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Like it or not, it is no use pretending: in spite of all static precautions, some unexp
and undesired event will sooner or later occur while one of your systems is executing
is known as an exception and you must be prepared to deal with it.

12.1  BASIC CONCEPTS OF EXCEPTION HANDLING

The literature on exception handling is often not very precise about what really cons
an exception. One of the consequences is that the exception mechanisms present
programming languages as PL/I and Ada are often misused: instead of being reser
truly abnormal cases, they end up serving as inter-routine goto instructions, violating the
principle of Modular Protection.

Fortunately, the Design by Contract theory introduced in the preceding ch
provides a good framework for defining precisely the concepts involved.

Failures

Informally, an exception is an abnormal event that disrupts the execution of a syste
obtain a more rigorous definition, it is useful to concentrate first on a more eleme
concept, failure, which follows directly from the contract idea.

A routine is not just some arbitrary sequence of instructions but the implement
of a certain specification — the routine’s contract. Any call must terminate in a state
satisfies the precondition and the class invariant. There is also an implicit clause 
contract: that the routine must not have caused an abnormal operating system 
resulting for example from memory exhaustion or arithmetic overflow and interrup
the normal flow of control in the system’s execution.

It must refrain from causing such events, but of course not everything in life is w
it must be, and we may expect that once in a while a routine call will be unable to s
its contract — triggering an abnormal signal, producing a final state that violate
postcondition or the invariant, or calling another routine in a state that does not satis
routine’s precondition (assuming run-time assertion monitoring in the last two case



WHEN THE CONTRACT IS BROKEN: EXCEPTION HANDLING§12.1412

an
utine

 fails

om
 state
are
esults

 
se
). A
 has

ecific

in the

vers
 in the
get, the
; if the

See “Errors, defects 
and other creeping 
creatures”, page 348.

“Void references and 
calls”, page 240.

“Hybrid attach-
ments”, page 263.
Such a case will be called a failure.

The discussion will use the phrase “routine failure”, or just “failure”, as 
abbreviation for “failure of a routine call”. Of course what succeeds or fails is not a ro
(an element of the software text) but one particular call to that routine at run time.

Exceptions

From the notion of failure we can derive a precise definition of exceptions. A routine
because of some specific event (arithmetic overflow, assertion violation…) that interrupts
its execution. Such an event is an exception.

Often an exception will  cause failure of the routine. But you can prevent this fr
occurring by writing the routine so that it will catch the exception and try to restore a
from which the computation will proceed. This is the reason why failure and exception 
different concepts: every failure results from an exception, but not every exception r
in failure.

The study of software anomalies in the previous chapter introduced the termsfault
(for a harmful execution event), defect (for an inadequacy of system, which may cau
faults) and error (for a mistake in the thinking process, which may lead to defects
failure is a fault; an exception is often a fault too, but not if its possible occurrence
been anticipated so that the software can recover from the exception.

Sources of exceptions

The software development framework introduced so far opens the possibility of sp
categories of exception, listed at the top of the facing page.

Case E1 reflects one of the basic requirements of using references: a call a ● f  is only
meaningful if a is attached to an object, that is to say non-void. This was discussed 
presentation of the dynamic model.

Case E2 also has to do with void values. Remember that “attachment” co
assignment and argument passing, which have the same semantics. We saw
discussion of attachment that it is possible to attach a reference to an expanded tar
result being to copy the corresponding object. This assumes that the object exists
source is void, the attachment will trigger an exception.

Definitions: success, failure

A routine call succeeds if it terminates its execution in a state satisfying the
routine’s contract. It fails if it does not succeed.

Definition: exception

An exception is a run-time event that may cause a routine call to fail.
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Case E3 follows from signals that the operating system sends to an application w
it detects an abnormal event, such as a fault in an arithmetic operation (unde
overflow) or an attempt to allocate memory when none is available.

Case E4 arises when a routine fails, as a result of an exception that happened d
its own execution and from which it was not able to recover. This will be seen in m
detail below, but be sure to note the rule that results from case E4:

Cases E5 to E10 can only occur if run-time assertion monitoring has been enable
the proper level: at least assertion (require) for E5, assertion (loop) for E8 and E9 etc.

Case E11 assumes that the software may include calls to a procedure raise whose
sole goal is to raise an exception. Such a procedure will be introduced later.

Causes of failure

Along with the list of possible exception cases, it is useful for the record to define wh
failure (itself the source of an exception in the caller, as per case E4) can occur:

Definition: exception cases

An exception may occur during the execution of a routine r as a result of any
of the following situations:

E1 • Attempting a qualified feature call a● f and finding that a is void.

E2 • Attempting to attach a void value to an expanded target.

E3 • Executing an operation that produces an abnormal condition detected
by the hardware or the operating system.

E4 • Calling a routine that fails.

E5 • Finding that the precondition of r does not hold on entry.

E6 • Finding that the postcondition of r does not hold on exit.

E7 • Finding that the class invariant does not hold on entry or exit.

E8 • Finding that the invariant of a loop does not hold after the from  clause
or after an iteration of the loop body.

E9 • Finding that an iteration of a loop’s body does not decrease the variant.

E10• Executing a check instruction and finding that its assertion does not
hold.

E11• Executing an instruction meant explicitly to trigger an exception.

Failures and exceptions

A failure of a routine causes an exception in its caller.
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We have yet to see 
what it means for a 
routine to “recover” 
from an exception.
The definitions of failure and exception are mutually recursive: a failure arises 
an exception, and one of the principal sources of exceptions in a calling routine (E4) is the
failure of a called routine.

12.2  HANDLING EXCEPTIONS

We now have a definition of what may happen — exceptions — and of what we w
prefer not to happen as a result — failure. Let us equip ourselves with ways to dea
exceptions so as to avoid failure. What can a routine do when its execution is sud
interrupted by an unwelcome diversion?

As so often in this presentation, we can get help towards an answer by look
examples of how not to do things. Here the C mechanism (coming from Unix) and an 
textbook will oblige.

