
W
i
n
F
c

13
Supporting mechanisms
ues of
ll that
iew a
tines
tures;

 but we
ental
t least

n. But
u will
ages

ance

ularly
el of

t only
ation
which

arning: this style
s neither supported
or recommended.
or purposes of dis
ussion only.
Except for one crucial set of mechanisms, we have now seen the basic techniq
object-oriented software construction. The major missing piece is inheritance and a
goes with it. Before moving to that last component of the approach, we should rev
few mechanisms that will be important to the writing of actual systems: external rou
and the encapsulation of non-O-O software; argument passing; control struc
expressions; string manipulation; input and output.

These are technical aspects, not essential to the understanding of the method;
will need them for some later examples, and they blend well with the fundam
concepts. So even on your first reading you should spend some time getting a
generally familiar with them.

13.1 INTERFACING WITH NON-O-O SOFTWARE

So far, we have expressed software elements entirely in the object-oriented notatio
the software field grew up long before object technology became popular, and yo
often need to interface your software with non-O-O elements, written in such langu
as C, Fortran or Pascal. The notation should support this process.

We will first look at the language mechanism, then reflect on its broader signific
as a part of the object-oriented software development process.

External routines

Our object-oriented systems are made of classes, consisting of features, partic
routines, that contain instructions. What is, among these three, the right lev
granularity for integrating external software?

The construct must be common to both sides; this excludes classes, which exis
in object-oriented languages. (They may, however, be the right level of integr
between two different O-O languages.) Instructions are too low-level; a sequence in
two object-oriented instructions bracket a C instruction:

!! x● make (clone (a))
(struct A) *x = &y; /* A piece of C */

x● display

would be very hard to understand, validate and maintain.

-

MORE O-O MECHANISMS §13.1440

patible
ation
 since
heir
nally

 the
tion,

mple,

 its
ample
with a

 of this

l
 may

stem,
 the
y to

ically

O-O
nt the

pter.
This leaves the feature level, the right one since encapsulating features is com
with O-O principles: a class is an implementation of a data type protected by inform
hiding; features are the unit of interaction of the class with the rest of the software;
clients rely on the features’ official specification (the short form) independently of t
implementation, it does not matter to the outside world whether a feature is inter
written in the object-oriented notation or in another language.

Hence the notion of external routine. An external routine will have most of
trappings of a normal routine: name, argument list, result type if it is a func
precondition and postcondition if appropriate. Instead of a do clause it will have an
external clause stating the language used for the implementation. Here is an exa
extracted from a class describing character files:

put (c: CHARACTER) is
-- Add c to end of file.

require
write_open: open_for_write

external
 "C" alias "_char_write";

ensure
one_more: count = old count + 1

end
The alias clause is optional, useful only if the name of the external routine, in

language of origin, is different from the name given in the class. This happens for ex
when the external name would not be legal in the object-oriented notation, as here
name beginning with an underscore (legal in C).

Advanced variants

The mechanism just described covers most cases and will suffice for the purposes
book. In practice some refinements are useful:

• Some external software elements may be macros rather than routines. They wil
appear to the O-O world as routines, but any call will be expanded in-line. This
be achieved by varying the language name (as in "C:[macro]… ").

• It is also necessary to permit calls to routines of “Dynamic Link Libraries” (DLL)
available on Windows and other platforms. Instead of being a static part of the sy
a DLL routine is loaded at run time, on the first call. It is even possible to define
routine and library names at run time. DLL support should include both a wa
specify the names statically (as in external "C:[dll]…") and a completely dynamic
approach using library classes DYNAMIC_LIBRARY and DYNAMIC_ROUTINE
which you can instantiate at run time, to create objects representing dynam
determined libraries and routines.

• You may also need communication in the reverse direction, letting non-
software create objects and call features on them. For example you may wa
callback mechanism of a non-O-O graphical toolkit to call certain class features.

All these facilities are present in the O-O environment described in the last cha
Their detailed presentation, however, falls beyond the scope of this discussion.

§13.1 INTERFACING WITH NON-O-O SOFTWARE 441

 old
llow
rs that

ht be
can

ent or

ss
so on.

 other
outine
 with

t of the
lowly

 core
f our
that
 is its
hat is

ly on
bject
lation

ate to
s such

everal
tions.

legacy

“Polite society” is
not classless.
Uses of external routines

External routines are an integral part of the method, fulfilling the need to combine
software with new. Any software design method emphasizing reusability must a
accessing code written in other languages. It would be hard to convince potential use
reusability begins this minute and that all existing software must be discarded.

Openness to the rest of the world is a requirement for most software. This mig
termed the Principle of Modesty: authors of new tools should make sure that users
still access previously available facilities.

External routines are also necessary to provide access to machine-depend
operating system capabilities. The file class is a typical example. Another is class ARRAY,
whose interface was presented in earlier chapters but whose implementation will rely on
external routines: the creation procedure make use a memory allocation routine, the acce
function item will use an external mechanism for fast access to array elements, and

This technique ensures a clean interface between the object-oriented world and
approaches. To clients, an external routine is just a routine. In the example, the C r
_char_write has been elevated to the status of a feature of a class, complete
precondition and postcondition, and the standard name put. So even facilities which
internally rely on non-O-O mechanisms get repackaged in data abstractions; the res
object-oriented software will see them as legitimate members of the group, their
origins never to be mentioned in polite society.

