

Including functions in assertions

A boolean expression is not restricted to using attributes or local entities. We have a
used the possibility of calling functions in assertions: the precondition for put in our stack
classes was not full, were full is the function

full: BOOLEAN is

-- Is stack full?

do

Result := (count = capacity)

ensure

full_definition: Result = (count = capacity)

end

This is our little assertion secret: we get out of the stranglehold of proposit
calculus — basic boolean expressions involving attributes, local entities and bo
operators such as and, or, not — thanks to function routines, which give us the power
compute a boolean value in any way we like. (You should not be troubled by the pre
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page 352.
of a postcondition in full itself, as it does not create any harmful circularity. Deta
shortly.)

Using function routines is a way to obtain more abstract assertions. For example,
people may prefer replacing the precondition of the array operations, expressed ear

index_not_too_small: lower <= i
index_not_too_large: i <= upper

by a single clause of the form

index_in_bounds: correct_index (i)

with the function definition

correct_index (i: INTEGER): BOOLEAN is
-- Is i within the array bounds?

do
Result := (i >= lower) and (i <= upper)

ensure
definition: Result = ((i >= lower) and (i <= upper))

end

Another advantage of the use of functions in assertions is that it may provide a
to circumvent the limitations on expressive power arising from the absence of first-
predicate calculus mechanisms. The informal invariant of our maxarray loop

-- Result is the maximum of the elements of t at indices t ● lower to i

may be expressed formally as 

Result = (t ●slice (lower, i)) ●max

assuming a function slice which yields the set of elements between two indices of an ar
and a function max which yields the maximum element in a set.

This approach has been explored in [M 1995a] as a way to extend the power of the
assertion mechanism, possibly leading to a fully formal development method (that is to
say, to software that may be proven correct mathematically). Two central ideas in this
investigation are the use of libraries in any large-scale proof process, so that one could
prove real, large-scale systems in a multi-tier proof structure using conditional proofs,
and the definition of a restricted language of a purely applicative nature — IFL, for
Intermediate Functional Language — in which to express the functions used in assertions
IFL is a subset of the notation of this book, which excludes some imperative constructs
such as arbitrary assignments.

The risk that such efforts try to address is clear: as soon as we permit functio
assertions, we introduce potentially imperative elements (routines) into the heret
purely applicative world of assertions. Without functions, we had the clear and c
separation of roles emphasized in the earlier discussion: instructions prescribe, ass
describe. Now we open the gates of the applicative city to the imperative hordes.

Yet it is hard to resist the power of using functions, as the alternatives are not w
their drawbacks either:
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• Including a full specification sublanguage could, as noted, cause problems of e
learning and efficiency.

• Perhaps worse, it is not even clear that commonly accepted assertion lang
would suffice. Take what most people versed in these topics would suggest 
natural candidate: first-order predicate calculus. This formalism will not enable 
express some properties of immediate interest to developers and common 
assertions, such as “the graph has no cycles” (a typical invariant cla
Mathematically this would be stated as r+ ∩ r = ∅ where r is the graph’s relation
and + is transitive closure. Although it is possible to conceive of a specifica
language that supports these notions, most do not.

This is all the more troubling because, for a programmer, writing a boolean-va
function routine cyclic that explores the graph and returns true if and only if there 
cycle, is not particularly hard. Such examples provide a strong argument for conte
ourselves with a basic assertion language and using functions for anything beyo
expressive power.

But the need to separate applicative and imperative elements remains. Any fu
routine used in an assertion to specify the properties of a software element sho
“beyond reproach”, more precisely beyond imperative reproach; it should not caus
permanent change of the abstract state.

This informal requirement is clear enough in practice; the IFL sublanguage formalizes it
by excluding all the imperative elements which either change the global state of the
system or do not have trivial applicative equivalents, in particular:

• Assignments to attributes.

• Assignments in loops.

• Calls to routines not themselves in IFL.