How not to do it — a C-Unix example

The first counter-example mechanism (most notably present on Unix, although it has
made available on other platforms running C) is a procedure called signal which you can
call under the form

signal (signal_code, your_routine)

with the effect of planting a reference to your_routine into the software, as the routine tha
should be called whenever a signal of code signal_code occurs. A signal code is one of 
number of possible integers such as SIGILL (illegal instruction) and SIGFPE (floating-
point exception). You may include as many calls to signal as you like, so as to associa
different routines with different signals.

Then assume some instruction executed after the call to signal triggers a signal of
code signal_code. Were it not for the signal call, this event would immediately terminat
the execution in an abnormal state. Instead it will cause a call to your_routine, which
presumably performs some corrective action, and then will … resume the execution exactl
at the point where the exception occurred. This is dangerous, as you have no guaran
the cause of the trouble has been addressed at all; if the computation was interrupt
signal it was probably impossible to complete it starting from its initial state.

What you will need in most cases is a way to correct the situation and then restart
the routine in a new, improved initial state. We will see a simple mechanism
implements this scheme. Note that one can achieve it in C too, on most platform
combining the signal facility with two other library routines: setjmp to insert a marker into
the execution record for possible later return, and longjmp to return to such a marker, eve
if several calls have been started since the setjmp. The setjmp-longjmp mechanism is,

Definition: failure cases

A routine call will fail if and only if an exception occurs during its execution
and the routine does not recover from the exception.
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From Sommerville 
and Morrison, “Soft-
ware Development 
with Ada”, Addison-
Wesley, 1987. Letter 
case, indentation, 
semicolon usage an
the name of the floa
ing-point type have 
been adapted to the
conventions of the 
present book; Non_
positive has been 
changed to Negative.
however, delicate to use; it can be useful in the target code generated by a compiler
can indeed serve, together with signal, to implement the high-level O-O exceptio
mechanism introduced later in this chapter — but is not fit for direct consumptio
human programmers.

How not to do it — an Ada example

Here is a routine taken from an Ada textbook:

sqrt (n: REAL) return REAL is
begin

if  x < 0.0 then
raise Negative

else
normal_square_root_computation

end
exception

when Negative =>
put ("Negative argument")
return

when others => …
end -- sqrt

This example was probably meant just as a syntactical illustration of the 
mechanism, and was obviously written quickly (for example it fails to return a value in
exceptional case); so it would be unfair to criticize it as if it were an earnest examp
good programming. But it provides a useful point of reference by clearly showin
undesirable way of handling exceptions. Given the intended uses of Ada — military
space systems — one can only hope that not too many actual Ada programs have
this model verbatim.

The goal is to compute the real square root of a real number. But what if the nu
is negative? Ada has no assertions, so the routine performs a test and, if it finds n to be
negative, raises an exception.

The Ada instruction raise Exc interrupts execution of the current routine, triggerin
an exception of code Exc. Once raised, an exception can be caught, through a routine’
block’s) exception clause. Such a clause, of the form

exception
when code_a1, code_a2, …=> Instructions_a;
when code_b1, … => Instructions_b;
…

is able to handle any exception whose code is one of those listed in the when subclauses;
it will execute Instructions_a for codes code_a1, code_a2, … and so on for the others. On
of the subclauses may, as in the example, start with when others, and will then handle any
exception not explicitly named in the other subclauses. If an exception occurs but its

d 
t-
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is not listed (explicitly or through when others), the routine will pass it to its caller; if
there is no caller, meaning that the failed routine is the main program, exec
terminates abnormally.

In the example there is no need to go to the caller since the exception, just after
raised, is caught by the exception clause of the routine itself, which contains a subclau
when Negative => …

But what then do the corresponding instructions do? Here they are again:

put ("Negative argument")

return

In other words: print out a message — a delicate thought, considering was ha
next; and then return to the caller. The caller will not be notified of the event, and
continue its execution as if nothing had happened. Thinking again of typical applica
of Ada, we may just wish that artillery computations, which can indeed require squar
computations, do not follow this scheme, as it might direct a few missiles to the w
soldiers (some of whom may, however, have the consolation of seeing the error me
shortly before the encounter).

This technique is probably worse than the C-Unix signal mechanism, which at leas
picks up the computation where it left. A when subclause that ends with return  does not
even continue the current routine (assuming there are more instructions to execute); 
up and returns to the caller as if everything were fine, although everything is not fine.
Managers — and, to continue with the military theme, officers — know this situation w
you have assigned a task to someone, and are told the task has been completed — b
not. This leads to some of the worst disasters in human affairs, and in software affai

This counter-example holds a lesson for Ada programmers: under almos
circumstances should a when subclause terminate its execution with a return . The
qualification “almost” is here for completeness, to account for a special case, thefalse
alarm, discussed below; but that case is very rare. Ending exception handling w
return  means pretending to the caller that everything is right when it is not. Th
dangerous and unacceptable. If you are unable to correct the problem and satisfy t
routine’s contract, you should make the routine fail. Ada provides a simple mechani
do this: in an exception clause you may execute a raise instruction written as just

raise

whose effect is to re-raise the original exception to the caller. This is the proper w
terminating an execution that is not able to fulfill its contract.

Ada Exception rule

The execution of any Ada exception handler should end by either executing
a raise instruction or retrying the enclosing program unit.
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Exception handling principles

These counter-examples help show the way to a disciplined use of exceptions
following principle will serve as a basis for the discussion.

Let us do away first with the false alarm case, which corresponds to the basic C
mechanism as we have seen it. Here is an example. Some window systems will ca
exception if the user of an interactive system resizes a window while some proc
executing in it. Assume that such a process does not perform any window output; th
exception was harmless. But even in such case there are usually better ways, s
disabling the signals altogether, so that no exception will occur. This is how we will 
with false alarms in the mechanism of the next sections.

False alarms are only possible for operating system signals — in fact, only for si
of the more benign kind, since you cannot ignore an arithmetic overflow or an inabili
allocate requested memory. Exceptions of all the other categories indicate troubl
cannot be ignored. It would be absurd, for example, to proceed with a routine after fi
that its precondition does not hold.

So much for false alarms (unfortunately, since they are the easiest case to ha
For the rest of this discussion we concentrate on true exceptions, those which we 
just turn off like an oversensitive car alarm.

