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When the contract is broken:
exception handling

Like it or not, it is no use pretending: in spite of all static precautions, some unexpecte
and undesired event will sooner or later occur while one of your systems is executing. Th
is known as an exception and you must be prepared to deal with it.

12.1 BASIC CONCEPTS OF EXCEPTION HANDLING

The literature on exception handling is often not very precise about what really constitute
an exception. One of the consequences is that the exception mechanisms present in s
programming languages as PL/l and Ada are often misused: instead of being reserved
truly abnormal cases, they end up serving as inter-rogtin@instructions, violating the
principle of Modular Protection.

Fortunately, the Design by Contract theory introduced in the preceding chapte
provides a good framework for defining precisely the concepts involved.

Failures

Informally, an exception is an abnormal event that disrupts the execution of a system. T
obtain a more rigorous definition, it is useful to concentrate first on a more elementar)
concept, failure, which follows directly from the contract idea.

A routine is not just some arbitrary sequence of instructions but the implementatior
of a certain specification — the routine’s contract. Any call must terminate in a state tha
satisfies the precondition and the class invariant. There is also an implicit clause in th
contract: that the routine must not have caused an abnormal operating system sign
resulting for example from memory exhaustion or arithmetic overflow and interrupting
the normal flow of control in the system’s execution.

It mustrefrain from causing such events, but of course not everything in life is what
it must be, and we may expect that once in a while a routine call will be unable to satisf
its contract — triggering an abnormal signal, producing a final state that violates the
postcondition or the invariant, or calling another routine in a state that does not satisfy th:
routine’s precondition (assuming run-time assertion monitoring in the last two cases).
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Such a case will be called a failure.

Definitions: success, failure

A routine call succeeds if it terminates its execution in a state satisfying the
routine’s contract. It fails if it does not succeed.

The discussion will use the phrase “routine failure”, or just “failure”, as an
abbreviation for “failure of a routine call”. Of course what succeeds or fails is not a routine
(an element of the software text) but one particular call to that routine at run time.

Exceptions

From the notion of failure we can derive a precise definition of exceptions. A routine fails
because of some specific event (arithmetic overflow, assertion vic...) that interrupts
its execution. Such an event is an exception.

Definition: exception

An exception is a run-time event that may cause a routine call to faji.

Often an exceptiowill cause failure of the routine. But you can prevent this from
occurring by writing the routine so that it will catch the exception and try to restore a state
from which the computation will paeeed. This is the reason why failure and exception are
different concepts: every failure results from an exception, but not every exception results
in failure.

The study of software anomalies in the previous chapter introduced thefaulinsSeeErrors, defects
(for a harmful execution eventdefec (for an inadequacy of system, which may cauand other creeping
faults) anderror (for a mistake in the thinking process, which may lead to defectscreatures’, page 348
failure is a fault; an exception is often a fault too, but not if its possible occurrence
been anticipated so that the software can recover from the exception.

Sources of exceptions

The software development framework introduced so far opens the possibility of specific
categories of exception, listed at the top of the facing page.

CaseEl reflects one of the basic requirements of using references:af.is only “Void references and
meaningful ifais attached to an object, that is to say non-void. This was discussed icalls”’, page 24)
presentation of the dynamic model.

CaseE? also has to do with void values. Remember that “attachment” co“Hybrid attach-
assignment and argument passing, which have the same semantics. We saw ments’, page 2€3
discussion of attachment that it is possible to attach a reference to an expanded tar
result being to copy the corresponding object. This assumes that the object exists; if the
source is void, the attachment will trigger an exception.
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See“Monitoring
assertions at run
time”, page 393

Definition: exception cases

An exception may occur during the execution of a rour as a result of any
of the following situations:

E1l - Attempting a qualified feature ceal f and finding thaa is void.
E2 «Attempting to attach a void value to an expanded target.

E3 «Executing an operation that produces an abnormal condition detected
by the hardware or the operating system.

E4 - Calling a routine that fails.

E5 e Finding that the precondition r does not hold on entry.

E6 «Finding that the postcondition r does not hold on exit.

E7 Finding that the class invariant does not hold on entry or exit.

E8 «Finding that the invariant of a loop does not hold afteifrom clause
or after an iteration of the loop body.

E9 «Finding that an iteration of aloop’s body does not decrease the variant.

E10+ Executing acheck instruction and finding that its assertion does |not
hold.

E11. Executing an instruction meant explicitly to trigger an exception.

CaseE3 follows from signals that the operating system sends to an application whe
it detects an abnormal event, such as a fault in an arithmetic operation (underflc
overflow) or an attempt to allocate memory when none is available.

CaseE4 arises when a routine fails, as a result of an exception that happened dur
its own execution and from which it was not able to recover. This will be seen in mo
detail below, but be sure to note the rule that results fromE4:se

Failures and exceptions

A failure of a routine causes &xceptiolin its caller.

CasesEESto ELC can only occur if run-time assertion monitoring has been enabled :
the proper level: at leaassertion(require) for EE, assertior(loop) for E8 andE¢S etc.

CaseE11 assumes that the software may include calls to a procraise whose
sole goal is to raise an exception. Such a procedure will be introduced later.

Causes of failure

Along with the list of possible exception cases, it is useful for the record to define whet
failure (itself the source of an exception in the caller, as perE4) can occur:
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We have yetto see
what it means for a
routine to “recover”
from an excepticn

Definition; failure cases

A routine call will fail if and only if an exception occurs during its execution
and the routine does not recover from the exception.

The definitions of failure and exception are mutually recursive: a failure arises from
an exception, and one of the principal sources of exceptions in a calling rE4) is the
failure of a called routine.

12.2 HANDLING EXCEPTIONS

We now have a definition of what may happen — exceptions — and of what we would
prefer not to happen as a result — failure. Let us equip ourselves with ways to deal with
exceptions so as to avoid failure. What can a routine do when its execution is suddenly
interrupted by an unwelcome diversion?

As so often in this presentation, we can get help towards an answer by looking at
examples of hownot to do things. Here the C mechanism (coming from Unix) and an Ada
textbook will oblige.