Object-oriented re-architecturing

The notion of external routine fits well with the rest of the approach. The method’s
contribution is architectural: object technology tells us how to devise the structure o
systems to ensure extendibility, reliability and reusability. It also tells us how to fill
structure, but what fundamentally determines whether a system is object-oriented
modular organization. It is often appropriate, then, to use an O-O architecture — w
sometimes called a wrapper — around internal elements that are not all O-O.

One extreme but not altogether absurd way to use the notation would rely sole
external routines, written in some other language, for all actual computation. O
technology would then serve as a pure packaging tool, using its powerful encapsu
mechanisms: classes, assertions, information hiding, client, inheritance.

In general there is no reason to go that far, since the notation is perfectly adequ
express computations of all kinds and execute them as efficiently as older language
as Fortran or C. But object-oriented encapsulation of external software is useful in s
cases. We have seen one of them: providing access to platform-specific opera
Another is to address a problem that faces many organizations: managing so-calledlegacy
software. During the sixties, seventies and eighties, companies have accumulated a

MORE O-O MECHANISMS §13.1442

, and
ers an
ng to

f
,

dying

 you
ion
 the

e new
ed in
ring

k —
more

not, is

ples,

ms,
rent
lly,
isely,
n

WEL,
o not
otif

al
inear
tting
tion,

On these libraries
see “PORTABIL-
ITY AND PLAT-
FORM
ADAPTATION”,
of Cobol, Fortran, PL/I and C code, which is becoming harder and harder to maintain
not just because the original developers are gone or going. Object technology off
opportunity to re-engineer such systems by re-architecturing them, without havi
rewrite them completely.

Think of this process as the reverse of turkey stuffing: instead of keeping the structure
and changing the internals, you keep the entrails and replace the skeleton, as i
repackaging the content of a turkey into the bones of a zebra or a mouse. It must be noted
however, that such non-software applications of the idea appear neither useful nor
appetizing.

This technique, which we may call object-oriented re-architecturing, offers an
interesting solution for preserving the value of existing software assets while rea
them for future extension and evolution.

It will only work, however, under specific conditions:

• You must be able to identify good abstractions in the existing software. Since
are not dealing with object-oriented software, they will typically be funct
abstractions, not data abstractions; but that is normal: it is your task to find
underlying data abstractions and repackage the old software’s routines into th
software’s classes. If you cannot identify proper abstractions already packag
routines, you are out of luck, and no amount of object-oriented re-architectu
attempts will help.

• The legacy software must be of good quality. Re-architectured junk is still jun
possibly worse than the original, in fact, as the junkiness will be hidden under
layers of abstraction.

These two requirements are partly the same, since quality in software, O-O or
largely determined by quality of structure.

When they are satisfied, it is possible to use the external mechanism to build some
very interesting object-oriented software based on earlier efforts. Here are two exam
both part of the environment described in the last chapter.

• The Vision library provides portable graphics and user interface mechanis
enabling developers to write graphical applications that will run on many diffe
platforms, with the native look-and-feel, for the price of a recompilation. Interna
it relies on the native mechanisms, used through external routines. More prec
its lower level — WEL for Windows, MEL for Motif, PEL for OS/2 Presentatio
Manager — encapsulates the mechanisms of the corresponding platforms.
MEL, PEL and consorts are also usable directly, providing developers who d
care about portability with object-oriented encapsulations of the Windows, M
and Presentation Manager Application Programming Interfaces.

• Another library, Math, provides an extensive set of facilities for numeric
computation in such areas as probability, statistics, numerical integration, l
and non-linear equations, ordinary differential equations, eigenproblems, fi
and interpolation, orthogonal factorizations, linear least squares, optimiza

§13.1 INTERFACING WITH NON-O-O SOFTWARE 443

, it is
 of
The
stract
any

ician,

t of
s —
tiple
mple

tware

 need
. The
tion.

bject
xisting
wn as

bject-

 as C.
ject

ey do

cts of
ake it
atic

many
view.

See chapter 35.
special functions, Fast Fourier Transforms and time series analysis. Internally
based on a commercial subroutine library, the NAG library from Nag Ltd.
Oxford, but it provides a completely object-oriented interface to its users.
library hides the underlying routines and instead is organized around such ab
concepts as integrator, matrix, discrete function, exponential distribution and m
others; each describes “objects” readily understandable to a mathemat
physicist or economist, and is represented in the library by a class: INTEGRATOR,
BASIC_MATRIX, DISCRETE_FUNCTION, EXPONENTIAL_DISTRIBUTION. The
result builds on the quality of the external routines — NAG is the produc
hundreds of person-years of devising and implementing numerical algorithm
and adds the benefits of O-O ideas: classes, information hiding, mul
inheritance, assertions, systematic error handling through exceptions, si
routines with short argument lists, consistent naming conventions.

These examples are typical of how one can combine the best of traditional sof
and object technology.

The compatibility issue: hybrid software or hybrid languages?

