
15
Multiple inheritance
fined
red the
ce (to

tions.

the
mber

ingle

s in

udy a
ome

ty and
y the
, based

plex,
s no
at we
.

 the
Full application of inheritance requires an important extension to the framework de
in the preceding chapter. In studying the basics of the mechanism we have encounte
notion that a class may need more than one parent. Known as multiple inheritan
distinguish it from the more restrictive case of single inheritance), this possibility is
necessary to build robust object-oriented architectures by combining different abstrac

Multiple inheritance, in its basic form, is a straightforward application of
principles of inheritance already seen; you just allow a class to include an arbitrary nu
of parents. More detailed probing brings up two interesting issues:

• The need for feature renaming, which in fact has useful applications in s
inheritance too.

• The case of repeated inheritance, in which the ancestor relation links two classe
more than one way.

15.1 EXAMPLES OF MULTIPLE INHERITANCE

The first task is to form a good idea of when multiple inheritance is useful. Let us st
few typical examples from many different backgrounds; a few will be shown in s
detail, others only sketched.

This review is all the more necessary that in spite of the elegance, necessi
fundamental simplicity of multiple inheritance, obvious to anyone who cares to stud
concepts, this facility has sometimes been presented (often, as one later finds out
solely on experience with languages or environments that cannot deal with it) as com
mysterious, error-prone — as the object-oriented method’s own “goto”. Although it ha
basis in either fact or theory, this view has been promoted widely enough to require th
take the time to review a host of cases in which multiple inheritance is indispensable

As it will turn out, the problem is not to think of valuable examples, but to stop
flow of examples that will start pouring in once we open the tap.

MULTIPLE INHERITANCE §15.1520

 some
of the
rong
s not

ts are

s an
is that
mon

n

g this
e and
at

 case of
ultiple

nheritance…

 that is a case
f repeated

nheritance

For details see
“REPEATED
INHERITANCE”,
15.4, page 543.
What not to use as an introductory example

To dispel a frequent confusion, we must first consider an example whose use (with
variants) by many introductory papers, books and lectures may account for some
common mistrust of multiple inheritance. Not that there is anything fundamentally w
with the example; it is simply inadequate for an introductory presentation, since it i
typical of simple, straightforward uses of multiple inheritance.

The standard form of this example involves classes TEACHER and STUDENT, part
of the model for some university system; you will be invited to note that some studen
also teachers, prompting a new class TEACHING_ASSISTANT that inherits from both
TEACHER and STUDENT.

Is this example an improper use of inheritance? Not necessarily. But a
introduction to multiple inheritance it is about as bad as they can get. The problem
TEACHER and STUDENT are not separate abstractions but variations on a com
theme: person, or more accurately UNIVERSITY_PERSON. So if we draw the full picture
we see a case of not just multiple but repeated inheritance — the scheme, studied later i
this chapter, in which a class is a proper descendant of another through two paths or more:

Repeated inheritance is a special case; as will be noted when we get to it, usin
facility requires good experience with the more elementary forms of inheritance, singl
multiple. So it is not a matter for beginners, if only because it seems to create conflicts (wh
about a feature name or subscribe_to_health_plan which TEACHING_ASSISTANT inherits

A
m
i

TEACHING_
ASSISTANT

STUDENTTEACHER

…
o
i

TEACHING_
ASSISTANT

UNIVERSITY_
PERSON

STUDENTTEACHER

§15.1 EXAMPLES OF MULTIPLE INHERITANCE 521

oming
e

e.

 with

ctory

ction

e.

ying

pany
s off,
he one
 more

 resale

Company
planes
from both of its parents, even though they are really in each case a single feature c
from the common ancestor UNIVERSITY_PERSON?). With a well-reasoned approach w
will be able to remove these conflicts simply. But it is a serious mistake to begin withsuch
exceptional and seemingly tricky cases as if they were typical of multiple inheritanc

The truly common cases do not raise any such problem. Instead of dealing
variants of a single abstraction, they combine distinct abstractions. This is the form that
you will need most often in building inheritance structures, and the one that introdu
discussions should describe. The following examples belong to that pattern.

Can an airplane be an asset?

Our first proper example belongs to system modeling more than to software constru
in the strict sense. But it is typical of situations that require multiple inheritance.

Assume a class AIRPLANE describing the abstraction suggested by its nam
Queries may include passenger_count, altitude, position, speed; commands may include
take_off, land, set_speed.