How not to do it — a C-Unix example

The first counter-example mechanism (most notably present on Unix, although it has been
made available on other platforms running C) is a procedure signa which you can
call under the form

signal(signal_cod, your_routine)

with the effect of planting a referenceyour_routine into the software, as the routine that
should be called whenever a signal of csignal _codeoccurs. A signal code is one of a
number of possible integers suchSIGILL (illegal instruction) an(SIGFPE (floating-
point exception). You may include as many callsigna as you like, so as to associate
different routines with different signals.

Then assume some instruction executed after the csignal triggers a signal of
codesignal_cod. Were it not for thesigna call, this event would immediately terminate
the execution in an abnormal state. Instead it will cause a cyour routin¢, which
presumably performs some corrective action, and thel...'resume the execution exactly
at the point where the exception occurred. This is dangerous, as you have no guarantee that
the cause of the trouble has been addressed at all; if the computation was interrupted by a
signal it was probably impossible to complete it starting from its initial state.

What you will need in most cases is a way to correct the situation anrestart
the routine in a new, improved initial state. We will see a simple mechanism that
implements this scheme. Note that one can achieve it in C too, on most platforms, by
combining thesignalfacility with two other library routinessetjmj to insert a marker into
the execution record for possible later return, longjmy to return to such a marker, even
if several calls have been started since setjm}. The setjmj-longjmg mechanism is,
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From Sommerville
and Morrisor, “Soft-
ware Development
with Ada”, Addison-
Wesle, 1987. Letter
cast, indentatiol,
semicolon usage and
the name of the float-
ing-point type have
been adapted to the
conventions of the
present boc; Non_
positive has been
changed tiNegative.

however, delicate to use; it can be useful in the target code generated by a compiler —
can indeed serve, together wisigna, to implement the high-level O-O exception
mechanism introduced later in this chapter — but is not fit for direct consumption &
human programmers.

How not to do it — an Ada example

Here is a routine taken from an Ada textbook:

sqrt(n: REAL) return REAL s
begin
if x<0.0then
raise Negative
else
normal_square_root_computation
end
exception
when Negative=>
put ("Negative argume")
return
when others=> ...
end -- sqrt

This example was probably meant just as a syntactical illustration of the Ac
mechanism, and was obviously written quickly (for example it fails to return a value in tt
exceptional case); so it would be unfair to criticize it as if it were an earnest example
good programming. But it provides a useful point of reference by clearly showing ¢
undesirable way of handling exceptions. Given the intended uses of Ada — military a
space systems — one can only hope that not too many actual Ada programs have t:
this model verbatim.

The goal is to compute the real square root of a real number. But what if the numl
is negative? Ada has no assertions, so the routine performs a test and, ifn to be
negative, raises an exception.

The Ada instructiolraise Exc interrupts execution of the current routine, triggering
an exception of codExc. Once raised, an exception can be caught, through a routine’s (:
block’s) exceptionclause. Such a clause, of the form

exception
when code_a| code_a, ...=> Instructions_
when code_b, ... => Instructions_;

is able to handle any exception whose code is one of those listedwhen subclauses;

it will executelnstructions_ifor codescode a;, code_a, ... and so on for the others. One
of the subclauses may, as in the example, startwhen others, and will then handle any
exception not explicitly named in the other subclauses. If an exception occurs but its c
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is not listed (explicitly or througiwhen others), the routine will pass it to its caller; if
there is no caller, meaning that the failed routine is the main program, execution
terminates abnormally.

In the example there is no need to go to the caller since the exception, just after being
raised, is caught by trexceptior clause of the routine itself, which contains a subclause
when Negative=> ...

But what then do the corresponding instructions do? Here they are again:

put ("Negative argume").

return

In other words: print out a message — a delicate thought, considering was happens
next; and then return to the caller. The caller will not be notified of the event, and will
continue its execution as if nothing had happened. Thinking again of typical applications
of Ada, we may just wish that artillery computations, which can indeed require square root
computations, do not follow this scheme, as it might direct a few missiles to the wrong
soldiers (some of whom may, however, have the consolation of seeing the error message
shortly before the encounter).

This technique is probably worse than the C-Lsigna mechanism, which at least
picks up the computation where it left.when subclause that ends wireturn does not
even continue the current routine (assuming there are more instructions to execute); it gives
up and returns to the caller as if everything were fine, although everythnot fine.
Managers — and, to continue with the military theme, officers — know this situation well:
you have assigned a task to someone, and are told the task has been completed — but it has
not. This leads to some of the worst disasters in human affairs, and in software affairs too.

This counter-example holds a lesson for Ada programmers: under almost no
circumstances should when subclause terminate its execution wittreturn. The
gualification “almost” is here for completeness, to account for a special casfalsae
alarm, discussed below; but that case is very rare. Ending exception handling with a
return means pretending to the caller that everything is right when it is not. This is
dangerous and unacceptable. If you are unable to correct the problem and satisfy the Ada
routine’s contract, you should make the routine fail. Ada provides a simple mechanism to
do this: in arexceptior clause you may executeraise instruction written as just

raise

whose effect is to re-raise the original exception to the caller. This is the proper way of
terminating an execution that is not able to fulfill its contract.

Ada Exception rule

The execution of any Ada exception handler should end by either exeguting
araise instruction or retrying the enclosing program unit.
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The classification of
exception cas, s
includingEgS, is on
page4l:.

Exception handling principles

These counter-examples help show the way to a disciplined use of exceptions. T
following principle will serve as a basis for the discussion.

Disciplined Exception Handling principle

There are only two legitimate responses to an exception that occurs gduring
the execution of a routine:

R1 «Retrying: attempt to change the conditions that led to the exception
and to execute the routine again from the start.

R2 «Failure (also known aiorganized panic): clean up the environment
terminate the call and report failure to the caller.

In addition, exceptions resulting from some operating system signals|(case
E3 of the classification of exceptions) may in rare cases jusfalse alarm
response: determine that the exception is harmless and pick up the routine’s
execution where it started.

Let us do away first with the false alarm case, which corresponds to the basic C-Ul
mechanism as we have seen it. Here is an example. Some window systems will caus
exception if the user of an interactive system resizes a window while some proces:
executing in it. Assume that such a process does not perform any window output; then
exception was harmless. But even in such case there are usually better ways, suc
disabling the signals altogether, so that no exception will occur. This is how we will de
with false alarms in the mechanism of the next sections.