Few people would theoretically disagree with the principle of modesty and deny the
for some integration mechanism between O-O developments and older software
matter becomes more controversial when it comes to deciding on the level of integra

A whole set of languages — the best known are Objective-C, C++, Java, O
Pascal and Ada 95 — have taken the approach of adding O-O constructs to an e
non-O-O language (respectively C in the first three cases, Pascal and Ada). Kno
hybrid languages, they are discussed in varying degree of detail in a later chapter.

The integration technique described above, relying on external routines and o
oriented re-architecturing, follows from a different principle: that the need for software
compatibility does not mean that we should burden the language with mechanisms that
may be at odds with the principles of object technology. In particular:

• A hybrid adds a new language level to the weight of an existing language such
The result can be quite complex, limiting one of the principal attractions of ob
technology — the essential simplicity of the ideas.

• Beginners as a result often have trouble mastering a hybrid language, since th
not clearly see what is truly O-O and what comes from the legacy.

• Some of the older mechanisms may be incompatible with at least some aspe
object-oriented ideas. We have seen how the type concepts inherited from C m
hard to equip C++ environments with garbage collection, even though autom
memory management is part of the appeal of object technology. There are
other examples of clashes between the C or Pascal type system and the O-O

MORE O-O MECHANISMS §13.2444

 their
with
c on
e on
ough

ld the
ame

ising

er
at the
 and

alues

ld be
d
” for

formal
l they
 rules.

rmal
rations
tion
• The non-O-O mechanisms are still present, often in apparent competition with
higher-level object-oriented counterparts. For example C++ offers, along
dynamic binding, the ability to choose a function at run time through arithmeti
function pointers. This is disconcerting for the non-expert who lacks guidanc
which approach to choose in a particular case. The resulting software, alth
compiled by an O-O environment, is still, deep-down, C code, and does not yie
expected quality and productivity benefits — giving object technology a bad n
through no fault of its own.

If the aim is to obtain the best possible software process and products, comprom
at the language level does not seem the right approach. Interfacing object-oriented tools
and techniques with previous achievements is not the same thing as mixing widely
different levels of technology.

With the usual precautions about attaching too much weight to a metaphor, we can think
of the precedent of electronics. It is definitely useful to combine different technology
levels in a single system, as in an audio amplifier which still includes a few diodes
together with transistors and integrated circuits. But the levels remain separate: there is
little use for a basic component that would be half-diode, half-transistor.

O-O development should provide compatibility with software built with oth
approaches, but not at the expense of the method’s power and integrity. This is wh
external mechanism achieves: separate worlds, each with its own consistency
benefits, and clear interfaces between these worlds.

13.2 ARGUMENT PASSING

One aspect of the notation may require some clarification: what may happen to v
passed as arguments to routines?

Consider a routine call of the form

r (a1, a2, …, an)

corresponding to a routine

r (x1: T1, x2: T2, …, xn: Tn) is …

where the routine could be a function as well as a procedure, and the call cou
qualified, as in b● r (…). The expressions a1, a2, …, an are called actual arguments, an
the xi are called formal arguments. (Recall that we reserve the term “parameter
generic type parameters.)

The relevant questions are: what is the correspondence between actual and
arguments? What operations are permitted on formal arguments? What effect wil
have on the corresponding actuals? For all three we should stick to simple and safe

We already know the answer to the first question: the effect of actual-fo
argument association is the same as that of a corresponding assignment. Both ope
are called attachments. For the above call we can consider that the routine’s execu
starts by executing instructions informally equivalent to the assignments

§13.2 ARGUMENT PASSING 445

uals?
iation
m the
d:

py a

 you
not

n

s of

“ATTACHMENT:
REFERENCE AND
VALUE SEMAN-
TICS”, 8.8, page
261, in particular
table on page 264.

Permissible
operations on a
reference
argument
x1 := a1; x2 := a2; … xn := an

On the second question: within the routine body, any formal argument x is protected.
The routine may not apply to it any direct modification, such as:

• An assignment to x, of the form x := …

• A creation instruction with x as its target:!! x● make (…)

Readers familiar with the passing mechanism known as call by value will note that the
restriction is harsher here: with call by value, formals are initialized to actuals but may
then be the target of arbitrary operations.

The answer to the third question — what can the routine actually do to the act
— follows from the use of attachment to define the semantics of actual-formal assoc
Attachment means copying either a reference or an object. As you will remember fro
discussion of attachment, this depends on whether the types involved are expande

• For reference types (the more common case), argument passing will co
reference, either void or attached to an object.

• For expanded types (which include in particular the basic types: INTEGER, REAL
and the like), argument passing will actually copy an object.

In the first case, the prohibition of direct modification operations means that
cannot modify the reference through reattachment or creation; but if the reference is
void you can modify the attached object through appropriate routines.

If xi is one of the formal arguments to routine r, the body of the routine could contai
a call of the form

xi ● p (…)

where p is a procedure applicable to xi, meaning a procedure declared in the base clas
xi ’s type Ti. This routine may modify the fields of the object attached to xi at execution
time, which is the object attached to the corresponding actual argument ai.

xi

The routine may not change this
reference (e.g. reattach it to
another object) O1

The routine may change fields of this
object (through calls to other

MORE O-O MECHANISMS §13.2446

t
ge the

ents

rmal-
mers,

ions
lement
nstant

ion as

e of a

.

re; the

ly a

es that

eral
e title

at,
 more

WARNING: invalid
routine text. For pur-
poses of illustration
only.

