13

Supp

Warning this style
is neither supported
nor recommended
For purposes of dis-
cussion only

orting mechanisms

Except for one crucial set of mechanisms, we have now seen the basic techniques
object-oriented software construction. The major missing piece is inheritance and all the
goes with it. Before moving to that last component of the approach, we should review
few mechanisms that will be important to the writing of actual systems: external routine:
and the encapsulation of non-O-O software; argument passing; control structures
expressions; string manipulation; input and output.

These are technical aspects, not essential to the understanding of the method; but
will need them for some later examples, and they blend well with the fundamenta
concepts. So even on your first reading you should spend some time getting at lea
generally familiar with them.

13.1 INTERFACING WITH NON-O-O SOFTWARE

So far, we have expressed software elements entirely in the object-oriented notation. B
the software field grew up long before object technology became popular, and you wil
often need to interface your software with non-O-O elements, written in such language
as C, Fortran or Pascal. The notation should support this process.

We will first look at the language mechanism, then reflect on its broader significance
as a part of the object-oriented software development process.

External routines

Our object-oriented systems are made of classes, consisting of features, particular
routines, that contain instructions. What is, among these three, the right level o
granularity for integrating external software?

The construct must be common to both sides; this excludes classes, which exist on
in object-oriented languages. (They may, however, be the right level of integratior
between two different O-O languages.) Instructions are too low-level; a sequence in whic
two object-oriented instructions bracket a C instruction:

Il x. make(clone (a))
(struct A) *x = &y; /* A piece of C */
x.display

would be very hard to understand, validate and maintain.

440 MORE O-O MECHANISMS §13.1

This leaves the feature level, the right one since encapsulating features is compatible
with O-O principles: a class is an implementation of a data type protected by information
hiding; features are the unit of interaction of the class with the rest of the software; since
clients rely on the features’ official specification (the short form) independently of their
implementation, it does not matter to the outside world whether a feature is internally
written in the object-oriented notation or in another language.

Hence the notion of external routine. An external routine will have most of the
trappings of a normal routine: name, argument list, result type if it is a function,
precondition and postcondition if appropriate. Instead «do clause it will have an
external clause stating the language used for the implementation. Here is an example,
extracted from a class describing character files:

put(c: CHARACTEI) is
-- Add c to end of file.

require

write_oper: open_for_write
external

"C" alias"_char_write";
ensure

one_mor: count=old count + 1
end

The alias clause is optional, useful only if the name of the external routine, in its
language of origin, is different from the name given in the class. This happens for example
when the external name would not be legal in the object-oriented notation, as here with a
name beginning with an underscore (legal in C).

Advanced variants

The mechanism just described covers most cases and will suffice for the purposes of this
book. In practice some refinements are useful:

* Some external software elements maymacro: rather than routines. They will
appear to the O-O world as routines, but any call will be expanded in-line. This may
be achieved by varying the language name ('C:[macrq]...).

It is also necessary to peit calls to routines of “Dynamic Link Libraries” (DLL)
available on Windows and other platforms. Instead of being a static part of the system,
a DLL routine is loaded at run time, on the first call. It is even possible to define the
routine and library names at run time. DLL support should include both a way to
specify the names statically (asexternal "C:[dll]...") and a completely dynamic
approach using library classDYNAMIC_LIBRARYand DYNAMIC_ROUTINE
which you can instantiate at run time, to create objects representing dynamically
determined libraries and routines.

* You may also need communication in the reverse direction, letting non-O-O
software create objects and call features on them. For example you may want the
callback mechanisrof a non-O-O graphical toolkit to call certain class features.

All these facilities are present in the O-O environment described in the last chapter.
Their detailed presentation, however, falls beyond the scope of this discussion.

§13.1 INTERFACING WITH NON-O-O SOFTWARE 441

“Polite society” is
not classles.s

Uses of external routines

External routines are an integral part of the method, fulfilling the need to combine o
software with new. Any software design method emphasizing reusability must allo
accessing code written in other languages. It would be hard to convince potential users
reusability begins this minute and that all existing software must be discarded.

Openness to the rest of the world is a requirement for most software. This might
termed thePrinciple of Modesty: authors of new tools should make sure that users cal
still access previously available facilities.

External routines are also necessary to provide access to machine-dependen
operating system capabilities. The file class is a typical example. Another iIARRA,
whose interface was presented in earlier chapters but whose implement#tretywn
external routines: the creation procedmake¢ use a memory allocation routine, the access
functioniterr will use an external mechanism for fast access to array elements, and so

This technique ensures a clean interface between the object-oriented world and o
approaches. To clients, an external routine is just a routine. In the example, the C rou
_char_write has been elevated to the status of a feature of a class, complete w
precondition and postcondition, and the standard npul. So even facilities which
internally rely on non-O-O mechanisms get repackaged in data abstractions; the rest o
object-oriented software will see them as legitimate members of the group, their low
origins never to be mentioned in polite society.