False alarms are only possible for operating system signals — in fact, only for sign:
of the more benign kind, since you cannot ignore an arithmetic overflow or an inability
allocate requested memory. Exceptions of all the other categories indicate trouble t
cannot be ignored. It would be absurd, for example, to proceed with a routine after findi
that its precondition does not hold.

So much for false alarms (unfortunately, since they are the easiest case to hanc
For the rest of this discussion we concentrate on true exceptions, those which we car
just turn off like an oversensitive car alarm.

Retryinc is the most hopeful strategy: we have lost a battle, but we have not lost t
war. Even though our initial plan for meeting our contract has been disrupted, we s
think that we can satisfy our client by trying another tack. If we succeed, the client will |
entirely unaffected by the exception: after one or more new attempts following the initi
failed one, we will return normally, having fulfilled the contract. (“Missémtomplished,
Sir. The usual little troubles along the way, Sir. All fine by now, Sir.”)

What is the “other tack” to be tried on the second attempt? It might be a differe
algorithm; or it might be the same algorithm, executed again after some changes have t
brought to the state of the execution (attributes, local entities) in the hope of prevent
the exception from occurring again. In some cases, it may even be the original routine t
again without any change whatsoever; this is applicable if the exception was due to sc
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external event — transient hardware malfunction, temporarily busy device or
communication line — which we do not control although we expect it will go away.

With the other responsfailure, we accept that we not only have lost th&lbgthe
current attempt at executing the routine body) but cannot win the war (the attempt to
terminate the call so as to satisfy the contract). So we give up, but we must first ensure two
conditions, explaining the use of “organized panic” as a more vivid synonym for “failure”:

* Making sure (unlike what happened in 'sqri counter-example) that the caller gets
an exception. This is ttpanic aspect: the routine has failed to live up to its contract.

 Restoring a consistent execution state —organize(aspect.

What is a “consistent” state? From our study of class correctness in the previous
chapter we know the answer: a state that satisfies the invariant. We saw that in the course
of its work a routine execution may temporarily violate the invariant, with the intention of
restoring it before termination. But if an exception occurs in an intermediate state the
invariant may be violated. The routine must restore it before returning control to its caller.

The call chain

To discuss the exception handling mechanism it will be useful to have a clear picture of
the sequence of calls that may lead to an exception. This is the notion of call chain, already
present in the explanation of the Ada mechanism.

The call chain

\;outine call

Letr, be the root creation procedure of a certain system (irr j would be the main
program). At any time during the execution, there current routing, the routine whose
execution was started last; it was started by the execution of a certain routine; that routine
was itself called by a routine; and so on. If we follow this called-to-caller chain all the way
through we will end up &, The reverse chair g, the last routinr, that it called, the last
routiner, thatr, called, and so on down to the current routine) is the call chain.

If a routine produces an exception (as pictured at the bottom-right of the figure), it
may be necessary to go up the chain until finding a routine that is equipped to handle the
exception — or stop execution if we reerp, not having found any applicable exception
handler. This was the case in Ada when no routine in the call chain fexception
clause with ewhen clause that names the exception typothers.
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12.3 AN EXCEPTION MECHANISM

From the preceding analysis follows the exception mechanism that fits best with t
object-oriented approach and the ideas of Design by Contract.

The basic properties will follow from a simple language addition — two keyword:
— to the framework of the preceding chapters. A library clEXCEPTION, will also
be available for cases in which you need to fine-tune the mechanism.

Rescue and Retry

First, it must be possible to specify, in the text of a routine, how to deal with an excepti
that occurs during one of its calls. We need a new clause for that purpose; the m
appropriate keyword irescug, indicating that the clause describes how to try to recovel
from an undesirable run-time event. Becauserescueclause describes operations to be
executed when the routine’s behavior is outside of the standard case described by
precondition require), body do) and postconditionensure), it will appear, when
present, after all these other clauses:

routine is
require
precondition
local
... Local entity declaration...
do
body
ensure
postcondition
rescue
rescue_clause
end

The rescue_claus is a sequence of instructions. Whenever an exception occul
during the execution of the normbody, this execution will stop and tlrescue clause
will be executed instead. There is at most rescue clause in a routine, but it can find
out what the exception was (using techniques introduced later), so that you will be able
treat different kinds of exception differently if you wish to.

The other new construct is the retry instruction, writtenretry . This instruction
may only appear in rescue clause. Its execution consists in re-starting the routine body
from the beginning. The initializations are of course not repeated.

These constructs are the direct implementation of the Disciplined Exceptic
Handling principle. Theetry instruction provides the mechanism for retryingescue
clause that does not executretry leads to failure.
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How to fail without really trying

The last observation is worth emphasizing:

Failure principle

Execution of erescue clause to its end, not leading tcaetry instruction,
causes the current routine call to fail.

So if you have wondered how routines can fail in practice — causincE4 of the See pag413.
exception classification — this is it.

As a special case, consider a routine which not have erescue clauseIn practice
this will be the case with the vast majority of routines since the approach to exception
handling developed here suggests equipping only a select few routines with such a clause.
Ignoring possible local entity declarations, arguments, precondition and postcondition, the
routine appears as

routine is
do
body
end

Then if we consider — as a temporary convention — that the absencrescue
clause is the same thing as an empty rescue clause, that is to say

routine is
do
body
rescue
-- Nothing here (empty instruction list)
end

the Failure principle has an immediate consequence: if an exception occurs in a routine
withoutrescue clause it will cause the routine to fail, triggering an exception in its caller.

Treating an abserrescue clause as if it were present but empty is a good enough For the exact conven-

approximation at this stage of the discussion; but we will need to refine this rule slightly tion see‘When there

when we start looking at the effect of exceptions on the class invariant. is no rescue clause”,
page 43))

An exception history table

If a routine fails, either because it hasrescue clause at all or because rescue clause
executes to the end withoutretry, it will interrupt the execution of its caller with a
“Routine failed” E4) exception. The caller is then faced with the same two possibilities:
either it has erescue clause that can execute a succesretry and get rid of the
exception, or it will fail too, passing the exception one level up the call chain.
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An exception
history table

If in the end no routine in the call chain is able to recover from the exception, tt
execution as a whole will fail. In such a case the environment should print out a cle
description of what happened, the exception history table. Here is an example:

Object |Class Routine Nature of exception |Effect
04 Z_FUNCTIONsplit (from E_FUNCTION) Featureinterpolate: |Retry
Called on void
reference.
03 INTERVAL |integrate interval_big_enoug: |Falil

Precondition violate

02 EQUATION |solve(from GENERAL_EQUATIONRoutine failure Fail

02 EQUATION |filter Routine failure Retry

02 MATH new matrix(from BASIC_MATH [enough_memo:y |Falil
Check violated.

o1 INTERFACE/make Routine failure Fail

(root)

This is a record not only of the exceptions that directly led to the execution’s failul
but of all recent exceptions, up to a limit of 100 by default, including those from which tt
execution was able to recover througretry . From top to bottom the order is the reverse
of the order in which calls were started; the creation procedure is on the last line.