Retrying is the most hopeful strategy: we have lost a battle, but we have not los
war. Even though our initial plan for meeting our contract has been disrupted, we
think that we can satisfy our client by trying another tack. If we succeed, the client w
entirely unaffected by the exception: after one or more new attempts following the i
failed one, we will return normally, having fulfilled the contract. (“Mission accomplished,
Sir. The usual little troubles along the way, Sir. All fine by now, Sir.”)

What is the “other tack” to be tried on the second attempt? It might be a diffe
algorithm; or it might be the same algorithm, executed again after some changes hav
brought to the state of the execution (attributes, local entities) in the hope of preve
the exception from occurring again. In some cases, it may even be the original routin
again without any change whatsoever; this is applicable if the exception was due to

Disciplined Exception Handling principle

There are only two legitimate responses to an exception that occurs during
the execution of a routine:

R1 •Retrying : attempt to change the conditions that led to the exception
and to execute the routine again from the start.

R2 •Failure  (also known as organized panic): clean up the environment,
terminate the call and report failure to the caller.

In addition, exceptions resulting from some operating system signals (case
E3 of the classification of exceptions) may in rare cases justify a false alarm
response: determine that the exception is harmless and pick up the routine’s
execution where it started.
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The call chain
external event — transient hardware malfunction, temporarily busy device
communication line — which we do not control although we expect it will go away.

With the other response, failure, we accept that we not only have lost the battle (the
current attempt at executing the routine body) but cannot win the war (the attem
terminate the call so as to satisfy the contract). So we give up, but we must first ensu
conditions, explaining the use of “organized panic” as a more vivid synonym for “failu

• Making sure (unlike what happened in the sqrt counter-example) that the caller ge
an exception. This is the panic aspect: the routine has failed to live up to its contra

• Restoring a consistent execution state — the organized aspect.

What is a “consistent” state? From our study of class correctness in the pre
chapter we know the answer: a state that satisfies the invariant. We saw that in the 
of its work a routine execution may temporarily violate the invariant, with the intentio
restoring it before termination. But if an exception occurs in an intermediate stat
invariant may be violated. The routine must restore it before returning control to its c

The call chain

To discuss the exception handling mechanism it will be useful to have a clear pictu
the sequence of calls that may lead to an exception. This is the notion of call chain, a
present in the explanation of the Ada mechanism.

Let r0 be the root creation procedure of a certain system (in Ada r0 would be the main
program). At any time during the execution, there is a current routine, the routine whose
execution was started last; it was started by the execution of a certain routine; that r
was itself called by a routine; and so on. If we follow this called-to-caller chain all the
through we will end up at r0. The reverse chain (r0, the last routine r1 that it called, the last
routine r2 that r1 called, and so on down to the current routine) is the call chain.

If a routine produces an exception (as pictured at the bottom-right of the figur
may be necessary to go up the chain until finding a routine that is equipped to hand
exception — or stop execution if we reach r 0, not having found any applicable exceptio
handler. This was the case in Ada when no routine in the call chain has an exception
clause with a when clause that names the exception type or others.

r 0
r1

r2

r3

r4

Routine call
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12.3  AN EXCEPTION MECHANISM

From the preceding analysis follows the exception mechanism that fits best wit
object-oriented approach and the ideas of Design by Contract.

The basic properties will follow from a simple language addition — two keywo
— to the framework of the preceding chapters. A library class, EXCEPTIONS, will also
be available for cases in which you need to fine-tune the mechanism.

Rescue and Retry

First, it must be possible to specify, in the text of a routine, how to deal with an exce
that occurs during one of its calls. We need a new clause for that purpose; the
appropriate keyword is rescue, indicating that the clause describes how to try to reco
from an undesirable run-time event. Because the rescue clause describes operations to b
executed when the routine’s behavior is outside of the standard case described 
precondition (require), body (do) and postcondition (ensure), it will appear, when
present, after all these other clauses:

routine is

require

precondition

local

… Local entity declarations …
do

body

ensure

postcondition

rescue

rescue_clause

end

The rescue_clause is a sequence of instructions. Whenever an exception oc
during the execution of the normal body, this execution will stop and the rescue_clause
will be executed instead. There is at most one rescue clause in a routine, but it can find
out what the exception was (using techniques introduced later), so that you will be a
treat different kinds of exception differently if you wish to.

The other new construct is the retry instruction, written just retry . This instruction
may only appear in a rescue clause. Its execution consists in re-starting the routine b
from the beginning. The initializations are of course not repeated.

These constructs are the direct implementation of the Disciplined Excep
Handling principle. The retry  instruction provides the mechanism for retrying; a rescue
clause that does not execute a retry  leads to failure.
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How to fail without really trying

The last observation is worth emphasizing:

So if you have wondered how routines can fail in practice — causing case E4 of the
exception classification — this is it.

As a special case, consider a routine which does not have a rescue clause. In practice
this will be the case with the vast majority of routines since the approach to exce
handling developed here suggests equipping only a select few routines with such a 
Ignoring possible local entity declarations, arguments, precondition and postconditio
routine appears as

routine is

do

body

end

Then if we consider — as a temporary convention — that the absence of a rescue
clause is the same thing as an empty rescue clause, that is to say

routine is

do

body

rescue

-- Nothing here (empty instruction list)

end

the Failure principle has an immediate consequence: if an exception occurs in a r
without rescue clause it will cause the routine to fail, triggering an exception in its ca

Treating an absent rescue clause as if it were present but empty is a good enough
approximation at this stage of the discussion; but we will need to refine this rule slightly
when we start looking at the effect of exceptions on the class invariant.

An exception history table

If a routine fails, either because it has no rescue clause at all or because its rescue clause
executes to the end without a retry , it will interrupt the execution of its caller with a
“Routine failed” (E4) exception. The caller is then faced with the same two possibilit
either it has a rescue clause that can execute a successful retry and get rid of the
exception, or it will fail too, passing the exception one level up the call chain.