Object-oriented re-architecturing

The notion of external routine fits well with the rest of the approach. The method’s co
contribution is architectural: object technology tells us how to devise the structure of o
systems to ensure extendibility, reliability and reusability. It also tells us how to fill the
structure, but what fundamentally determines whether a system is object-oriented is
modular organization. It is often appropriate, then, to use an O-O architecture — wha
sometimes called wrapper — around internal elements that are not all O-O.

One extreme but not altogether absurd way to use the notation would rely solely
external routines, written in some other language, for all actual computation. Obije
technology would then serve as a pure packaging tool, using its powerful encapsulat
mechanisms: classes, assertions, information hiding, client, inheritance.

In general there is no reason to go that far, since the notation is perfectly adequat
express computations of all kinds and execute them as efficiently as older languages ¢
as Fortran or C. But object-oriented encapsulation of external software is useful in seve
cases. We have seen one of them: providing access to platform-specific operatic
Another is to address a problem that faces many organizations: managing slegacyd
software. During the sixties, seventies and eighties, companies have accumulated a leg

442

MORE O-O MECHANISMS §13.1

of Cobol, Fortran, PL/I and C code, which is becoming harder and harder to maintain, and
not just because the original developers are gone or going. Object technology offers an
opportunity to re-engineer such systems by re-architecturing them, without having to

rewrite them completely.

Think of this process as the reverse of turkey stuffing: instead of keeping the structure

and changing the internals, you keep the entrails and replace the skeleton, as if
repackaging the content of a turkey into the bones of a zebra or a mouse. It must be noted,
however, that such non-software applications of the idea appear neither useful nor

appetizing.

This technigue, which we may ceobject-oriented re-architecturing, offers an

interesting solution for preserving the value of existing software assets while readying
them for future extension and evolution.

It will only work, however, under specific conditions:

You must be able to identify good abstractions in the existing software. Since you
are not dealing with object-oriented software, they will typically be function
abstractions, not data abstractions; but that is normal: it is your task to find the
underlying data abstractions and repackage the old software’s routines into the new
software’s classes. If you cannot identify proper abstractions already packaged in
routines, you are out of luck, and no amount of object-oriented re-architecturing
attempts will help.

The legacy software must be of good quality. Re-architectured junk is still junk —
possibly worse than the original, in fact, as the junkiness will be hidden under more
layers of abstraction.

These two requirements are partly the same, since quality in software, O-O or not, is

largely determined by quality of structure.

When they are satisfied, it is possible to useexternal mechanism to build some

very interesting object-oriented software based on earlier efforts. Here are two examples,
both part of the environment described in the last chapter.

The Vision library provides portable graphics and user interface mechanison these libraries
enabling developers to write graphical applications that will run on many diffeSe€’PORTABIL-
platforms, with the native look-and-feel, for the price of a recompilation. InterneggRAl\;l\lD PLAT-
it relies on the native mechanisms, used through external routines. More precADAPTATION”,
its lower level — WEL for Windows, MEL for Motif, PEL for OS/2 Presentatic..

Manager — encapsulates the mechanisms of the corresponding platforms. WEL,

MEL, PEL and consorts are also usable directly, providing developers who do not

care about portability with object-oriented encapsulations of the Windows, Motif

and Presentation Manager Application Programming Interfaces.

Another library, Math, provides an extensive set of facilities for numerical

computation in such areas as probability, statistics, numerical integration, linear
and non-linear equations, ordinary differential equations, eigenproblems, fitting
and interpolation, orthogonal factorizations, linear least squares, optimization,

§13.1 INTERFACING WITH NON-O-O SOFTWARE 443

See chapte3E.

special functions, Fast Fourier Transforms and time series analysis. Internally, it
based on a commercial subroutine library, the NAG library from Nag Ltd. o
Oxford, but it provides a completely object-oriented interface to its users. Th
library hides the underlying routines and instead is organized around such abstr
concepts as integrator, matrix, discrete function, exponential distribution and mal
others; each describes “objects” readily understandable to a mathematici:
physicist or economist, and is represented in the library by a INTEGRATOIR
BASIC_MATRI, DISCRETE_FUNCTIO, EXPONENTIAL_DISTRIBUTIC. The
result builds on the quality of the external routines — NAG is the product o
hundreds of person-years of devising and implementing numerical algorithms -
and adds the benefits of O-O ideas: classes, information hiding, multipl
inheritance, assertions, systematic error handling through exceptions, simj
routines with short argument lists, consistent naming conwnsitio

These examples are typical of how one can combine the best of traditional softw:
and (bject technology.

The compatibility issue: hybrid software or hybrid languages?

Few people would theoretically disagree with the principle of modesty and deny the ne
for some integration mechanism between O-O developments and older software. T
matter becomes more controversial when it comes to deciding on the level of integratic

A whole set of languages — the best known are Objective-C, C++, Java, Obje
Pascal and Ada 95 — have taken the approach of adding O-O constructs to an exis
non-0O-0O language (respectively C in the first three cases, Pascal and Ada). Knowr
hybrid language, they are discussed in varying degree of detail in a later chapter.