The Routine column identifies, for each exception, the routine whose call wa:
interrupted by the exception. TObject column identifies the target of that call; here the
objects have names such as O1, but in a real trace they will have internal identifiers, us
to determine whether two objects are the same. Class column gives the object’s
generating class.

The Nature of exceptioncolumn indicates what happened. This is where, for a
assertion violation as in the second entry from the top, the environment can take advan:
of assertion labeldnterval_big_enoug in the example, to identify the precise clause that
was violated.

The last column indicates how the exception was handled: Retry or Fail. The tal
consists of a sequence of sections separated by thick lines; each section except the la:
to a Retry. Since a Retry enables the execution to restart normally, an arbitrary numbe
calls may have occurred between two calls separated by a thick line.

Ignoring any such intermediate calls — successful and as such uninteresting for
purposes of this discussion — here is the call and return chain corresponding to the ak
exception history table. To reconstruct the action you should follow the arrows countt
clockwise from the call tmakeat the top left.
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A failed

make -
execution

new_matrix

integrate

. Normal return \( Call

\ Failure return O Retry (one or more times)

12.4 EXCEPTION HANDLING EXAMPLES

We now have the basic mechanism. Let us see how to apply it to common situations.

Fragile input

Assume that in an interactive system you need to prompt your system'’s user to enter an
integer. Assume further that the only procedure at your disposal to read the integer,
read_one_intege leaving its result in the attribulast_integer_rea, is not robust: if
provided with something else than integer input, it may fail, producing an exception. Of
course you do not want your own system to fail in that case, but since you have no
control overread_one_integ¢ you must use it as it is and try to recover from the
exception if it occurs. Here is a possible scheme:

get_integeiis
-- Get integer from user and make it availabllast integer_read
-- If input initially incorrect, ask again as many times as necessary.
do
print ("Please enter an integ: ")
read_one_integer
rescue
retry
end

This version of the routine illustrates the retry strategy: we just keep retrying.

An obvious criticism is that if a user keeps on entering incorrect input, the routine
will forever keep asking for a value. This is not a very good solution. We might put an
upper bound, say five, on the number of attempts. Here is the revised version:
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Maximum_attemp: INTEGERIs 5
-- Number of attempts before giving up getting an integer.
get_integeiis
-- Attempt to read integer in at mcMaximum_attemp attempts.
-- Set value ointeger_was_ree to record whether successful.
-- If successful, make integer availablelast_integer_read

local
attempt: INTEGER
do
if attempt< Maximum_attemptthen
print ("Please enter an integ: ")
read_one_integer
integer_was_rea:= True
else
integer_was_rea:= False
attempts= attempts + 1
end
rescue
retry
end

This assumes that the enclosing class has a boolean atiinteger_was_read
which will record how the operation went. Callers should use the routine as follows to t
to read an integer and assign it to an integer en:lity

get_integer
if integer_was_reathen
n:=last_integer_read
else
“Deal with case in which it was impossible to obtain an integer”
end

Recovering from hardware or operating system exceptions

Among the events that trigger exceptions are signals sent by the operating system, s
of which may have originated with the hardware. Examples include: arithmetic overflo
and underflow; impossible I/O operations; “illegal instruction” attempts (which, with &
good object-oriented language, will come not from the O-O software but from compani
routines, written in lower-level languages, which may overwrite certain areas of memor
creation or clone operations that fail because no memory is available; user interrupts
user hitting the “break” key or equivalent during execution).

Theoretically you may view such conditions as assertion violationa + b
provokes overflow, it means that the call has not observed the implicit precondition on 1
+ function for integer or real numbers, stating that the mathematical sum of the tv
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arguments should be representable on the computer. A similar implicit precondition on the
allocation of a new object (creation or clone) is that enough memory is available; if a write
fails, it is because the environment — files, devices, users — did not meet the applicability
conditions. But in such cases it is impractical or impossible to express the assertions, let
alone check them: the only solution is to attempt the operation and, if the hardware or
operating system signals an abnormal condition, to treat it as an exception.

Consider the problem of writing a functiquasi_invers which for any real number
I' . . . . .
X must return either its invers}-\e or, if that is impossible to compute bex is too

small, the value 0. This type of problem is essentially impossible to solve without an
exception mechanism: the only practical way to know whex has a representable

1
inverse is to attempt the divisic)—g ; but if this provokes overflow and you cannot handle
exceptions, the program will crash and it will be too late to return O as a result.

On some platforms it may be possible to write a fundnvertible such thainvertible (x)

istrue if and only ifthe inverse x can be computed. You can then invertible to write

guasi_invers. But this is usually not a practical solution since such a function will not be

portable across platforms, and in time-sensitive humerical computations will cause a

serious performance overhead, a callinvertible being at least as expensive as the

inversion itself.

With the rescue-retry mechanism you can easily solve the problem, at least on
hardware that triggers a signal for arithmetic underflow:

guasi_inverse¢x: REAL): REALIs
-- 1/x if possible, otherwise 0
local
division_triecc BOOLEAN
do
if not division_triedthen
Result:= 1/x
end
rescue
division_tried:= True
retry
end

The initialization rules sedivision_triec to false at the start of each call. The body
does not need arelse clause because these rules also initicResul to 0.

Retrying for software fault tolerance

Assume you have written a text editor and (shame on you) you are not quite sure it is
entirely bug-free, but you already want to get some initial user feedback. Your guinea pigs
are willing to tolerate a system with some remaining errors; they mighpafor example

that once in a while it will be unable to carry out a command that they have requested; but
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they will not use it to enter serious texts (which is what you want them to do, to test yc
editor under realistic conditions) if they fear that a failure may result in a catastrophe, st
as brutal exit and loss of the last half-hour's work. With the Retrying mechanism you ¢
provide a defense against such behavior.