If you exert the proper care by sticking to functions that are simple and self-evid
correct, the use of function routines in assertions can provide you with a powerful m
of abstraction.

A technical point may have caught your attention. A function f used by an assertion
for a routine r (or the invariant of the class containing r ) may itself have assertions, a
illustrated by both the full and correct_index examples. This raises a potential problem f
run-time assertion monitoring: if as part of a call to r we evaluate an assertion and th
causes a call to f, we do not want the call to evaluate any assertion that f itself may have.
For one thing, it is easy to construct examples that would cause infinite recursion
even without that risk it would be just wrong to evaluate the assertions of f. This would
mean that we treat as peers the routines of our computation, such as r, and their
assertions’s functions, such as f — contradicting the rule that assertions should be o
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higher plane than the software they protect, and their correctness crystal-clear. The
simple: 

If a call to f occurs as part of assertion checking for r, that is too late to ask whethe
f satisfies its assertions. The proper time for such a question is when you decide to uf in
the assertions applicable to r.

We can use an analogy introduced earlier. Think of f as a security guard at the
entrance of a nuclear plant, in charge of inspecting the credentials of visitors. The
requirements on guards too. But you will run the background check on a guard in adv
not while he is screening the day’s visitors.

Class invariants and reference semantics 

The object-oriented model developed so far includes two apparently unrelated as
both useful:

• The notion of class invariant, as developed in this chapter.

• A flexible run-time model which, for various reasons detailed in an ear
chapter (in particular the modeling needs of realistic systems), ma
considerable use of references.

Unfortunately these individually desirable properties cause trouble when
together.

The problem is, once again, dynamic aliasing, which prevents us from checkin
correctness of a class on the basis of that class alone. We have seen that the correc
a class means m + n properties expressing that (if we concentrate on the invariant INV,
ignoring preconditions and postconditions which play no direct role here):

P1 •  Every one of the m creation procedures produces an object that satisfies INV. 

P2 •  Every one of the n exported routines preserves INV. 

These two conditions seem sufficient to guarantee that INV is indeed invariant. The
proof is apparently trivial: since INV will be satisfied initially, and preserved by ever
routine call, it should by induction be satisfied at all stable times. 

This informal proof, however, is not valid in the presence of reference semantic
dynamic aliasing. The problem is that attributes of an object may be modified b
operation on another object. So even if all a● r operations preserve INV on the object OA
attached to a, some operation b● s (for b attached to another object) may destroy INV for
OA. So even with conditions P1 and P2 satisfied, INV may not be an invariant. 

Assertion Evaluation rule

During the process of evaluating an assertion at run-time, routine calls shall
be executed without any evaluation of the associated assertions.
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Here is a simple example. Assume classes A and B, each with an attribute whose typ
is the other’s class: 

class A … feature forward: B … end
class B … feature backward: A … end

We require that following the forward reference (if defined) from an instance of A
and then the backward reference from the corresponding B will yield the original A. This
may be expressed as an invariant property of A: 

round_trip: (forward /= Void) implies (forward● backward = Current)

Here is a situation involving instances of both classes and satisfying the invari

Invariant clauses of the round_trip form are not uncommon; think of forward in class
PERSON denoting a person’s residence, and backward in class HOUSE denoting a
house’s resident. Then round_trip states that the resident of any person’s residence is
person, a simple consistency requirement. Another example is the linked implemen
of trees, where the attributes of a tree node include references to its first child and
parent, introducing the following round_trip-style property in the invariant:

(first_child /= Void) implies (first_child● parent = Current)

Assume, however, that the invariant clause of B, if any, says nothing about the
attribute backward. The following version of A appears consistent with the invariant: 

class A feature

forward: B

attach (b1: B) is
-- Link b1 to current object.

do
forward := b1

-- Update b1’s backward reference for consistency:
if  b1 /= Void then

b1● attach (Current)
end

end
invariant

round_trip: (forward /= Void) implies (forward● backward = Current)
end

OA

(A)

