
14
Introduction to inheritance
ay to
rgely
ncern.

odular
usable
te their
ing;
anks
ility.

ition
er and
need
ilar
any

eeing
orms
aining

of the
ension,
d the

uire
xt three
ming,
l
, and
I nteresting systems are seldom born into an empty world.

Almost always, new software expands on previous developments; the best w
create it is by imitation, refinement and combination. Traditional design methods la
ignored this aspect of system development. In object technology it is an essential co

The techniques studied so far are not enough. Classes do provide a good m
decomposition technique and possess many of the qualities expected of re
components: they are homogeneous, coherent modules; you may clearly separa
interface from their implementation according to the principle of information hid
genericity gives them some flexibility; and you may specify their semantics precisely th
to assertions. But more is needed to achieve the full goals of reusability and extendib

For reusability, any comprehensive approach must face the problem of repet
and variation, analyzed in an earlier chapter. To avoid rewriting the same code ov
over again, wasting time, introducing inconsistencies and risking errors, we
techniques to capture the striking commonalities that exist within groups of sim
structures — all text editors, all tables, all file handlers — while accounting for the m
differences that characterize individual cases.

For extendibility, the type system described so far has the advantage of guarant
type consistency at compile time, but prohibits combination of elements of diverse f
even in legitimate cases. For example, we cannot yet define an array cont
geometrical objects of different but compatible types such as POINT and SEGMENT.

Progress in either reusability or extendibility demands that we take advantage
strong conceptual relations that hold between classes: a class may be an ext
specialization or combination of others. We need support from the method an
language to record and use these relations. Inheritance provides this support.

A central and fascinating component of object technology, inheritance will req
several chapters. In the present one we discover the fundamental concepts. The ne
chapters will describe more advanced consequences: multiple inheritance, rena
subcontracting, influence on the type system. Chapter 24 complements these technica
presentations by providing the methodological perspective: how to use inheritance
avoid misusing it.

INTRODUCTION TO INHERITANCE §14.1460

etched

ribe
ygons,

lude

neSee also exercise
E24.4, page 869.
14.1 POLYGONS AND RECTANGLES

To master the basic concepts we will use a simple example. The example is sk
rather than complete, but it shows the essential ideas well.

Polygons

Assume we want to build a graphics library. Classes in this library will desc
geometrical abstractions: points, segments, vectors, circles, ellipses, general pol
triangles, rectangles, squares and so on.

Consider first the class describing general polygons. Operations will inc
computation of the perimeter, translation, rotation. The class may look like this:

indexing
description: "Polygons with an arbitrary number of vertices"

class POLYGON creation
…

feature -- Access
count: INTEGER

-- Number of vertices

perimeter: REAL is
-- Length of perimeter

do … end
feature -- Transformation

display is
-- Display polygon on screen.

do … end
rotate (center: POINT; angle: REAL) is

-- Rotate by angle around center.
do

… See next …
end

translate (a, b: REAL) is
-- Move by a horizontally, b vertically.

do … end

… Other feature declarations …
feature {NONE} -- Implementation

vertices: LINKED_LIST [POINT]
-- Successive points making up polygon

invariant
same_count_as_implementation: count = vertices● count
at_least_three: count >= 3

-- A polygon has at least three vertices (see exercise 14.2)
end
The attribute vertices yields the list of vertices; the choice of a linked list is only o

possible implementation. (An array might be better.)

§14.1 POLYGONS AND RECTANGLES 461

lygon,

re
ve
ture

n to
s, the
edge

The text of class
POINT appeared on
page 176.
Here is a possible implementation for a typical procedure, rotate. The procedure
performs a rotation by a certain angle around a certain rotation center. To rotate a po
it suffices to rotate every vertex in turn:

rotate (center: POINT; angle: REAL) is
-- Rotate around center by angle.

do
from

vertices● start
until

vertices● after
loop

vertices● item● rotate (center, angle)
vertices● forth

end
end

To understand this procedure, note that feature item from LINKED_LIST yields the
value of the currently active list element (where the cursor is). Since vertices is of type
LINKED_LIST [POINT], vertices● item denotes a point, to which we may apply procedu
rotate defined for class POINT in an earlier chapter. It is valid — and common — to gi
the same name, here rotate, to features of different classes, as the target of any fea
always has a clearly defined type. (This is the O-O form of overloading.)

Another routine, more important for our immediate purposes, is the functio
compute the perimeter of a polygon. Since our polygons have no special propertie
only way to compute their perimeter is to loop through their vertices and sum the
lengths. Here is an implementation of perimeter:

perimeter: REAL is
-- Sum of edge lengths

local
this, previous: POINT

do
from

vertices●start; this := vertices●item
check not vertices● after end -- A consequence of at_least_three

until
vertices●is_last

loop
previous := this
vertices●forth
this := vertices● item
Result := Result + this●distance (previous)

end
Result := Result + this● distance (vertices● first)

end

this

previous

(start)

(is_last)

first

INTRODUCTION TO INHERITANCE §14.1462

n

cratch.
me: a

eneral
gonal),

special
 better

lass

 It

: they

r the

s; the
re for

The list interface will
be discussed in
“ACTIVE DATA
STRUCTURES”,
23.4, page 774.
The loop simply adds the successive distances between adjacent vertices. Functio
distance was defined in class POINT. Result, representing the value to be returned by the
function, is automatically initialized to 0 on routine entry. From class LINKED_LIST we
use features first to get the first element, start to move the cursor to that first element,
forth to advance it to the next, item to get the value of the element at cursor position, is_
last to know whether the current element is the last one, after to know if the cursor is past
the last element. As recalled by the check instruction the invariant clause at_least_three
will guarantee that the loop starts and terminates properly: since it starts in a not after
state, vertices● item is defined, and applying forth one or more time is correct and will
eventually yield a state satisfying is_last, the loop’s exit condition.

Rectangles

Now assume we need a new class representing rectangles. We could start from s
But rectangles are a special kind of polygon and many of the features are the sa
rectangle will probably be translated, rotated or displayed in the same way as a g
polygon. Rectangles, on the other hand, also have special features (such as a dia
special properties (the number of vertices is four, the angles are right angles), and
versions of some operations (to compute the perimeter of a rectangle, we can do
than the above general polygon algorithm).

We can take advantage of this mix of commonality and specificity by defining c
RECTANGLE as an heir to class POLYGON. This makes all the features of POLYGON
— called a parent of RECTANGLE — by default applicable to the heir class as well.
suffices to give RECTANGLE an inheritance clause:

class RECTANGLE inherit
POLYGON

feature
… Features specific to rectangles …

end

The feature clause of the heir class does not repeat the features of the parent
are automatically available because of the inheritance clause. It will only list features that
are specific to the heir. These may be new features, such as diagonal; but they may also
be redefinitions of inherited features.

The second possibility is useful for a feature that was already meaningful fo
parent but requires a different form in the heir. Consider perimeter. It has a better
implementation for rectangles: no need to compute four vertex-to-vertex distance
result is simply twice the sum of the two side lengths. An heir that redefines a featu
the parent must announce it in the inheritance clause through a redefine subclause:

class RECTANGLE inherit
POLYGON

redefine perimeter end
feature

…

end

§14.1 POLYGONS AND RECTANGLES 463

re

For a list, i_th (i)
gives the element a
position i (the i-th
element, hence the
name of the query).
This allows the feature clause of RECTANGLE to contain a new version of
perimeter, which will supersede the POLYGON version for rectangles. If the redefine
subclause were not present, a new declaration of perimeter among the features of
RECTANGLE would be an error: since RECTANGLE already has a perimeter feature
inherited from POLYGON, this would amount to declaring a feature twice.

The RECTANGLE class looks like the following:

indexing
description: "Rectangles, viewed as a special case of general polygons"

class RECTANGLE inherit
POLYGON

redefine perimeter end
creation

make
feature -- Initialization

make (center: POINT; s1, s2, angle: REAL) is
-- Set up rectangle centered at center, with side lengths
-- s1 and s2 and orientation angle.

do … end
feature -- Access

side1, side2: REAL
-- The two side lengths

diagonal: REAL
-- Length of the diagonal

perimeter: REAL is
-- Sum of edge lengths
-- (Redefinition of the POLYGON version)

do
Result := 2 ✳ (side1 + side2)

end
invariant

four_sides: count = 4
first_side: (vertices● i_th (1))● distance (vertices● i_th (2)) = side1
second_side: (vertices● i_th (2)) ●distance (vertices● i_th (3)) = side2
third_side: (vertices● i_th (3))● distance (vertices●i_th (4)) = side1
fourth_side: (vertices● i_th (4)) ●distance (vertices● i_th (1)) = side2

end

Because RECTANGLE is an heir of POLYGON, all features of the parent class a
still applicable to the new class: vertices, rotate, translate, perimeter (in redefined form)
and any others. They do not need to be repeated in the new class.

This process is transitive: any class that inherits from RECTANGLE, say SQUARE,
also has the POLYGON features.

1 2

34

side1
side2

t

INTRODUCTION TO INHERITANCE §14.1464

, but
means
proper
bset”

es are
 This
s you
t and

on

y to
 you
n are

e other
ead to
link,

An inheritance
link
Basic conventions and terminology

The following terms will be useful in addition to “heir” and “parent”.

In the literature you will also encounter the terms “subclass” and “superclass”
we will stay away from them because they are ambiguous; sometimes “subclass”
heir (immediate descendant), sometimes it is used in the more general sense of
descendant, and it is not always clear which. In addition, we will see that the “su
connotation of this word is not always justified.

Associated terminology applies to the features of a class: a feature is either inherited
(coming from a proper ancestors) or immediate (introduced in the class itself).

In graphical representations of object-oriented software structures, where class
represented by ellipses (“bubbles”), inheritance links will appear as single arrows.
distinguishes them from links for the other basic inter-class relation, client, which a
will recall uses a double arrow. (For further distinction this book uses black for clien
color for inheritance.)

A redefined feature is marked ++ , a convention from the Business Object Notati
(B.O.N.).

The arrow points upward, from the heir to the parent; the convention, eas
remember, is that it represents the relation “inherits from”. In some of the literature
will find the reverse practice; although in general such choices of graphical conventio
partly a matter of taste, in this case one convention appears definitely better than th
— in the sense that one suggests the proper relationship and the other may l
confusion. An arrow is not just an arbitrary pictogram but indicates a unidirectional
between the two ends of the arrow. Here:

Inheritance terminology

A descendant of a class C is any class that inherits directly or indirectly from
C, including C itself. (Formally: either C or, recursively, a descendant of an
heir of C.)

A proper descendant of C is a descendant other than C itself.

An ancestor of C is a class A such that C is a descendant of A. A proper
ancestor of C is a class A such that C is a proper descendant of A.

POLYGON

RECTANGLE

perimeter

diagonal
perimeter++ Inherits from

§14.1 POLYGONS AND RECTANGLES 465

tance

ong
f its

ment
 heirs.

he end
s.

• Any instance of the heir may be viewed (as we shall see in more detail) as an ins
of the parent, but not conversely.

• The text of the heir will always mention the parent (as in the inherit clause above),
but not conversely; it is in fact an important property of the method, resulting am
others from the Open-Closed principle, that a class does not “know” the list o
heirs and other proper descendants.

Mathematically, the direction of the relationship is reflected in algebraic models for
inheritance, which use a morphism (a generalization of the notion of function) from the
heir’s model to the parent’s model — not the other way around. One more reason for
drawing the arrow from the heir to the parent.

Although with complex systems we cannot have an absolute rule for class place
in inheritance diagrams, we should try whenever possible to position a class above its

Invariant inheritance

You will have noticed the invariant of class RECTANGLE, which expresses that the
number of sides is four and that the successive edge lengths are side1, side2, side1 and
side2.

Class POLYGON also had an invariant, which still applies to its heir:

Because the parents may themselves have parents, this rule is recursive: in t
the full invariant of a class is obtained by anding the invariant clauses of all its ancestor

The rule reflects one of the basic characteristics of inheritance: to say that B inherits
from A is to state that one may view any instance of B also as an instance of A (more on
this property later). As a result, any consistency constraint applying to instances ofA, as
expressed by the invariant, also applies to instances of B.

In the example, the second clause (at_least_three) invariant of POLYGON stated that
the number of sides must be at least three; this is subsumed by the four_sides subclause in
RECTANGLE’s invariant clause, which requires it to be exactly four.

You may wonder what would happen if the heir’s clause, instead of making the parent’s
redundant as here (since count = 4 implies count >= 3), were incompatible with it, as with
an heir of POLYGON that would introduce the invariant clause count= 2. The result is
simply an inconsistent invariant, not different from what you get if you include, in the
invariant of a single class, two separate subclauses that read count >= 3 and count = 2.

Inheritance and creation

Although it was not shown, a creation procedure for POLYGON might be of the form

Invariant inheritance rule

The invariant property of a class is the boolean and of the assertions appearing
in its invariant clause and of the invariant properties of its parents if any.

INTRODUCTION TO INHERITANCE §14.1466

es it to

:

 be

 only

gons.
reation
vation
rent’s
e seen,
t the

eed to

f the
 not by
 heir’s

See “FEATURE
RENAMING”, 15.2,
page 535.
make_polygon (vl: LINKED_LIST [POINT]) is
-- Set up with vertices taken from vl.

require
vl ● count >= 3

do
… Initialize polygon representation from the items of vl …

ensure
-- vertices and vl have the same items (can be expressed formally)

end

This procedure takes a list of points, containing at least three elements, and us
set up the polygon.

The procedure has been given a special name make_polygon to avoid any name conflict
when RECTANGLE inherits it and introduces its own creation procedure make. This is
not the recommended style; in the next chapter we will learn how to give the standard
name make to the creation procedure in POLYGON, and use renaming in the inheritance
clause of RECTANGLE to remove any name clash.

The creation procedure of class RECTANGLE, shown earlier, took four arguments
a point to serve as center, the two side lengths and an orientation. Note that feature vertices
is still applicable to rectangles; as a consequence, the creation procedure of RECTANGLE
should set up the vertices list with the appropriate point values (the four corners, to
computed from the center, side lengths and orientation given as arguments).

The creation procedure for general polygons is awkward for rectangles, since
lists of four elements satisfying the invariant of class RECTANGLE would be acceptable.
Conversely, the creation procedure for rectangles is not appropriate for arbitrary poly
This is a common case: a parent’s creation procedure is not necessarily right as c
procedure for the heir. The precise reason is easy to spot; it follows from the obser
that a creation procedure’s formal role is to establish the class invariant. The pa
creation procedure was required to establish the parent’s invariant; but, as we hav
the heir’s invariant may be stronger (and usually is); we cannot then expect tha
original procedure will guarantee the new invariant.

In the case of an heir adding new attributes, the creation procedures might n
initialize these attributes and so require extra arguments. Hence the general rule:

An inherited creation procedure is still available to the heir as a normal feature o
class (although, as we shall see, the heir may prefer to make it secret); but it does
default retain its status as a creation procedure. Only the procedures listed in the
own creation clause have that status.

Creation Inheritance rule

An inherited feature’s creation status in the parent class (that is to say,
whether or not it is a creation procedure) has no bearing on its creation status
in the heir.

§14.2 POLYMORPHISM 467

le as a

types,

s, an

er of

r

 of
ues,
ftware

ment
 have
d by
In some cases, of course, a parent’s creation procedure may still be applicab
creation procedure; then you will simply list it in the creation clause:

class B inherit
A

creation
make

feature
…

where make is inherited — without modification — from A, which also listed it in its own
creation clause.