Assume that the editor, as will usually be the case, contains a basic comme
execution loop of the form

from ... until exitloop
execute_one_command
end

where the body of routinexecute_one _comma s of the form

“Decode user request”
“Execute appropriate command in response to request”

”

The “Execute...” instruction chooses among a set of available routines (fol
example delete a line, change a word etc.) We will see in a later chapter how 1
techniques of inheritance and dynamic binding yield simple, elegant structures for sL
multi-way decisions.

The assumption is that the different routines are not entirely safe; some of them nr
fail at unpredictable times. You can provide a primitive but effective protection again
such an event by writing the routine as

execute_one_commeisi

-- Get a request from the user and, if possible,
-- execute the corresponding command.

do
“Decode user request”
“Execute appropriate command in response to request”

rescue
messag(" Sorry, this command faile")
messag("Please try another comma")d
messag("Please report this failure to the autt")rr
“Instructions to patch up the state of the editor”
retry

end

This scheme assumes in practice that the types of supfuser reque include
“save current state of my work” and “quit”, both of which had better work correctly. A
user who sees the messiSorry, this command faile will most likely want to save the
results of the current session and get out as quickly as possible.

Some of the routines implementing individual operations may have theirescue
clauses, leading to failure (so that the abrescue clause oexecute_one comme takes
over) but only after printing a more informative, command-specific message.
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N-version programming

Another example of retrying for software fault tolerance is an implementation of the “N-
version programming” approach to improving software reliability.

N-version programming was inspired by redundancy techniques that have piSee .. Avizieni, “The
their usefulness in hardware. In mission-critical setups it is frequent to encoN-Version Approach to
redundant hardware configurations, where several devices — for example com ut1':auIt'TOIer"’mt Soft

" . g_ ’ = — p PUl\yare”, IEEE Tran. on
perform an identical function, and an arbitrating mechanism compares the resof. Enc, SE-1;, 12,
deciding for the majority in case of discrepancy. This approach guards against sDec. 1985 pp. 1491-
component failures and is common in aerospace applications. (In a famous incide™>"~
early space shuttle launch had to be delayed because of a bug in the software
arbitrating computer itself.) N-version programming transposes this approach to software
by suggesting that for a mission-critical development two or more teams, working in
environments as distinct as possible, should produce alternative systems, in the hope that

errors, if any, will be different.

This is a controversial idea; one may argue that the money would be better spent in
improving the correctness and robustness of a single version than in financing two or more
imperfect implementations. Let us, however, ignore these objections and refrain from any
judgment on the idea itself, but see how retry mechanism would support the idea of
using several implementations where one takes over if the others fail:

do_taslis
-- Solve a problem by applying one of several possible implementations.

require

local
attempt: INTEGER
do
if attempts= Othen
implementation_1
elseil attempts= 1then
implementation_2
end
ensure

rescue
attempts:= attempts + 1
if attempte< 2then
“Perhaps some instructions to reset to stable state”
retry
end
end

The generalization to more than two alternative implementations is immediate.



§12.5 THE TASK OF A RESCUE CLAUSE 427

This example is typical of the useretry . The rescue clausneve attempts to reach
the original goal using a substitute implementation; reaching this goal, as expressed by
postcondition if there is one, is the privilege of the normal body. Note that after tw
attempts (on in the general case) the routine simply executerescue clause to the end
and so fails.

Let us look more closely at what happens when an exception is triggered during
execution ofr. The normal execution (the body) stops; the rescue clause is execut
instead. Then two cases may occur:

« The rescue clause may execuretry, usually after some other instructions. In this
case, execution of the routine will start anew. This new attempt may succeed; th
the routine will terminate normally and return to its client. The call is a success; tl
contract has been fulfilled. Execution of the client is not affected, except of cour
that the call may have taken longer than normal. If, however, the retry attempt ag:
causes an exception, the process of executing the rescue clause will start anew.

« Ifthe rescue clause does not execuretry , it will continue to its end. (This happens
in the last example wheattempts>= 2.) In this case the routine fails: it returns
control to its caller, signaling an exception. Because the caller gets an exception,
same rule determines how its own execution continues.

This mechanism strictly adheres to the Disciplined Exception Handling principle
either a routine succeeds, that is to say its body executes to the end and satisfies
postcondition, or it fails. When interrupted by an exception, you may either report failu
or try your normal body again; in no way can you exit through the rescue clause a
pretend to your caller that you succeeded.

12.5 THE TASK OF A RESCUE CLAUSE

The last comments get us started towards a better understanding of the excep
mechanism by suggesting the theoretical role of rescue clauses. Some formal reaso
will help us obtain the complete picture.

The correctness of a rescue clause

SefWHEN ISA  The formal definition of class correctness stated two requirements on the features c
CLASS COR- class. OneC1) requires creation procedures to start things off properly. The (C2)r (
RECT?",11.9, page . . . . .

370. more directly relevant for the present discussion, states that to satisfy its contract, ev
routine, started with its precondition and the class invariant both satisfied, must prese
the invariant and ensure its postcondition. This was illustrated by the diagram depicti
the typical object lifecycle:
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Il a.make(...) The life of an

object

(Original page366.)

The formal rule read:

C2 « Forevery exported routinr and any set of valid argumerx: This rule appeared
8371
{pre, (x,) and INV} Body {pos; (x;) and INV} onpag

wherepre, is the preconditiorINV the class invarianBody; the body of the routine, and
pos} the postcondition. To keep things simple let us ignore the arguix;:nts

Let Rescu_be the rescue clause of a routine, ignoring any branch that leads to a
retry — that is to say keeping only those branches that will result in failure if executed.
Rule C2is a specification of the boBody; of the routine, in terms of what initial states
it assumes and what final states it can guarantee. Can we obtain a similar specification for
RESCUI:? It should be of the form

{?} Rescu; {?}

with the question marks replaced by actual assertions. (Here it is useful to try answering
the question for yourself before reading on: how would you fill in the question marks?)