In a different domain, we may have a class ASSET describing the accounting notion
of an asset — something which a company owns, although it may still be pa
installments on it, and which it can depreciate or resell. Features may include purchase_price,
resale_value, depreciate, resell, pay_installment.

You must have guessed where we are heading: companies may own com
planes. For the pilot, a company plane is just a plane with its usual features: it take
lands, has a certain speed, flies somewhere. From the viewpoint of the accountant (t
who grumbles that the money would have been better kept in the bank or spent on
productive ventures) it is an asset, with a purchase value (too high), an estimated
value (too low), and the need to pay interest on the loan each month.

To model the notion of company plane we can resort to multiple inheritance:

class COMPANY_PLANE inherit
PLANE

ASSET

feature
… Any feature that is specific to company planes

 (rather than applying to all planes or all assets) …
end

COMPANY_
PLANE

ASSETPLANE

MULTIPLE INHERITANCE §15.1522

r.
ou list

:

neral
ch as
ulators
ators,

able,

less

, since
tions,

ple,

nted

ctions
ch as

res
em
d.

 class
To specify multiple parents in the inherit clause, just list them one after the othe
(As usual, you can use semicolons as optional separators.) The order in which y
parents is not significant.

Cases similar to COMPANY_PLANE abound in system modeling. Here are a few

• Wristwatches (a special case of the notion of watch, itself specializing the ge
notion of clock — there are a few inheritance links here) provide commands su
setting the time, and queries such as the current time and date. Electronic calc
provide arithmetic features. There also exist some (quite handy) watch-calcul
elegantly modeled through multiple inheritance.

• Boats; trucks; AMPHIBIOUS_VEHICLE. A variant is: boats; planes; HYDROPLANE.
(There is a hint of repeated inheritance here, as with TEACHING_ASSISTANT, since
both parents may themselves be descendants of some VEHICLE class.)

• You eat in a restaurant; you travel in a train car. To make your trip more enjoy
the railway company may let you eat in an instance of EATING_CAR. A variant of
this example is SLEEPING_CAR.

• On an instance of SOFA_BED you may not only read but also sleep.

• A MOBILE_HOME is a VEHICLE and a HOUSE.

And so on. Multiple inheritance is the natural tool to help model the end
combinations that astute people never tire of concocting.

For a software engineer the preceding examples may at first appear academic
we get paid not to model the world but to build systems. In many practical applica
however, you will encounter similar combinations of abstractions. A detailed exam
from ISE’s own graphical development environment appears later in this chapter.

Numeric and comparable values

The next example is much more directly useful to the daily practice of object-orie
software construction. It is essential to the buildup of the Kernel library.

Some of the Kernel library’s classes — that is to say, classes describing abstra
of potential use to all applications — require arithmetic features: operations su
infix "+ " , infix "–" , infix "∗" , prefix "–" as well as special values zero (identity element
for "+ ") and one (identity element for "∗"). Kernel library classes that use these featu
include INTEGER, REAL and DOUBLE; but many non-predefined classes may need th
too, for example a class MATRIX describing matrices of some application-specific kin
It is appropriate to capture the corresponding abstraction through a deferred
NUMERIC, itself a part of the Kernel library:

deferred class NUMERIC feature

… infix "+ ", infix "–", infix "∗", prefix "–", zero, one …
end

§15.1 EXAMPLES OF MULTIPLE INHERITANCE 523

ent
ive it
ons).

itrary

cal
class
ers,

class

bers

etic
f
ving

sses,

 (In
rdered
e

fined

o

Technically the
exact model is that
of a “preorder”.
Mathematically, NUMERIC has a precise specification: its instances repres
members of a ring (a set equipped with two operations, both of which separately g
the structure of a group, one commutative, with distributivity between the two operati

Some classes also need an order relation, with features for comparing arb
elements: infix "<", infix "<=", infix ">" , infix ">=". Again this is useful not only to some
Kernel library classes, such as STRING whose instances are comparable through lexi
ordering, but also to many application classes; for example you may write a
TENNIS_CHAMPION which takes into account the ranking of professional tennis play
with a feature "<" such that tc1 < tc2 tells us whether tc2 is ranked ahead of tc1. So it is
appropriate to capture the corresponding abstraction through a deferred
COMPARABLE, itself a part of the Kernel library:

deferred class COMPARABLE feature
… infix "<" , infix "<=", infix ">", infix ">=" …

end

COMPARABLE has a precise mathematical model: its instances represent mem
of a set ordered by a total order relation.