An example hierarchy

For the rest of the discussion it will be useful to consider the POLYGON-RECTANGLE
example in the context of a more general inheritance hierarchy of geometrical figure
such as the one shown on the next page.

Figures have been classified into open and closed variants. Along with polygon
example of closed figure is the ellipse; a special case of the ellipse is the circle.

Various features appear next to the applicable classes. The symbol ++ , as noted,
means “redefined”; the symbols + and * will be explained later.

In the original example, for simplicity, RECTANGLE was directly an heir of
POLYGON. Since the sketched classification of polygons is based on the numb
vertices, it seems preferable to introduce an intermediate class QUADRANGLE, at the
same level as TRIANGLE, PENTAGON and similar classes. Feature diagonal can be
moved up to the level of QUADRANGLE.

Note the presence of SQUARE, an heir to RECTANGLE, characterized by the
invariant side1 = side2. Similarly, an ellipse has two focuses (or foci), which fo
a circle are the same point, giving CIRCLE an invariant property of the form
equal(focus1 = focus2).

14.2 POLYMORPHISM

Inheritance hierarchies will give us considerable flexibility for the manipulation
objects, while retaining the safety of static typing. The supporting techniq
polymorphism and dynamic binding, address some of the fundamental issues of so
architecture discussed in part B of this book. Let us begin with polymorphism.

Polymorphic attachment

“Polymorphism” means the ability to take several forms. In object-oriented develop
what may take several forms is a variable entity or data structure element, which will
the ability, at run time, to become attached to objects of different types, all controlle
the static declaration.

INTRODUCTION TO INHERITANCE §14.2468

Figure type
hierarchy
OPEN_
FIGURE

SEGMENT POLYLINE

POLYGON ELLIPSE

QUADRANGLE
CIRCLETRIANGLE

display*

rotate*
extent*

…
barycenter*

…

perimeter*

perimeter+

diagonal

SQUARE
perimeter++

perimeter++

perimeter+

CLOSED_
FIGURE

FIGURE

RECTANGLEperimeter++

side1, side2

∗

∗∗

§14.2 POLYMORPHISM 469

ing

ntity

erent

non-
int to
arting

tance

pe

ssing,

antics,

re of
ts.

Polymorphic
reference
reattachment
Assume, with the inheritance structure shown in the figure, the follow
declarations using short but mnemonic entity names:

p: POLYGON; r: RECTANGLE; t: TRIANGLE

Then the following assignments are valid:

p := r

p := t

These instructions assign to an entity denoting a polygon the value of an e
denoting a rectangle in the first case, a triangle in the second.

Such assignments, in which the type of the source (the right-hand side) is diff
from the type of the target (the left-hand side), are called polymorphic assignments. An
entity such as p which appears in some polymorphic assignment is a polymorphic entity.

Before the introduction of inheritance, all our assignments were monomorphic (
polymorphic): we could assign — in the various examples of earlier chapters — a po
a point, a book to a book, an account to an account. With polymorphism, we are st
to see more action on the attachment scene.

The polymorphic assignments taken as example are legitimate: the inheri
structure permits us to view an instance of RECTANGLE or TRIANGLE as an instance of
POLYGON. We say that the type of the source conforms to the type of the target. In the
reverse direction, as with r := p , the assignment would not be valid. This fundamental ty
rule will be discussed in more detail shortly.

Instead of an assignment, you may achieve polymorphism through argument pa
as with a call of the form f (r) or f (t) and a feature declaration of the form

f (p: POLYGON) is do … end

As you will remember, assignment and argument passing have the same sem
and are together called attachment; we can talk of polymorphic attachment when the
source and target have different types.

What exactly happens during a polymorphic attachment?

All the entities appearing in the preceding cases of polymorphic attachment a
reference types: the possible values for p, r and t are not objects but references to objec
So the effect of an assignment such as p := r is simply to reattach a reference:

(POLYGON)

O1

p

r

(RECTANGLE)

O2

(after)

(before)

✄

INTRODUCTION TO INHERITANCE §14.2470

ism,
s type.
means
t — a

 not
tributes,
his by

stead

ter:

tities as

ee “COMPOSITE
BJECTS AND
XPANDED TYPES”,
.7, page 254.

This is extracted
from class ARRAY as
it appears on page
373.
So in spite of the name you should not imagine, when thinking of polymorph
some run-time transmutation of objects. Once created, an object never changes it
Only references do so by getting reattached to objects of different types. This also
that polymorphism does not carry any efficiency penalty; a reference reattachmen
very fast operation — costs the same regardless of the objects involved.

Polymorphic attachments will only be permitted for targets of a reference type —
for the other case, expanded types. Since a descendant class may introduce new at
the corresponding instances may have more fields; the last figure suggested t
showing the RECTANGLE object bigger than the POLYGON object. Such differences in
object size do not cause any problem if all we are reattaching is a reference. But if in
of a reference p is of an expanded type (being for example declared as expanded
POLYGON), then the value of p is directly an object, and any assignment to p would
overwrite the contents of that object. No polymorphism is possible in that case.

Polymorphic data structures

Consider an array of polygons:

poly_arr: ARRAY [POLYGON]

When you assign a value x to an element of the array, as in

poly_arr● put (x, some_index)

(for some valid integer index value some_index), the specification of class ARRAY
indicates that the assigned value’s type must conform to the actual generic parame

class ARRAY [G] creation
…

feature -- Element change

put (v: G; i: INTEGER) is
-- Assign v to the entry of index i

…
end -- class ARRAY

Because v, the formal argument corresponding to x, is declared of type G in the class,
and the actual generic parameter corresponding to G is POLYGON in the case of poly_arr,
the type of x must conform to POLYGON. As we have seen, this does not require x to be
of type POLYGON: any descendant of POLYGON is acceptable.

So assuming that the array has bounds 1 and 4, that we have declared some en

p: POLYGON; r : RECTANGLE; s: SQUARE; t: TRIANGLE

and created the corresponding objects, we may execute

poly_arr● put (p, 1)
poly_arr● put (r, 2)
poly_arr● put (s, 3)
poly_arr● put (t, 4)

yielding an array of references to objects of different types:

S
O
E
8

§14.2 POLYMORPHISM 471

s

dants

tainer

t the
y

 to
:

A polymorphic
array

Dimensions of
generalization

(See page 317.)
The graphical objects have been represented by the corresponding geometrical shape
rather than the usual multi-field object diagrams.

Such a data structure, containing objects of different types (all of them descen
of a common type), are called polymorphic data structures. We will encounter many
examples in later discussions. The use of arrays is just one possibility; any other con
structure, such as a list or stack, can be polymorphic in the same way.

The introduction of polymorphic data structures achieves the aim, stated a
beginning of chapter 10, of combining genericity and inheritance for maximum flexibilit
and safety. It is worth recalling the figure that illustrated the idea:

Types that were informally called SET_OF_BOOKS and the like on the earlier figure
have been replaced with generically derived types, such as SET[BOOK].

This combination of genericity and inheritance is powerful. It enables you
describe object structures that are as general as you like, but no more. For example

(POLYGON)

(RECTANGLE)

(SQUARE)

(TRIANGLE)

1

3

4

2

LIST [PERSON] LIST [BOOK] LIST [JOURNAL]

SET [BOOK]

LINKED_LIST [BOOK]

Abstraction

Specialization

Type parameterizationType parameterization

INTRODUCTION TO INHERITANCE §14.3472

archy,

se of
at

 on the

We will study ANY in
“Universal classes”,
page 580.
• LIST [RECTANGLE]: may contain squares, but not triangles.

• LIST [POLYGON]: may contain squares, rectangles, triangles, but not circles.

• LIST [FIGURE]: may contain instances of any of the classes in the FIGURE
hierarchy, but not books or bank accounts.

• LIST [ANY]: may contain objects of arbitrary types.

The last case uses class ANY, which by convention is an ancestor to all classes.

By choosing as actual generic parameter a class at a varying place in the hier
you can set the limits of what your container will accept.

14.3 TYPING FOR INHERITANCE

That the remarkable flexibility provided by inheritance does not come at the expen
reliability follows from the use of a statically typed approach, in which we guarantee
compile time that no incorrect run-time type combination can occur.

Type consistency

Inheritance is consistent with the type system. The basic rules are easy to explain
above example. Assume the following declarations:

p: POLYGON
r : RECTANGLE

referring to the earlier inheritance hierarchy, of which the relevant extract is this:

POLYGON

QUADRANGLE

perimeter+

diagonal

RECTANGLE
perimeter++

side1, side2

display*
rotate*

extent*

…
barycenter*
…

FIGURE
∗

§14.3 TYPING FOR INHERITANCE 473

the

the
t all

alled

re not

e if
e

 this
gh run-
will
proof
n will

al ofChapter 17 dis-
cusses typing.
Then the following are valid:

• p● perimeter: no problem, since perimeter is defined for polygons.

• p● vertices, p● translate (…), p● rotate (…) with valid arguments.

• r ● diagonal, r ● side1, r ● side2: the three features considered are declared at
RECTANGLE or QUADRANGLE level.

• r ● vertices, r ● translate (…), r ● rotate (…): the features considered are declared at
POLYGON level or above, and so are applicable to rectangles, which inheri
polygon features.

• r ● perimeter: same case as the previous one. The version of the function to be c
here is the redefinition given in RECTANGLE, not the original in POLYGON.

The following feature calls, however, are illegal since the features considered a
available at the polygon level:

p● side1

p● side2

p● diagonal

These cases all result from the first fundamental typing rule:

Recall that the ancestors of C include C itself. The phrasing “where the type of x is
based on a class C ” is a reminder that a type may involve more than just a class nam
the class is generic: LINKED_LIST [INTEGER] is a class type “based on” the class nam
LINKED_LIST; the generic parameters play no part in this rule.

Like all other validity rules reviewed in this book, the Feature Call rule is static;
means that it can be checked on the sole basis of a system’s text, rather than throu
time controls. The compiler (which typically is the tool performing such checking)
reject classes containing invalid feature calls. If we succeed in defining a set of tight-
type rules, there will be no risk, once a system has been compiled, that its executio
ever apply a feature to an object that is not equipped to handle it.

Static typing is one of object technology’s main resources for achieving the go
software reliability, introduced in the first chapter of this book.

It has already been mentioned that not all approaches to object-oriented software
construction are statically typed; the best-known representative of dynamically typed
languages is Smalltalk, which has no static Feature Call rule but will let an execution
terminate abnormally in the case of a “message not understood” run-time error. The
chapter on typing will compare the various approaches further.

Feature Call rule

In a feature call x● f, where the type of x is based on a class C, feature f must
be defined in one of the ancestors of C.

INTRODUCTION TO INHERITANCE §14.3474

pe.

ition:

e we
s and

elf
 the

 itself.

ental

cific to

See “Types and
classes”, page 325.
Limits to polymorphism

Unrestrained polymorphism would be incompatible with a static notion of ty
Inheritance governs which polymorphic attachments are permissible.

The polymorphic attachments used as examples, such as p := r and p := t, all had as
source type a descendant of the target’s class. We say that the source type conforms to the
target class; for example SQUARE conforms to RECTANGLE and to POLYGON but not to
TRIANGLE. This notion has already been used informally but we need a precise defin

Why is the notion of descendant not sufficient? The reason is again that sinc
encountered genericity we have had to make a technical distinction between type
classes. Every type has a base class, which in the absence of genericity is the type its
(for example POLYGON is its own base class), but for a generically derived type is
class from which the type is built; for example the base class of LIST [POLYGON] is LIST.
The second part of the definition indicates that B [Y] will conform to A [X] if B is a
descendant of A and Y a descendant of X.

Note that, as every class is a descendant of itself, so does every type conform to

With this generalization of the notion of descendant we get the second fundam
typing rule:

The Type Conformance rule expresses that you can assign from the more spe
the more general, but not conversely. So p := r is valid but r := p is invalid.

The rule may be illustrated like this. Assume I am absent-minded enough to write just
“Animal” in the order form I send to the Mail-A-Pet company. Then, whether I receive a
dog, a ladybug or a killer whale, I have no right to complain. (The hypothesis is that
classes DOG etc. are all descendants of ANIMAL.) If, on the other hand, I specifically
request a dog, and the mailman brings me one morning a box with a label that reads
ANIMAL, or perhaps MAMMAL (an intermediate ancestor), I am entitled to return it to
the sender — even if from the box come unmistakable sounds of yelping and barking.
Since my order was not fulfilled as specified, I shall owe nothing to Mail-A-Pet.

Definition: conformance

A type U conforms to a type T only if the base class of U is a descendant of
the base class of T; also, for generically derived types, every actual parameter
of U must (recursively) conform to the corresponding formal parameter in T.

Type Conformance rule

An attachment of target x and source y (that is to say, an assignment x := y, or
the use of y as an actual argument to a routine call where the corresponding
formal argument is x) is only valid if the type of y conforms to the type of x.

§14.3 TYPING FOR INHERITANCE 475

bout
ing to
 the

 to

class,
eters).

t only
at the

type”.
t
es the

o

The original discus
sion was “The mold
and the instance”,
page 167.
Instances

With the introduction of polymorphism we need a more specific terminology to talk a
instances. Informally, the instances of a class are the run-time objects built accord
the definition of a class. But now we must also consider the objects built from
definition of its proper descendants. Hence the more precise definition:

The last part of this definition implies, since the descendants of a class include the class
itself, that a direct instance of C is also an instance of C.

So the execution of

p1, p2: POLYGON; r: RECTANGLE
…
!! p1 …; !! r …; p2 := r

will create two instances of POLYGON but only one direct instance (the one attached
p1). The other object, to which the extract attaches both p2 and r, is a direct instance of
RECTANGLE — and so an instance of both POLYGON and RECTANGLE.

Although the notions of instance and direct instance are defined above for a
they immediately extend to any type (with a base class and possible generic param

Polymorphism means that an entity of a certain type may become attached no
to direct instances of that type, but to arbitrary instances. We may indeed consider th
role of the type conformance rule is to ensure the following property:

Static type, dynamic type

The name of the last property suggests the concepts of “static type” and “dynamic
The type used to declare an entity is the static type of the corresponding reference. If, a
run time, the reference gets attached to an object of a certain type, this type becom
dynamic type of the reference.

So with the declaration p: POLYGON, the static type of the reference that p denotes
is POLYGON; after the execution of !! p, the dynamic type of that reference is als
POLYGON; after the assignment p := r , with r of type RECTANGLE and non-void, the
dynamic type is RECTANGLE.

Definition: direct instance, instance

A direct instance of a class C is an object produced according to the exact
definition of C, through a creation instruction !! x… where the target x is of
type C (or, recursively, by cloning a direct instance of C).

An instance of C is a direct instance of a descendant of C.

Static-dynamic type consistency
An entity declared of a type T may at run time only become attached to
instances of T.

-

INTRODUCTION TO INHERITANCE §14.3476

 to the

t type

bject

e with

f the

econd

lygon
 a

f you
 are of
e the

tions,

See “States of a ref-
erence”, page 240.

NONE will be seen in
“The bottom of the
pit”, page 582.
The Type Conformance rule states that the dynamic type must always conform
static type.