OB

(B)

backward

forward
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The call b1● attach is meant to restore the invariant after an update of forward. Class
B must provide its own attach procedure: 

class B feature

backward: B

attach (a1: A) is
-- Link a1 to current object.

do
backward := a1

end
end

Class A appears to be correct: a procedure-less creation instruction ensure
invariant round_trip (since it initializes forward to a void reference), and its sol
procedure will always preserve round_trip. But consider execution of the following: 

a1: A; b1: B
…
!!  a1; !!  b1
a1●attach (b1)

b1●attach (Void)

Here is the situation after the last instruction: 

The invariant is violated on OA! This object is now linked to OB, but OB is 
linked to OA since its backward field is void. (A call to b1● attach (…) could also have
linked OB to an instance of A other than OA, which would be equally incorrect.)

What happened? Dynamic aliasing has struck again. The proof of correctne
class A outlined above is valid: every operation of the form a1●r, where a1 is a reference
to object OA, will preserve round_trip since the corresponding features of A (here there is
only one, attach) have been designed accordingly. But this is not sufficient to preserve
consistency of OA, since properties of OA may involve instances of other classes, s
B in the example, and the proof says nothing about the effect of these other cl
features on the invariant of A.

This problem is important enough to deserve a name: Indirect Invariant Effect . It
may arise as soon as we allow dynamic aliasing, through which an operation may m

OA

(A)

OB

(B)

backward

forward

a1 b1
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“INHERITANCE 
AND ASSER-
TIONS”, page 569.
an object even without involving any entity attached to it. But we have seen how muc
need dynamic aliasing; and the forward-backward scheme, far from being just a
academic example, is as noted a useful pattern for practical applications and librari

What can we do? The immediate answer involves the conventions for run
monitoring of assertions. You may have wondered why the effect of enabling ass
monitoring at the assertion (invariant ) level was described as

“ Check that class invariants hold on routine entry and exit for qualified calls.”

Why both entry and exit? Without the Indirect Invariant Effect, it would suffice
check the invariant when exiting qualified calls. (It is also checked at the end of cre
calls.) But now we have to be more careful, since between the termination of a call a
beginning of the next one on the same object, some call may have affected that obje
though its target was another object.

A more satisfactory solution would be to obtain a statically enforceable validity 
which would guarantee that whenever the invariant of a class A involves references to
instances of a class B, the invariant of B includes a mirror clause. In our example we c
avoid trouble by including in B an invariant clause trip_round mirroring round_trip:

trip_round: (backward /= Void) implies (backward● forward = Current)

It may be possible to generalize this observation to a universal mirroring 
Whether such a rule indeed exists, solving the Indirect Invariant Effect and removin
need for double run-time monitoring, requires further investigation.

More to come

We are not done with Design by Contract. Two important consequences of the prin
remain to be studied:

• How they lead to a disciplined exception handling mechanism; this is the topic o
next chapter.

• How they combine with inheritance, allowing us to specify that any sema
constraints that apply to a class also apply to its descendants, and that se
constraints on a feature apply to its eventual redeclarations; this will be part o
study of inheritance.

More generally, assertions and Design by Contract will accompany us throug
the rest of this book, enabling us to check, whenever we write software elements, th
know what we are doing.

11.15  KEY CONCEPTS INTRODUCED IN THIS CHAPTER 

• Assertions are boolean expressions expressing the semantic properties of clas
reintroducing the axioms and preconditions of the corresponding abstract data t

• Assertions are used in preconditions (requirements under which routines
applicable), postconditions (properties guaranteed on routine exit) and 
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invariants (properties that characterize class instances over their lifetime). O
constructs that involve assertions are loop invariants and the check instruction. 

• A precondition and a postcondition associated with a routine describe a con
between the class and its clients. The contract is only binding on the ro
inasmuch as calls observe the precondition; the routine then guarantee
postcondition on return. The notion of contracting provides a powerful metapho
the construction of correct software. 