On constant attrib-
utes see chapter 18.

See chapter 23, espe-
cially “The a posteri-
ori scheme”, page
800.
So although a call q (a) can never change the value of a — the corresponding objec
if a is expanded, the reference otherwise — it can, in the reference case, chan
attached object.

There are many reasons for not permitting routines to modify their argum
directly. One of the most striking is the Conflicting Assignments To Actual trick. Assume
a language that permits assignments to arguments, and a procedure

dont_I_look_innocuous (a, b: INTEGER) is

-- But do not trust me too much.

do

a := 0; b := 1

end

Then consider the call dont_I_look_innocuous (x, x) for some entity x. What is the
value of x on return: 0 or 1? The answer depends on how the compiler implements fo
to-actual update on routine exit. This has fooled more than a few Fortran program
among others.

Permitting argument-modifying routines would also force us to impose restrict
on actual arguments: the actual corresponding to a modifiable formal must be an e
that can change its value (a writable entity); this allows variable attributes, but not co
attributes, Current, or general expressions such as a + b. By precluding argument-
modifying routines we can avoid imposing such restrictions and accept any express
actual argument.

As a consequence of these rules, there are only three ways to modify the valu
reference x: through a creation instruction!! x…; through an assignment x := y; and
through a variant of assignment, assignment attempt x ?= y, studied in a later chapter
Passing x as actual argument to a routine will never modify x.

This also means that a routine returns at most one result: none if it is a procedu
official result (represented in the routine’s body by the entity Result) if it is a function. To
achieve the effect of multiple results, you can either:

• Use a function that returns an object with several fields (or more common
reference to such an object).

• Use a procedure that sets several fields of an object, corresponding to attribut
the client may then query.

The first technique is appropriate when the result is truly made of sev
components; a function may not for example return two values corresponding to th
and publication year of a book, but it may return a single value of type BOOK, with
attributes title and publication_ year. The second technique is applicable for a routine th
besides its principal job, sets some status indicators. We will study it, as well as the
general question of side effects, in the discussion of module design principles.

§13.3 INSTRUCTIONS 447

cify
t” is
g: a

tion
ith a
ith C
nal;

, the
r the

he

l

 you
13.3 INSTRUCTIONS

The object-oriented notation developed in this book is imperative: we spe
computations through commands, also called instructions. (The word “statemen
commonly used in this sense but we will steadfastly avoid it since it is misleadin
statement is an expression of facts, not a command.)

Except for some specific properties of loops, intended to make their verifica
easier, instructions will look familiar to anyone who has had some experience w
modern language of the Algol line such as Pascal, Ada or Modula, or even just w
or a derivative. They include: Procedure call; Assignment; Creation; Conditio
Multi_branch; Loop; Check; Debug; Retry; Assignment attempt.

Procedure call

A routine call involves a routine, possibly with actual arguments. In a call instruction
routine must be a procedure; if it is a function, the call is an expression. Although fo
moment we are interested in instructions, the following rules apply to both cases.

A call is either qualified or unqualified. An unqualified call to a routine of t
enclosing class uses the current instance as target; it appears under the form

r (without arguments), or

r (x, y, …) (with arguments)

A qualified call explicitly names its target, denoted by an expression: if a is an
expression of a certain type, C is the base class of that type, and q is one of the routines of
C, then a qualified call is of the form a●q. Again, q may be followed by a list of actua
arguments; a may be an unqualified function call with arguments, as in p (m) ● q (n) where
the target is p (m). You may also use as target a more complex expression, provided
enclose it in parentheses, as in (vector1 + vector2)● count.

Multidot qualified calls, of the form a● q1● q2 … ● qn are also permitted, where a as
well as any of the qi may include a list of actual arguments.

Export controls apply to qualified calls. Recall that a feature f declared in a class B is
available to a class A if the feature clause declaring f begins with feature (without further
qualification) or feature { X, Y, …} where one of X, Y, … is A or an ancestor of A. Then:

To understand the reason for the second rule, note that a● q● r ● s is a shorthand for

Qualified Call rule

A qualified call of the form b● q1● q2 …. ● qn appearing in a class C is valid
only if it satisfies the following conditions:

R1 • The feature appearing after the first dot, q1, must be available to C.

R2 • In a multidot call, every feature after the second dot, that is to say every
qi for i > 1, must also be available to C.

MORE O-O MECHANISMS §13.3448

rs.

er:

 in
h,

ut a

ld be

See “Operator fea-
tures”, page 187.

Chapter 18 dis-
cusses constant
attributes.

See “The creation
instruction”, page
232 and “CREATION
PROCEDURES”,
8.4, page 236. A vari-
ant will be seen in
“Polymorphic cre-
ation”, page 479.
b := a● q; c := b● r; c● s

which is only valid if q, r and s are all available to C, the class where this fragment appea
Whether r is available to the base class of q’s type, and s available to the base class of r ’s
type, is irrelevant.

As you will remember it is also possible to express calls in infix or prefix form; an
expression such as a + b is a different syntax for a call that would otherwise be written
a● plus (b). The same validity rules apply to such expressions as to the dot form.

Assignment

The assignment instruction is written

x := e

where x is a writable entity and e an expression of compatible type. A writable entity is eith

• A non-constant attribute of the enclosing class.