To avoid any confusion remember that we are dealing with three levels: an entity is
an identifier in the class text; at run time its value is a reference (except in the expanded
case); the reference may get attached to an object. Then:

• An object only has a dynamic type, the type with which it has been created. Tha
will never change during the object’s lifetime.

• At any time during execution, a reference has a dynamic type, the type of the o
to which it is currently attached (or the special type NONE if the reference is void).
The dynamic type may change as a result of reattachment operations.

• Only an entity has both a static type and dynamic types. Its static type is the typ
which it was declared: T if the declaration was x: T. Its dynamic type at some
execution-time instant is the type of its reference value, meaning the type o
attached object.

In the expanded case there is no reference; the value of x is an object of type T, and x has
T as both its static type and as its only possible dynamic type.

Are the restrictions justified?

The two typing rules may sometimes seem too restrictive. For example, the s
instruction in both of the following sequences will be statically rejected:

R1 • p:= r; r := p

R2 • p := r ; x := p ● diagonal

In R1, we refuse to assign a polygon to a rectangle entity even though that po
happens at run time to be a rectangle (like refusing to accept a dog because it comes in
box marked “animal”). In R2, we decide that diagonal is not applicable to p even though
at run time it would in fact be — as it were by accident.

But closer examination of these examples confirms that the rules are justified. I
attach a reference to an object, better avoid later problems by making sure that they
compatible types. And if you want to apply a rectangle operation, why not declar
target as a rectangle?

In practice, cases of the form R1 and R2 are unlikely. Assignments such as p := r
will normally occur as part of some control structure that depends on run-time condi
such as user input. A more realistic polymorphic scheme may look like this:

!! r ● make (…); …
screen● display_icons -- Display icons representing various polygons

screen● wait_for_mouse_click -- Wait for the user to click the mouse button

x := screen● mouse_position -- Find out at what position
-- the mouse was clicked

chosen_icon := screen●icon_where_is (x) -- Find out what icon appears at the
-- mouse’s position

§14.3 TYPING FOR INHERITANCE 477

eral

en

lying

the

eing
ally

better,

start
nt,
er the
, the

After a
polymorphic
attachment
if chosen_icon = rectangle_icon then
p := r

elseif …
 p := “Some other type of polygon” …

º
end
… Uses of p, for example p● display, p● rotate, …

On the last line, p can denote arbitrary polygons, so you should only apply gen
POLYGON features. Clearly, operations valid for rectangles only, such as diagonal,
should be applied to r only (for example in the first clause of the if). Where p as such is
going to be used, in the instructions following the if instruction, only operations defined
for all variants of polygons are applicable to it.

In another typical case, p could just be a formal routine argument:

some_routine (p: POLYGON) is…

and you execute a call some_routine (r), valid as per the Type Conformance rule; but wh
you write the routine you do not know about this call. In fact a call some_routine (t) for t
or type TRIANGLE, or any other descendant of POLYGON for that matter, would be
equally valid, so all you can assume is that p represents some kind of polygon — any kind
of polygon. It is quite appropriate, then, that you should be restricted to app
POLYGON features to p.

It is in this kind of situation — where you cannot predict the exact type of
attached object — that polymorphic entities such as p are useful.

Can ignorance be bliss?

It is worthwhile reinforcing the last few points a bit since the concepts now b
introduced will be so important in the rest of our discussion. (There will be nothing re
new in this short section, but it should help you understand the basic concepts
preparing you for the more advanced ones which follow.)

If you are still uneasy at the impossibility of writing p ●diagonal even after a call
p :=r — case R2 — you are not alone; this is a shock to many people when they
grappling with these concepts. We know that p is a rectangle because of the assignme
so why may we not access its diagonal? For one thing, that would be useless. Aft
polymorphic assignment, as shown in the following extract from an earlier figure
same RECTANGLE object now has two names, a polygon name p and a rectangle name r:

p

r
(RECTANGLE)

O2

INTRODUCTION TO INHERITANCE §14.3478

 access
the

g a
le

s the
s when
n

cases

s

grain of
es not
jects
er the
er the

t,
ected

his
eturn

See “ASSIGNMENT
ATTEMPT”, 16.5,
page 591.
In such a case, since you do know that the object O2 is a rectangle and have
to it through its rectangle name r, why would you write a diagonal access operation in
form p● diagonal? This is uninteresting since you can just write it as r ● diagonal; using the
object’s official rectangle name removes any doubt as to the validity of applyin
rectangle operation. Using the polygon name p, which could just as well denote a triang
object, brings nothing and introduces uncertainty.

Polymorphism, in fact, loses information: when as a result of the assignment p := r
you are able to refer to the rectangle object O2 under its polygon name p, you have lost
something precious: the ability to use rectangle-specific features. What then i
purpose? In this case, there is none. The only interesting application, as noted, arise
you do not know for sure what kind of polygon p is, as a result of a conditional instructio
if some_condition then p:= r else p := something_else …, or because p is a formal routine
argument and you do not know what the actual argument will be. But then in such
it would be incorrect and dangerous to apply to p anything else than POLYGON features.

To continue with the animal theme, imagine that someone asks “do you have a pet?”
and you answer “yes, a cat!”. This is similar to a polymorphic assignment, making a
single object known through two names of different types: “my_pet” and “my_cat”
now denote the same animal. But they do not serve the same purpose; the first has les
information than the second. You can use either name if you call the post-sales division
of Mail-A-Pet, Absentee Owner Department (“I am going on holiday; what’s your
price for keeping my_pet [or: my_cat] for two weeks”); but if you phone their
Destructive Control Department to ask “Can I bring my_pet for a de-clawing
Tuesday?” , you probably will not get an appointment until the employee has made you
confirm that you really mean my_cat.

When you want to force a type

In some special cases there may be a need to try an assignment going against the
inheritance, and accept that the result is not guaranteed to yield an object. This do
normally occur, when you are properly applying the object-oriented method, with ob
that are internal to a certain software element. But you might for example receive ov
network an object advertized to be of a certain type; since you have no control ov
origin of the object, static type declarations will guarantee nothing, and you must test the
type before accepting it.

When we receive that box marked “Animal” rather than the expected “Dog”, we might
be tempted to open the “Animal” box anyway and take our chances, knowing that if its
content is not the expected dog we will have forfeited our right to return the package, and
depending on what comes out of it we may not even live to tell the story.

Such cases require a new mechanism, assignment attempt, which will enable us to
write instructions of the form r ?= p (where?= is the symbol for assignment attemp
versus := for assignment), meaning “do the assignment if the object type is the exp
one for r, otherwise make r void”. But we are not equipped yet to understand how t
instruction fits in the proper use of the object-oriented method, so we will have to r
to it in a subsequent chapter. (Until then, you did not read about it here.)

§14.3 TYPING FOR INHERITANCE 479

o the
 type.

ure
he
h
t

 may
local
ents

ct

re
y the
 is

See “The creation
instruction”, page 232,
and “CREATION
PROCEDURES”, 8.4
page 236.
Polymorphic creation

The introduction of inheritance and polymorphism suggests a small extension t
mechanism for creating objects, allowing direct creation of objects of a descendant

The basic creation instruction, as you will recall, is of one of the forms

!! x

!! x● make (…)

where the second form both assumes and requires that the base class of x’s type T contain
a creation clause listing make as one of the creation procedures. (A creation proced
may of course have any name; make is the recommended default.) The effect of t
instruction is to create a new object of type T, initialize it to the default values, and attac
it to x. In addition, the second form will apply make, with the arguments given, to the jus
created and initialized object.

Assume that T has a proper descendant U. We may want to use x polymorphically
and, in some cases, make it denote a newly created direct instance of U rather than T. A
possible solution uses a local entity of type U:

some_routine (…) is

local

u_temp: U

do

…; !! u_temp●make (…); x := u_temp; …

end

This works but is cumbersome, especially in a multi-choice context where we
want to attach x to an instance of one of several possible descendant types. The
entities, u_temp above, play only a temporary part; their declarations and assignm
clutter up the software text. Hence the need for a variant of the creation instruction:

! U ! x

! U ! x●make (…)

The effect is the same as with the !! forms, except that the created object is a dire
instance of U rather than T. The constraint on using this variant is obvious: type U must
conform to type T and, in the second form, make must be defined as a creation procedu
in the base class of U; if that class indeed has one or more creation procedures, onl
second form is valid. Note that whether T’s own base class has creation procedures
irrelevant here; all that counts is what U requires.

A typical use involves creation of an instance of one of several possible types:

,

INTRODUCTION TO INHERITANCE §14.4480

ake

; let

ther
ppens
f: FIGURE

…
“Display a set of figure icons”

if chosen_icon = rectangle_icon then
! RECTANGLE ! f

else if chosen_icon = circle_icon then
! CIRCLE ! f

else

…
end

This new form of creation instruction suggests introducing the notion of creation
type of a creation instruction, denoting the type of the object that will be created:

• For the implicit-type form !! x …, the creation type is the type of x.

• For the explicit-type form ! U ! x …, the creation type is U.

14.4 DYNAMIC BINDING

Dynamic binding will complement redefinition, polymorphism and static typing to m
up the basic tetralogy of inheritance.

Using the right variant

Operations defined for all polygons need not be implemented identically for all variants.
For example, perimeter has different versions for general polygons and for rectangles
us call them perimeterPOL and perimeterRECT. Class SQUARE will also have its own
variant (yielding four times the side length). You may imagine further variants for o
special kinds of polygon. This immediately raises a fundamental question: what ha
when a routine with more than one version is applied to a polymorphic entity?

In a fragment such as

!! p●make (…); x := p ●perimeter

it is clear that perimeterPOL will be applied. It is just as clear that in

!! r ● make (…); x := r ● perimeter

perimeterRECT will be applied. But what if the polymorphic entity p, statically declared as
a polygon, dynamically refers to a rectangle? Assume you have executed

!! r ● make (…)

p := r

x := p ● perimeter

The rule known as dynamic binding implies that the dynamic form of the object
determines which version of the operation to apply. Here it will be perimeterRECT.

§14.4 DYNAMIC BINDING 481

 from a

tual

e of
se

 are
ectly
k. We

s of
 lose

,
ed in
As noted, of course, the more interesting case arises when we cannot deduce
mere reading of the software text what exact dynamic type p will have at run time, as in

-- Compute perimeter of figure built according to user choice
p: POLYGON
…
if chosen_icon = rectangle_icon then

! RECTANGLE ! p●make (…)
elseif chosen_icon = triangle_icon then

! TRIANGLE ! p● make (…)
elseif

…
end
…
x := p ● perimeter

or after a conditional polymorphic assignment if … then p := r elseif… then p := t…; or
if p is an element of a polymorphic array of polygons; or simply if p is a formal argument,
declared of type POLYGON, of the enclosing routine — to which callers can pass ac
arguments of any conforming type.

Then depending on what happens in any particular execution, the dynamic typp
will be RECTANGLE, or TRIANGLE, and so on. You have no way to know which of the
cases will hold. But thanks to dynamic binding you do not need to know: whatever p
happens to be, the call will execute the proper variant of perimeter.

This ability of operations to adapt automatically to the objects to which they
applied is one of the most important properties of object-oriented systems, dir
addressing some of the principal quality issues discussed at the beginning of this boo
will examine its consequences in detail later in this chapter.

Dynamic binding also gives the full story about the information-loss aspect
polymorphism discussed earlier. Now we really understand why it is not absurd to
information about an object: after an assignment p := q, or a call some_routine(q) where
p is the formal argument, we have lost the type information specific to q but we can rest
assured that if we apply an operation p● polygon_feature where polygon_feature has a
special version applicable to q, that version will be the one selected.

It is all right to send your pets to an Absentee Owner Department that caters to all kinds
— provided you know that when meal time comes your cat will get cat food and your dog
will get dog food.

Redefinition and assertions

If a client of POLYGON calls p● perimeter, it expects to get the value of p’s perimeter, as
defined by the specification of function perimeter in the definition of the class. But now
because of dynamic binding, the client may well be calling another routine, redefin
some descendant. In RECTANGLE, the redefinition, while improving efficiency,
preserves the result; but what prevents you from redefining perimeter to compute, say, the
area?

INTRODUCTION TO INHERITANCE §14.5482

the
in the
r of

of a
een,

t
is up
, while

-time
 of that
pter).

 O-O
e can

 not be

esign
s. But

are
asks:
em in

alities

f
cribed
This is contrary to the spirit of redefinition. Redefinition should change
implementation of a routine, not its semantics. Fortunately we have a way to constra
semantics of a routine — assertions. The basic rule for controlling the powe
redefinition and dynamic binding is simple: the precondition and postcondition
routine will apply (informally speaking) to any redefinition; and, as we have already s
the class invariant automatically carries over to all the descendants.

The exact rules will be given in chapter 16. But you should already note tha
redefinition is not arbitrary: only semantics-preserving redefinitions are permitted. It
to the routine writer to express the semantics precisely enough to express his intent
leaving enough freedom to future reimplementers.

On the implementation of dynamic binding

One might fear that dynamic binding could be a costly mechanism, requiring a run
search of the inheritance graph and hence an overhead that grows with the depth
graph and becomes unacceptable with multiple inheritance (studied in the next cha

Fortunately this is not the case with a properly designed (and statically typed)
language. This issue will be discussed in more detail at the end of this chapter, but w
already reassure ourselves that efficiency consequences of dynamic binding should
a concern for developers working with a decent environment.

14.5 DEFERRED FEATURES AND CLASSES

Polymorphism and dynamic binding mean that we can rely on abstractions as we d
our software, and rest assured that execution will choose the proper implementation
so far everything was fully implemented.

We do not always need everything to be fully implemented. Abstract softw
elements, partially implemented or not implemented at all, help us for many t
analyzing the problem and designing the architecture (in which case we may keep th
the final product to remind ourselves of the analysis and design); capturing common
between implementations; describing the intermediate nodes in a classification.

Deferred features and classes provide the needed abstraction mechanism.

Moving arbitrary figures

To understand the need for deferred routines and classes, consider again the FIGURE
hierarchy, reproduced for convenience on the facing page.

The most general notion is that of FIGURE. Relying on the mechanisms o
polymorphism and dynamic binding, you may want to apply the general scheme des
earlier, as in:

§14.5 DEFERRED FEATURES AND CLASSES 483

alid:

sses

The FIGURE
hierarchy
again
transform (f: FIGURE) is
-- Apply a specific transformation to f.

do
f ● rotate (…)
f ● translate (…)

end

with appropriate values for the missing arguments. Then all the following calls are v

transform (r) -- with r : RECTANGLE
transform (c) -- with c: CIRCLE
transform (figarray● item (i)) -- with figarray: ARRAY [POLYGON]

In other words, you want to apply rotate and translate to a figure f, and let the
underlying dynamic binding mechanism pick the appropriate version (different for cla
RECTANGLE and CIRCLE) depending on the actual form of f, known only at run time.

OPEN_
FIGURE

SEGMENT POLYLINE

POLYGON ELLIPSE

QUADRANGLE
CIRCLETRIANGLE

display*
rotate*

extent*

…
barycenter*
…

perimeter*

perimeter+

diagonal

SQUAREperimeter++

perimeter++

perimeter+

CLOSED_
FIGURE

FIGURE

RECTANGLEperimeter++ side1, side2

∗

∗∗

* deferred
+ effected
++ redefined

INTRODUCTION TO INHERITANCE §14.5484

le by
ould

s
n of

ed by
 body

tch

ed
e had

y

This should work, and is a typical example of the elegant style made possib
polymorphism and dynamic binding, applying the Single Choice principle. You sh
simply have to redefine rotate and translate for the various classes involved.