Failure principle

Execution of a rescue clause to its end, not leading to a retry  instruction,
causes the current routine call to fail.
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An exception 
history table
If in the end no routine in the call chain is able to recover from the exception
execution as a whole will fail. In such a case the environment should print out a 
description of what happened, the exception history table. Here is an example:

This is a record not only of the exceptions that directly led to the execution’s fa
but of all recent exceptions, up to a limit of 100 by default, including those from which
execution was able to recover through a retry . From top to bottom the order is the rever
of the order in which calls were started; the creation procedure is on the last line.

The Routine column identifies, for each exception, the routine whose call w
interrupted by the exception. The Object column identifies the target of that call; here th
objects have names such as O1, but in a real trace they will have internal identifiers,
to determine whether two objects are the same. The Class column gives the object’s
generating class.

The Nature of exception column indicates what happened. This is where, fo
assertion violation as in the second entry from the top, the environment can take adv
of assertion labels, interval_big_enough in the example, to identify the precise clause th
was violated.

The last column indicates how the exception was handled: Retry or Fail. The 
consists of a sequence of sections separated by thick lines; each section except the
to a Retry. Since a Retry enables the execution to restart normally, an arbitrary num
calls may have occurred between two calls separated by a thick line.

Ignoring any such intermediate calls — successful and as such uninteresting f
purposes of this discussion — here is the call and return chain corresponding to the
exception history table. To reconstruct the action you should follow the arrows cou
clockwise from the call to make at the top left.

Object Class Routine Nature of exception Effect

O4 Z_FUNCTIONsplit (from E_FUNCTION) Feature interpolate: 
Called on void 
reference.

Retry

O3 INTERVAL integrate interval_big_enough: 
Precondition violated.

Fail

O2 EQUATION solve (from GENERAL_EQUATION) Routine failure Fail

O2 EQUATION filter Routine failure Retry

O2 MATH new_matrix (from BASIC_MATH) enough_memory:
Check violated.

Fail

O1 
(root)

INTERFACE make Routine failure Fail
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12.4  EXCEPTION HANDLING  EXAMPLES

We now have the basic mechanism. Let us see how to apply it to common situation

Fragile input

Assume that in an interactive system you need to prompt your system’s user to en
integer. Assume further that the only procedure at your disposal to read the in
read_one_integer, leaving its result in the attribute last_integer_read, is not robust: if
provided with something else than integer input, it may fail, producing an exceptio
course you do not want your own system to fail in that case, but since you ha
control over read_one_integer you must use it as it is and try to recover from t
exception if it occurs. Here is a possible scheme:

get_integer is

-- Get integer from user and make it available in last_integer_read.

-- If input initially incorrect, ask again as many times as necessary.

do

print ("Please enter an integer: ")

read_one_integer

rescue

retry

end

This version of the routine illustrates the retry strategy: we just keep retrying.

An obvious criticism is that if a user keeps on entering incorrect input, the rou
will forever keep asking for a value. This is not a very good solution. We might pu
upper bound, say five, on the number of attempts. Here is the revised version:

make

new_matrix

filter
solve

integrate

splitCallNormal return

Failure return Retry (one or more times)
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Maximum_attempts: INTEGER is 5
-- Number of attempts before giving up getting an integer.

get_integer is
-- Attempt to read integer in at most Maximum_attempts attempts.
-- Set value of integer_was_read to record whether successful.
-- If successful, make integer available in last_integer_read.

local
attempts: INTEGER

do
if  attempts < Maximum_attempts then

print ("Please enter an integer: ")
read_one_integer
integer_was_read := True

else
integer_was_read := False
attempts := attempts + 1

end
rescue

retry
end

This assumes that the enclosing class has a boolean attribute integer_was_read
which will record how the operation went. Callers should use the routine as follows 
to read an integer and assign it to an integer entity n:

get_integer
if integer_was_read then

n := last_integer_read
else

“Deal with case in which it was impossible to obtain an integer”
end

Recovering from hardware or operating system exceptions

Among the events that trigger exceptions are signals sent by the operating system
of which may have originated with the hardware. Examples include: arithmetic over
and underflow; impossible I/O operations; “illegal instruction” attempts (which, wit
good object-oriented language, will come not from the O-O software but from compa
routines, written in lower-level languages, which may overwrite certain areas of mem
creation or clone operations that fail because no memory is available; user interru
user hitting the “break” key or equivalent during execution).

Theoretically you may view such conditions as assertion violations. If a + b
provokes overflow, it means that the call has not observed the implicit precondition o
+  function for integer or real numbers, stating that the mathematical sum of the
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arguments should be representable on the computer. A similar implicit precondition o
allocation of a new object (creation or clone) is that enough memory is available; if a
fails, it is because the environment — files, devices, users — did not meet the applic
conditions. But in such cases it is impractical or impossible to express the assertio
alone check them: the only solution is to attempt the operation and, if the hardwa
operating system signals an abnormal condition, to treat it as an exception.

Consider the problem of writing a function quasi_inverse which for any real number

x must return either its inverse  or, if that is impossible to compute because x is too

small, the value 0. This type of problem is essentially impossible to solve withou
exception mechanism: the only practical way to know whether x has a representable

inverse is to attempt the division ; but if this provokes overflow and you cannot ha

exceptions, the program will crash and it will be too late to return 0 as a result.

On some platforms it may be possible to write a function invertible such that invertible (x)
is true if and only if the inverse of x can be computed. You can then use invertible to write
quasi_inverse. But this is usually not a practical solution since such a function will not be
portable across platforms, and in time-sensitive numerical computations will cause a
serious performance overhead, a call to invertible being at least as expensive as the
inversion itself.

With the rescue-retry  mechanism you can easily solve the problem, at leas
hardware that triggers a signal for arithmetic underflow:

quasi_inverse (x: REAL): REAL is
-- 1/x if possible, otherwise 0

local
division_tried: BOOLEAN

do
if  not division_tried then

Result := 1/x

end
rescue

division_tried := True
retry

end

The initialization rules set division_tried to false at the start of each call. The bo
does not need any else clause because these rules also initialize Result to 0.