The integration technique described above, relying on external routines and obje
oriented re-architecturing, follows from a different principle: that the neesoftware
compatibility does not mean that we should burdenlanguagt with mechanisms that
may be at odds with the principles of object technology. In particular:

< A hybrid adds a new language level to the weight of an existing language such as
The result can be quite complex, limiting one of the principal attractions of obje
technology — the essential simplicity of the ideas.

« Beginners as a result often have trouble mastering a hybrid language, since they
not clearly see what is truly O-O and what comes from the legacy.

« Some of the older mechanisms may be incompatible with at least some aspect:
object-oriented ideas. We have seen how the type concepts inherited from C mak
hard to equip C++ environments with garbage collection, even though automa
memory management is part of the appeal of object technology. There are me
other examples of clashes between the C or Pascal type system and the O-O vie

444 MORE O-O MECHANISMS §13.2

« The non-O-O mechanisms are still present, often in apparent competition with their
higher-level object-oriented counterparts. For example C++ offers, along with
dynamic binding, the ability to choose a function at run time through arithmetic on
function pointers. This is disconcerting for the non-expert who lacks guidance on
which approach to choose in a particular case. The resulting software, although
compiled by an O-O environment, is still, deep-down, C code, and does not yield the
expected quality and productivity benefits — giving object technology a bad name
through no fault of its own.

If the aim is to obtain the best possible software process and products, compromising
at the language level does not seem the right apprinterfacingobject-oriented tools
and techniques with previous achievements is not the same thimixinc widely
different levels of technology.

With the usual precautions about attaching too much weight to a metaphor, we can think
of the precedent of electronics. It is definitely useful to combine different technology
levels in a single system, as in an audio amplifier which still includes a few diodes
together with transistors and integrated circuits. But the levels remain separate: there is
little use for a basic component that would be half-diode, half-transistor.

O-O development should provide compatibility with software built with other
approaches, but not at the expense of the method’s power and integrity. This is what the
external mechanism achieves: separate worlds, each with its own consistency and
benefits, and clear interfaces between these worlds.

13.2 ARGUMENT PASSING

One aspect of the notation may require some clarification: what may happen to values
passed as arguments to routines?

Consider a routine call of the form
r(a;, a,, ..., a,)

corresponding to a routine
F (X Ty Xl Ty ooy XD T) IS L

where the routine could be a function as well as a procedure, and the call could be
qualified, as inb.r (...). The expressiona,, a,, ..., a, are called actual arguments, and

the x; are called formal arguments. (Recall that we reserve the term “parameter” for
generic type parameters.)

The relevant questions are: what is the correspondence between actual and formal
arguments? What operations are permitted on formal arguments? What effect will they
have on the corresponding actuals? For all three we should stick to simple and safe rules.

We already know the answer to the first question: the effect of actual-formal
argument association is the same as that of a corresponding assignment. Both operations
are calledattachments. For the above call we can consider that the routine’s execution
starts by executing instructions informally equivalent to the assignments

§13.2 ARGUMENT PASSING 445

X1 1= @) Xp 1= Ay ... Xp 1= 8,

On the second question: within the routine body, any formal argux is protected.
The routine may not apply to it any direct modification, such as:

« An assignment tix, of the formx := ...
¢ A creation instruction wittx as its target!! x. make(...)

Readers familiar with the passing mechanism knov call by valuewill note that the
restriction is harsher here: with call by value, formals are initialized to actuals but may
then be the target of arbitrary operations.

“ATTACHMENT: The answer to the third question — what can the routine actually do to the actua
REFERENCE AND — follows from the use of attachment to define the semantics of actual-formal associat
\T/QLSHF&SSIT:'\;‘?QNG' Attachment means copying either a reference or an object. As you will remember from
261,in particular discussion of attachment, this depends on whether the types involved are expanded:

table on page26<. . .
e For reference types (the more common case), argument passing will copy

reference, either void or attached to an object.

* For expanded types (which include in particular the basic tiNTEGEF, REAL
and the like), argument passing will actually copy an object.

In the first case, the prohibition of direct modification operations means that yo
cannot modify thereference through reattachment or creation; but if the reference is no
void you can modify the attachwbject through appropriate routines.

Permissible The routine mayiot change this
operationsona reference (e.g. reattach it to
reference I another objeqgt 01

\/

argument @
The routinemay change fields of this f
object (through calls to oth

If x; is one of the formal arguments to routr, the body of the routine could contain
a call of the form

Xi.p(...)

wherep is a procedure applicable x;, meaning a procedure declared in the base class c
x;'s typeT;. This routine may modify the fields of the object attachex; at execution
time, which is the object attached to the corresponding actual arga;. ent

446 MORE O-O MECHANISMS §13.2

So although a cali (a) can never change the valueaof the corresponding object
if ais expanded, the reference otherwise — it can, in the reference case, change the
attached object.