Not all descendants of COMPARABLE should be descendants of NUMERIC: in class
STRING, we need the order features for lexicographical ordering but not the arithm
features. Conversely, not all descendants of NUMERIC should be descendants o
COMPARABLE: the set of real matrices has addition, multiplication, zero and one, gi
it a ring structure, but no total order relation. So it is appropriate that COMPARABLE and
NUMERIC, representing completely different abstractions, should remain distinct cla
neither of them a descendant of the other.

Objects of certain types, however, are both comparable and numeric.
mathematical terms. the structures modeled by their generating classes are totally o
rings.) Example classes include REAL and INTEGER: integers and real numbers can b
compared for "<=" as well as added and multiplied. These classes should be de
through multiple inheritance, as in (see the figure on the next page):

expanded class REAL inherit
NUMERIC
COMPARABLE

feature
…

end

Types of objects that need to be both comparable and numeric are sufficiently common
to suggest a class COMPARABLE_NUMERIC, still deferred, covering the merged
abstraction by multiply inheriting from COMPARABLE and NUMERIC. So far this
solution has not been adopted for the library because it does not bring any obvious
advantage and seems to open the way to endless combinations: why not COMPARABLE_
HASHABLE, HASHABLE_ADDABLE_SUBTRACTABLE? Basing such deferred classes
on well-accepted mathematical abstractions, such as ring or totally ordered set, seems t
yield the right level of granularity. Related issues in the methodology of inheritance are
discussed in detail in chapter 16.

MULTIPLE INHERITANCE §15.1524

t of
dow.

eight,

Multiple
structure
inheritance

Windows and
subwindows
Windows are trees and rectangles

Assume a window system that allows nesting windows to an arbitrary depth:

In the corresponding class WINDOW, we will find features of two general kinds:

• Some deal with a window as a member of a hierarchical structure: lis
subwindows, parent window, number of subwindows, add or remove a subwin

• Others cover its properties as a graphical object occupying a graphical area: h
width, x position, y position, display, hide, translate.

INTEGER

NUMERICCOMPARABLE

REAL

DOUBLE

§15.1 EXAMPLES OF MULTIPLE INHERITANCE 525

ixed
should
s:

icular
), but

ric
e

are
lass

e

ges.)

in the
ogy.

ation.
bject
oot”,
s of
ough
itions

See “WOULD YOU
RATHER BUY OR
INHERIT?”, 24.2,
page 812.
It is possible to write the class as a single piece, with all these features m
together. But this would be bad design. To keep the structure manageable we
separate the two aspects, treating class WINDOW as the combination of two abstraction

• Hierarchical structures, which should be covered by a class TREE.

• Rectangular screen objects, covered by a class RECTANGLE.

In practice we may need more specific class names (describing some part
category of trees, and a graphical rather than purely geometrical notion of rectangle
the ones above will be convenient for this discussion. WINDOW will appear as:

class WINDOW inherit
TREE [WINDOW]
RECTANGLE

feature
… Specific window features …

end

Note that class TREE will be generic, so we need to specify an actual gene
parameter, here WINDOW itself. The recursive nature of this definition reflects th
recursion in the situation modeled: a window is a tree of windows.

This example will, later on in the discussion, help us understand the need for a feature
renaming mechanism associated with inheritance.

A further refinement might follow from the observation that some windows
purely text windows. Although we might represent this property by introducing a c
TEXT_WINDOW as a client of STRING with an attribute

text: STRING

we may prefer to consider that each text window is also a string. In this case we will us
multiple inheritance from WINDOW and STRING. (If all windows of interest are text
windows, we might directly use triple inheritance from TREE, RECTANGLE and
STRING, although even in that case it is probably better to work in two successive sta

The general question of how to choose between heir and client relations, as
case of TEXT_WINDOW, is discussed in detail in the chapter on inheritance methodol

Trees are lists and list elements

Class TREE itself provides a striking example of multiple inheritance.

A tree is a hierarchical structure made of nodes, each containing some inform
Common definitions tend to be of the form “A tree is either empty or contains an o
called the root, together with (recursively) a list of trees, called the children of the r
complemented by a definition of node, such as “An empty tree has no nodes; the node
a non-empty tree comprise its root and (recursively) the nodes of its children”. Alth
useful, and reflective of the recursiveness inherent in the notion of tree, these defin
fail to capture its essential simplicity.