• A local entity of the enclosing routine, including Result for a function.

Other, non-writable kinds of entity include constant attributes (introduced
declarations such as Zero: INTEGER is 0) and formal arguments of a routine — to whic
as we just saw, the routine may not assign a new value.

Creation instruction

The creation instruction was studied in an earlier chapter in its two forms: witho
creation procedure, as in!! x, and with a creation procedure, as in!! x● p (…). In both
cases, x must be a writable entity.

Conditional

A conditional instruction serves to specify that different forms of processing shou
applied depending on certain conditions. The basic form is

if boolean_expression then
instruction; instruction; …

else
instruction; instruction; …

end

where each branch may have an arbitrary number of instructions (possibly none).

This will execute the instructions in the first branch if the boolean_expression
evaluates to true, and those in the second branch otherwise. You may omit the else part if
the second instruction list is empty, giving:

if boolean_expression then
instruction; instruction; …

end

§13.3 INSTRUCTIONS 449

itional

on, the
l.

mic
s by
ture

s of the
urse

yword
inates
When there are more than two relevant cases, you can avoid nesting cond
instructions in else parts by using one or more elseif branches, as in

if c1 then
instruction; instruction; …

elseif c2 then
instruction; instruction; …

elseif c3 then
instruction; instruction; …

…
else

instruction; instruction; …
end

where the else part remains optional. This avoids the repeated nesting of

if c1 then
instruction; instruction; …

else
if c2 then

instruction; instruction; …
else

if c3 then
instruction; instruction; …
…

else
instruction; instruction; …

end
end

end

For handling a set of cases defined by the possible values of a certain expressi
multi-branch inspect, studied next, may be more convenient than the plain conditiona

The object-oriented method, in particular through polymorphism and dyna
binding, tends to reduce the need for explicit conditional and multi-branch instruction
supporting an implicit form of choice: you apply a feature to an object, and if the fea
has several variants the right one automatically gets selected at run time on the basi
object’s type. When applicable, this implicit style is usually preferable. But of co
some of your algorithms will still require explicit choice instructions.

Multi-branch

The multi-branch (also known as a Case instruction because of the corresponding ke
in Pascal, where it was first introduced based on a design by Tony Hoare) discrim
between a set of conditions that are all of the form e = vi where x is an expression and the
vi are constants of the same type. Although a conditional instruction (if e = v1 then …

MORE O-O MECHANISMS §13.3450

ting
s not

y by

e will

s

n the

,
. But

e

iding
sually
ich in

put:
elseif e = v2 then…) would do the job, two reasons justify a special instruction, depar
from the usual rule that if the notation offers one good way to do something it doe
need to offer two:

• This case is so common as to justify specific syntax, which will enhance clarit
avoiding the useless repetition of “e =”.

• Compilers can use a particularly efficient implementation technique, the jump table,
not applicable to general conditional instructions and avoiding explicit tests.

For the type of the discriminated values (the type of e and the vi), the multi-branch
instruction only needs to support two possibilities: integers and booleans. The rul
indeed be that e and the vi must be declared as either all INTEGER or all CHARACTER.
The general form of the instruction is:

inspect

e

when v1 then

instruction; instruction; …
when v2 then

instruction; instruction; …
…
else

instruction; instruction; …
end

All the vi values must be different. The else… part is optional. Each of the branche
may have an arbitrary number of instructions, possibly none.

The effect of the instruction is the following: if the value of e is equal to one of the
vi (this can be the case for at most one of them), execute the instructions i
corresponding branch; otherwise, execute the instructions in the else branch if any.

If there is no else branch and the value of e does not match any of the vi, the effect is
to raise an exception (of code Incorrect_inspect_value). This policy may seem surprising
since the corresponding conditional instruction would simply do nothing in this case
it highlights the specificity of the multi-branch. When you write an inspect with a set of
vi values, you should include an else branch, empty or not, if you are prepared for run-tim
values of e that match none of the vi. If you do not include an else, you are making an
explicit statement: that you expect the value of e always to be one of the vi. By checking
this expectation and raising an exception if it is not met, the implementation is prov
a service. Doing nothing would be the worst possible response, since this case u
reflects a bug (forgetting a possible case to be handled in its own specific way), wh
any case should be fixed as early as possible.

A typical application of the multi-branch is to decode a single-character user in

§13.3 INSTRUCTIONS 451

ter.
uch as
n

r the
 The
ation

ional

This is an elementa
scheme. See chapte
21 for more sophisti
cated user comman
processing techniqu

“UNIQUE VAL-
UES”, 18.6, page 65.
Do and Si are also
known as Ut and Ti.

The Discrimination
principle appears o
page 655.

See “LOOP
INVARIANTS AND
VARIANTS”, 11.12
page 381.
inspect

first_input_letter

when 'D' then
“Delete line”

when 'I' then
“Insert line”

…
else

message ("Unrecognized command; type H for help")

end

In the integer case, the vi can be Unique values, a concept detailed in a later chap
This makes it possible to define a number of abstract constants, in a declaration s
Do, Re, Mi, Fa, Sol, La, Si: INTEGER is unique, and then discriminate among them in a
instruction such as inspect note when Do then… when Re then… end.