Consider first the input assertion — the question mark on the leRescu;. See‘Weak and
Anything non-trivial that we write there would be wrong! Remember the discussioistrong conditions”,
attractive job offers: for whoever implements the tA in {P} A{Q}, the stronger the Page 335
preconditiorP, the easier the job, since a precondition restricts the set of input cases that
you must handle. Any precondition fRescu; would make the job easier by restricting
the set of states in whiRescuymay be called to action. But we may not assume any such
restriction since exceptions, by their very nature, may happen at any time. If we knew when
an exception will happen, it probably would not be an exception any more. Think of
hardware failures: we have no clue as to when a computer can start to malfunction. Nor do
we know, in an interactive system, when a user will feel like hitting the “break” key.

So the onlyP assertion that we can afford here (to replace the question mark on the
left) is the one that asserts nothing atTrue, the assertion that all states satisfy.

For a lazyRescu; implementor — again in reference to the discussion of job offers
in the previous chapter — this is bad news; in fact the precon(True is always the
worst possible news for a supplier, the case in which “the customer is always right”!
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What about the output assertion (Q)? As discussed earlier, a rescue clause tha
leads to a failure must, before returning control to its caller with an exception, restore
stable state. This means reestablishing the invariant.

Hence the rule that we seek, with no more question marks:

Correctness rule for failure-inducing rescue clauses

C3e {True} Rescup {INV}

Similar reasoning yields the corresponding rule for any briRetry; of the rescue
clause leading toretry instruction:

Correctness rule for retry-inducing rescue clauses
C4- {True} Retry, {INV and pre}

A clear separation of roles

It is interesting to contrast the formal roles of the body and the rescue clause:
C2«{pre, and INV} Body {post (x,) INV}
C3+{True} Rescup{INV}

The input assertion is stronger Body, : whereas the rescue clause is not permitted
to assume anything at all, the routine’s body may assume the precondition and
invariant. This makes its job easier.

The output assertion, however, is also strongeBody, : whereas the rescue clause
is only required to restore the invariant, the normal execution must also ensure
postcondition — the official job of the routine. This makes its job harder.

These rules reflect the separation of roles between the boddo clause) and the
rescue clause. The task of the body is to ensure the routine’s contract; not directly
handle exceptions. The task of the rescue clause is to handle exceptions, returning co
to the body or (in the failure case) to the caller; not to ensure the contract.

As an analogy — part of this book’s constant effort to provide readers not just wi
theoretically attractive concepts but also with practical skills that they can apply to tl
pursuit of their careers — consider the difficulty of choosing between two nobl
professions:icool andfirefighter. Each has its grandeur, but each has its servitudes. /
gratifying quality of the cook's job is that he may assume, when he shows up at work
the morning, that the restaurant is not burning (satisfies the invariant); presumably
contract does not specify any cooking obligation under burning circumstances. But witl
non-burning initial state the cook must prepare meals (ensure the postcondition); it is &
a component of his contract, although perhaps an implicit one, that throughout tl
endeavor he should maintain the invariant, if he can, by not setting the restaurant on f
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The firefighter, for his part, may assume nothing as to the state in which he finds the
restaurant when he is called for help at any time of day or night. There is not even any
guarantee that the restaurant is indeed burning — no precondition of this_burning,
or of any other form save fiTrue — since any call may be a false alarm. In some cases,
of course, the restaurant will be burning. But then a firefighter's only duty is to return it to
a non-burning state; his job description does not require that he also serve a meal to the
assembly of patiently waiting customers.

When there is no rescue clause

Having formalized the role of rescue clauses we can take a second look at what happens
when an exception occurs in a routine that has no such clause. The rule introduced earlier
— with a warning that it would have to be revised — stated that an absent rescue clause
was equivalent to a present but empty arescue eni. In light of our formal rules,
however, this is not always approprieC3 requires that

{True} Rescup {INV}

If Rescupis an empty instruction and the invarilNV is anything other thaT rue,
this will not hold.

Hence the exact rule. The cl:ANY— mother of all classes — includes a proceduwe will studyANY,

whose features are
default_rescuis presentin all classi's
o in “THE GLOBAL
-- Handle exception if no Rescue clause. INHERITANCE
: STRUCTURE’,
-- (Default: do nothing) 16.2, page 560
do
end

A routine that does not have a Rescue clause is considered to have one that, rather
than being empty as first suggested, has the form

rescue

default_rescue

Every class can redefirdefault_rescu (using the feature redefinition mechanism
studied as part of inheritance in a later chapter) to perform some specific action, instead
of the default empty effect defined GENERAIL.

Rule C3 indicates the constraint on any such action: starting in any state, it ISee‘The role of cre-
restore the class invarialNV. Now you will certainly remember that producing a sta@tion procedures”,
that satisfies the invariant was also the role ofcreation procedure: of a class, as \?vzgseo?ﬁa?sl’i?l
expressed by the rule labelC1. In many cases, you will be able to write the redefinitic '
of default rescu so that it relies on a creation procedure.
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12.6 ADVANCED EXCEPTION HANDLING

The extremely simple mechanism developed so far handles most of the needs
exception handling. But certain applications may require a bit of fine-tuning:

* You may need to find out the nature of the latest exception, so as to handle differ
exceptions differently.

* You may want to specify that certain signals should not trigger an exception.
« You may decide to trigger an exception yourself.

We could extend the language mechanism accordingly, but this does not seem
right approach, for atleast three reasons: the facilities are needed only occasionally, so
we would be needlessly burdening the language; some of them (in particular anything 1
has to do with signals) may be platform-dependent, whereas a language definition shc
be portable; and when you select a set of these facilities it is hard to be sure that you
not at some later time think of other useful ones, which would then force a new languc
modification — not a pleasant prospect.

For such a situation we should turn not to the language but to the supporting libra
We introduce a library clasEXCEPTION:, which provides the necessary fine-tuning
capabilities. Classes that need these capabilities will InEXCEPTION, using the
inheritance mechanism detailed in later chapters. (Some developers may prefer to use
client relation rather than inheritance.)

Exception queries

ClassEXCEPTIONSprovides a number of queries for obtaining some information abou
the last exception. You can find out the integer code of that exception:

exceptior: INTEGER
-- Code of last exception that occurred

original_exceptio: INTEGER
-- Original code of last exception that triggered current exception

The difference betweeexceptiol andoriginal_excepftio is significant in the case
of an “organized panic” response: if a routine gets an exception o'oc (indicating for
example an arithmetic overflow) but has no rescue clause, its caller will get an except
whose own code, given by the valueexceptiol, indicates “failure of a called routine”.