But there is nothing to redefine! FIGURE is a very general notion, covering all kind
of two-dimensional figure. You have no way of writing a general-purpose versio
rotate and translate without more information on the figures involved.

So here is a situation where routine transform would execute correctly thanks to
dynamic binding, but is statically illegal since rotate and translate are not valid features
of FIGURE. Type checking will catch f ● rotate and f ● translate as invalid operations.

You could, of course, introduce at the FIGURE level a rotate procedure which would
do nothing. But this is a dangerous road to follow; rotate (center, angle) has a well-defined
intuitive semantics, and “do nothing” is not a proper implementation of it.

Deferring a feature

What we need is a way to specify rotate and translate at the FIGURE level, while making
it incumbent on descendants to provide actual implementations. This is achiev
declaring the features as “deferred”. We replace the whole instruction part of the
(do Instructions) by the keyword deferred. Class FIGURE will declare:

rotate (center: POINT; angle: REAL) is
-- Rotate by angle around center.

deferred
end

and similarly for translate. This means that the feature is known in the class where this
declaration appears, but implemented only in proper descendants. Then a call such as ca
f ●rotate in procedure transform becomes valid.

With such a declaration, rotate is said to be a deferred feature. A non-deferr
feature — one which has an implementation, such as all the features that w
encountered up to this one — is said to be effective.

Effecting a feature

In some proper descendants of FIGURE you will want to replace the deferred version b
an effective one. For example:

class POLYGON inherit
CLOSED_FIGURE

feature
rotate (center: POINT; angle: REAL) is

-- Rotate by angle around center.
do

… Instructions to rotate all vertices (see page 461) …
end

…
end -- class POLYGON

§14.5 DEFERRED FEATURES AND CLASSES 485

arent
ct a

 in its
ation)
must

ence

n

ature,
ation

 of its
 in the
ch a
es the

“Conflicts under
sharing: undefinition
and join”, page 551.
Note that POLYGON inherits the features of FIGURE not directly but through
CLOSED_FIGURE; procedure rotate remains deferred in CLOSED_FIGURE.

This process of providing an effective version of a feature that is deferred in a p
is called effecting. (The term takes some getting used to, but is consistent: to effe
feature is to make it effective.)

A class that effects one or more inherited features does not need to list them
redefine subclause, since there was no true definition (in the sense of an implement
in the first place. It simply provides an effective declaration of the features, which
be type-compatible with the original, as in the rotate example.

Effecting is of course close to redefinition, and apart from the listing in the redefine
subclause will be governed by the same rules. Hence the need for a common term:

The examples used to introduce redefinition and effecting illustrate the differ
between these two forms of redeclaration:

• When we go from POLYGON to RECTANGLE, we already had an implementatio
of perimeter in the parent; we want to offer a new implementation in RECTANGLE.
This is a redefinition. Note that the feature gets redefined again in SQUARE.

• When we go from FIGURE to POLYGON, we had no implementation of rotate in
the parent; we want to offer an implementation in POLYGON. This is an effecting.
Proper descendants of POLYGON may of course redefine the effected version.

There may be a need to change some properties of an inherited deferred fe
while leaving it deferred. These properties may not include the feature’s implement
(since it has none), but they may include the signature of the feature — the type
arguments and result — and its assertions; the precise constraints will be reviewed
next chapter. In contrast with a redeclaration from deferred to effective, su
redeclaration from deferred to deferred is considered to be a redefinition and requir
redefine clause. Here is a summary of the four possible cases of redeclaration:

This shows one case that we have not seen yet: undefinition, or redeclaration from
effective to deferred — forgetting one’s original implementation to start a new life.

Definition: redeclaration

To redeclare a feature is to redefine or effect it.

Redeclaring from →
to ↓

Deferred Effective

Deferred Redefinition Undefinition

Effective Effecting Redefinition

INTRODUCTION TO INHERITANCE §14.5486

lasses:

more
ss:

d
e of its
 does

tions.

ctive
ferred

d. So

 type
Deferred classes

A feature, as we have seen, is either deferred or effective. This distinction extends to c

So for a class to be effective, all of its features must be effective. One or
deferred features make the class deferred. In the latter case you must mark the cla

So FIGURE will be declared (ignoring the indexing clause) as:

deferred class FIGURE feature
rotate (…) is

… Deferred feature declaration as shown earlier …
… Other feature declarations …

end -- class FIGURE

Conversely, if a class is marked as deferred it must have at least one deferre
feature. But a class may be deferred even if it does not declare any deferred featur
own: it might have a deferred parent, from which it inherits a deferred feature that it
not effect. In our example, the class OPEN_FIGURE most likely does not effect display,
rotate and other deferred features that it inherits from FIGURE, since the notion of open
figure is still not concrete enough to support default implementations of these opera
So the class is deferred, and will be declared as

deferred class OPEN_FIGURE inherit
FIGURE

…
even if it does not itself introduce any deferred feature.

A descendant of a deferred class is an effective class if it provides effe
definitions for all features still deferred in its parents, and does not introduce any de
feature of its own. Effective classes such as POLYGON and ELLIPSE must provide
implementations of display, rotate and any other routines that they inherit deferred.

For convenience we will say that a type is deferred if its base class is deferre
FIGURE, viewed as a type, is deferred; and if the generic class LIST is deferred — as it
should be if it represents general lists regardless of the implementation — the
LIST [INTEGER] is deferred. Only the base class counts here: C [X] is effective if class C
is effective and deferred if C if is deferred, regardless of the status of X.

Definition: deferred, effective class

A class is deferred if it has a deferred feature. A class is effective if it is not
deferred.

Deferred class declaration rule

The declaration of a deferred class must use the juxtaposed keywords
deferred class (rather than just class for an effective class).

§14.5 DEFERRED FEATURES AND CLASSES 487

ined.

, like a

eing

the
ting

n:

s if we
e
hing as

if
Graphical conventions

The graphical symbols that have illustrated inheritance figures can now be fully expla
An asterisk marks a deferred feature or class:

FIGURE*
display*
perimeter* -- At the level of OPEN_FIGURE in the illustration of page 483

A plus sign means “effective” and marks the effecting of a feature:

perimeter+ -- At the level of POLYGON in the illustration of page 483

You may mark a class with a plus sign + to indicate that it is effective. This is only
used for special emphasis; an unmarked class is by default understood as effective
class declared as just class C …, without the deferred keyword, in the textual notation.

You may also attach a single plus sign to a feature, to indicate that it is b
effected. For example perimeter appears, deferred and hence in the form perimeter* , as
early as class CLOSED_FIGURE, since every closed figure has a perimeter; then at
level of POLYGON the feature is effected to indicate the polygon algorithm for compu
a perimeter, and so appears next to POLYGON as perimeter+.

Finally, two plus signs (informally suggesting double effecting) mark redefinitio

perimeter++ -- At the level of RECTANGLE and SQUARE in the figure of page 483

What to do with deferred classes

The presence of deferred elements in a system prompts the question “what happen
apply rotate to an object of type FIGURE?”; more generally, if we apply a deferred routin
to a direct instance of a deferred class. The answer is draconian: there is no such t
an object of type FIGURE — no such thing as a direct instance of a deferred class.

Recall that the creation type of a creation instruction is the type of x in the form !! x,
and is U in the explicit-type form ! U ! x. A type is deferred if its base class is.

So the creation instruction !! f… is invalid, and will be rejected by the compiler,
the type of f is one of FIGURE, OPEN_FIGURE, CLOSED_FIGURE, all deferred. This
rule removes any danger of causing erroneous feature calls.

Note, however, that even though f’s type is deferred you can still use f as target in the
type-explicit form of the creation instruction, as in ! RECTANGLE ! f, as long as the
creation type, here RECTANGLE, is one of the effective descendants of FIGURE. We
saw how to use this technique in a multi-branch instruction to create a FIGURE object
which, depending on the context, will be a direct instance of RECTANGLE, or of
CIRCLE, etc.

Deferred Class No-Instantiation rule

The creation type of a creation instruction may not be deferred

INTRODUCTION TO INHERITANCE §14.5488

more
t for

e
ution:

ique
hism,
 objects
ry to
ts are
cker’s
tions,

 each

her no
their

ferred

icular
 with

See also exercise
E14.5, page 518.

f could also be a for-
mal argument, as in
some_routine

(f: FIGURE) is …

List with
cursor
At first the rule may appear to limit the usefulness of deferred classes to little
than a syntactic device to fool the static type system. This would be true bu
polymorphism and dynamic binding. You cannot create an object of type FIGURE, but
you can declare a polymorphic entity of that type, and use it without knowing the typ
(necessarily based on an effective class) of the attached object in a particular exec

f: FIGURE

…
f := “Some expression of an effective type, such as CIRCLE or POLYGON”

…
f ● rotate (some_point, some_angle)

f ● display

…

Such examples are the combination and culmination of the O-O method’s un
abstraction facilities: classes, information hiding, Single Choice, inheritance, polymorp
dynamic binding, deferred classes (and, as seen next, assertions). You manipulate
without knowing their exact types, specifying only the minimum information necessa
ensure the availability of the operations that you require (here, that these objec
figures, so that they can be rotated and displayed). Having secured the type che
stamp of approval, certifying that these operations are consistent with your declara
you rely on a benevolent power — dynamic binding — to apply the correct version of
operation, without having to find out what that version will be.

Specifying the semantics of deferred features and classes

Although a deferred feature has no implementation, and a deferred class has eit
implementation or a partial implementation only, you will often need to express
abstract semantic properties. You can use assertions for that purpose.

Like any other class, a deferred class can have a class invariant; and a de
feature can have a precondition, a postcondition or both.

Consider the example of sequential lists, described independently of any part
implementation. As with many other such structures, it is convenient to associate
each list a cursor, indicating a currently active position:

before after
item

index

count1

Cursor

§14.5 DEFERRED FEATURES AND CLASSES 489
The class is deferred:

indexing
description: "Sequentially traversable lists"

deferred class
LIST [G]

feature -- Access

count: INTEGER is
-- Number of items

deferred
end

 index: INTEGER is
-- Cursor position

deferred
end

 item: G is
-- Item at cursor position

deferred
end

feature -- Status report

after: BOOLEAN is
--Is cursor past last item?

deferred
end

before: BOOLEAN is
--Is cursor before first item?

deferred
end

feature -- Cursor movement

forth is
--Advance cursor by one position.

require
not after

deferred
ensure

index = old index + 1
end

… Other features …
invariant

non_negative_count: count >= 0
offleft_by_at_most_one: index >= 0
offright_by_at_most_one: index <= count + 1
after_definition: after = (index = count + 1)
before_definition: before = (index = 0)

end -- class LIST

INTRODUCTION TO INHERITANCE §14.5490

t two

:

 the
f list

neral
ible

ough
pply
 these
bove

ive and

rther
ion.

Cursor
positions

“THE ROLE OF
DEFERRED
CLASSES”, 14.8,
page 500.
The invariant expresses the relations between the various queries. The firs
clauses state that the cursor may only get off the set of items by one position left or right:

The last two clauses of the invariant could also be expressed as postconditions
ensure Result = (index = count + 1) in after and ensure Result = (index = 0) in before.
This choice always arises for a property involving argumentless queries only. In such a
case I prefer to use an invariant clause, treating the property as applying globally to the
class, rather than attaching it to any particular feature.

The assertions of forth express precisely what this procedure must do: advance
cursor by one position. Since we want to maintain the cursor within the range o
elements, plus two “sentinel” positions as shown on the last figure, application of forth
requires not after; the result, as stated by the postcondition, is to increase index by one.

Here is another example, our old friend the stack. Our library will need a ge
STACK [G] class, which we now know will be deferred since it should cover all poss
implementations; proper descendants such as FIXED_STACK and LINKED_STACK will
describe specific implementations. One of the deferred procedures of STACK is put:

put (x: G) is
-- Add x on top.

require
not full

deferred
ensure

not_empty: not empty
pushed_is_top: item = x
one_more: count = old count + 1

end

The boolean functions empty and full (also deferred at the STACK level) express
whether the stack is empty, and whether its representation is full.

Only with assertions do deferred classes attain their full power. As noted (alth
the details will wait until two chapters from now), preconditions and postconditions a
to all redeclarations of a routine. This is especially significant in the deferred case:
assertions, if present, will set the limits for all permissible effectings. So the a
specification constrains all variants of put in descendants of STACK.

Thanks to these assertion techniques you can make deferred classes informat
semantics-rich, even though they do not prescribe any implementation.

At the end of this chapter we will come back to deferred classes and explore fu
their many roles in the object-oriented process of analysis, design and implementat

before after

count10 count+1

(Left (Right
sentinel)sentinel)

Occupied positions

§14.6 REDECLARATION TECHNIQUES 491

ith a

n.

ciples

ical
ental
ction.

all the
alance.

e to

mple,

See “Uniform
Access”, page 55.
14.6 REDECLARATION TECHNIQUES

The possibility of redeclaring a feature — redefining or effecting it — provides us w
flexible, incremental development style. Two techniques add to its power:

• The ability to redeclare a function into an attribute.

• A simple notation for referring to the original version in the body of a redefinitio

Redeclaring a function into an attribute

Redeclaration techniques provide an advanced application of one of the central prin
of modularity that led us to the object-oriented method: uniform access.

As you will recall, the Uniform Access principle stated (originally in less techn
terms, but we can afford to be precise now) that there should not be any fundam
difference, from a client’s perspective, between an attribute and an argumentless fun
In both cases the feature is a query; all that differs is its internal representation.

The first example was a class describing bank accounts, where the balance feature
can be implemented as a function, which adds all the deposits and subtracts
withdrawals, or as an attribute, updated whenever necessary to reflect the current b
To the client, this makes no difference except possibly for performance.

With inheritance, we can go further, and allow a class that inherits a routin
redefine it as an attribute.

Our old example is directly applicable. Assume an original ACCOUNT1 class:

class ACCOUNT1 feature
balance: INTEGER is

-- Current balance

do
Result := list_of_deposits●total – list_of_withdrawals● total

end
…

end -- class ACCOUNT1

Then a descendant can choose the second implementation of our original exa
redefining balance as an attribute:

class ACCOUNT2 inherit
ACCOUNT1

redefine balance end
feature

balance: INTEGER

-- Current balance
…

end -- class ACCOUNT2

INTRODUCTION TO INHERITANCE §14.6492

rn a

,

t

tines
 we
n,
): we
equest
 some

ut no.
ssume

o

 not
es the
nction
tions.
ACCOUNT2 will likely have to redefine certain procedures, such as withdraw and
deposit, so that on top of their other duties they update balance, maintaining invariant the
property balance = list_of_deposits● total – list_of_withdrawals● total.

In this example the redeclaration is a redefinition. An effecting can also tu
deferred feature into an attribute. For example a deferred LIST class may have a feature

count: INTEGER is

-- Number of inserted items

deferred

end

Then an array implementation may effect this feature as an attribute:

count: INTEGER

If we are asked to apply the classification that divides features into attributes and routines
we will by convention consider a deferred feature as a routine — even though, for a
deferred feature with a result and no argument, the very notion of deferment means tha
we have not yet chosen between routine and attribute implementations. The phrase
“deferred feature” is suitably vague and hence preferable to “deferred routine”.