Retrying for software fault tolerance

Assume you have written a text editor and (shame on you) you are not quite sur
entirely bug-free, but you already want to get some initial user feedback. Your guine
are willing to tolerate a system with some remaining errors; they might accept for example
that once in a while it will be unable to carry out a command that they have requeste

1
x
---

1
x
---
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they will not use it to enter serious texts (which is what you want them to do, to test
editor under realistic conditions) if they fear that a failure may result in a catastrophe
as brutal exit and loss of the last half-hour’s work. With the Retrying mechanism you
provide a defense against such behavior.

Assume that the editor, as will usually be the case, contains a basic com
execution loop of the form

from … until exit loop
execute_one_command

end

where the body of routine execute_one_command is of the form

“Decode user request”
“Execute appropriate command in response to request”

The “Execute…”  instruction chooses among a set of available routines (
example delete a line, change a word etc.) We will see in a later chapter how
techniques of inheritance and dynamic binding yield simple, elegant structures for
multi-way decisions.

The assumption is that the different routines are not entirely safe; some of them
fail at unpredictable times. You can provide a primitive but effective protection aga
such an event by writing the routine as

execute_one_command is
-- Get a request from the user and, if possible,

-- execute the corresponding command.

do
“Decode user request”

“Execute appropriate command in response to request”

rescue
message ("Sorry, this command failed")

message ("Please try another command")

message ("Please report this failure to the author")

“Instructions to patch up the state of the editor”

retry
end

This scheme assumes in practice that the types of supported user request include
“save current state of my work” and “quit”, both of which had better work correctly
user who sees the message Sorry, this command failed will most likely want to save the
results of the current session and get out as quickly as possible.

Some of the routines implementing individual operations may have their own rescue
clauses, leading to failure (so that the above rescue clause of execute_one_command takes
over) but only after printing a more informative, command-specific message.
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N-version programming

Another example of retrying for software fault tolerance is an implementation of the
version programming” approach to improving software reliability.

N-version programming was inspired by redundancy techniques that have p
their usefulness in hardware. In mission-critical setups it is frequent to enco
redundant hardware configurations, where several devices — for example comput
perform an identical function, and an arbitrating mechanism compares the re
deciding for the majority in case of discrepancy. This approach guards against s
component failures and is common in aerospace applications. (In a famous incide
early space shuttle launch had to be delayed because of a bug in the software 
arbitrating computer itself.) N-version programming transposes this approach to soft
by suggesting that for a mission-critical development two or more teams, workin
environments as distinct as possible, should produce alternative systems, in the ho
errors, if any, will be different.

This is a controversial idea; one may argue that the money would be better sp
improving the correctness and robustness of a single version than in financing two o
imperfect implementations. Let us, however, ignore these objections and refrain from
judgment on the idea itself, but see how the retry  mechanism would support the idea o
using several implementations where one takes over if the others fail:

do_task is
-- Solve a problem by applying one of several possible implementati

require
…

local
attempts: INTEGER

do
if  attempts = 0 then

implementation_1
elseif attempts = 1 then

implementation_2
end

ensure
…

rescue
attempts := attempts + 1
if  attempts < 2 then

“Perhaps some instructions to reset to stable state”
retry

end
end

The generalization to more than two alternative implementations is immediate



§12.5  THE TASK OF A RESCUE CLAUSE 427

 by the

 two

g the
cuted

is

; then
; the

urse
again
w. 

s

s
n, the

iple:

ies the
ilure

 and

eption

soning

s of a

 every

serve
icting

See“WHEN IS A 
CLASS COR-
RECT?”, 11.9, page
370.
This example is typical of the use of retry . The rescue clause never attempts to reach
the original goal using a substitute implementation; reaching this goal, as expressed

postcondition if there is one, is the privilege of the normal body. Note that after
attempts (or n in the general case) the routine simply executes its rescue clause to the end

and so fails.

Let us look more closely at what happens when an exception is triggered durin
execution of r. The normal execution (the body) stops; the rescue clause is exe

instead. Then two cases may occur:

• The rescue clause may execute a retry , usually after some other instructions. In th

case, execution of the routine will start anew. This new attempt may succeed
the routine will terminate normally and return to its client. The call is a success

contract has been fulfilled. Execution of the client is not affected, except of co
that the call may have taken longer than normal. If, however, the retry attempt 
causes an exception, the process of executing the rescue clause will start ane

• If the rescue clause does not execute a retry , it will continue to its end. (This happen

in the last example when attempts >= 2.) In this case the routine fails: it return
control to its caller, signaling an exception. Because the caller gets an exceptio

same rule determines how its own execution continues.

This mechanism strictly adheres to the Disciplined Exception Handling princ

either a routine succeeds, that is to say its body executes to the end and satisf
postcondition, or it fails. When interrupted by an exception, you may either report fa

or try your normal body again; in no way can you exit through the rescue clause
pretend to your caller that you succeeded.

12.5  THE TASK OF A RESCUE CLAUSE

The last comments get us started towards a better understanding of the exc

mechanism by suggesting the theoretical role of rescue clauses. Some formal rea
will help us obtain the complete picture.

The correctness of a rescue clause

The formal definition of class correctness stated two requirements on the feature

class. One (C1) requires creation procedures to start things off properly. The other (C2),
more directly relevant for the present discussion, states that to satisfy its contract,

routine, started with its precondition and the class invariant both satisfied, must pre
the invariant and ensure its postcondition. This was illustrated by the diagram dep

the typical object lifecycle:
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The formal rule read:

where prer  is the precondition, INV the class invariant, Bodyr the body of the routine, and
postr the postcondition. To keep things simple let us ignore the arguments xr .

Let Rescuer be the rescue clause of a routine, ignoring any branch that leads
retry — that is to say keeping only those branches that will result in failure if execu
Rule C2 is a specification of the body Bodyr of the routine, in terms of what initial state
it assumes and what final states it can guarantee. Can we obtain a similar specificat
RESCUEr ? It should be of the form

{ ? }  Rescuer { ? }

with the question marks replaced by actual assertions. (Here it is useful to try answ
the question for yourself before reading on: how would you fill in the question mark

Consider first the input assertion — the question mark on the left of Rescuer .
Anything  non-trivial that we write there would be wrong! Remember the discussio
attractive job offers: for whoever implements the task A in { P}  A { Q} , the stronger the
precondition P, the easier the job, since a precondition restricts the set of input case
you must handle. Any precondition for Rescuer would make the job easier by restrictin
the set of states in which Rescuer may be called to action. But we may not assume any s
restriction since exceptions, by their very nature, may happen at any time. If we knew
an exception will happen, it probably would not be an exception any more. Thin
hardware failures: we have no clue as to when a computer can start to malfunction. N
we know, in an interactive system, when a user will feel like hitting the “break” key.