• The invariant of a class expresses the semantic constraints on instances of the
The invariant is implicitly added to the precondition and the postcondition of ev
exported routine of the class.

• A class describes one possible representation of an abstract data type
correspondence between the two is expressed by the abstraction function, wh
usually partial. The inverse relation is in general not a function. 

• An implementation invariant, part of the class invariant, expresses the correctn
the representation vis-à-vis the corresponding abstract data type. 

• A loop may have a loop invariant, used to deduce properties of the result, a
variant, used to ascertain termination.

• If a class is equipped with assertions, it is possible to define formally what it m
for the class to be correct.

• Assertions serve four purposes: aid in constructing correct programs; documen
aid; debugging aid; basis for an exception mechanism.

• The assertion language of our notation does not include first-order pred
calculus, but can express many higher-level properties through function c
although the functions involved must be simple and of unimpeachable correctn

• The combination of invariants and dynamic aliasing raises the Indirect Inva
Effect, which may cause an object to violate its invariant through no fault of its o

11.16  BIBLIOGRAPHICAL NOTES

According to Tony Hoare:

An early advocate of using assertions in programming was none other than Alan
Turing himself. On 24 June 1950 at a conference in Cambridge, he gave a short
talk entitled “Checking a Large Routine” which explains the idea with great
clarity. “How can one check a large routine in the sense that it’s right? In order
that the man who checks may not have too difficult a task, the programmer should
make a number of definite assertions which can be checked individually, and
from which the correctness of the whole program easily follows.”

The notion of assertion as presented in this chapter comes from the work on pro
correctness pioneered by Bob Floyd [Floyd 1967], Tony Hoare [Hoare 1969] and Edsger

]
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Dijkstra [Dijkstra 1976], and further described in [Gries 1981]. The book Introduction to
the Theory of Programming Languages [M 1990] presents a survey of the field.

The notion of class invariant comes from Hoare’s work on data type invari
[Hoare 1972a]. See also applications to program design in [Jones 1980] [Jones 1986]. A
formal theory of morphisms between abstract data types may be found in [Goguen 1978]. 

Formal specification languages include Z, VDM, OBJ-2 and Larch; see
bibliographical references to chapter 6. Object-oriented formal specification languag
include Object Z, Z++, MooZ, OOZE, SmallVDM and VDM++, all of which a
described in [Lano 1994] which gives many more references.

The IEEE Computer Society publishes standards for the terminology of software e
defects, failures [IEEE 1990] [IEEE 1993]. Its Web page is at http://www.computer.org.

Surprisingly, few programming languages have included syntactical provision
assertions; an early example (the first to my knowledge) was Hoare’s and W
Algol W [Hoare 1966], the immediate precursor of Pascal. Others include Alphard [Shaw
1981] and Euclid [Lampson 1977], which were specifically designed to allow th
construction of provably correct programs. The connection with object-orie
development introduced by the notation developed in this book was foreshadowed 
assertions of CLU [Liskov 1981] which, however, are not executable. Another CLU-bas
book by Liskov and Guttag [Liskov 1986], one of the few programming methodolog
texts to discuss in depth how to build reliable software, promotes the “defen
programming” approach of which the present chapter has developed a critique.

The notion of Design by Contract presented in this chapter and developed in th
of this book comes from [M 1987a] and was further developed in [M 1988], [M 1989c],
[M 1992b] and [M 1992c]. [M 1994a] discusses the tolerant and demanding approac
to precondition design, with particular emphasis on their application to the desig
reusable libraries, and introduces the “tough love” policy. Further developments o
ideas have been contributed by James McKim in [McKim 1992a] (which led to some of
the initial ideas for IFL), [McKim 1995], [McKim 1996], [McKim 1996a]; see also
[Henderson-Sellers 1994a] which examines the viewpoint of the supplier.

EXERCISES

E11.1  Complex numbers

Write the abstract data type specification for a class COMPLEX describing the notion of
complex number with arithmetic operations. Assume perfect arithmetic. 