Combined with polymorphism and dynamic binding, such redeclarations of rou
into attributes carry the Uniform Access principle to its extreme. Not only can
implement a client’s request of the form a● service through either storage or computatio
without requiring the client to be aware of our choice (the basic Uniform Access idea
now have a situation where the same call could, in successive executions of the r
during a single session, trigger a field access in some cases and a routine call in
others. This could for example happen with successive executions of the same a● balance
call, if in the meantime a is polymorphically reattached to different objects.

Not the other way around

You might expect to be able to redefine an attribute into an argumentless function. B
Assignment, an operation applicable to attributes, makes no sense for functions. A
x is an attribute of a class C, and a routine of C contains the instruction

a := some_expression

Were a descendant of C to redefine a, then the routine — assuming it is not als
redefined — would become inapplicable, since one cannot assign to a function.

The lack of symmetry (redeclaration permitted from function to attribute but
conversely) is unfortunate but inevitable, and not a real impediment in practice. It mak
use of an attribute a final, non-reversible implementation choice, whereas using a fu
still leaves room for later storage-based (rather than computation-based) implementa

§14.6 REDECLARATION TECHNIQUES 493

me for
ome

rder:

A call
utine

t

of a
Using the original version in a redefinition

Consider a class that redefines a routine inherited from a parent. A common sche
the redefinition is to perform what the original version did, preceded or followed by s
other specific actions.

For example, a class BUTTON inheriting from WINDOW might redefine procedure
display to indicate that to display a button is to display it as a window, then draw the bo

class BUTTON inherit

WINDOW

redefine display end

feature -- Output

display is

-- Display as a button.

do

“Display as a normal window”; -- See below

draw_border

end

… Other features …
end -- class BUTTON

where draw_border is a procedure of the new class. What we need to “Display as a normal
window” is a call to the original, pre-redefinition version of display, known technically as
the precursor of draw_border.

This case is common enough to justify a specific notation. The construct

Precursor

may be used in lieu of a feature name, but only in the body of a redefined routine.
to this feature, with arguments if required, is a call to the parent’s version of the ro
(the precursor).

So in the last example the “Display as a normal window” part may be written as jus

Precursor

meaning: call the version of this feature in class WINDOW. This would be illegal in any
context other than the redefinition of a routine inherited from WINDOW, where WINDOW
is a direct parent. Precursor is a reserved entity name, such as Result or Current, and like
them is written in italics with an upper-case first letter.

In this example the redefined routine is a procedure, and so a call to the Precursor
construct is an instruction. The call would be an expression in the redefinition
function:

INTRODUCTION TO INHERITANCE §14.7494

l

e a
ersion
tate

ursor
sed on
d

ied, in
s to

 they
ss.

 we first
ce. In
iew, it

useful
rs to

Keeping the original
ersion of a redefined
eature”, page 555.
some_query (n: INTEGER): INTEGER is
-- Value returned by parent version if positive, otherwise zero

do
Result := (Precursor (n)) ●max (0)

end

In cases of multiple inheritance studied in the next chapter, a routine may have severa
precursors (enabling you to join several inherited routines into one). Then you will need
to remove the ambiguity by specifying the parent, as in {{ WINDOW}} Precursor.

Note that the use of the Precursor construct does not make the precursor featur
feature of the class; only the redefined version is. (For one thing, the precursor v
might fail to maintain the new invariant.) The only effect of the construct is to facili
the task of the redefiner if the new job includes the old.

For any more complicated case, and in particular if you want to use both the prec
and the redefined version as features of the class, you will rely on a technique ba
repeated inheritance, which actually duplicates a parent feature, yielding two full-fledge
features in the heir. This will be part of the discussion of repeated inheritance.

14.7 THE MEANING OF INHERITANCE

We have now seen the basic techniques of inheritance. More remains to be stud
particular how to deal with multiple inheritance, and the details of what happen
assertions in the context of inheritance (the notion of subcontracting).

But first we must reflect on the fundamental concepts and understand what
mean in the quest for software quality and an effective software development proce

The dual perspective

Nowhere perhaps does the dual role of classes as modules and types, defined when
encountered the notion of class, appear more clearly than in the study of inheritan
the module view, an heir describes an extension of the parent module; in the type v
describes a subtype of the parent type.

Although some aspects of inheritance belong more to the type view, most are
for both views, as suggested by the following approximate classification (which refe

“
v
f

§14.7 THE MEANING OF INHERITANCE 495

eated

The
 into
robe
h a
nefit.

e, it

que.

very

 of the
rvices

d by

very
 and

ready
ch so

the

Inheritance
mechanisms
and their role

See “ONE MECHA-
NISM, OR MORE?”
24.6, page 833.

“The Open-Closed
principle”, page 57.
a few facilities yet to be studied: renaming, descendant hiding, multiple and rep
inheritance). No aspect seems to belong exclusively to the module view.

The two views reinforce each other, giving inheritance its power and flexibility.
power can in fact be intimidating, prompting proposals to separate the mechanism
two: a pure module extension facility, and a subtyping mechanism. But when we p
further (in the chapter on the methodology of inheritance) we will find that suc
separation would have many disadvantages, and bring no recognizable be
Inheritance is a unifying principle; like many of the great unifying ideas of scienc
brings together phenomena that had hitherto been treated as distinct.

The module view

From the module viewpoint, inheritance is particularly effective as a reusability techni

A module is a set of services offered to the outside world. Without inheritance, e
new module must itself define all the services it offers. Of course, the implementations of
these services may rely on services provided by other modules: this is the purpose
client relation. But there is no way to define a new module as simply adding new se
to previously defined modules.

Inheritance gives that possibility. If B inherits from A, all the services (features) of A
are automatically available in B, without any need to define them further. B is free to add
new features for its own specific purposes. An extra degree of flexibility is provide
redefinition, which allows B to take its pick of the implementations offered by A, keeping
some as they are while overriding others by locally more appropriate versions.

This leads to a style of software development which, instead of trying to solve e
new problem from scratch, encourages building on previous accomplishments
extending their results. The spirit is one of both economy — why redo what has al
been done? — and humility, in line with Newton’s famous remark that he could rea
high only because he stood on the shoulders of giants.

The full benefit of this approach is best understood in terms of the Open-Closed
principle introduced in an earlier chapter. (It may be worthwhile to reread

Addition of features

Redefinition

Renaming

Descendant hiding

Multiple inheritance

Repeated inheritance

Polymorphism

Dynamic binding

Deferred features,
effecting

MODULE
VIEW

TYPE
VIEW

,

INTRODUCTION TO INHERITANCE §14.7496

tated

 own
not be

every

 offer
d in a
ss may
rocess
ental

e
y

as the
elated
ctures

tween
ssible

See “Single-routine
classes”, page 728.

“Factoring Out
Common Behav-
iors”, page 85.
corresponding section now in light of the concepts just introduced.) The principle s
that a good module structure should be both closed and open:

• Closed, because clients need the module’s services to proceed with their
development, and once they have settled on a version of the module should
affected by the introduction of new services they do not need.

• Open, because there is no guarantee that we will include right from the start
service potentially useful to some client.

This double requirement looks like a dilemma, and classical module structures
no clue. But inheritance solves it. A class is closed, since it may be compiled, store
library, baselined, and used by client classes. But it is also open, since any new cla
use it as a parent, adding new features and redeclaring inherited features; in this p
there is no need to change the original or to disturb its clients. This property is fundam
in applying inheritance to the construction of reusable, extendible software.

If the idea were driven to the extreme, every class would add just one feature to those of its
parents! This, of course, is not recommended. The decision to close a class should not b
taken lightly; it should be based on a conscious judgment that the class as it stands alread
provides a coherent set of services — a coherent data abstraction — to potential clients.

Also remember that the Open-Closed principle does not cover late hacking of inadequate
services. If bad judgment resulted in a poor feature specification we cannot update the
class without affecting its clients. Thanks to redefinition, however, the Open-Closed
principle remains applicable if the change is compatible with the advertized specification.

Among one of the toughest issues in designing reusable module structures w
necessity to take advantage of commonalities that may exist between groups of r
data abstractions — all hash tables, all sequential tables etc. By using class stru
connected by inheritance, we can benefit from the logical relationships that exist be
these implementations. The diagram below is a rough and partial sketch of a po

§14.7 THE MEANING OF INHERITANCE 497

tance,

 idea
 it
 process
s the
atures
erges

ity, in

t data
ic

Draft structure
for a table
library
structure for a table management library. The scheme naturally uses multiple inheri
discussed in more detail in the next chapter.

This inheritance diagram is only a draft although it shows inheritance links typical of such
a structure. For a systematic inheritance-based classification of tables and other
containers, see [M 1994a].

With this view we can express the reusability requirement quite concretely: the
is to move the definition of every feature as far up in the diagram as possible, so that
may be shared by the greatest possible number of descendant classes. Think of the
as the reusability game, played on boards that represent inheritance hierarchies such a
one on the last figure, with tokens that represent features. He who moves the most fe
the highest, as a result of discovering higher-level abstractions, and along the way m
the most tokens, as a result of discovering commonalities, wins.

The type view

From the type perspective, inheritance addresses both reusability and extendibil
particular what an earlier discussion called continuity. The key is dynamic binding.

A type is a set of objects characterized (as we know from the theory of abstrac
types) by certain operations. INTEGER describes a set of numbers with arithmet
operations; POLYGON, a set of objects with operations vertices, perimeter and others.

TABLE

TABLE_WITH_
DELETION

BINARY_
SEARCH_TREE

BINARY_
TREE

CLOSED_
HASH_TABLE

BOUNDED_
TABLE

SEQUENTIAL_
TABLE

LINKED_
LIST

ARRAY_
TABLE

ARRAY

LIST

LINKED_
TABLE

INTRODUCTION TO INHERITANCE §14.7498

.

make

”

s
r

e

n the

s
model

ting

d

 prefer

ter on
 can

roach

“Instances”, page
475.
For types, inheritance represents the is relation, also known as is-a, as in “every dog
is a mammal”, “every mammal is an animal”. Similarly, every rectangle is a polygon

What does this relation mean?

• If we consider the values in each type, the relation is simply set inclusion: dogs
up a subset of the set of animals; similarly, instances of RECTANGLE make up a
subset of the instances of POLYGON. (This comes from the definition of “instance
earlier in this chapter; note that a direct instance of RECTANGLE is not a direct
instance of POLYGON).

• If we consider the operations applicable to each type, saying that every B is an A
means that every operation applicable to instances of A is also applicable to instance
of B. (With redefinition, however, B may provide its own implementation, which fo
instances of B overrides the implementation given in A.)

Using this relation, you can describe is-a networks representing many possible typ
variants, such as all the variants of FIGURE. Each new version of a routine such as rotate
and display is defined in the class that describes the corresponding type variant. I
table example, each class in the graph will provide its own implementation of search,
insert, delete, except of course when the parent’s version is still appropriate.

A caveat about the use of “is” and “is-a”. Beginners — but, I hope, no one who ha
read so far with even a modicum of attention — sometimes misuse inheritance to
the instance-to-mold relation, as with a class SAN_FRANCISCO inheriting from CITY.
This is most likely a mistake: CITY is a class, which may have an instance represen
San Francisco. To avoid such mistakes, it suffices to remember that the term is-a does not
stand for “x is an A” (as in “San_francisco is a CITY”), a relation between an instance an
a category, but for “every B is an A” (as in “Every CITY is a GEOGRAPHICAL_UNIT”),
a relation between two categories — two classes in software terms. Some authors
to call this relation “is-a-kind-of” or, like [Gore 1996], “can act as a”. This is partly a
matter of taste (and partly a matter of substance, to be discussed in the chap
inheritance methodology); once we have learned to avoid the trivial mistake, we
continue to use the well-accepted “is” or “ is-a” terminology, never forgetting that it
describes a relation between categories.

Inheritance and decentralization

With dynamic binding we can produce the decentralized software architectures
necessary to achieve the goals of reusability and extendibility. Compare the O-O app

§14.7 THE MEANING OF INHERITANCE 499

sical

does

 The
:
 of a

is a
ve list
s job:

e of
of

ware
e far-
o have

icular
tion
etely
and do
ire’s
tial

ts for

See “Single
Choice”, page 61.
— self-contained classes each providing its set of operation variants — with clas
approaches. In Pascal or Ada, you may use a record type with variants

type FIGURE =

record
“Common fields if any”

case figtype: (polygon, rectangle, triangle, circle, …) of

polygon: (vertices: LIST_OF_POINTS; count: INTEGER);

rectangle: (side1, side2: REAL; …);

…

end

to define the various forms of figures. But this means that every routine that
something to figures (rotate and the like) must discriminate between possibilities:

case f ● figure_type of

polygon: …
circle: …
…

end

Routines search and others in the table case would use the same structure.
trouble is that all these routines possess far too much knowledge about the overall system
each must know exactly what types of figure are allowed in the system. Any addition
new type, or change in an existing one, will affect every routine.

Ne sutor ultra crepidam, the shoemaker should not look beyond the sandal,
software design principle: a rotation routine has no business knowing the exhausti
of figure types. It should be content enough with the information necessary to do it
rotating certain kinds of figure.

This distribution of knowledge among too many routines is a major sourc
inflexibility in classical approaches to software design. Much of the difficulty
modifying software may be traced to this problem. It also explains in part why soft
projects are so difficult to keep under control, as apparently small changes hav
reaching consequences, forcing developers to reopen modules that were thought t
been closed for good.

Object-oriented techniques deal with the problem head-on. A change in a part
implementation of an operation will only affect the class to which the implementa
applies. Addition of a new type variant will in many cases leave the others compl
unaffected. Decentralization is the key: classes manage their own implementations
not meddle in each other’s affairs. Applied to humans, this would sound like Volta
Cultivez votre jardin, tend your own garden. Applied to modules, it is an essen
requirement for obtaining decentralized structures that will yield gracefully to reques
extension, modification, combination and reuse.

INTRODUCTION TO INHERITANCE §14.7500

tation
ithout
rlier

 of
e

needed

e
t may
d the

amic
ning of

though
 the

e first
an
sion:

ces,

dogs
es we
oes

 the
pply,

“Representation
Independence”,
page 84.
Representation independence

Dynamic binding also addresses one of the principal reusability issues: represen
independence — the ability to request an operation with more than one variant, w
having to know which variant will be applied. The discussion of this notion in an ea
chapter used the example of a call

present := has (x, t)

which should use the appropriate search algorithm depending on the run-time formt.
With dynamic binding, we have exactly that: if t is declared as a table, but may b
instantiated as any of binary search tree, closed hash table etc. (assuming all
classes are available), then the call

present := t● has (x)

will find, at run time, the appropriate version of has. Dynamic binding achieves what th
earlier discussion showed to be impossible with overloading and genericity: a clien
request an operation, and let the underlying language system automatically fin
appropriate implementation.

So the combination of classes, inheritance, redefinition, polymorphism and dyn
binding provides a remarkable set of answers to the questions raised at the begin
this book: requirements for reusability; criteria, principles and rules of modularity.

The extension-specialization paradox

Inheritance is sometimes viewed as extension and sometimes as specialization. Al
these two interpretations appear contradictory, there is truth in both — but not from
same perspective.