So the only P assertion that we can afford here (to replace the question mark o
left) is the one that asserts nothing at all: True, the assertion that all states satisfy.

For a lazy Rescuer implementor — again in reference to the discussion of job off
in the previous chapter — this is bad news; in fact the precondition True is always the
worst possible news for a supplier, the case in which “the customer is always right”

C2 • For every exported routine r and any set of valid arguments xr:

{ prer (xr ) and INV}  Bodyr { postr (xr) and INV}

 !! a● make (…)
S1

S2

S3

S4

a ●f (…)

a ●g (…)

a ●f (…)
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What about the output assertion (the Q)? As discussed earlier, a rescue clause t
leads to a failure must, before returning control to its caller with an exception, rest
stable state. This means reestablishing the invariant.

Hence the rule that we seek, with no more question marks:

Similar reasoning yields the corresponding rule for any branch Retryr of the rescue
clause leading to a retry instruction:

A clear separation of roles

It is interesting to contrast the formal roles of the body and the rescue clause:

C2 • { prer and INV}  Bodyr { postr (xr) INV}

C3 • { True}  Rescuer  { INV}

The input assertion is stronger for Bodyr : whereas the rescue clause is not permitt
to assume anything at all, the routine’s body may assume the precondition an
invariant. This makes its job easier.

The output assertion, however, is also stronger for Bodyr : whereas the rescue claus
is only required to restore the invariant, the normal execution must also ensur
postcondition — the official job of the routine. This makes its job harder.

These rules reflect the separation of roles between the body (the do clause) and the
rescue clause. The task of the body is to ensure the routine’s contract; not direc
handle exceptions. The task of the rescue clause is to handle exceptions, returning 
to the body or (in the failure case) to the caller; not to ensure the contract.

As an analogy — part of this book’s constant effort to provide readers not just
theoretically attractive concepts but also with practical skills that they can apply to
pursuit of their careers — consider the difficulty of choosing between two no
professions: cook and firefighter. Each has its grandeur, but each has its servitude
gratifying quality of the cook's job is that he may assume, when he shows up at wo
the morning, that the restaurant is not burning (satisfies the invariant); presumab
contract does not specify any cooking obligation under burning circumstances. But w
non-burning initial state the cook must prepare meals (ensure the postcondition); it i
a component of his contract, although perhaps an implicit one, that throughou
endeavor he should maintain the invariant, if he can, by not setting the restaurant o

Correctness rule for failure-inducing rescue clauses

C3 • { True}  Rescuer  { INV}

Correctness rule for retry-inducing rescue clauses

C4 • { True}  Retryr  { INV and prer}
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The firefighter, for his part, may assume nothing as to the state in which he find
restaurant when he is called for help at any time of day or night. There is not eve
guarantee that the restaurant is indeed burning — no precondition of the form is_burning,
or of any other form save for True — since any call may be a false alarm. In some ca
of course, the restaurant will be burning. But then a firefighter’s only duty is to return
a non-burning state; his job description does not require that he also serve a mea
assembly of patiently waiting customers.

When there is no rescue clause

Having formalized the role of rescue clauses we can take a second look at what h
when an exception occurs in a routine that has no such clause. The rule introduced
— with a warning that it would have to be revised — stated that an absent rescue 
was equivalent to a present but empty one (rescue end). In light of our formal rules,
however, this is not always appropriate. C3 requires that

{ True}  Rescuer  { INV}

If Rescuer  is an empty instruction and the invariant INV is anything other than True,
this will not hold.

Hence the exact rule. The class ANY — mother of all classes — includes a procedu

default_rescue is

-- Handle exception if no Rescue clause.

-- (Default: do nothing)

do

end

A routine that does not have a Rescue clause is considered to have one that
than being empty as first suggested, has the form

rescue

default_rescue

Every class can redefine default_rescue (using the feature redefinition mechanis
studied as part of inheritance in a later chapter) to perform some specific action, in
of the default empty effect defined in GENERAL.

Rule C3 indicates the constraint on any such action: starting in any state, it 
restore the class invariant INV. Now you will certainly remember that producing a sta
that satisfies the invariant was also the role of the creation procedures of a class, as
expressed by the rule labeled C1. In many cases, you will be able to write the redefiniti
of default_rescue so that it relies on a creation procedure.
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12.6  ADVANCED EXCEPTION HANDLING

The extremely simple mechanism developed so far handles most of the need
exception handling. But certain applications may require a bit of fine-tuning:

• You may need to find out the nature of the latest exception, so as to handle dif
exceptions differently.

• You may want to specify that certain signals should not trigger an exception.

• You may decide to trigger an exception yourself.

We could extend the language mechanism accordingly, but this does not see
right approach, for at least three reasons: the facilities are needed only occasionally,
we would be needlessly burdening the language; some of them (in particular anythin
has to do with signals) may be platform-dependent, whereas a language definition s
be portable; and when you select a set of these facilities it is hard to be sure that yo
not at some later time think of other useful ones, which would then force a new lang
modification — not a pleasant prospect.

For such a situation we should turn not to the language but to the supporting lib
We introduce a library class EXCEPTIONS, which provides the necessary fine-tunin
capabilities. Classes that need these capabilities will inherit EXCEPTIONS, using the
inheritance mechanism detailed in later chapters. (Some developers may prefer to 
client relation rather than inheritance.)