MULTIPLE INHERITANCE §15.1526

ween
ich it
s.
de;

lier
lass

st, the
ree of

tical

 next

A tree of
integers
To get a different perspective, observe that there is no significant distinction bet
the notion of tree and that of node, as we may identify a node with the subtree of wh
is the root. This suggests aiming for a class TREE [G] that describes both trees and node
The formal generic parameter G represents the type of information attached to every no
the tree below, for example, is an instance of TREE [INTEGER].

Now consider a notion of LIST, with a class that has been sketched in ear
chapters. A general implementation (linked, for example) will need an auxiliary c
CELL to describe the individual elements of a list.

These notions suggest a simple definition of trees: a tree (or tree node) is a li
list of its children; but it is also a potential list element, as it can be made into a subt
another tree.

Although this definition would need some refinement to achieve full mathema
rigor, it directly yields a class definition:

deferred class TREE [G] inherit
LIST [G]
CELL [G]

feature
…

end

From LIST come the features to find out the number of children (count), add a child,
remove a child and so on.

From CELL come the features having to do with a node’s siblings and parents:
sibling, add a sibling, reattach to a different parent node.

Definition: tree

A tree is a list that is also a list element.

89

235 –2

0–130 5 1000

(CELL)

LIST

§15.1 EXAMPLES OF MULTIPLE INHERITANCE 527

ing
 done
ssly

s
ary to

ctural
lass is
ts.

any

ures,
mental

itance.

at we
ld any

ork;
ucted

 so on.

Elementary
figures

A composite
figure
This example is typical of the reusability benefits of multiple inheritance. Writ
specific features for subtree insertion or removal would needlessly replicate the work
for lists. Writing specific features for sibling and parent operations would needle
replicate the work done for list elements. Only a facelift is needed in each case.

In addition you will have to take care, in the feature clause, of the specific feature
of trees and of the little mutual compromises which, as in any marriage, are necess
ensure that life together is harmonious and prolific. In a class TREE derived from these
ideas, which has been used in many different applications (from graphics to stru
editing), these specific features fit on little more than a page; for the most part, the c
simply engendered as the legitimate fruit of the union between lists and list elemen

This process is exactly that used in mathematics to combine theories: a topological vector
space, for example, is a vector space that also is a topological space; here too, some
connecting axioms need to be added to finish up the merger.

Composite figures

The following example is more than an example; it is a design pattern useful in m
different contexts.

Consider an inheritance structure containing classes for various graphical fig
such as the one used in the preceding chapter to introduce some of the funda
concepts of inheritance — FIGURE, OPEN_FIGURE, POLYGON, RECTANGLE,
ELLIPSE and so on. So far, as you may have noted, that structure used single inher

Assume that we have included in this hierarchy all the basic figure patterns th
need. That is not enough yet: many figures are not basic. Of course we could bui
graphical illustration from elementary shapes, but that is not a convenient way to w
instead, we will want to build ourselves a library of figures, some basic, some constr
from the basic ones. For example, from basic segment and circle figures

we may assemble a composite figure, representing a wheel

which someone may in turn use as a predefined pattern to draw, say, a bicycle; and

MULTIPLE INHERITANCE §15.1528

from
wing

 also
ence

n

A composite
figure is a
figure and a list
of figures
We need a general mechanism for adding a new figure type which will be built
previously defined ones but, once defined, will be on a par with them. Computer dra
tools provide a Group command for this purpose.

Let us call the corresponding notion COMPOSITE_FIGURE. A composite figure is
clearly a figure; so COMPOSITE_FIGURE should inherit from FIGURE, achieving the
goal of treating composite figures “on a par” with basic ones. A composite figure is
a list of figures — its constituents; each of them may be basic or itself composite. H
the use of multiple inheritance:

To get an effective class for COMPOSITE_FIGURE we choose an implementatio
of lists; LINKED_LIST is just one possibility. The class declaration will look like this:

OPEN_
FIGURE

SEGMENT POLYLINE

POLYGON ELLIPSE

QUADRANGLE
CIRCLETRIANGLE

display*

rotate*
extent*

…
barycenter*

perimeter*

perimeter+

diagonal

SQUAREperimeter++

perimeter++

perimeter+

CLOSED_
FIGURE

FIGURE

RECTANGLE
perimeter++

side1, side2

∗

∗∗ COMPOSITE_
FIGURE

LINKED_LIST

BASIC
FIGURES
(see previous
chapter)

§15.1 EXAMPLES OF MULTIPLE INHERITANCE 529

site
e. For

d

ost
ctures

 list
 of

n to

ough
e is to
e over

.

ing a

pply
ut

For the details see
“ACTIVE DATA
STRUCTURES”,
23.4, page 774.