It all depends, again, on whether you look at a class as a type or a module. In th
case, inheritance, or is, is clearly specialization; “dog” is a more specialized notion th
“animal”, and “rectangle” than “polygon”. This corresponds, as noted, to subset inclu
if B is heir to A, the set of run-time objects represented by B is a subset of the
corresponding set for A.

But from the module perspective, where a class is viewed as a provider of serviB
implements the services (features) of A plus its own. Fewer objects often allows more
features, since it implies a higher information value; going from arbitrary animals to
we can add the specific property of barking, and from arbitrary polygons to rectangl
can add the feature diagonal. So with respect to features implemented the subsetting g
the other way: the features applicable to instances of A are a subset of those for instances ofB.

Features implemented rather than services offered (to clients) because of the way
information hiding combines with inheritance: as we will see, B may hide from its clients
some of the features exported by A to its own.

Inheritance, then, is specialization from the type viewpoint and extension from
module viewpoint. This is the extension-specialization paradox: more features to a
hence fewer objects to apply them to.

§14.8 THE ROLE OF DEFERRED CLASSES 501

 term
times
such

tware
t.

ypes. A
re
The extension-specialization paradox is one of the reasons for avoiding the
“subclass”, which suggests “subset”. Another, already noted, is the literature’s some
confusing use of “subclass” to indicate direct as well as indirect inheritance. No
problem arises for the precisely defined terms heir, descendant and proper descendant and
their counterparts parent, ancestor and proper ancestor.

14.8 THE ROLE OF DEFERRED CLASSES

Among the inheritance-related mechanisms addressing the problems of sof
construction presented at the beginning of this book, deferred classes are prominen

Back to abstract data types

Loaded with assertions, deferred classes come close to representing abstract data t
deferred class covering the notion of stack provides an excellent example. Proceduput
has already been shown; here is a possible version for the full class.

indexing
description:

"Stacks (Last-in, First-Out dispenser structures), independently of %
%any representation choice"

deferred class
STACK [G]

feature -- Access

count: INTEGER is
-- Number of elements inserted.

deferred
end

item: G is
-- Last element pushed.

require
not_empty: not empty

deferred
end

feature -- Status report

empty: BOOLEAN is
-- Is stack empty?

do
Result := (count = 0)

end

full: BOOLEAN is
-- Is stack full?

deferred
end

INTRODUCTION TO INHERITANCE §14.8502
feature -- Element change

put (x: G) is
-- Push x onto top.

require
not full

deferred
ensure

not_empty: not empty
pushed_is_top: item = x
one_more: count = old count + 1

end

remove is
-- Pop top element.

require
not empty

deferred
ensure

not_full: not full
one_less: count = old count — 1

end

change_top (x: T) is
-- Replace top element by x

require
not_empty: not empty

do
remove; put (x)

ensure
not_empty: not empty
new_top: item = x
same_number_of_items: count = old count

end

wipe_out is
-- Remove all elements.

deferred
ensure

no_more_elements: empty
end

invariant
non_negative_count: count >= 0
empty_count: empty = (count = 0)

end

§14.8 THE ROLE OF DEFERRED CLASSES 503

ones:

, but

he
T
utine

ant.

 is the

ants)

t
y

 level
trinsic
he ADT
some

at an
ut

 takes

s not

s’
ns
L —

Full specification pag
139; also “FROM
ABSTRACT DATA
TYPES TO CLASSES
6.5, page 142.

See exercise E6.8,
page 162: “more
stack operations”.

See exercise E6.9,
page 162: “bounded
stacks”.

“The imperative and
the applicative”, pag
352.

“The expressive
power of assertions
page 400, and subse
quent section.
The class shows how you can implement effective routines in terms of deferred
for example, change_top has been implemented as a remove followed by a put. (This
implementation may be inefficient in some representations, for example with arrays
effective descendants of STACK may redefine the routine.)

If you compare class STACK with the abstract data type specification given in t
chapter on ADTs, you will find the similarities striking. Note in particular how the AD
functions map to features of the class, and the PRECONDITIONS paragraph to ro
preconditions. Axioms are reflected in routine postconditions and in the class invari

The addition of operations change_top, count and wipe_out is not an important
difference since they could be specified as part of the abstract data type. Also minor
absence of an explicit equivalent of the abstract data type function new, since creation
instructions (which may rely on creation procedures introduced by effective descend
will take care of object creation. There remain three significant differences.

The first is the introduction of a function full, accounting for implementations tha
will only accept a limited number of successive insertions, for example arra
implementations. This is typical of constraints that are irrelevant at the specification
but necessary in the design of practical systems. Note, however, that this is not an in
difference between abstract data types and deferred classes, since we may adapt t
specification to cover the notion of bounded stack. Also, no generality is lost since
implementations (linked, for example) may have a version of full that always returns false.

The second difference, mentioned in the discussion of Design by Contract, is th
ADT specification is purely applicative (functional): it only includes functions, witho
side effects. A deferred class is imperative (procedural) in spite of its abstractness; put, for
example, is specified as a procedure that will modify a stack, not as a function that
a stack and returns a new stack.

Finally, as also noted in the earlier discussion, the assertion mechanism i
expressive enough for some ADT axioms. Of the four stack axioms

all but A2 have a direct equivalent in the assertions. (For A3 we assume that descendant
creation procedures will state ensure empty.) An earlier discussion explained the reaso
for this limitation, and hinted at possible ways — formal specification languages, IF
to remove it.

For any x: G, s: STACK [G]

A1 • item (put (s, x)) = x

A2 • remove (put (s, x)) = s

A3 • empty (new)

A4 • not empty (put (s, x))

e

”,

e

”,
-

INTRODUCTION TO INHERITANCE §14.8504

s

lly
 an
ct
ntly,

ole of
 The
as an

el
g the
ted
al file
ctive.

ill

e

See “Factoring Out
Common Behaviors”,
page 85; figure on
page 86.

Variants of
the notion of
table
Deferred classes as partial implementations: the notion of behavior clas

Not all deferred classes are as close as STACK to an abstract data type. In-between a fu
abstract class like STACK, where all the fundamental features are deferred, and
effective class such as FIXED_STACK, describing just one implementation of an abstra
data type, there is room for all degrees of partial ADT implementations or, said differe
groups of possible implementations.

The review of table implementation variants, which helped us understand the r
partial commonality in our study of reusability issues, provides a typical example.
original figure showing the relations between the variants can now be redrawn
inheritance diagram:

The most general class, TABLE, is fully or almost fully deferred, since at that lev
we may specify a few features but not provide any substantial implementation. Amon
variants is SEQUENTIAL_TABLE, representing tables in which elements are inser
sequentially. Examples of sequential tables include array, linked list and sequenti
implementations. The corresponding classes, in the lowest part of the figure, are effe

Classes such as SEQUENTIAL_TABLE are particularly interesting. The class is st
deferred, but its status is intermediate between full deferment, as with TABLE, and full
effecting, as with ARRAY_TABLE. It has enough information to allow implementing som
specific algorithms; for example we can implement sequential search fully:

has (x: G): BOOLEAN is
-- Does x appear in table?

do
from start until after or else equal (item, x) loop

forth
end
Result := not after

end

SEQUENTIAL_
TABLE

ARRAY_
TABLE

LINKED_
TABLE

FILE_
TABLE

TABLE
∗

∗
after*
forth*
item*
start*

has+

after+

forth+

item+

start+

after+
forth+

item+

start+

after+

forth+

item+

start+

§14.8 THE ROLE OF DEFERRED CLASSES 505

 The

t
in
tion.

serve
slightly

types in

f

o
f

 of
om the

lass

ts. The

 plays
able
d in

uages.
ut text
e data
ch as
t has
s.

See the table on pa
88 (which uses found
in lieu of item).

“Specifying the
semantics of deferre
features and
classes”, page 488.

“Factoring Out
Common Behav-
iors”, page 85.
This function is effective, although it relies for its algorithm on deferred features.
features start (bring the cursor to the first position), forth (advance the cursor by one
position), item (value of element at cursor position), after (is the cursor after the las
element?) are deferred in SEQUENTIAL_TABLE; each of the heirs of this class shown
the figure effects them in a different way, corresponding to its choice of implementa
These various effectings were given in the discussion of reusability. ARRAY_TABLE, for
example, can represent the cursor as an integer i, so that the procedure start is implemented
as i := 1 , item as t @ i and so on.

Note how important it is to include the precondition and postcondition of forth, as
well as the invariant of the enclosing class, to make sure that all future effectings ob
the same basic specification. These assertions appeared earlier in this chapter (in a
different context, for a class LIST, but directly applicable here).

This discussion shows the correspondence between classes and abstract data
its full extent:

• A fully deferred class such as TABLE corresponds to an ADT.

• A fully effective class such as ARRAY_TABLE corresponds to an implementation o
an ADT.

• A partially deferred class such as SEQUENTIAL_TABLE corresponds to a family of
related implementations (or, equivalently, a partial implementation) of an ADT.

A class such as SEQUENTIAL_TABLE, which captures a behavior common t
several ADT variants, may be called a behavior class. Behavior classes provide some o
the fundamental design patterns of object-oriented software construction.

Don’t call us, we’ll call you

SEQUENTIAL_TABLE is representative of how object technology, through the notion
behavior class, answers the last one among the major reusability issues still open fr
discussion in chapter 4: Factoring out common behaviors.

Particularly interesting is the possibility for an effective routine of a behavior c
to rely on deferred routines for its implementation, as illustrated by has. This is how you
may use partially deferred classes to capture common behaviors in a set of varian
deferred class only describes what is common; variations are left to descendants.

Several of the design examples of later chapters rely on this technique, which
a central role in the application of object-oriented techniques to building reus
software. It is particularly useful for domain-specific libraries and has been applie
many different contexts. A typical example, described in [M 1994a], is the design of the
Lex and Parse libraries, a general-purpose solution to the problem of analyzing lang
Parse, in particular, defines a general parsing scheme, which will process any inp
whose structure conforms to a certain grammar (for a programming language, som
format etc.). The higher-level behavior classes contain a few deferred features su
post_action describing semantic actions to be executed just after a certain construc
been parsed. To define your own semantic processing, you just effect these feature

ge

d

INTRODUCTION TO INHERITANCE §14.8506

llow
 on a

.

ctive
ments.

. Then

r

rpose

ement
mmon
ration

upport
s and
y what

thod’s
d in
an be

mbine

 with
ctual
fter the

ed to
 goes
ounds
to do
onents
This scheme is broadly applicable. Business applications, in particular, often fo
standard patterns — process all the day’s invoices, perform appropriate validation
payment request, enter new customers … — with individual components that may vary

In such cases we may provide a set of behavior classes with a mix of effe
features to describe the known part and deferred features to describe the variable ele
Typically, as in the preceding example, the effective features call the deferred ones
descendants can provide the effectings that satisfy their needs.

Not all the variable elements need to be deferred. If a default implementation is available,
include it in the ancestor as an effective feature, which descendants may still redefine; this
facilitates the work on the descendants, since they only need to provide new versions fo
features that depart from the default. (Recall that to become effective, that is, directly
usable, a class must effect all its parents’ deferred features.) Apply this technique only if
a sound default exists; if not, as with display for FIGURE, the feature should be deferred.

This technique is part of a general approach that we may dub don’t call us, we’ll call
you: rather than an application system that calls out reusable primitives, a general-pu
scheme lets application developers “plant” their own variants at strategic locations.

The idea is not entirely new. IBM’s ancient and venerable database manag
system, IMS, already relied on something of the sort. In more recent software, a co
structure for graphics systems (such as X for Unix) has an “event loop” which at each ite
calls specific functions provided by each application developer. This is known as a callback
scheme.

What the O-O method offers, thanks to behavior classes, is systematic, safe s
for this technique, through classes, inheritance, type checking, deferred classe
features, as well as assertions that enable the developer of the fixed part to specif
properties the variable replacements must always satisfy.

Programs with holes

With the techniques just discussed we are at the heart of the object-oriented me
contribution to reusability: offering not just frozen components (such as foun
subroutine libraries), but flexible solutions that provide the basic schemes and c
adapted to suit the needs of many diverse applications.

One of the central themes of the discussion of reusability was the need to co
this goal with adaptability — to get out of the reuse or redo dilemma. This is exactly the
effect of the scheme just described, for which we can coin the name “programs
holes”. Unlike a subroutine library, where all is fixed except for the values of the a
arguments that you can pass, programs with holes, using classes patterned a
SEQUENTIAL_TABLE model, have room for user-contributed parts.

These observations help to put in perspective the “Lego block” image often us
discuss reusability. In a Lego set, the components are fixed; the child's creativity
towards arranging them into an interesting structure. This exists in software, but s
more like the traditional idea of subroutines. Often, software development needs
exactly the reverse: keep the structure, but change the components. In fact the comp

§14.8 THE ROLE OF DEFERRED CLASSES 507

useful

e

sses,
red
The
ress the
utlet’s
ctrical

n but
n. The
ed an

od” (a
esign

ftware
g in
offers

tion.
stent

r the
eir

e
tion-
ks to

 while
ague;

ct and
 avoid
dule
. But
utines,
ts.

“Seamless develop
ment”, page 931.
may not be there at all yet; in their place you find placeholders (deferred features),
only when you plug in your own variants.

In analogies with child games, we can go back to a younger age and think of those
playboards where toddlers have to match shapes of blocks with shapes of holes — to realiz
that the square block goes into the square hole and the round block into the round hole.

You can also picture a partially deferred behavior class (or a set of such cla
called a “library” or a “framework”) as having a few electrical outlets — the defer
features — into which the application developer will plug compatible devices.
metaphor nicely suggests the indispensable safeguards: the assertions, which exp
requirements on acceptable pluggable devices, in the same way that an o
specification would prescribe a range of acceptable voltages, currents and other ele
parameters.

Deferred classes for analysis and global design

Deferred classes are also a key tool for using the method not just for implementatio
also at the earliest and highest levels of system building — analysis and global desig
aim is to produce a system specification and architecture; for design, we also ne
abstract description of each module, without implementation details.

The advice commonly given is to use separate notations: some analysis “meth
term that in many cases just covers a graphical notation) and a PDL (Program D
Language, again often graphical). But this approach has many drawbacks:

• By introducing a gap between the successive steps, it poses a grave threat to so
quality. The necessity of translating from one formalism to another may brin
errors and endangers the integrity of the system. Object technology, instead,
the promise of a seamless, continuous software process.

• The multi-tiered approach is particularly detrimental to maintenance and evolu
It is very hard to guarantee that design and implementation will remain consi
throughout the system’s evolution.

• Finally, most existing approaches to analysis and design offer no support fo
formal specification of functional properties of modules independently of th
implementation, in the form of assertions or a similar technique.

The last comment gives rise to the paradox of levels: precise notations such as th
language of this book are sometimes dismissed as “low-level” or “implementa
oriented” because they externally look like programming languages, whereas than
assertions and such abstraction mechanisms as deferred classes they are actuallyhigher-
level than most of the common analysis and design approaches. Many people take a
to realize this, so early have they been taught the myth that high-level must mean v
that to be abstract one has to be imprecise.

The use of deferred classes for analysis and design allows us to be both abstra
precise, and to keep the same language throughout the software process. We
conceptual gaps (“impedance mismatches”); the transition from high-level mo
descriptions to implementations can now proceed smoothly, within one formalism
even unimplemented operations of design modules, now represented by deferred ro
may be characterized quite precisely by preconditions, postconditions and invarian

-

INTRODUCTION TO INHERITANCE §14.9508

s and
d at all

e merits
anism

 do
feature
finition

y be
rs. To
aim of

e

ely on
y (in

ing the

 run-
ntation

 time.
C

The notation which we have by now almost finished developing covers analysi
design as well as implementation. The same concepts and constructs are applie
stages; only the level of abstraction and detail differs.