Like conditionals, multi-branch instructions should not be used as a substitute fo
implicit discrimination techniques of object technology, based on dynamic binding.
restriction to integer and character values helps avoid misuse; the Discrimin
principle, introduced together with unique values, will provide further guidance.

Loop

The syntax of loops was introduced in the presentation of Design by Contract:

from

initialization_instructions

invariant

invariant

variant

variant

until

exit_condition

loop

loop_instructions

end

The invariant and variant clauses are optional. The from clause is required (but
may be empty); it specifies the loop initialization instructions. Leaving aside the opt
clauses, the execution of such a loop consists of executing the initialization_instructions
followed by the “loop process”, itself defined as follows: if the exit_condition is true, the
loop process is a null instruction; if it is false, the loop process is the execution of the loop_
instructions followed (recursively) by a new loop process.

ry
r
-
d
es.

4

n

,

MORE O-O MECHANISMS §13.4452

press

ns it

cuted

ear
ption.

, or a

 value.

t may

See “LOOP
INVARIANTS AND
VARIANTS”, 11.12,
page 381.

See “AN EXCEP-
TION MECHA-
NISM”, 12.3, page
419.

Entities were defined
on page 213.
Check

The check instruction was also seen in the discussion of assertions. It serves to ex
that certain assertions must be satisfied at certain points:

check
assertion -- One or more clauses

end

Debug

The debug instruction is a facility for conditional compilation. It is written

debug instruction; instruction; … end

For every class, you may turn on or off the corresponding debug option of the control
file (the Ace). If on, any debug instruction in the class is equivalent to the instructio
contains; if off, it has no effect on the execution.

You can use this instruction to include special actions that should only be exe
in debugging mode, for example instructions to print out some values of interest.

Retry

The last instruction is retry , introduced in the discussion of exceptions. It may only app
in a rescue clause, and will restart the body of a routine that was interrupted by an exce

13.4 EXPRESSIONS

An expression serves to denote a computation that yields a value — an object
reference to an object. Expressions include the following varieties:

• Manifest constants.

• Entities (attributes, local routine entities, formal routine arguments, Result).

• Function calls.

• Expressions with operators (technically are a special case of function calls).

• Current.

Manifest constants

A manifest constant is a value that denotes itself (such as the integer value written 0) — as
opposed to a symbolic constant, whose name is independent of the denotation of the

There are two boolean manifest constants, written True and False. Integer constants
follow the usual form and may be preceded by a sign. Examples are

453 –678 +66623

Real constants use a decimal point. Either the integer part or the fractional par
be absent; you may include a sign, and specify an integer power of 10 by e followed by
the exponent value. Examples are:

§13.4 EXPRESSIONS 453

library

apter.
ble.

ell.

ed in
an

 not

st be
re is

e test

tors

“ANCHORED
DECLARATION”,
16.7, page 599.
52.5 –54.44 +45.01 .983 –897. 999.e12

Character constants consist of a single character written in quotes, as in'A'; they
describe single characters. For strings of more than one character we will use the
class STRING, discussed later in this chapter.

Function calls

Function calls follow the same syntax as procedure calls studied earlier in this ch
They may be qualified or unqualified; in the qualified case, multidot notation is availa
Assuming the proper class and function declarations, examples are:

b● f
b● g (x, y, …)

b● h (u, v)● i ●j (x, y, …)

The Qualified Call rule introduced for procedures applies to function calls as w

Current object

The reserved word Current denotes the current instance of the class and may be us
an expression. Note that Current itself is an expression, not a writable entity; thus
assignment to Current, such as Current := some_value, would be syntactically illegal.

When referring to a feature (attribute or routine) of the current instance, it is
necessary to write Current● f; just f suffices. Because of this rule, we will use Current less
frequently than in object-oriented languages where every feature reference mu
explicitly qualified. (In Smalltalk, for example, there is no such convention; a featu
always qualified, even when it applies to the current instance, written self.) Cases in which
you will need to name Current explicitly include:

• Passing the current instance as argument to a routine, as in a● f (Current). A common
application is to create a duplicate of the current instance, as in x := clone (Current).

• Testing whether a reference is attached to the current instance, as in th
x = Current.

• Using Current as anchor in an “anchored declaration” of the form like Current, as
will be seen in the study of inheritance.

Expressions with operators

Operators are available to construct composite expressions.

Unary operators are + and –, applicable to integer and real expressions, and not,
applicable to boolean expressions.

Binary operators, which take exactly two operands, include the relational opera

= /= < > <= >=

where /= is “not equal”. The relational operators yield boolean results.

MORE O-O MECHANISMS §13.4454

tors.

cs, has
ty or
needed,

 as

ing
nitions

o not.

 is

ion

For an explanation of
the word “non-strict”
see e.g. [M 1990] or
[M 1992].
Multiary expressions involve one or more operands, combined with opera
Numerical operands may be combined using the following operators:

+ – ∗ / ^ // \\

where // is integer division, \\ is integer remainder and ^ is power (exponentiation).

Boolean operands may be combined with the operators and, or, xor, and then,
or else, implies. The last three are explained in the next section; xor is exclusive or.

The precedence of operators, based on the conventions of ordinary mathemati
been devised according to the “Principle of Least Surprise”. To avoid any uncertain
confusion, this book makes generous use of parentheses even where they are not
as in the examples of the next section.