Exercise E15.4,
page 567.

Exercises E15.8,
page 568, and
E21.6, page 716.
class COMPOSITE_FIGURE inherit
FIGURE
LINKED_LIST [FIGURE]

feature
…

end

The feature clause is particularly pleasant to write. An operation on a compo
figure is, in many cases, an operation on all of its constituents taken in sequenc
example, procedure display will be effected as follows in COMPOSITE_FIGURE:

display is
-- Display figure by displaying all its components in turn.

do
from

start
until

after
loop

item● display
forth

end
end

As in earlier discussions, we assume that our list classes offer traversal mechanisms base
on the notion of cursor: start moves the cursor to the first element if any (otherwise after
is immediately true), after indicates whether the cursor is past all elements, item gives the
value of the element at cursor position, and forth advances the cursor by one position.

I find this scheme admirable and hope its beauty will strike you too. Alm
everything is concentrated here: classes, multiple inheritance, polymorphic data stru
(LINKED_LIST [FIGURE]), dynamic binding (the call item● display will apply the proper
variant of display based on the type of each list element), recursion (note that any
element — any item — may itself be a composite figure, with no limit on the degree
nesting). To think that some people will live an entire life and never see this!

It is in fact possible to go further. Consider other COMPOSITE_FIGURE features
such as rotate and translate; because they all must apply the corresponding operatio
every member figure in turn, their body will look very much like display. For an object-
oriented designer this is cause for alert: we do not like repetition; we transform it, thr
encapsulation, into reuse. (This could yield a good motto.) The technique to use her
define a deferred “iterator” class, whose instances are little machines able to iterat
a COMPOSITE_FIGURE. Its effective descendants may include DISPLAY_ITERATOR
and so on. This is a straightforward scheme and is left to the reader as an exercise

The technique describing composite structures through multiple inheritance, us
list or other container class as one of the parents, is a general design pattern, directly
useful in widely different areas. Make sure to look at the exercise asking you to a
similar reasoning to the notion of submenu in a window system: a submenu is a menu, b
it is also a menu entry. Another deals with composite commands in an interactive system.

MULTIPLE INHERITANCE §15.1530

ys the

n of
s.

 cover

 array

A marriage of
convenience

The deferred STACK
class appeared on
page 501; class
ARRAY was sketched
on page 373.
The marriage of convenience

In the preceding examples the two parents played a symmetric role. This is not alwa
case; sometimes each parent brings a contribution of a different nature.

An important application of multiple inheritance is to provide an implementatio
an abstraction defined by a deferred class, using facilities provided by effective clas

Consider the implementation of stacks as arrays. Since classes are available to
stacks as well as arrays (deferred for STACK, effective for ARRAY, both seen in earlier
chapters), the best way to implement class ARRAYED_STACK, describing stacks
implemented as arrays, is to define it as an heir to both STACK and ARRAY. This is
conceptually right: an arrayed stack is a stack (as seen by clients) and is also an
(internally). The general form is:

indexing

description: "Stacks implemented as arrays"

class ARRAYED_STACK [G] inherit

STACK [G]

ARRAY [G]

… A rename subclause will be added here (see page 540) …
feature

… Implementation of the deferred routines of STACK

in terms of ARRAY operations (see below)…
end

ARRAYED_STACK offers the same functionality as STACK, effecting its deferred
features such as full, put, count through implementations relying on array operations.

Here is an outline of some typical features: full, count and put. The condition under
which a stack is full is given by

ARRAYED_
STACK

∗
STACK ARRAY

§15.1 EXAMPLES OF MULTIPLE INHERITANCE 531

.

nt

e,
le
rings
g of.

h the

ith

use:

See “Using a par-
ent’s creation proce-
dure”, page 539.
full: BOOLEAN is
-- Is stack representation full?

do
Result := (count = capacity)

end

Here capacity, inherited from class ARRAY, is the number of positions in the array
For count we need an attribute:

count: INTEGER

This is a case of effecting a deferred feature into an attribute. Here finally is put:

put (x: G) is
-- Push x on top.

require
not full

do
count := count + 1
array_put (x, count)

end

Procedure array_put, inherited from ARRAY, assigns a new value to an array eleme
given by its index.