It may be useful atthat stage, or higher up in the call chain, to know what the original cau
was. This is the role original_exceptio .

The exception codes are integers. Values for the predefined exceptions are giver
integer constants provided IEXCEPTION: (which inherits them from another class
EXCEPTION_CONSTAN). Here are some examples:
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Check_instructio: INTEGERIis 7

-- Exception code for violated check
Class_invariar: INTEGERIs ...

-- Exception code for violated class invariant

Incorrect_inspect_valt INTEGERIs ...
-- Exception code for inspect value which is not one
-- of the inspect constants, if there is no Else_part

Loop_invarian: INTEGER:Is ...
-- Exception code for violated loop invariant

Loop_varian: INTEGERIs ...

-- Exception code for non-decreased loop variant
No_more_memo: INTEGERIs ...

-- Exception code for failed memory allocation
Postconditior: INTEGERIs ...

-- Exception code for violated postcondition
Preconditior: INTEGER:s ...

-- Exception code for violated precondition

Routine_failur: INTEGERIs ...
-- Exception code for failed routine

Void_assigned_to_expanc: INTEGERIs ...
Since the integer values themselves are irrelevant, only the first one has been shown.
A few other self-explanatory queries provide further information if needed:

meaning(excep: INTEGEF)
-- A message in English describing the nature of exceptions
-- of codeexcept

is_assertion_violatio: BOOLEAN

-- Is last exception originally due to a violated assertion
-- or non-decreasing variant?

ensure
Result= (exceptior= Preconditior) or (exceptior= Postconditio) or
(exceptior= Class_invariar) or
(exceptior= Loop_invarian) or (exceptior= Loop_varian).
is_system_excepti: BOOLEAN
-- Is last exception originally due to external event (operating system error)?
is_signa: BOOLEAN
-- Is last exception originally due to an operating system signal?
tag_nam: STRING
-- Tag of last violated assertion clause

original_tag_nam: STRING
-- Assertion tag for original form of last assertion violation.
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recipient_nam: STRING

-- Name of routine whose execution was interrupted by last exceptio
class_nam: STRING

-- Name of class including recipient of last exception
original_recipient_nam: STRING

-- Name of routine whose execution was interrupted by

-- original form of last exception
original_class_nam: STRING

-- Name of class including recipient of original form of last exception

With these features a rescue clause can handle different kinds of exception
different ways. For example you can write it, in a class inheriting EXCEPTION:, as

rescue
if is_assertion_violatio then
“Process assertion violation case”
else ifis_signalthen
“Process signal case”
else

end
or, with an even finer grain of control, as

rescue
if exceptior= Incorrect_inspect_valuthen
“Process assertion violation case”
else ifexceptior= Routine_Failurethen
“Process signal case”

else

end
quasi_invers was on Using classEXCEPTION,, we can modify thquasi_inversexample so that it will
page424. only attempt theretry if the exception was overflow. Other exceptions, such as ont

generated when the interactive user presses the Break key, will not cause the retry.
instruction in the rescue clause becomes:

if exceptior= Numerical_erro then
division_tried:= Trug; retry
end

Since there is nelse clause, exceptions other thNumerical_erro will result in
failure, the correct consequence since the routine has no provision for recovery in s
cases. When writing a rescue clause specifically to process a certain kind of possi
exception, you may use this style to avoid lumping other, unexpected kinds with it.
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How fine a degree of control?

One may express reservations about going to the level of specific exception handling
illustrated by the last two extracts. This chapter has developed a view of exceptions as
undesired events; when one happens, the reaction of the software and its developer is “I
don’t want to be here! Get me out as soon as possible!”. This seems incompatible with
exerting fine control, depending on the exception’'s source, over what happens in a
rescue clause.

For that reason, | tend in my own work to avoid using detailed case analysis on
exception sources, and stick to exception clauses that try to fix things if they can, and then
fail or retry.

This style is perhaps too austere, and some developers prefer a less restricted
exception handling scheme that makes full use of the query mechanisms of class
EXCEPTIONSwhile remaining disciplined. If you want to use such a scheme you will
find in EXCEPTION:all that you need. But do not lose sight of the following principle, a
consequence of the discussion in the rest of this chapter:

Exception Simplicity principle

All processing done in a rescue clause should remain simple, and focysed on
the sole goal of bringing the recipient object back to a stable state, permitting
aretry if possible.

Developer exceptions

All the exceptions studied so far resulted from events caused by agents external to the
software (such as operating system signals) or from involuntary consequences of the
software’s action (as with assertion violations). It may be useful in some applications to
cause an exception to happen on purpose.

Such an exception is called a developer exception and is characterized by an integer
code (separate from the general exception code, which is the same for all developer
exceptions) and an associated string name, which may be used for example in error
messages. You can use the following features to raise a developer exception, and to
analyze its properties in a rescue clause:

trigger (code: INTEGEF; messag: STRIN()

-- Interrupt execution of current routine with exception

-- of codecode and associated temessag.2
developer_exception_cc: INTEGER

-- Code of last developer exception

developer_exception_na: STRING
-- Name associated with last developer exception
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is_developer_excepti: BOOLEAN
-- Was last exception originally due to a developer exception?

is_developer_exception_of nainame STRINC: BOOLEAN

-- Is the last exception originally due to a developer
-- exception of namname?

ensure
Result:= is_developer_excepticand then

equal(name, developer_exception_na)ne

It is sometimes useful to associate with a developer excepcontex — any object
structure that may be useful to the software element handling the exception:

set_developer_exception_cont(c: ANY)

-- Definec as the context associated with subsequent developer
-- exceptions (as caused by callgrigger).

require
context_exis: ¢c/= Void
developer_exception_cont: ANY

-- Context set by last call 'set_developer_exception_context
-- void if no such call.

These facilities enable a style of development that heavily relies on some softwe
elements triggering exceptions that others will process. In one compiler that | have se
the developers took advantage of this mechanism, in the parsing algorithm, to stick t
relatively linear control structure, recognizing the various elements of the input text o
after the other. Such sequential treatment is only possible if the elements parsed are
expected ones; any syntactical error disrupts the process. Rather than complicating
control structure by adding possibly nesif ... then ... else constructs, the developers
chose to raise a developer exception whenever encountering an error, then dealt wi
separately in the calling routine. As hinted earlier, this is not my favorite style, but the
is nothing inherently wrong with it, so the developer exception mechanisms are there
those who want them.