Exception queries

Class EXCEPTIONS provides a number of queries for obtaining some information ab
the last exception. You can find out the integer code of that exception:

exception: INTEGER

-- Code of last exception that occurred

original_exception: INTEGER

-- Original code of last exception that triggered current exceptio

The difference between exception and original_exception is significant in the case
of an “organized panic” response: if a routine gets an exception of code oc (indicating for
example an arithmetic overflow) but has no rescue clause, its caller will get an exce
whose own code, given by the value of exception, indicates “failure of a called routine”.
It may be useful at that stage, or higher up in the call chain, to know what the original 
was. This is the role of original_exception.

The exception codes are integers. Values for the predefined exceptions are giv
integer constants provided by EXCEPTIONS (which inherits them from another clas
EXCEPTION_CONSTANTS). Here are some examples:
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Check_instruction: INTEGER is 7
-- Exception code for violated check

Class_invariant: INTEGER is …
-- Exception code for violated class invariant

Incorrect_inspect_value: INTEGER is …
-- Exception code for inspect value which is not one
-- of the inspect constants, if there is no Else_part

Loop_invariant: INTEGER is …
-- Exception code for violated loop invariant

Loop_variant: INTEGER is …
-- Exception code for non-decreased loop variant

No_more_memory: INTEGER is …
-- Exception code for failed memory allocation

Postcondition: INTEGER is …
-- Exception code for violated postcondition

Precondition: INTEGER is …
-- Exception code for violated precondition

Routine_failure: INTEGER is …
-- Exception code for failed routine

Void_assigned_to_expanded: INTEGER is …

Since the integer values themselves are irrelevant, only the first one has been s

A few other self-explanatory queries provide further information if needed:

meaning (except: INTEGER)
-- A message in English describing the nature of exceptions
-- of code except

is_assertion_violation: BOOLEAN
-- Is last exception originally due to a violated assertion
-- or non-decreasing variant?

ensure
Result = (exception = Precondition) or (exception = Postcondition) or

(exception = Class_invariant) or
(exception = Loop_invariant) or (exception = Loop_variant)

is_system_exception: BOOLEAN
-- Is last exception originally due to external event (operating system er

is_signal: BOOLEAN
-- Is last exception originally due to an operating system signal?

tag_name: STRING
-- Tag of last violated assertion clause

original_tag_name: STRING
-- Assertion tag for original form of last assertion violation.
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recipient_name: STRING
-- Name of routine whose execution was interrupted by last excep

class_name: STRING
-- Name of class including recipient of last exception

original_recipient_name: STRING
-- Name of routine whose execution was interrupted by
-- original form of last exception

original_class_name: STRING
-- Name of class including recipient of original form of last excepti

With these features a rescue clause can handle different kinds of excepti
different ways. For example you can write it, in a class inheriting from EXCEPTIONS, as

rescue
if is_assertion_violation then

“Process assertion violation case”

else if is_signal then
“Process signal case”

else
…

end

or, with an even finer grain of control, as

rescue
if exception = Incorrect_inspect_value then

“Process assertion violation case”
else if exception = Routine_Failure then

“Process signal case”

else
…

end

Using class EXCEPTIONS, we can modify the quasi_inverse example so that it will
only attempt the retry  if the exception was overflow. Other exceptions, such as 
generated when the interactive user presses the Break key, will not cause the retr
instruction in the rescue clause becomes:

if exception = Numerical_error then
division_tried := True; retry

end

Since there is no else clause, exceptions other than Numerical_error will result in
failure, the correct consequence since the routine has no provision for recovery in
cases. When writing a rescue clause specifically to process a certain kind of po
exception, you may use this style to avoid lumping other, unexpected kinds with it.
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How fine a degree of control?

One may express reservations about going to the level of specific exception han
illustrated by the last two extracts. This chapter has developed a view of exceptio
undesired events; when one happens, the reaction of the software and its develop
don’t want to be here! Get me out as soon as possible!”. This seems incompatibl
exerting fine control, depending on the exception’s source, over what happens
rescue clause.

For that reason, I tend in my own work to avoid using detailed case analys
exception sources, and stick to exception clauses that try to fix things if they can, an
fail or retry.

This style is perhaps too austere, and some developers prefer a less res
exception handling scheme that makes full use of the query mechanisms of 
EXCEPTIONS while remaining disciplined. If you want to use such a scheme you 
find in EXCEPTIONS all that you need. But do not lose sight of the following principle
consequence of the discussion in the rest of this chapter:

Developer exceptions

All the exceptions studied so far resulted from events caused by agents external
software (such as operating system signals) or from involuntary consequences 
software’s action (as with assertion violations). It may be useful in some applicatio
cause an exception to happen on purpose.

Such an exception is called a developer exception and is characterized by an 
code (separate from the general exception code, which is the same for all dev
exceptions) and an associated string name, which may be used for example in
messages. You can use the following features to raise a developer exception, 
analyze its properties in a rescue clause:

trigger (code: INTEGER; message: STRING)

-- Interrupt execution of current routine with exception
-- of codecode and associated text message.

developer_exception_code: INTEGER

-- Code of last developer exception

developer_exception_name: STRING

-- Name associated with last developer exception

Exception Simplicity principle

All processing done in a rescue clause should remain simple, and focused on
the sole goal of bringing the recipient object back to a stable state, permitting 
a retry if possible.
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is_developer_exception: BOOLEAN

-- Was last exception originally due to a developer exception?

is_developer_exception_of_name (name: STRING): BOOLEAN

-- Is the last exception originally due to a developer
-- exception of namename?

ensure

Result := is_developer_exception and then

equal (name, developer_exception_name)

It is sometimes useful to associate with a developer exception a context — any object
structure that may be useful to the software element handling the exception:

set_developer_exception_context (c: ANY)

-- Define c as the context associated with subsequent developer
-- exceptions (as caused by calls to trigger).

require

context_exists: c /= Void

developer_exception_context: ANY

-- Context set by last call to set_developer_exception_context
-- void if no such call.

These facilities enable a style of development that heavily relies on some sof
elements triggering exceptions that others will process. In one compiler that I have
the developers took advantage of this mechanism, in the parsing algorithm, to stic
relatively linear control structure, recognizing the various elements of the input tex
after the other. Such sequential treatment is only possible if the elements parsed 
expected ones; any syntactical error disrupts the process. Rather than complicati
control structure by adding possibly nested if … then … else constructs, the developer
chose to raise a developer exception whenever encountering an error, then dealt 
separately in the calling routine. As hinted earlier, this is not my favorite style, but 
is nothing inherently wrong with it, so the developer exception mechanisms are the
those who want them.