The array features capacity and array_put had different names in class ARRAY: count and
put. The name change is explained later in this chapter.

ARRAYED_STACK is representative of a common kind of multiple inheritanc
called the marriage of convenience. It is like a marriage uniting a rich family and a nob
family. The bride, a deferred class, belongs to the aristocratic family of stacks: it b
prestigious functionality but no practical wealth — no implementation worth speakin
(What good is an effective change_top with a deferred put and remove?) The groom
comes from a well-to-do bourgeois family, arrays, but needs some luster to matc
efficiency of its implementation. The two make a perfect match.

Besides providing effective implementations of routines deferred in STACK, class
ARRAYED_STACK may also redefine some which were not deferred. In particular, w
an array representation, change_top (x: G), implemented in STACK as remove followed
by put (x), may be implemented more efficiently as

array_put (x, count)

To make this redefinition valid, do not forget to announce it in the inheritance cla

class ARRAYED_STACK [G] inherit
STACK [G]

redefine change_top end
… The rest as before …

The invariant of the class might read

MULTIPLE INHERITANCE §15.1532

operty

a final

class.
hich

e-of-
called

class

torable
ructure
 other
operty
ch
tance.
 often

 will

tain
arable
en

rs to

a few

“Implementation
invariants”, page
377.

The methodological
discussion is “It feels
so good, but is it
wrong?”, page 844.
STACK2 appeared
on page 350.

On STORABLE see
“Deep storage: a
first view of persis-
tence”, page 250.

For a more detailed
discussion of this
form of inheritance:
“Structure inherit-
ance”, page 831.
invariant
non_negative_count: count >= 0

bounded: count <=capacity

The two parts of the assertion are of a different nature. The first expresses a pr
of the abstract data type. (It was in fact already present in the parent class STACK, and so
is redundant; it is included here for pedagogical purposes, but should not appear in
version of the class.) The second line involves capacity, that is to say the array
representation: it is an implementation invariant .

You might take a minute to compare ARRAYED_STACK, as sketched here, with
STACK2 of an earlier discussion, and see how dramatically inheritance simplifies the
This comparison will be pursued in the discussion of the methodology of inheritance, w
will also address some of the criticisms occasionally heard against marriag
convenience inheritance and, more generally, against what is sometimes
implementation inheritance.

Structure inheritance

Multiple inheritance is indispensable when you want to state explicitly that a certain
possesses some properties beyond the basic abstraction that it represents.

Consider for example a mechanism that makes object structures persistent (s
on long-term storage). You may have to request that the lead object in a storable st
be equipped with the corresponding store and retrieve operations: in addition to its
properties such an object is “storable”. In the Kernel library, as we have seen, this pr
is captured by a class STORABLE, from which any other class can inherit. Clearly, su
classes may have other parents as well, so this would not work without multiple inheri
This form of inheritance, from a class that describes a general structural property —
with a name that ends with -ABLE — is similar to inheritance from classes COMPARABLE
and NUMERIC seen earlier in this chapter. The discussion of inheritance methodology
define it as inheritance of the structural kind.

Without multiple inheritance, there would be no way to specify that a cer
abstraction must possess two structural properties — numeric and storable, comp
and hashable. Selecting one of them as the parent would be like having to choose betwe
your father and your mother.

Facility inheritance

Here is another typical case. Many tools need “history” facilities, enabling their use
perform such operations as:

• Viewing the list of recent commands.

• Executing again a recent command.

• Executing a new command defined by editing a recent one and changing
details.

§15.1 EXAMPLES OF MULTIPLE INHERITANCE 533

write.
ort it,
ulated

ution
ithout
ts.

ful
aring

rable

om a

ion, it
 from
s just
 than

. It is
the
 from

s. The
mples

ent
rtain
rag-

sor to

uses
e the
h you
d class.

See chapter 24.