14.9 DISCUSSION

This chapter has introduced the basic concepts of inheritance. Let us now assess th
of some of the conventions introduced. Further comments on the inheritance mech
(in particular on multiple inheritance) appear in the next chapter.

Explicit redefinition

The role of the redefine subclause is to enhance readability and reliability. Compilers
not really need it: since a class may have at most one feature of a given name, a
declared in a class with the same name as an ancestor’s feature can only be a rede
of that feature — or a mistake.

The possibility of a mistake should not be taken lightly, as a programmer ma
inheriting from a class without being aware of all the features declared in its ancesto
avoid this dangerous case, any redefinition must be explicitly requested. This is the
the redefine subclause, which is also helpful to a reader of the class.

Accessing the precursor of a routine

You will have noted the rule on the Precursor (…) construct: it may only appear in th
redefined version of a routine.

This ensures that the construct serves its purpose: enabling a redefinition to r
the original implementation. The explicit naming of the parent avoids any ambiguit
particular with multiple inheritance). Allowing arbitrary routines to access arbitrary
ancestor features could make a class text very hard to understand, all the time forc
reader to go the text of many other classes.

Dynamic binding and efficiency

One might fear that dynamic binding, for all its power, would lead to unacceptable
time overhead. The danger exists, but careful language design and good impleme
techniques avert it.

The problem is that dynamic binding requires some more work to be done at run
Compare the usual routine call of traditional programming languages (Pascal, Ada, …)

[1]

f (x, a, b, c…)

with the object-oriented form

[2]

x● f (a, b, c…)

§14.9 DISCUSSION 509

n of
 more
ically
tely

,

n.
 of the

py of
 that

the
e

 to the

s of
e, that

 This
king
e the
ssess

ld be

talk
rcial
would

roper
itance
s for
e
ll the
nding

so
bove.
ve 100
 single

“The Single Target
principle”, page
184.
The difference between the two was explained, in the introduction to the notio
class, as a consequence of the module-type identification. But now we know that
than style is at stake: there is also a difference of semantics. In [1], it is known stat
— at compile time, or at worst at link time, if you use a linker to combine separa
compiled modules — what exact feature the name f denotes. With dynamic binding
however, no such information is available statically for f in [2]: the feature to be selected
depends on the type of the object to which x will be attached during a particular executio
What that type will be cannot, in the general case at least, be predicted from the text
software; this is the source of the flexibility of the mechanism, touted earlier.

Let us think for a moment of a naïve implementation. We keep at run time a co
the class hierarchy. Each object contains information about its type — a node in
hierarchy. To interpret x● f, the run-time environment looks at that node to see if
corresponding class has a feature f. If so, great, we have found what we need. If not, w
look at the node’s parent, and repeat the operation. We may have to go all the way
topmost class (or the topmost classes in the case of multiple inheritance).

In a typed language we have the guarantee that somewhere along the way we will find a
suitable feature; in an untyped language such as Smalltalk we may fail to do so, and have
to terminate the execution with a “message not understood” diagnostic.

This scheme is still applied, with various optimizations, in many implementation
non-statically typed languages. It implies a considerable performance penalty. Wors
penalty is not predictable, and it grows with the depth of the inheritance structure, as the
algorithm may have to go back all the way to the root of the inheritance hierarchy.
means introducing a direct conflict between reusability and efficiency, since wor
harder at reusability often leads to introducing more levels of inheritance. Imagin
plight of the poor designer who, whenever tempted to add an inheritance link, must a
whether it is really worth the resulting performance hit. No software developer shou
forced into such choices.

This approach is one of the primary sources of inefficiency in Small
environments. It also explains why Smalltalk does not (in common comme
implementations at least) support multiple inheritance, since the penalty in this case
be enormous, due to the need to traverse an entire graph, not just a linear chain.

Fortunately, the use of static typing avoids such unpleasantness. With the p
type system and compiling algorithms, there is no need ever to traverse the inher
structure at run time. Because in a statically typed O-O language the possible typex
are not arbitrary but confined to descendants of x’s original type, the compiler can prepar
the work of the run-time system by building arrayed data structures that contain a
needed type information. With these data structures, the overhead of dynamic bi
becomes very small: an index computation and an array access. Not only is this penalty
small; even more importantly, it is constant (more precisely, bounded by a constant),
that there is no need to worry about any reusability-efficiency tradeoff as discussed a
Whether the deepest inheritance structure in your system is 2 or 20, whether you ha
classes or 10,000, the maximum overhead is exactly the same. This is true for both
and multiple inheritance.

INTRODUCTION TO INHERITANCE §14.9510

,

d

rhead
ing
ext).

lent

 price
 more
t

 more
The discovery, in 1985, of this property — that even in the presence of multiple
inheritance it was possible to implement a dynamically-bound feature call in constant
time — was the key impetus for the project that, among other things, yielded both the first
and the present editions of this book: to build a modern software development
environment, starting from the ideas brilliantly introduced by Simula 67 and extending
them to multiple inheritance (prolonged experience with Simula having shown that the
limitation to single inheritance was unacceptable, as explained in the next chapter),
reconciling them with modern principles of software engineering, and combining them
with the most directly useful results of formal approaches to software specification,
construction and verification. The design of an efficient, constant-time dynamic binding
mechanism, which may at first sight appear to be somewhat peripheral in this set of goals
was in reality an indispensable enabler.

These observations will be surprising to anyone who has been introduced to object
technology through the lens of O-O analysis and design presentations that treat
implementation and efficiency as mundane issues to be addressed after one has solve
everything else. In the reality of industrial software development — the reality of
engineering tradeoffs — efficiency is one of the key factors that must be considered at
every step. (As noted in an earlier chapter, if you dismiss efficiency, efficiency will
dismiss you.) Object technology is much more than constant-time dynamic binding; but
without constant-time dynamic binding there can be no successful object technology.

Estimating the overhead

With the techniques described so far, it is possible to give rough figures on the ove
of dynamic binding. The following figures are drawn from ISE’s experience, us
dynamic binding (that is to say, disabling the static binding optimization explained n

For a procedure that does nothing — a procedure declared as p1 is do end — the
penalty for dynamic binding over static binding (that is to say, over the equiva
procedure in C) is about 30%.

This is of course an upper bound, since real-life procedures do something. The
for dynamic binding is the same for any routine call regardless of what it does; so the
a routine does, the smaller the relative penalty. If instead of p1 we use a procedure tha
performs some arbitrary but typical operations, as in

p2 (a, b, c: INTEGER) is

local

x, y

do

x := a; y := b + c +1; x := x * y; p2

if x > y then x := x + 1 else x := x — 1 end

end

then the overhead goes down to about 15%. For a routine that does anything
significant (for example by executing a loop), it can become very small.

§14.9 DISCUSSION 511

d just
lways

ose

d for
uld

ook,

w
since

ller,

al

rhead

that

from
r can
ionary
t the

 most
Static binding as an optimization

In some cases you need the utmost in efficiency, and even the small overhea
discussed may be undesirable. Then you will notice that the overhead is not a
justified. A call x●f (a, b, c…) need not be dynamically bound when either:

S1 • f is not redeclared anywhere in the system (it has only one declaration).

S2 •x is not polymorphic, that is to say is not the target of any attachment wh
source has a different type.

In any such case — detectable by a good compiler — the code generate
x● f (a, b, c…) can be identical to what a compiler for C, Pascal, Ada or Fortran wo
generate for f (x, a, b, c…). No overhead of any kind is necessary.

ISE’s compiler, part of the environment described in the last chapter of this b
currently applies optimization S1; the addition of S2 is planned. (S2 analysis is in fact a
consequence of the type analysis mechanisms described in the chapter on typing.)

Although S1 is interesting in itself, its direct benefit is limited by the relatively lo
cost of dynamic binding given in the preceding statistics. The real payoff is indirect,
S1 enables a third optimization:

S3 •Apply automatic routine inlining when appropriate

Routine inlining means expanding the body of a routine within the text of its ca
eliminating the need for any actual call. For example, with a routine

set_a (x: SOME_TYPE) is
-- Make x the new value of attribute a.

do
a := x

end

the compiler may generate, for the call s● set_a (some_value), the same code that a Pasc
compiler would generate for the assignment s●a := some_value (not permitted by our
notation, of course, since it violates information hiding). In this case there is no ove
at all, since the generated code does not use a routine call.

Inline expansion has traditionally been viewed as an optimization
programmers should specify. Ada includes the provision for an inline pragma (directive
to the compiler); C and C++ offer similar mechanisms. But this approach suffers
inherent limitations. Although for a small, stationary program a competent develope
have a good idea of what should be inlined, this ceases to be true for large, evolut
developments. In that case, a compiler with a decent inlining algorithm will bea
programmers’ guesses 100% of the time.

For any call to which automatic static binding (S1) is applicable, an O-O compiler
can (as in the case of ISE’s) determine whether automatic routine inlining (S3) is
worthwhile, based on an analysis of the space-time tradeoffs. This is one of the

INTRODUCTION TO INHERITANCE §14.9512

cy of
d it.

 the
bility.
 be
e
h the
 only
eous
static
ming

d

how
ing on
e the
only
calls,

ed the

at O-
e.

itance

ct

n,

d of
dramatic optimizations — one of the reasons why it is possible to match the efficien
hand-crafted C or Fortran code and sometimes, especially on large systems, excee

To the efficiency advantage, which grows with the size and complexity of
software, the automatic approach to inlining adds the advantage of safety and flexi
As you will have noted, inlining is semantically correct only for a routine that can
statically bound, as in cases S1 and S2. It is not only common but also consistent with th
method, in particular the Open-Closed principle, to see a developer, midway throug
development of a large system, add a redefinition of a feature which until then had
one implementation. If that routine has been inlined manually, the result is erron
semantics (since dynamic binding is now required, and inlining of course means
binding). Developers should concentrate on building correct software, not perfor
optimizations that are tedious, error-prone when done manually, and automatable.

There are some other correctness requirements for inlining; in particular, it is only
applicable to non-recursive calls. When correct, inlining should only be applied when the
space-time tradeoff makes sense: the inlined routine should be small, and should be calle
from only one place or a small number of places.

A final note on efficiency. Published statistics for object-oriented languages s
that somewhere between 30% and 60% of calls truly need dynamic binding, depend
how extensively the developers use the method’s specific facilities. (In ISE’s softwar
proportion is indeed around 60%.) With the optimizations just described, you will
pay the price of dynamic binding for calls that need it. For the remaining dynamic
the overhead is not only small and constant-bounded, it is logically necessary; in most
cases, achieving the equivalent effect without O-O mechanisms would have requir
use of conditional instructions (if … then … or case … of …), which can be more costly
than the simple array-indirection mechanism outlined above. So it is not surprising th
O software, processed by a good compiler, can compete with hand-produced C cod

A button by any other name: when static binding is wrong

By now the reader will have understood a key consequence of the principles of inher
presented in this chapter:

In the call x●r, if x is declared of type A but ends up at run time attached to an obje
of type B, and you have redefined r in B, calling the original version (say rA) is not a

choice; it is a bug!

No doubt you had a reason for redefining r. The reason may have been optimizatio
as with perimeter for RECTANGLE; but it may have been that the original version rA was

simply incorrect for B. Consider the example, sketched earlier, of a class BUTTON that
inherits from a class WINDOW in a window system, because buttons are a special kin

Dynamic Binding principle

Static binding is semantically incorrect unless its effect is identical to that of
dynamic binding.

§14.9 DISCUSSION 513

e
er).

an
g

p that
rent
 but

ame.)

ally,
el of

ect

e text
tton;
s not

ter on

 the

From the definition
of class correctnes
on page 371.
window; the class redefines procedure display because displaying a button is a littl
different from displaying an ordinary window (for example you must display the bord
Then if w is of type WINDOW but dynamically attached, through polymorphism, to
object of type BUTTON, the call w● display must execute the button version! Usin
displayWINDOW would result in garbled display on the screen.

As another example, assume a video game with a data structure LIST [AIRCRAFT]
— a polymorphic data structure, as we have learned to use them — and a loo
executes item●land on each element of the list. Each aircraft type may have a diffe
version of land, the landing procedure. Executing the default version is not an option
a mistake. (We may of course imagine real flight control software rather than just a g

We should not let the flexibility of the inheritance-based type system — specific
the type conformance rule — fool us here: the ability to declare an entity at a lev
abstraction (WINDOW, AIRCRAFT) higher than the actual type of the attached obj
during one particular execution (BUTTON or BOEING_747_400) is only a facility for the
engineering of the software, at system writing time. During program execution the only
thing that matters is the objects to which we apply features; entities — names in th
of the software — have long been forgotten. A button by any other name is still a bu
whether the software called it a button, or for generality treated it as a window, doe
change its nature and properties.

Mathematical analysis supports and explains this reasoning. From the chap
assertions you may remember the correctness condition for a routine:

{ prer (xr) and INV} Bodyr { postr (xr) and INV}

which we can simplify for the benefit of this discussion (keeping the part relative to
class invariant only, ignoring the arguments, and using as subscript the name A of the
enclosing class) as

[A-CORRECT]

{ INVA} rA { INVA}
meaning in plain English: any execution of routine r from class A will preserve the
invariant of class A. Now assume that we redefine r in a proper descendant B. The
corresponding property will hold if the new class is correct:

[B-CORRECT]

{ INVB} rB { INVB}

s

INTRODUCTION TO INHERITANCE §14.9514

e: so

of
lass

ion:

 to

class,
is one
uch a

xplain

A parent
version may fail
to satisfy the
new invariant

On the ACCOUNT
example see “CLASS
INVARIANTS”,
11.8, page 364.

Cases S1 and S2
appeared were
defined on page 510.
As you will recall, invariants accumulate as we go down an inheritance structur
INVB implies INVA, but usually not the other way around.

Remember for example how RECTANGLE added its own clauses to the invariant
POLYGON. Another example, studied in the presentation of invariants, is a c
ACCOUNT1 with features withdrawals_list and deposits_list; then, perhaps for efficiency
reasons, a proper descendant ACCOUNT2 adds an attribute balance to store an account’s
current balance at all time, with the new invariant clause given in the earlier discuss

consistent_balance: deposits_list● total – withdrawals_list● total = current_balance

As a result, we may have to redefine some of the routines of ACCOUNT1; for
example a procedure deposit that merely used to add a list element to deposits_list must
now update balance as well. Otherwise the class is simply wrong. This is similar
WINDOW’s version of the display procedure not being correct for an instance of BUTTON.

Now assume static binding applied to an object of type B, accessible through an
entity of type A. Because the corresponding routine version, rA, will usually not preserve

the needed invariant — as with depositACCOUNT1 for an object of type ACCOUNT2, or

displayWINDOW for an object of type BUTTON — the result will be to produce an

inconsistent object, such as an ACCOUNT2 object with an incorrect balance field, or a
BUTTON object improperly displayed on the screen.

Such a result — an object that does not satisfy the invariant of its generating
that is to say, the fundamental and universal constraints on all objects of its kind —
of the worst events that could occur during the execution of a software system. If s
situation can arise, we can no longer hope to predict what execution will do.