There are many reasons for not permitting routines to modify their arguments
directly. One of the most striking is tiBonflicting Assignments To Actutaick. Assume
a language that permits assignments to arguments, and a procedure

dont_| look innocuou&, b: INTEGER is WARNING invalid

routine text For pur-
-- But do not trust me too much. poses of illustration

do only.
a=0,b:=1
end

Then consider the catlont | look _innocuoufx, x) for some entityx. What is the
value ofx on return: 0 or 1? The answer depends on how the compiler implements formal-
to-actual update on routine exit. This has fooled more than a few Fortran programmers,
among others.

Permitting argument-modifying routines would also force us to impose restricton constant attrib-
on actual arguments: the actual corresponding to a modifiable formal must be an elutes see chapté8.
that can change its value (a writable entity); this allows variable attributes, but not cot
attributes, Current, or general expressions such as+t b. By precluding argument-
modifying routines we can avoid imposing such restrictions and accept any expression as
actual argument.

As a consequence of these rules, there are only three ways to modify the value of a
referencex: through a creation instructioh x...; through an assignment:= y; and
through a variant of assignment, assignment atten¥pty, studied in a later chapter.
Passing« as actual argument to a routine will never modify

This also means that a routine returns at most one result: none ifitis a procedure; the
official result (represented in the routine’s body by the emtitgul) if it is a function. To
achieve the effect of multiple results, you can either:

« Use a function that returns an object with several fields (or more commonly a
reference to such an object).

« Use a procedure that sets several fields of an object, corresponding to attributes that
the client may then query.

The first technique is appropriate when the result is truly made of seSee chapte?3, espe-
components; a function may not for example return two values corresponding to thcially “The a posteri-
and publication year of a book, but it may return a single value of Byp@kK, with ggé’Cheme » page
attributestitle andpublication_year The second technique is applicable for a routine tt....,
besides its principal job, sets some status indicators. We will study it, as well as the more

general question dfide effectsin the discussion of module design principles.

§13.3 INSTRUCTIONS 447

13.3 INSTRUCTIONS

The object-oriented notation developed in this book is imperative: we specil
computations through commands, also called instructions. (The word “statement”
commonly used in this sense but we will steadfastly avoid it since it is misleading:
statement is an expression of facts, not a command.)

Except for some specific properties of loops, intended to make their verificatio
easier, instructions will look familiar to anyone who has had some experience with
modern language of the Algol line such as Pascal, Ada or Modula, or even just with
or a derivative. They include: Procedure call; Assignment; Creation; Conditiona
Multi_branch; Loop; Check; Debug; Retry; Assignment attempt.

Procedure call

A routine call involves a routine, possibly with actual arguments. In a call instruction, tt
routine must be a procedure; if it is a function, the call is an expression. Although for t
moment we are interested in instructions, the following rules apply to both cases.

A call is either qualified or unqualified. An unqualified call to a routine of the
enclosing class uses the current instance as target; it appears under the form

r (without arguments), or
rxy, ... (with arguments)

A qualified call explicitly names its target, denoted by an expressica is an
expression of a certain typC is the base class of that type, iq is one of the routines of
C, then a qualified call is of the fora:q. Again,q may be followed by a list of actual
argumentsa may be an unqualified function call with arguments, ¢ (m). g (n) where
the target isp (m). You may also use as target a more complex expression, provided y
enclose it in parentheses, as(vectorl + vector). coun.

Multidot qualified calls, of the forna.q;.qs ¢, are also permitted, whea as
well as any of the; may include a list of actual arguments.

Export controls apply to qualified calls. Recall that a feaf declared in a clasB is
available to a clasA if the feature clause declarif begins withfeature (without further
qualification) orfeature {X, Y, ...} where one oX, Y, ... iSA or an ancestor (A. Then:

Qualified Call rule

A qualified call of the forrb. g;. ¢,, appearing in a cla:C is valid
only if it satisfies the following conditions:

R1 - The feature appearing after the first cqy, must be available 1C.

R2 « In a multidot call, every feature after the second dot, that is to say every
q; fori > 1, must also be available C.

To understand the reason for the second rule, notatqgzr.sis a shorthand for

448 MORE O-O MECHANISMS §13.3

b:=a.q,c:=h.r;c.s

which is only valid ifg, r anc sare all available tC, the class where this fragment appears.
Whetherr is available to the base classg’s type, ancs available to the base classr’s
type, is irrelevant.

As you will remember it is also possible to express calls in infix or prefix form; an See*Operator fea-
expression such @ + bis a different syntax for a call that would otherwise be written tures”, page 187
a. plus(b). The samwalidity rules apply to such expressions athe dot form.

Assignment

The assignment instruction is written
X:=e
wherex is a writable entity ane an expression of compatible type. A writable entity is either:
* A non-constant attribute of the enclosing class.
* A local entity of the enclosing routine, includiResul for a function.

Other, non-writable kinds of entity include constant attributes (introduce(Chapteri¢ dis-
declarations such Zerc: INTEGERIs 0) and formal arguments of a routine — to WhicCUS%es constant
as we just saw, the routine may not assign a new value. attributes.