See chapter 36.
• Undoing the effect of the last command not yet undone

Such a mechanism makes any interactive tool nicer to use. But it is a chore to
As a result, only a few tools (such as certain “shells” under Unix and Windows) supp
often partially. Yet the general techniques are tool-independent. They can be encaps
in a class, from which a session-control class for any tool can then inherit. (A sol
based on the client relation may be possible, but is less attractive.) Once again, w
multiple inheritance such an inheritance link would conflict with other possible paren

A similar case is that of a class TEST encapsulating a number of mechanisms use
for testing a class: getting and storing user input, printing and storing output, comp
with expected values, recording all the results, comparing with earlier test runs (regression
testing), managing the testing process. Although a client-based solution may be prefe
in some cases, it is convenient to have the possibility, for testing a class X, of defining a
class X_TEST that inherits from X and from TEST.

In later chapters we will encounter other cases of such facility inheritance, whereby
a class F encapsulates a set of related facilities, such as constants or routines fr
mathematical library, which any class can then obtain by inheriting from F.

Although the use of inheritance in such cases is sometimes viewed with suspic
is in fact a perfectly legitimate application of the concept. It does differ in one respect
the other examples of multiple inheritance reviewed in this chapter: in the case
reviewed, we could achieve our goals, albeit less conveniently, with a client rather
inheritance link.

Buttonholes

Here is a case in which, as in earlier ones, multiple inheritance is indispensable
similar in spirit to “company planes”, “sleeping cars” and other examples of
combination-of-abstractions type encountered earlier. Rather than using concepts
some external model, however, this one deals with genuine software abstraction
reason why it has been moved to the end of this review of multiple inheritance exa
is that understanding it requires a little background preparation.

Like other graphical applications, many tools of the development environm
presented in the last chapter offer “buttons”, on which you can click to trigger ce
operations. They also use a “pick and throw” mechanism (a variation on traditional “d
and-drop”), through which you can select a visual object, causing the mouse cur
change into a “pebble” that indicates the type of the object, and bring it to a hole of a
matching shape. You can “throw” the pebble into the hole by right-clicking; this ca
some operation to occur. For example, a Class Tool, which you use to explor
properties of a class in the development environment, has a “class hole” into whic
can drag-and-drop a class pebble; this causes the tool to retarget itself to the selecte

MULTIPLE INHERITANCE §15.1534

class
 the

ess
hape,
on the

an not
n it
sts the
-
was

rents,
 to the

ess of
that

nce
ther’s

ld. On
l the

Pick-and-
throw

See [M 1994a] on
library design.
In the figure, a user has picked somewhere — in a Feature Tool — the
INTEGER, by right-clicking on its name. He is moving it towards the class hole of
Class Tool currently targeted to (showing the text of) class ARRAY. Note the row of format
buttons at the bottom; clicking on one of them will show other information for ARRAY;
for example if you left-click on you will get the short form. The pick-and-throw (unl
canceled by a left-click) will end when the user right-clicks on the class hole, whose s
representing Class, matches that of the pebble. This will retarget the Class Tool
right to the selected class — INTEGER.

In some cases it may be convenient to let a hole act as button too, so that you c
only throw an object into it but also, independently of any pick-and-throw, left-click o
to produce a certain effect. For example the class hole, in which the small dot sugge
presence of a current target (first ARRAY, then INTEGER) can serve as a button; left
clicking on it retargets the tool to its current target, which is useful if the display
overwritten. Such holes which double up as buttons are called buttonholes.

As you will have guessed, class BUTTONHOLE multiply inherits from BUTTON
and from HOLE. The new class simply combines the features and properties of its pa
since a buttonhole reacts like a button to the operations on buttons, and like a hole
operations on holes.

An assessment

The examples accumulated so far are representative of the power and usefuln
multiple inheritance. Experience in building general-purpose libraries confirms
multiple inheritance is needed throughout.

Whenever you must combine two abstractions, not having multiple inherita
would mean that you choose one of them as the official parent, and duplicate all the o
features by copy-and-paste — making the new class, as it were, an illegitimate chi
the illegitimate side, you lose polymorphism, the Open-Closed principle, and al
reusability benefits of inheritance. This is not acceptable.

The pebble being dragged

The class hole

Format buttons

INTEGER

§15.2 FEATURE RENAMING 535

ution,
, and

ing to

ption:

 class

tures?
name
ider

e,

r

tial to
just one

x-like
bine

y

15.2 FEATURE RENAMING

Multiple inheritance raises an interesting technical problem: name clashes. The sol
feature renaming, turns out to have applications far beyond that original problem
leads to a better understanding of the nature of classes.