To summarize: static binding is either an optimization or a bug. If it has the same
semantics as dynamic binding (as in cases S1 and S2), it is an optimization, which
compilers may perform. If it has a different semantics, it is a bug.

The C++ approach to binding

Given its widespread use and its influence on other languages, it is necessary to e
how the C++ language addresses some of the issues discussed here.

A

B

rA

rB
++

rA preserves the invariant of A…

… and rB preserves the invariant of B…

… but rA has no particular reason to

preserve the invariant of B!

INVA

INVB = INVA and other_clauses

§14.9 DISCUSSION 515

ally

.

rence

f
puters
matic

mmer
utine
 that
 scale

 they
ice of
rs are

ll
book,
nes.

never
 say
 you

how
ndant,
 C++
ack to
y

g

tual”
tatic
m that

hen
 they

“PROGRAMMER-
CONTROLLED
DEALLOCA-
TION”, 9.4, page
294
The C++ convention is surprising. By default, binding is static. To be dynamic
bound, a routine (function or method in C++ terms) must be specially declared as virtual .

Two decisions are involved here:

C1 • Making the programmer responsible for selecting static or dynamic binding

C2 • Using static binding as the default.

Both are damaging to object-oriented software development, but there is a diffe
of degree: C1 is arguable; C2 is hard to defend.

Compared to the approach of this book, C1 results from a different appreciation o
which tasks should be handled by humans (software developers), and which by com
(more precisely, compilers). This is the same debate that we encountered with auto
memory management. The C++ approach, in the C tradition, is to give the progra
full control over the details of what happens at run time, be it object deallocation or ro
call. The spirit of object technology instead suggests relying on compilers for tasks
are tedious and error-prone, if algorithms are available to handle them. On a large
and in the long run, compilers always do a better job.

Developers are responsible for the efficiency of their software, of course, but
should direct their efforts to the area where they can make a real difference: the cho
proper software structures and algorithms. Language designers and compilers write
responsible for the rest.

Hence the disagreement on decision C1: C++ considers that static binding, as we
as inlining, should be specified by developers; the O-O approach developed in this
that it is the responsibility of the compiler, which will optimize calls behind the sce
Static binding is an optimization, not a semantic choice.

C1 has another negative consequence on the application of the method. Whe
you declare a routine you must specify a binding policy: virtual or not, that is to
dynamic or static. This policy runs against the Open-Closed principle since it forces
to guess from the start what will be redefinable and what will not. This is not
inheritance works in practice: you may have to redefine a feature in a distant desce
without having ever foreseen the need for such a redefinition in the original. With the
approach, if the original designer did not have enough foresight, you need to go b
the ancestor class to change the declaration to virtual . (This assumes that you can modif
its source text. If it is not available, or you are not entitled to change it, tough luck.)

Because of all this, decision C1 — requiring programmers to specify a bindin
policy — impedes the effectiveness of the object-oriented method.

C2 — the use of static binding as the default in the absence of a special “vir
marker — is worse. Here it is hard to find justifications for the language design. S
binding, as we have seen, is always the wrong choice when its semantics differs fro
of dynamic binding. There can be not reason for choosing it as the default.

Making programmers rather than compilers responsible for optimization w
things are safe (that is to say, asking them to request static binding explicitly when

INTRODUCTION TO INHERITANCE §14.9516

not,

inding
ally
ic

es
tion,

tick
ected
antee
 new
an

ty”,

n C++
o not
 is to
it of
it on

way.)

calls
e. In

cy
ance!

uch”

[Bright 1995].
think it is appropriate) is one thing; forcing them to write something special to get the
correct semantics is quite another. When the concern for efficiency, misplaced or
starts to prevail over the basic requirement of correctness, something is wrong.

Even in a language that makes the programmer responsible for choosing a b
policy (decision C1), the default should be the reverse: instead of requiring dynamic
bound functions to be declared as virtual , the language should by default use dynam
binding and allow programmers to mark as static, or some such keyword, those featur
for which they want to request the optimization — trusting them, in the C-C++ tradi
to ascertain that it is valid.

The difference is particularly important for beginners, who naturally tend to s
with the default. Even with less intimidating a language than C++, no one can be exp
to master all the details of inheritance right away; the responsible policy is to guar
the correct semantics for novices (and more generally for developers starting a
project, who will “want to make it right before making it faster”), then provide
optimization facility for people who need it and understand the issues.

Given the software industry’s widespread concern for “upward compatibili
getting the C++ committee to change the language’s binding policy, especially C2, will be
hard, but it is worth trying in light of the dangers of the current conventions.

The C++ approach has regrettably influenced other languages; for example the dynamic
binding policy of Borland’s Delphi language, continuing earlier Pascal extensions, is
essentially that of C++. Note, however, that Java, a recent derivative of C++, has adopted
dynamic binding as its policy.

These observations call for some practical advice. What can the developer do i
or a language that follows its policy? The best suggestion — for developers who d
have the option of switching to better tools, or waiting for the language to change —
declare all functions as virtual, hence allowing for arbitrary redeclarations in the spir
object-oriented software development. (Some C++ compilers unfortunately put a lim
the number of virtuals in a system, but one may hope that such limitations will go a

The paradox of this advice is that it takes you back to a situation in which all
are implemented through dynamic binding and require a bit of extra execution tim
other words, language conventions (C1 and C2) that are promoted as enhancing efficien
end up, at least if one follows correctness-enhancing rules, working against perform

Not surprisingly, C++ experts have come to advise against becoming “too m
object-oriented. Walter Bright, author of a best-selling C++ compiler, writes

It’s generally accepted that the more C++ [mechanisms] you use in a class, the
slower your code will be. Fortunately, you can do a few things to tip the scales
in your favor. First, don’t use virtual functions [i.e. dynamic binding], virtual
base classes [deferred classes], destructors, and the like, unless you need them.
[…] Another source of bloat is multiple inheritance […] For a complex class
hierarchy with only one or two virtual functions, consider removing the virtual
aspect, and maybe do the equivalent with a test and branch.

§14.10 KEY CONCEPTS INTRODUCED IN THIS CHAPTER 517

also

een,
.)

er rely
namic
nlined
ithmic

 and

aken
n of

ride
 (the
erent
 of a
ached

 This

riginal

ther

n the

cost.
nd

s the

 They

“Modular decom-
posability”, page 40.
In other words: avoid using object-oriented techniques. (The same text
advocates “grouping all the initialization code” to favor locality of reference — an
invitation to violate elementary principles of modular design which, as we have s
suggest that each class be responsible for taking care of its own initialization needs

This chapter has suggested a different approach: let the O-O software develop
on the guarantee that the semantics of calls will always be the correct one — dy
binding. Then use a compiler sophisticated enough do generate statically bound or i
code for those calls that have been determined, on the basis of rigorous algor
analysis, not to require a d ynamically bound implementation.

14.10 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

• With inheritance, you can define new classes by extension, specialization
combination of previously defined ones.

• A class inheriting from another is said to be its heir; the original is the parent. T
to an arbitrary number of levels (including zero), these relations yield the notio
descendant and ancestor.

• Inheritance is a key technique for both reusability and extendibility.

• Fruitful use of inheritance requires redefinition (the possibility for a class to over
the implementation of some of its proper ancestors’ features), polymorphism
ability for a reference to become associated at run time with instances of diff
classes), dynamic binding (the dynamic selection of the appropriate variant
redefined feature), type consistency (the requirement that an entity be only att
to instances of descendant types).

• From the module perspective, an heir extends the services of its parents.
particularly serves reusability.

• From the type perspective, the relation between an heir and a parent of the o
class is the is relation. This serves both reusability and extendibility.

• You may redefine an argumentless function into an attribute, but not the o
way around.

• Inheritance techniques, especially dynamic binding, permit highly decentralized
software architectures where every variant of an operation is declared withi
module that describes the corresponding data structure variant.

• With a typed language it is possible to achieve dynamic binding at low run-time
Associated optimizations, in particular compiler-applied static binding a
automatic in-line expansion, help O-O software execution match or surpas
efficiency of traditional approaches.

• Deferred classes contain one or more deferred (non-implemented) features.
describe partial implementations of abstract data types.

INTRODUCTION TO INHERITANCE §14.11518

 for

at the

to be

tatic
ing as
etect

la 67,
la

ce

 and

t of
r.

s

ote
he
ices.
• The ability of effective routines to call deferred ones provides a technique
reconciling reusability with extendibility, through “behavior classes”.

• Deferred classes are a principal tool in the use of object-oriented methods
analysis and design stages.

• Assertions are applicable to deferred features, allowing deferred classes
precisely specified.

• When the semantics is different, dynamic binding is always the right choice; s
binding is incorrect. When they have the same abstract effect, using static bind
the implementation is an optimization technique, best left to the compiler to d
and apply safely, together with inlining when applicable.

14.11 BIBLIOGRAPHICAL NOTES

The concepts of (single) inheritance and dynamic binding were introduced by Simu
on which references may be found in chapter 35. Deferred routines are also a Simu
invention, under a different name (virtual procedures) and different conventions.

The is-a relation is studied, more with a view towards artificial intelligen
applications, in [Brachman 1983].

A formal study of inheritance and its semantics is given in [Cardelli 1984].

The double-plus graphical convention to mark redefinition comes from Nerson’s
Waldén’s Business Object Notation for analysis and design; references in chapter 27.

Some elements of the discussion of the role of deferred features come from [M 1996].

The Precursor construct (similar to the Smalltalk super construct, but with the
important difference that its use is limited to routine redefinitions) is the resul
unpublished work with Roger Browne, James McKim, Kim Waldén and Steve Tyno

EXERCISES

E14.1 Polygons and rectangles

Complete the versions of POLYGON and RECTANGLE sketched at the beginning of thi
chapter. Include the appropriate creation procedures.

E14.2 How few vertices for a polygon?

The invariant of class POLYGON requires every polygon to have at least three vertices; n
that function perimeter would not work for an empty polygon. Update the definition of t
class so that it will cover the degenerate case of polygons with fewer than three vert

§E14.3 EXERCISES 519

eal

ers the

ut not
ritance

 of
Open-

e saw
he two

 a first
ing to
ishes,
nds-on
t been
hich
ting to

sign a
s hash

“Rules on creation
procedures”, page
238.
E14.3 Geometrical objects with two coordinates

Write a class TWO_COORD describing objects that are characterized by two r
coordinates, having among its heirs classes POINT, COMPLEX and VECTOR. Be careful
to attach each feature to its proper level in the hierarchy.

E14.4 Inheritance without classes

This chapter has presented two views of inheritance: as a module, an heir class off
services of its parent plus some; as a type, it embodies the is-a relation (every instance of
the heir is also an instance of each of the parents). The “packages” of modular b
object-oriented languages such as Ada or Modula-2 are modules but not types; inhe
in its first interpretation might still be applicable to them. Discuss how such a form
inheritance could be introduced in a modular language. Be sure to consider the
Closed principle in your discussion.

E14.5 Non-creatable classes

It is not permitted to create an instance of a deferred class. In an earlier chapter w
another way to make a class non-creatable: include an empty creation clause. Are t
mechanisms equivalent? Can you see cases for using one rather than the other? (Hint : a
deferred class must have at least one deferred feature.)

E14.6 Deferred classes and rapid prototyping

Deferred classes may not be instantiated. It was argued, on the other hand, that
version of a class design might leave all the features deferred. It may be tempt
attempt the “execution” of such a design: in software development, one sometimes w
early in the game, to execute incomplete implementations, so as to get an early ha
experience of some aspects of the system even though other aspects have no
finalized. Discuss the pros and cons of having a “prototype” option in the compiler, w
would allow instantiating a deferred class and executing a deferred feature (amoun
a null operation). Discuss the details of such an option.

E14.7 Table searching library (term project)

Based on the discussion of tables in this chapter and the chapter on reusability, de
library of table classes covering various categories of table representations, such a
tables, sequential tables, tree tables etc.

E14.8 Kinds of deferred feature

Can an attribute be deferred?

INTRODUCTION TO INHERITANCE §E14.9520

ations,
r it is

“Legitimate side
effects: an exam-
ple”, page 759.
E14.9 Complex numbers

(This exercise assumes that you have read up to at least chapter 23.) An example in the
discussion of module interfaces uses complex numbers with two possible represent
changes in representations being carried out behind the scenes. Study whethe
possible to obtain equivalent results through inheritance, by writing a class COMPLEX
and its heirs CARTESIAN_COMPLEX and POLAR_COMPLEX.

	14 14 Introduction to inheritance
	14.1 POLYGONS AND RECTANGLES
	Polygons
	Rectangles
	Basic conventions and terminology
	Inheritance terminology
	An inheritance link

	Invariant inheritance
	Invariant inheritance rule

	Inheritance and creation
	Creation Inheritance rule

	An example hierarchy

	14.2 POLYMORPHISM
	Polymorphic attachment
	Figure type hierarchy

	What exactly happens during a polymorphic attachme...
	Polymorphic reference reattachment

	Polymorphic data structures
	A polymorphic array
	Dimensions of generalization

	14.3 TYPING FOR INHERITANCE
	Type consistency
	Feature Call rule

	Limits to polymorphism
	Definition: conformance
	Type Conformance rule

	Instances
	Definition: direct instance, instance
	Static-dynamic type consistency

	Static type, dynamic type
	Are the restrictions justified?
	Can ignorance be bliss?
	After a polymorphic
	attachment

	When you want to force a type
	Polymorphic creation

	14.4 DYNAMIC BINDING
	Using the right variant
	Redefinition and assertions
	On the implementation of dynamic binding

	14.5 DEFERRED FEATURES AND CLASSES
	Moving arbitrary figures
	The FIGURE hierarchy again

	Deferring a feature
	Effecting a feature
	Definition: redeclaration

	Deferred classes
	Definition: deferred, effective class
	Deferred class declaration rule

	Graphical conventions
	What to do with deferred classes
	Deferred Class No-Instantiation rule

	Specifying the semantics of deferred features and ...
	List with cursor
	Cursor positions

	14.6 REDECLARATION TECHNIQUES
	Redeclaring a function into an attribute
	Not the other way around
	Using the original version in a redefinition

	14.7 THE MEANING OF INHERITANCE
	The dual perspective
	Inheritance mechanisms and their role

	The module view
	Draft structure for a table library

	The type view
	Inheritance and decentralization
	Representation independence
	The extension-specialization paradox

	14.8 THE ROLE OF DEFERRED CLASSES
	Back to abstract data types
	Deferred classes as partial implementations: the n...
	Variants of the notion of table

	Don’t call us, we’ll call you
	Programs with holes
	Deferred classes for analysis and global design

	14.9 DISCUSSION
	Explicit redefinition
	Accessing the precursor of a routine
	Dynamic binding and efficiency
	Estimating the overhead
	Static binding as an optimization
	A button by any other name: when static binding is...
	Dynamic Binding principle
	A parent version may fail to satisfy the new invar...

	The C++ approach to binding

	14.10 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
	14.11 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E14.1 Polygons and rectangles
	E14.2 How few vertices for a polygon?
	E14.3 Geometrical objects with two coordinates
	E14.4 Inheritance without classes
	E14.5 Non-creatable classes
	E14.6 Deferred classes and rapid prototyping
	E14.7 Table searching library (term project)
	E14.8 Kinds of deferred feature
	E14.9 Complex numbers