Non-strict boolean operators

The operators and then and or else (whose names have been borrowed from Ada)
well as implies are not commutative, and are called non-strict boolean operators. Here
is their semantics:

The boolean values from mathematics are written in regular font: true and false; True and
False are predefined language constants and hence written in color italics.

The first two definitions at first seem to yield the same semantics as and and or . But
the difference is what happens when b is not defined. In that case the expressions us
the standard boolean operators are mathematically undefined, but the above defi
may still yield a result: if a is false, a and then b is false regardless of b; and if a is true,
a or else b is true regardless of b. Similarly, a implies b is true if a is false, even if b is
undefined. So the non-strict operators may yield a result when the standard ones d

A typical application is the boolean expression (using integer division //)

(i /= 0) and then (j // i = k)

which, from the above definition, has value false if i is equal to zero (as the first operand
then false). If the expression had been written using and rather than and then, then its
second operand would be undefined when i is zero, so that the status of the whole express
is unclear in this case. This uncertainty is reflected in what may happen at run time:

Non-strict boolean operators

• a and then b has value false if a has value false, and otherwise has the
value of b.

• a or else b has value true if a has value true, and otherwise has the
value of b.

• a implies b has the same value as: (not a) or else b.

§13.4 EXPRESSIONS 455

s their
on.

 when
n the

ing

more
n-strict
rs: a

t two

r and

rands
iven a
GOL

actical

 are

ot

 the
e non-
rands

onal
ad of
B1 • If the compiler generates code that evaluates both operands and then take
boolean “and”, a division by zero will result at run time, producing an excepti

B2 • If, on the other hand, the generated code only evaluates the second operand
the first is true, otherwise returning false as the value of the expression, the
expression will indeed evaluate to false.

To guarantee interpretation B2, use and then. Similarly,

(i = 0) or else (j // i /= k)

will evaluate to true if i is zero, whereas the or variant could produce a run-time error.

An expression using and then always yields the same value as the correspond
expression written using and if both are defined. But the and then form may yield a value
(false) in cases when the and form does not. The same holds with or else (and the value true)
with respect to or. In this sense, the non-commutative operators may be said to be “
defined than or equal to” their respective counterparts. This also means that the no
interpretation — strategy B2 — is a correct implementation for the ordinary operato
compiler writer may decide to implement and as and then and or as or else. But he does not
have to, so the software developer may not rely on the assumption that and and or will be non-
strict; only and then and or else guarantee the correct behavior in cases such as the las
examples.

One might wonder why two new operators are needed; would it not be simple
safer to just keep the standard operators and and or and take them to mean and then and
or else? This would not change the value of any boolean expression when both ope
are defined, but would extend the set of cases in which expressions may be g
consistent value. This is indeed the way some programming languages, notably AL
W and C, interpret boolean operators. There are, however, both theoretical and pr
reasons for keeping two sets of distinct operators:

• On the theoretical side, the standard mathematical boolean operators
commutative: a and b always has the same value as b and a, whereas a and then b
may be defined when b and then a is not. When the order of operands does n
matter it is preferable to use a commutative operator.

• In practice, some compiler optimizations become impossible if we require
compiler to evaluate the operands in a given sequence, as is the case with th
commutative operators. So it is better to use the standard operators if both ope
are known to be defined.

Note that it is possible to simulate the non-strict operators through conditi
instructions in a language that does not include such operators. For example, inste

b := ((i /= 0) and then (j // i = k))

one may write

if i = 0 then b := false else b := (j // i = k) end

MORE O-O MECHANISMS §13.5456

d as

luate

 on).

t the

nt —
f

ition
 the
 cases.

gic

, but

tation
The non-strict form is of course simpler. This is particularly clear when it is use
the exit condition of a loop, such as the following iteration on an array:

from
i := a●lower

invariant
-- For all elements in the interval [a ●lower .. i –- 1], (a @ i) /= x

variant
a● upper — i

until
i > a● upper or else (a @ i = x)

loop
i := i + 1

end;
Result:= (i <= a● upper)

whose purpose is to make Result true if and only if the value x appears in the array a. The
use of or would be incorrect here: a compiler may generate code that will always eva
both operands, so that for the last index examined (i > a●upper) if no array value equals x,
there will be an erroneous attempt at run time to access the non-existent array item a @
(a● upper + 1), causing a run-time error (a precondition violation if assertion checking is

It is possible to program this example safely without non-strict operators, bu
result is heavy and inelegant (try it).

Another example is an assertion — appearing for example in a class invaria
expressing that the first value of a certain list l of integers is non-negative — provided, o
course, that the list is not empty. You may express this as

l ● empty or else l ● first >= 0

Using or would have been incorrect. Here there is no way to write the cond
without non-strict operators (except by writing a special function and calling it in
assertion). The Base libraries of algorithms and data structures contain many such

The implies operator, describing implication, is also non-strict. Mathematical lo
defines “a implies b” as “not a or b”; but in practical uses property b is often meaningless
for false a, so that it is appropriate to use or else rather than or; this is the official definition
given above. In this case there is no need for a strict variant.