Creation instruction
See“The creation

The creation instruction was studied in an earlier chapter in its two forms: withdstruction”, page
P 232and“CREATION

creation procedure, as !! x, and with a creation procedure, as!! x.p (...). In both procEDURES’,

casesx must be a writable entity. 8.4, page 23. A vari-
ant will be seen in
Conditional Polymorphic cre-

ation”, page 47')

A conditional instruction serves to specify that different forms of processing should be
applied depending on certain conditions. The basic form is

if boolean_expressicthen
instructior; instructior; ...
else
instructior; instructior; ...
end

where each branch may have an arbitrary number of instructions (possibly none).

This will execute the instructions in the first branch if tboolean expression
evaluates to true, and those in the second branch otherwise. You may celse part if
the second instruction list is empty, giving:

if boolean_expressicthen
instructior; instructior; ...
end

§13.3 INSTRUCTIONS 449

When there are more than two relevant cases, you can avoid nesting conditio
instructions irelse parts by using one or moelseit branches, as in

if ¢, then

instructior; instructior; ...
elseii c, then

instructior; instructior; ...
elseitcgthen

instructior; instructior; ...
else

instructior; instructior; ...
end

where theelse part remains optional. This avoids the repeated nesting of

if ¢, then
instructior; instructior; ...
else
if c,then
instructior; instructior; ...
else
if cg then
instructior; instructior; ...

else
instructior; instructior; ...
end
end
end

For handling a set of cases defined by the possible values of a certain expression.
multi-branchinspec, studied next, may be more convenient than the plain conditional.

The object-oriented method, in particular through polymorphism and dynami
binding, tends to reduce the need for explicit conditional and multi-branch instructions
supporting an implicit form of choice: you apply a feature to an object, and if the featu
has several variants the right one automatically gets selected at run time on the basis o
object’s type. When applicable, this implicit style is usually preferable. But of cours
some of your algorithms will still require explicit choice instructions.

Multi-branch

The multi-branch (also known as a Case instruction because of the corresponding keyw
in Pascal, where it was first introduced based on a design by Tony Hoare) discriming
between a set of conditions that are all of the fe = v, wherex is an expression and the
v; are constants of the same type. Although a conditional instrudf e = v; then ...

450 MORE O-O MECHANISMS §13.3

elseife = v, then...) would do the job, two reasons justify a special instruction, departing
from the usual rule that if the notation offers one good way to do something it does not
need to offer two:

« This case is so common as to justify specific syntax, which will enhance clarity by
avoiding the useless repetition e =".

» Compilers can use a particularly efficient implementation techniqujump table;
not applicable to general conditional instructions and avoiding explicit tests.

For the type of the discriminated values (the type and thev;), the multi-branch
instruction only needs to support two possibilities: integers and booleans. The rule will
indeed be thee and thev, must be declared as either INTEGEF or all CHARACTEIR
The general form of the instruction is:

inspect

e
when v, then

instructior; instructior; ...
when v, then

instructior; instructior; ...

else
instructior; instructior; ...
end

All the v; values must be different. Tlelse... part is optional. Each of the branches
may have an arbitrary number of instructions, possibly none.

The effect of the instruction is the following: if the valuee is equal to one of the
v; (this can be the case for at most one of them), execute the instructions in the
corresponding branch; otherwise, execute the instructions else branch if any.

If there is ncelse branch and the value e does not match any of tl;, the effect is
to raise an exception (of colncorrect_inspect valt). This policy may seem surprising,
since the corresponding conditional instruction would simply do nothing in this case. But
it highlights the specificity of the multi-branch. When you writeinspeci with a set of
v; values, you should include else branch, empty or not, if you are prepared for run-time
values ofe that match none of thv;. If you do not include aels¢, you are making an
explicit statement: that you expect the value always to be one of thvy. By checking
this expectation and raising an exception if it is not met, the implementation is providing
a service. Doing nothing would be the worst possible response, since this case usually
reflects a bug (forgetting a possible case to be handled in its own specific way), which in
any case should be fixed as early as possible.

A typical application of the multi-branch is to decode a single-character user input:

§13.3 INSTRUCTIONS 451

This is an elementary inspect

schem. See chapter - ;
21 for more sophisti- first_input_letter

cated user command when 'D' then
processing techniquzas “Delete line”
when'l' then

“Insert line”

else

messag("Unrecognized comma; typeH for helf")
end

“UNIQUE VAL- In the integer case, th; can be Unique values, a concept detailed in a later chapte
UES”, 18.6, page 654 This makes it possible to define a number of abstract constants, in a declaration suc
Doand Siarealso Do, Re, Mi, Fa, So, La, S INTEGERIs unique, and then discriminate among them in an
knownas Utand 11 jnstryction such ainspectnotewhen Do then... when Rethen... end.