12.7 DISCUSSION

We have now completed the design of an exception mechanism for object-orient
software construction, compatible with the rest of the approach and resulting directly frc
the ideas of Design by Contract developed in the preceding chapter. Thanks in partict
to theretry instructions the mechanism is more powerful than what you will find in many
languages; at the same time it may appear strietealse of its emphasis on retaining the
ability to reason precisely about the effect of each routine.

Let us explore a few alternative design ideas that could have been followed, and w
they were not retained.
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Disciplined exceptions

Exceptions, as they have been presented, are a technique to deal with erroneous conditions
that may be arise at run time: assertion violations, hardware signals, attempts to access
void references.

The approach we have explored is based on the contracting metaphor: under no
circumstances should a routine pretend it has succeeded when in fact it has failed to
achieve its purpose. A routine may only succeed (perhaps after experiencing some
exceptions but recovering from them through one or nretry, unbeknownst to the
client) or fail.

Exceptionsin Ada, CLU or PL/I do not follow this model. Using the Ada model, and
instruction

raise exc

cancels the routine that executed it and returns control to its caller, which may handle the
exceptionexc in a special handler clause or, if it has no such handler, will itself return
control to its caller. But there is no rule as to what a handler may do. Hence it is perfectly
possible to ignore an exception, or to return an alternate result. This explains why some
developers use this exception mechanism simply to deal with cases other than the easiest
one for an algorithm. Such applications of exceptions reallraise as egotoinstruction,

and a fairly dangerous one since it crosses routine boundaries. In my opinion, they are
abuses of the mechanism.

There have traditionally been two viewpoints on exceptions: many practicing
programmers, knowing how essential it is to retain control at run time whenever an
abnormal condition is detected (whether due to a programming error or to an
unforeseeable hardware event, say numerical overflow or hardware failure), consider
them an indispensable facility. Computing scientists preoccupied with correctness and
systematic software construction have often for their part viewed exceptions with
suspicion, as an unclean facility used to circumvent the standard rules on control
structures. The mechanism developed above will, it is hoped, appeal to both sides.

Should exceptions be objects?

An object-oriented zealot (and who, having discovered and mastered the beauty of the
approach, does not at times risk succumbing to zeal?) may criticize the mechanism
presented in this chapter for not treating exceptions as first-class citizens of our software
society. Why is an exception not an object?

One recent language, the object-oriented extension of Pascal for Borland’s Delphi
environment has indeed taken the attitude that exceptions should be treated as objects.

It is not clear that such a solution would bring any benefit. The reasoning is in [“No-command
preview of the more general discussion that will help us, in a later chapter, tacklclasses”, page 7-.)
question “how do we find the objects and classes?” An object is an instance S€€ exercisE12.2,
abstractly defined data type, characterized by features. An exception has some feat"29¢ 433
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“DEALING WITH
ABNORMAL

course, which we saw in claEXCEPTION: its type, which was given by an integer
code; whether it is a signal, an assertion violation, a developer exception; its associe
message if it is a developer exception. But these featurequeries; in most classes
describing true “objects” there should also commandschanging the objects’ state.
Although one might conceive of commands applicable to exception objects, for exam|
to disarm an exception after it has occurred, this seems incompatible with reliabili
requirements. Exceptions are not under the control of the software system; they
triggered by events beyond its reach.

Making their properties accessible through the simple queries and commands of
classEXCEPTION: seems enough to satisfy the needs of developers who want fine-gre
access to the exception handling mechanism.

The methodological perspective

A final note and preview. Exception handling is not the only answer to the gener
problem ofrobustnes — how to deal with special or undesired cases. We have gained

CASES", 23.6, page feyy methodological insights, but a more complete answer will appear in the chapi

791.

discussing the design of module interfaces, allowing us to understand the place
exception handling in the broader arsenal of robustness-enhancing techniques.

12.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

< Exception handling is a mechanism for dealing with unexpected run-time condition
« A failure is the impossibility, for a routine execution, to fulfill the contract.

* Aroutine gets an exception as a result of the failure of a routine which it has calle
of an assertion violation, of an abnormal condition signaled by the hardware
operating system.

« Itis also possible for a software system to trigger a “developer exception” explicitl

« A routine will deal with an exception by either Retry or Organized Panic. Retr
reexecutes the body; Organized Panic causes a routine failure and sends an exce
to the caller.

e The formal role of an exception handler not ending wiretry is to restore the
invariant — not to ensure the routine’s contract, as that is the task of the body (1
do clause). The formal role of a branch ending vretry is to restore the invariant
and the precondition so that the routine body can try again to achieve its contract

e The basic language mechanism for handling exceptions should remain simple
only to encourage straightforward exception handling — organized panic ¢
retrying. For applications that need finer control over exceptions, their properties a
their processing, a library class callEXCEPTIONSIs available; it provides a
number of mechanisms for distinguishing between exception types, as well as
triggering developer-defined exceptions.
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12.9 BIBLIOGRAPHICAL NOTES

[Liskov 1979 and[Cristian 1985 offer other viewpoints on exceptions. Much of the work

on software fault tolerance derives from the notion of “recovery bl[Randell 197E; a
recovery block for a task is used when the original algorithm for the task fails to succeed.
This is different from rescue clauses which never by themselves attempt to achieve the
original goal, although they may restart the execution after patching up the environment.

[Hoare 1981 contains a critique of the Ada exception mechanism.

The approach to exception handling developed in this chapter was first presented
in [M 1988e and[M 1988].

EXERCISES
E12.1 Largestinteger

Assume a machine that generates an exception when an integer addition overflows. Using
exception handling, write a reasonably efficient function that will return the largest
positive integer representable on the machine.

E12.2 Exception objects

Notwithstanding the skeptical comments expressed in the discussion section as to the
usefulness of treating exceptions as objects, press the idea further and discuss what a class
EXCEPTIOMwould look like, assuming an instance of that class denotes an exception that
has occurred during execution. (Do not confuse this classEXCEPTION:, the class,

meant to be used through inheritance, which provides general exception properties.) Try
in particular to include commands as well as queries.
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