The implies form does not always come first to mind when you are not used to it
it is often clearer; for example you might like the last example better under the form

(not l ● empty) implies (l ●first >= 0)

13.5 STRINGS

Class STRING describes character strings. It enjoys a special status since the no
permits manifest string constants, understood as denoting instances of STRING.

A string constant is written enclosed in double quotes, as in

"ABcd Ef ~∗_ 01"

§13.6 INPUT AND OUTPUT 457

e.

r
tically

 from

rscore
 the
 used

differ
The double quote character must be preceded by a percent% if it appears as one of
the characters of the string.

Non-constant character strings are also instances of class STRING, whose creation
procedure make takes as argument the expected initial length of the string, so that

text1, text2: STRING; n: INTEGER;

…
!! text1● make (n)

will dynamically allocate a string text1, reserving the space for n characters. Note that n is
only an initial size, not a maximum; any string can grow or shrink to an arbitrary siz

Numerous features are available on instances of STRING: concatenation, character o
substring extraction, comparison etc. (They may change the size of the string, automa
triggering re-allocation if it becomes greater than the currently allocated size.)

Assignment of a STRING to another implies sharing: after text2:= text1, any
modification to the contents of text1 will also affect the contents of text2 and conversely.
To duplicate rather than share, use by text2:= clone (text1).

You can declare a constant string attribute:

message: STRING is "Your message here"

13.6 INPUT AND OUTPUT

Two Kernel Library classes provide basic input and output facilities: FILE and STD_
FILES.

Among the operations defined on an object f declared of type FILE are the following:

!! f ● make ("name") --Associate f with a file of namename.

f ●open_write -- Open f for writing

f ●open_read -- Open f for reading

f ●put_string ("A_STRING") --Write the given string on f

For I/O operations on the standard input, output and error files, you can inherit
STD_FILES, which defines the features input, output and error. Alternatively you can use
the predefined value io, as in io ● put_string ("ABC"), bypassing inheritance.

13.7 LEXICAL CONVENTIONS

Identifiers are sequences of characters, all of which must be letters, digits or unde
characters (_); the first character of an identifier must be a letter. There is no limit to
length of identifiers, and all the characters of identifiers are significant. This can be
to make both feature names and class names as clear as possible.

Letter case is not significant in identifiers, so that Hi, hi, HI and hI all denote the
same identifier. The reason is that it would be dangerous to allow two identifiers that

MORE O-O MECHANISMS §13.8458

tions,

d
r
utine
 since
ability

e the

, call,

nt

erators
andard

ude

es are
ther
ternal

Chapter 26.

Page 456.
from each other by just one character, say Structure and structure, to denote different
elements. Better ask developers to use some imagination than risk mistakes.

The notation, however, comes with a set of precise standard style conven
detailed in a later chapter entirely devoted to style: classes (INTEGER, POINT…) and
formal generic parameters (G in LIST [G]) in all upper case; predefined entities an
expressions (Result, Current…) and constant attributes (Pi) start with an upper-case lette
and continue in lower case; all other identifiers (non-constant attributes, formal ro
arguments, local entities) in all lower case. Although compilers do not enforce them
they are not part of the notation’s specification, these rules are essential to the read
of software texts; the libraries and this book apply them consistently.

13.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

• External routines are accessible through a well-defined interface.

• Object technology can serve as a wrapping mechanism for legacy software.

• Routines may not directly modify their arguments, although they may chang
objects associated with these arguments.

• The notation includes a small set of instructions: assignment, conditional, loop
debug, check.

• Expressions follow common usage. Current is an expression denoting the curre
instance. Not being an entity, Current may not be the target of an assignment.

• Non-strict boolean operators yield the same values as the standard boolean op
when both operands are defined, but are defined in some cases when the st
operators are not.

• Strings, input and output are covered by simple library classes.

• Letter case is not significant in identifiers, although the style rules incl
recommended conventions

EXERCISES

E13.1 External classes

The discussion of how to integrate external software mentioned that although featur
the right level of integration for non-O-O software elements, interaction with ano
object-oriented language might take place at the class level. Discuss a notion of “ex
class” meant for that purpose, and its addition to the notation of this book.

E13.2 Avoiding non-strict operators

Write a loop that determines if an element x appears in an array a, similar to the algorithm
given in this chapter but not using any of the non-strict operators.

§E13.2 EXERCISES 459

MORE O-O MECHANISMS §E13.2460

	13 13 Supporting mechanisms
	13.1 INTERFACING WITH NON-O-O SOFTWARE
	External routines
	Advanced variants
	Uses of external routines
	Object-oriented re-architecturing
	The compatibility issue: hybrid software or hybrid...

	13.2 ARGUMENT PASSING
	Permissible operations on a reference argument

	13.3 INSTRUCTIONS
	Procedure call
	Qualified Call rule

	Assignment
	Creation instruction
	Conditional
	Multi-branch
	Loop
	Check
	Debug
	Retry

	13.4 EXPRESSIONS
	Manifest constants
	Function calls
	Current object
	Expressions with operators
	Non-strict boolean operators
	Non-strict boolean operators

	13.5 STRINGS
	13.6 INPUT AND OUTPUT
	13.7 LEXICAL CONVENTIONS
	13.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
	EXERCISES
	E13.1 External classes
	E13.2 Avoiding non-strict operators