The Discrimination Like conditionals, multi-branch instructions should not be used as a substitute for t
principle appears onimplicit discrimination techniques of object technology, based on dynamic binding. Tt

page65t. restriction to integer and character values helps avoid misuse; the Discriminati
principle, introduced together with unique values, will provide further guidance.
Loop
See“’LOOP The syntax of loops was introduced in the presentation of Design by Contract:
INVARIANTS AND
VARIANTS”, 11.12, from
page 381 initialization_instructions
invariant
invariant
variant
variant
until
exit_condition
loop
loop_instructions
end

Theinvariant andvariant clauses are optional. THrom clause is required (but
may be empty); it specifies the loop initialization instructions. Leaving aside the option
clauses, the execution of such a loop consists of executirinitialization_instructions
followed by the “loop process”, itself defined as follows: if exit_conditior is true, the
loop process is a null instruction; if it is false, the loop process is the executiorloop e
instruction: followed (recursively) by a new loop process.

452 MORE O-O MECHANISMS §13.4

Check

The check instruction was also seen in the discussion of assertions. It serves to e:See'LOOP

) . e . - INVARIANTS AND
that certain assertions must be satisfied at certain points: VARIANTS" 11.12,

check page 38.
assertior-- One or more clauses
end

Debug

Thedebuc instruction is a facility for conditional compilation. It is written
debug instructior; instructior; ... end

For every class, you may turn on or off the correspondebugoption of the control
file (the Ace). If on, any debug instruction in the class is equivalent to the instructions it
contains; if off, it has no effect on the execution.

You can use this instruction to include special actions that should only be executed
in debugging mode, for example instructions to print out some values of interest.

Retry

The last instruction iretry, introduced in the discussion of exceptions. It may only apfSee‘AN EXCEP-

in arescue clause, and will restart the body of a routine that was interrupted by an exce '"ON MECHA-
NISM”, 12.3, page

41¢.

13.4 EXPRESSIONS

An expression serves to denote a computation that yields a value — an object, or a
reference to an object. Expressions include the following varieties:
¢ Manifest constants.
 Entities (attributes, local routine entities, formal routine argumResul). Entities were defined
. on page212.
¢ Function calls.
» Expressions with operators (technically are a special case of function calls).

e Current.

Manifest constants

A manifest constant is a value that denotes itself (such as the integer value0) — as
opposed to a symbolic constant, whose name is independent of the denotation of the value.

There are two boolean manifest constants, wrTrue andFalse. Integer constants
follow the usual form and may be preceded by a sign. Examples are

453 —678 +66623
Real constants use a decimal point. Either the integer part or the fractional part may

be absent; you may include a sign, and specify an integer power ofe followed by
the exponent value. Examples are:

§13.4 EXPRESSIONS 453

“ANCHORED
DECLARATION",
16.7, page 5€9

525 -5¢44 +4t£.01 .983 -89 99C.el12

Character constants consist of a single character written in quotes'A’; they
describe single characters. For strings of more than one character we will use the libt
classSTRINC, discussed later this chipter.

Function calls

Function calls follow the same syntax as procedure calls studied earlier in this chap
They may be qualified or unqualified; in the qualified case, multidot notation is availabl
Assuming the proper class and function declarations, examples are:

b.f

b.g(xy, ...)
b.h (u,v).i.j (X, y,...)

The Qualified Call rule introduced for procedures applies to function calls as well

Current object

The reserved worCurreni denotes the current instance of the class and may be used
an expression. Note thCurrent itself is an expression, not a writable entity; thus an
assignment tCurreni, such a:<Current:= some_valu, would be syntactically illegal.

When referring to a feature (attribute or routine) of the current instance, it is n
necessary to writCurrent. f; justf suffices. Because of this rule, we will LCurren less
frequently than in object-oriented languages where every feature reference must
explicitly qualified. (In Smalltalk, for example, there is no such convention; a feature |
always qualified, even when it applies to the current instance, wsell.) Cases in which
you will need to namCurren- explicitly include:

e Passing the current instance as argument to a routinea=fs(Currenf). A common
application is to create a duplicate of the current instance x := clone(Curreni).

e Testing whether a reference is attached to the current instance, as in the
x = Curren.

» Using Curreni as anchor in an “anchored declaration” of the flike Curreni, as
will be seen in the study of inheritance.

Expressions with operators

Operators are available to construct composite expressions.

Unary operators ar+ and—, applicable to integer and real expressions, not,|
applicable to boolean expressions.

Binary operators, which take exactly two operands, include the relational operato
= /= < > <= >=

where/=is “not equal”. The relational operators yield boolean results.

454 MORE O-O MECHANISMS §13.4

Multiary expressions involve one or more operands, combined with operators.
Numerical operands may be combined using the following operators:

+ = O/~ I\
where// is integer division\\ is integer remainder ar" is power (exponentiation).

Boolean operands may be combined with the operand, or, xor, and ther,
or elsg, implies. The last three are explained in the next secxor is exclusive or.

The precedence of operators, based on the conventions of ordinary mathematics, has
been devised according to the “Principle of Least Surprise”. To avoid any uncertainty or
confusion, this book makes generous use of parentheses even where they are not needed,
as in the examples of the next section.

Non-strict boolean operators

The operatorand then andor else(whose names have been borrowed from Ada)Foran explanationb

well asimplies are not commutative, and are calnon-strictboolean operators. Herdheword*non-strict’
is their semantics: see 1g. [M 1990] or
S ' [M 1992].