12.7  DISCUSSION

We have now completed the design of an exception mechanism for object-ori
software construction, compatible with the rest of the approach and resulting directly
the ideas of Design by Contract developed in the preceding chapter. Thanks in par
to the retry  instructions the mechanism is more powerful than what you will find in ma
languages; at the same time it may appear stricter because of its emphasis on retaining th
ability to reason precisely about the effect of each routine.

Let us explore a few alternative design ideas that could have been followed, an
they were not retained.
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Disciplined exceptions

Exceptions, as they have been presented, are a technique to deal with erroneous co
that may be arise at run time: assertion violations, hardware signals, attempts to 
void references.

The approach we have explored is based on the contracting metaphor: und
circumstances should a routine pretend it has succeeded when in fact it has fa
achieve its purpose. A routine may only succeed (perhaps after experiencing 
exceptions but recovering from them through one or more retry , unbeknownst to the
client) or fail.

Exceptions in Ada, CLU or PL/I do not follow this model. Using the Ada model, 
instruction

raise exc

cancels the routine that executed it and returns control to its caller, which may hand
exception exc in a special handler clause or, if it has no such handler, will itself re
control to its caller. But there is no rule as to what a handler may do. Hence it is per
possible to ignore an exception, or to return an alternate result. This explains why
developers use this exception mechanism simply to deal with cases other than the 
one for an algorithm. Such applications of exceptions really use raise as a goto instruction,
and a fairly dangerous one since it crosses routine boundaries. In my opinion, th
abuses of the mechanism.

There have traditionally been two viewpoints on exceptions: many practi
programmers, knowing how essential it is to retain control at run time wheneve
abnormal condition is detected (whether due to a programming error or to
unforeseeable hardware event, say numerical overflow or hardware failure), con
them an indispensable facility. Computing scientists preoccupied with correctnes
systematic software construction have often for their part viewed exceptions 
suspicion, as an unclean facility used to circumvent the standard rules on c
structures. The mechanism developed above will, it is hoped, appeal to both sides.

Should exceptions be objects?

An object-oriented zealot (and who, having discovered and mastered the beauty 
approach, does not at times risk succumbing to zeal?) may criticize the mech
presented in this chapter for not treating exceptions as first-class citizens of our so
society. Why is an exception not an object?

One recent language, the object-oriented extension of Pascal for Borland’s D
environment has indeed taken the attitude that exceptions should be treated as obj

It is not clear that such a solution would bring any benefit. The reasoning is in p
preview of the more general discussion that will help us, in a later chapter, tack
question “how do we find the objects and classes?” An object is an instance 
abstractly defined data type, characterized by features. An exception has some feat
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course, which we saw in class EXCEPTIONS: its type, which was given by an intege
code; whether it is a signal, an assertion violation, a developer exception; its asso
message if it is a developer exception. But these features are queries; in most classes
describing true “objects” there should also be commands changing the objects’ state
Although one might conceive of commands applicable to exception objects, for exa
to disarm an exception after it has occurred, this seems incompatible with relia
requirements. Exceptions are not under the control of the software system; the
triggered by events beyond its reach.

Making their properties accessible through the simple queries and commands 
class EXCEPTIONS seems enough to satisfy the needs of developers who want fine-
access to the exception handling mechanism.

The methodological perspective

A final note and preview. Exception handling is not the only answer to the gen
problem of robustness — how to deal with special or undesired cases. We have gain
few methodological insights, but a more complete answer will appear in the ch
discussing the design of module interfaces, allowing us to understand the pla
exception handling in the broader arsenal of robustness-enhancing techniques.

12.8  KEY CONCEPTS INTRODUCED IN THIS CHAPTER

• Exception handling is a mechanism for dealing with unexpected run-time condit

• A failure is the impossibility, for a routine execution, to fulfill the contract.

• A routine gets an exception as a result of the failure of a routine which it has c
of an assertion violation, of an abnormal condition signaled by the hardwar
operating system.

• It is also possible for a software system to trigger a “developer exception” explic

• A routine will deal with an exception by either Retry or Organized Panic. R
reexecutes the body; Organized Panic causes a routine failure and sends an ex
to the caller.

• The formal role of an exception handler not ending with a retry  is to restore the
invariant — not to ensure the routine’s contract, as that is the task of the body
do clause). The formal role of a branch ending with retry  is to restore the invariant
and the precondition so that the routine body can try again to achieve its contr

• The basic language mechanism for handling exceptions should remain simp
only to encourage straightforward exception handling — organized panic
retrying. For applications that need finer control over exceptions, their propertie
their processing, a library class called EXCEPTIONS is available; it provides a
number of mechanisms for distinguishing between exception types, as well a
triggering developer-defined exceptions.

e 
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12.9  BIBLIOGRAPHICAL NOTES

[Liskov 1979] and [Cristian 1985] offer other viewpoints on exceptions. Much of the wo
on software fault tolerance derives from the notion of “recovery block” [Randell 1975]; a
recovery block for a task is used when the original algorithm for the task fails to suc
This is different from rescue clauses which never by themselves attempt to achie
original goal, although they may restart the execution after patching up the environ

[Hoare 1981] contains a critique of the Ada exception mechanism.

The approach to exception handling developed in this chapter was first pres
in [M 1988e] and [M 1988].

EXERCISES

E12.1  Largest integer

Assume a machine that generates an exception when an integer addition overflows
exception handling, write a reasonably efficient function that will return the lar
positive integer representable on the machine.

E12.2  Exception objects

Notwithstanding the skeptical comments expressed in the discussion section as
usefulness of treating exceptions as objects, press the idea further and discuss wha
EXCEPTION would look like, assuming an instance of that class denotes an exceptio
has occurred during execution. (Do not confuse this class with EXCEPTIONS, the class,
meant to be used through inheritance, which provides general exception properties
in particular to include commands as well as queries.
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