E11.2  A class and its ADT

Examine all the preconditions and axioms of the STACK abstract data type introduced i
an earlier chapter and study whether and how each is reflected in class STACK4.
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E11.3  Complete assertions for stacks

Show that by introducing a secret function body which returns the body of a stack, it i
possible to make the assertions in a STACK class reflect the full corresponding abstra
data type specification. Discuss the theoretical and practical value of this technique

E11.4  Exporting the size

Why is capacity exported for the bounded implementation of stacks, class STACK2?

E11.5  An implementation invariant

Write the implementation invariant for class STACK3.

E11.6  Assertions and exports

The discussion of using functions in assertions introduced a function correct_index for the
precondition of item and put. If you add this function to class ARRAY, what export status
must you give it?

E11.7  Finding the bugs

Show that each of the four attempts at binary search algorithms advertized as “wro
indeed incorrect. (Hint : unlike proving an algorithm correct, which requires showing th
it will work for all possible cases, proving it incorrect only requires that you find one case
in which the algorithm will produce a wrong result, fail to terminate, or execute an ill
operation such as an out-of-bounds array access or other precondition violation.)

E11.8  Invariant violations

The discussion in this chapter has shown that a precondition violation indicates an
in the client, and a postcondition violation indicates an error in the supplier. Explain
an invariant violation also reflects a supplier error.

E11.9  Random number generators

Write a class implementing pseudo-random number generation, based on a seq
ni = f (ni-1) where f is a given function and the seed n0 will be provided by clients of the
class. Functions should have no side effects. (Assume f is known; you can find such
functions in textbooks such as [Knuth 1981], and in numerical libraries.)
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E11.10  A queue module

Write a class implementing queues (first-in, first-out policy), with appropriate assert
in the style of the STACK classes of this chapter. 

E11.11  A set module

Write a class implementing sets of elements of an arbitrary types, with the standa
operations (membership test, addition of a new element, union, intersection etc.). B
to include the proper assertions. Any correct implementation, such as linked lists or a
is acceptable.

POSTSCRIPT: THE ARIANE 5 CRASH

As this book was being printed, the European Space Agency released the report
international investigation into the test flight of the Ariane 5 launcher, which crashe
June 4, 1996, 40 seconds after lift-off, at a reported cost of 500 million dollars (uninsu

The cause of the crash: a failure of the on-board computer systems. The cause
failure: a conversion from a 64-bit floating-point number (the mission’s “horizontal bi
to a 16-bit signed integer produced an exception because the number wa
representable with 16 bits. Although some other possible exceptions were mon
(using the Ada mechanisms described in the next chapter) prior analysis had show
this particular one could not occur; so it was decided not to encumber the code w
extra exception handler.

The real cause: insufficient specification. The analysis that the value would al
fit in 16 bits was in fact correct — but for the Ariane 4 flight trajectory! The code 
reused for Ariane 5, and the assumption, although stated in an obscure part of
technical document, was simply forgotten. It did not apply any more to Ariane 5.

With the Design by Contract approach, it would have been stated in a precond

require
horizontal_bias <= Maximum_horizontal_bias

naturally prompting the quality assurance team to check all uses of the routine and to
that some could violate the assertion. Although we will never know, it seems al
certain that the mistake would have been caught, probably through static analysis,
worst during testing thanks to the assertion monitoring mechanisms described i
chapter.

The lesson is clear: reuse without contracts is folly. The “abstracted modules” tha
we have defined as our units of reuse must be equipped with clear specifications o
operating conditions — preconditions, postconditions, invariants; and these specific
must be in the modules themselves, not in external documents. The principles that we ha
learned, particularly Design by Contract and Self-Documentation, are a required con
of any successful reusability policy. Even if your mistakes would cost less than h
billion dollars, remember this rule as you go after the great potential benefits of reu
be reusable, a module must be specified; and the programming language must s
assertion mechanisms that will put the specification in the software itself.
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