Non-strict boolean operators
¢ aand then b has value false a has value false, and otherwise has|the
value ofb.

e a or else b has value true ia has value true, and otherwise has fthe
value ofb.

e aimplies b has the same value ¢not a) or elseb.

The boolean values from mathematics are written in regular fon anc false True and
False are predefined language constants and hence written in color italics.

The first two definitions at first seem to yield the same semantianchandor. But
the difference is what happens wtb is not defined. In that case the expressions using
the standard boolean operators are mathematically undefined, but the above definitions
may still yield a result: ia is false,a and then b is false regardless b; and ifa is true,
aor elseb is true regardless . Similarly, a implies b is true ifa is false, even ib is
undefined. So the non-strict operators may yield a result when the standard ones do not.

A typical application is the boolean expression (using integer div//)ion
(i/=0)and then (j//i = k)

which, from the above definition, has value fal¢i is equal to zero (as the first operand is
then false). If the expression had been written uand rather tharand then, then its
second operand would be undefined wi is zero, so that the status of the whole expression
is unclear in this case. This uncertainty is reflected in what may happen at run time:

§13.4 EXPRESSIONS 455

B1 «If the compiler generates code that evaluates both operands and then takes t
boolean “and”, a division by zero will result at run time, producing an exception

B2 « If, on the other hand, the generated code only evaluates the second operand w
the first is true, otherwise returning false as the value of the expression, then f
expression will indeed evaluate to false.

To guarantee interpretati(B2, useand then. Similarly,
(i=Qorelse j/li I= k)
will evaluate to true ii is zero, whereas ttor variant could produce a run-time error.

An expression usin@and ther always yields the same value as the corresponding
expression written usinand if both are defined. But thand ther form may yield a value
(false) in cases when tland form does not. The same holds vor else (and the value true)
with respect tcor. In this sense, the non-commutative operators may be said to be “mc
defined than or equal to” their respective counterparts. This also means that the non-s
interpretation — strategy B2 — is a correct implementation for the ordinary operators:
compiler writer may decide to implemeand asand then andor asor else. But he does not
have to, so the software developer may not rely on the assumptiandrandor will be non-
strict; onlyand ther andor else guarantee the correct behavior in cases such as the last tv
examples.

One might wonder why two new operators are needed; would it not be simpler a
safer to just keep the standard operaandandor and take them to meiand then and
or else? This would not change the value of any boolean expression when both operal
are defined, but would extend the set of cases in which expressions may be give
consistent value. This is indeed the way some programming languages, notably ALG!
W and C, interpret boolean operators. There are, however, both theoretical and pract
reasons for keeping two sets of distinct operators:

* On the theoretical side, the standard mathematical boolean operators
commutative a and b always has the same valueb and a, whereasa and then b
may be defined wheb and then a is not. When the order of operands does not
matter it is preferable to use a commutative operator.

* In practice, some compiler optimizations become impossible if we require tf
compiler to evaluate the operands in a given sequence, as is the case with the 1
commutative operators. So it is better to use the standard operators if both opera
are known to be defined.

Note that it is possible to simulate the non-strict operators through condition
instructions in a language that does not include such operators. For example, instead

b:=((i /= 0)and ther (j//i = k))
one may write

if i=0thenb:=falseelseb:=(j//i=k)end

456 MORE O-O MECHANISMS §13.5

The non-strict form is of course simpler. This is particularly clear when it is used as
the exit condition of a loop, such as the following iteration on an array:

from
i :=a.lower
invariant
-- For all elements in the intervea.lower ..i— 1], (@ @) /= x
variant
a.upper —i
until
i > a.upperor else(a @ i= x)
loop
=i+ 1
end;
Result:= (i <= a.uppel)
whose purpose is to maResul true if and only if the valux appears in the arrza. The
use ofor would be incorrect here: a compiler may generate code that will always evaluate
both operands, so that for the last index examii > afuppe)) if no array value equax,
there will be an erroneous attempt at run timadoess the non-existent array ita @
(a.upper + 1), causing a run-time error (a precondition violation if assertion checking is on).

It is possible to program this example safely without non-strict operators, but the
result is heavy and inelegant (try it).

Another example is an assertion — appearing for example in a class invariant —
expressing that the first value of a certain| of integers is non-negative — provided, of
course, that the list is not empty. You may express this as

|.emptyor else |.first >= 0

Using or would have been incorrect. Here there is no way to write the condition
without non-strict operators (except by writing a special function and calling it in the
assertion). The Base libraries of algorithms and data structures contain many such cases.

Theimplies operator, describing implication, is also non-strict. Mathematical logic
defines 'aimpliesb” as “not a or b”; but in practical uses properb is often meaningless
for falsea, so that it is appropriate to uor else rather thaior; this is the official definition
given above. In this case there is no need for a strict variant.

Theimplies form does not always come first to mind when you are not used to it, but
it is often clearer; for example you might like the last example better under the form

(not I.empt) implies (I.first >= Q)

13.5 STRINGS

ClassSTRINC describes character strings. It enjoys a special status since the notation
permits manifest string constants, understood as denoting instarSTRINC.

A string constant is written enclosed in double quotes, as in
"ABcd Ef -L_ 01"

§13.6 INPUT AND OUTPUT 457

The double quote character must be preceded by a p if it appears as one of
the characters of the string.

Non-constant character strings are also instances of STRINC, whose creation
proceduremake takes as argument the expected initial length of the string, so that

text], textz STRINGC n: INTEGEF,

Il textl make(n)

will dynamically allocate a strintext], reserving the space fn characters. Note thnis
only an initial size, not a maximum; any string can grow or shrink to an arbitrary size.

Numerous features are available on instancSTRINC concatenation, character or
substring extraction, comparison etc. (They may change the size of the string, automatic
triggering re-allocation if it becomes greater than the currently allocated size.)

Assighment of aSTRINC to another implies sharing: aftdext2:= textl, any
modification to the contents text] will also affect the contents textz and conversely.
To duplicate rather than share, usetext2:= clone(textl).

You can declare a constant string attribute:

messag: STRINGis "Your messa¢ here'

13.6 INPUT AND OUTPUT

Two Kernel Library classes provide basic input and output faciliFILE andSTD__
FILES.

Among the operations defined on an obf declared of typFILE are the following:

Il f.make("nam¢") --Associatef with a file of namename.
f.open_write -- Openf for writing

f.open_read -- Openf for reading
f.put_string("A_STRINC(") --Write the given string oh

For 1/0 operations on the standard input, output and error files, you can inherit fro
STD_FILES which defines the featurinput, outpu anderror. Alternatively you can use
the predefined valuio, as inio.put_string("ABC"), bypassing inheance.

13.7 LEXICAL CONVENTIONS

Identifiers are sequences of characters, all of which must be letters, digits or undersc
characters); the first character of an identifier must be a letter. There is no limit to th
length of identifiers, and all the characters of identifiers are significant. This can be us
to make both feature names and class hames as clear as possible.

Letter case is not significant in identifiers, so thaHi, hi, HI andhl all denote the
same identifier. The reason is that it would be dangerous to allow two identifiers that diff

458 MORE O-O MECHANISMS §13.8

from each other by just one character, Structure andstructure, to denote different
elements. Better ask developers to use some imagination than risk mistakes.

The notation, however, comes with a set of precise standard style convenchapter2é.
detailed in a later chapter entirely devoted to style: cladNTEGEF, POINT...) and
formal generic parameterG in LIST [G]) in all upper case; predefined entities and
expressionsResul, Curreni...) and constant attributePi) start with an upper-case letter
and continue in lower case; all other identifiers (non-constant attributes, formal routine
arguments, local entities) in all lower case. Although compilers do not enforce them since
they are not part of the notation’s specification, these rules are essential to the readability
of software texts; the libraries and this book apply them consistently.

13.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

< External routines are accessible through a well-defined interface.
« Object technology can serve as a wrapping mechanism for legacy software.

* Routines may not directly modify their arguments, although they may change the
object: associated with these arguments.

* The notation includes a small set of instructions: assignment, conditional, loop, call,
debug, check.

» Expressions follow common usacCurrent is an expression denoting the current
instance. Not being an entiiCurreni may not be the target of an assignment.

» Non-strict boolean operators yield the same values as the standard boolean operators
when both operands are defined, but are defined in some cases when the standard
operators are not.

« Strings, input and output are covered by simple library classes.

e Letter case is not significant in identifiers, although the style rules include
recommended conventions

EXERCISES

E13.1 External classes

The discussion of how to integrate external software mentioned that although features are
the right level of integration for non-O-O software elements, interaction with another
object-oriented language might take place at the class level. Discuss a notion of “external
class” meant for that purpose, and its addition to the notation of this book.

E13.2 Avoiding non-strict operators

Write a loop that determines if an elemx appears in an arr. a, similar to the algorithm page45e.
given in this chapter but not using any of the non-strict operators.

8E13.2 EXERCISES 459

460 MORE O-O MECHANISMS 8E13.2

	13 13 Supporting mechanisms
	13.1 INTERFACING WITH NON-O-O SOFTWARE
	External routines
	Advanced variants
	Uses of external routines
	Object-oriented re-architecturing
	The compatibility issue: hybrid software or hybrid...

	13.2 ARGUMENT PASSING
	Permissible operations on a reference argument

	13.3 INSTRUCTIONS
	Procedure call
	Qualified Call rule

	Assignment
	Creation instruction
	Conditional
	Multi-branch
	Loop
	Check
	Debug
	Retry

	13.4 EXPRESSIONS
	Manifest constants
	Function calls
	Current object
	Expressions with operators
	Non-strict boolean operators
	Non-strict boolean operators

	13.5 STRINGS
	13.6 INPUT AND OUTPUT
	13.7 LEXICAL CONVENTIONS
	13.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
	EXERCISES
	E13.1 External classes
	E13.2 Avoiding non-strict operators