Name clashes

A class has access to all the features of its parents. It can use them without hav
indicate where they come from: past the inherit clause in class C inherit A …, a feature
f of C is known just as f. The same is true of clients of C: for x of type C in some other
class, a call to the feature is written just x● f, without any reference to the A origin of f. If
the metaphors were not so incompatible, we could view inheritance as a form of ado
C adopts all the features of A.

It adopts them under their assigned names: the set of feature names of a
includes all of its parents’ feature name sets.

What then if two or more parents have used the same name for different fea
We have relied on the rule of no intra-class overloading: within a class, a feature
denotes only one feature. This could now be violated because of the parents. Cons

class SANTA_BARBARA inherit
LONDON
NEW_YORK

feature
…

end-- class SANTA_BARBARA

What can we do if both LONDON and NEW_YORK had a feature named the sam
say foo (for some reason a favorite name in programming examples)?

Do not attach too much importance to the names in this example, by the way. No useful
abstraction is assumed behind the class names, especially none that would justify the
inheritance structure. The names simply make the example easier to follow and remembe
than if we called our classes A, B and C.

Under no circumstances should we renounce the no-overloading rule, essen
keep classes simple and easy to understand. Within a class, a name should mean
thing. So class SANTA_BARBARA as shown is invalid and the compiler must reject it.

This rule seems rather harsh. In an approach emphasizing construction-bo
combination of modules from several sources, we may expect attempts to com
separately developed classes that contain identically named features.

As an example, we saw earlier a version of class TREE that inherits from CELL and LIST,
both of which have a feature called item; for a cell, it returns the value stored in the cell,
and for a list it returns the value at the current cursor position. Both also have a feature
called put. These choices of name are all reasonable, and we would not like to have to
change the original classes just because someone got a clever idea for defining trees b
combining them.

MULTIPLE INHERITANCE §15.2536

t have
t

ou to
osed
new

e: the

s that
 will
 A
mple:

 the
What can be done? You should not have to go back to the parents. You may no
access to the source text of LONDON and NEW_YORK; you may have access to it, but no
be permitted to change it; you may be permitted but unwilling, as LONDON comes from
an external supplier and you know there will be new releases, which would force y
do the work all over again; and most importantly you know about the Open-Cl
principle, which says one should not disturb modules when reusing them for
extensions, and you are rightly wary of changing the interface of classes (LONDON and
NEW_YORK) which may already have numerous clients that rely on the old names.

It is a mistake to blame the parents for a name clash occurring in inheritanc
problem is in the would-be heir. There too should the solution be.

The language solution to name clashes follows from these observations. A clas
inherits different but identically named features from different parents is invalid, but
become valid by including one or more rename subclauses in the inheritance clause.
rename subclause gives a new local name to one or more inherited features. For exa

class SANTA_BARBARA inherit

LONDON
rename foo as fog end

NEW_YORK

feature

…

end -- class SANTA_BARBARA

Both within SANTA_BARBARA and in its clients, the foo feature from LONDON will
be referred to as fog, and the one from NEW_YORK as foo. Clients of LONDON, of course,
will still know the feature as foo.

This is enough (assuming there is no other clash, and no other feature of LONDON
or NEW_YORK is called fog) to remove the clash. Of course, we could have renamed
NEW_YORK feature instead; or we could have renamed both for symmetry:

class SANTA_BARBARA inherit

LONDON
rename foo as fog end

NEW_YORK
rename foo as zoo end

feature

…

end -- class SANTA_BARBARA

The rename subclause follows the name of a parent and comes before the redefine
subclause if any. It can of course rename several features, as in

§15.2 FEATURE RENAMING 537

nt,

rm of

es:

imilarly

 clash
either

rs been

 is, as it
r their
atic

lizing
ed for

A name clash,
removed
class TREE [G] inherit

CELL [G]
rename item as node_item, put as put_right end

which removes clashes between features of CELL and their namesakes in the other pare
LIST. The clause renames the item feature from CELL as node_item, since this feature
denotes the item attached to the current node, and similarly renames put as put_right.

Effects of renaming

Let us make sure we fully understand the results of a renaming. Assume the last fo
class SANTA_BARBARA (the one that renames both inherited versions of foo):

(Note the graphical symbol for renaming: .) Assume entities of the three typ

l: LONDON; n: NEW_YORK; s: SANTA_BARBARA

Then l ● foo and s● fog are both valid; after a polymorphic assignment l := s they
would have the same effect, since the feature names represent the same feature. S
n● foo and s● zoo are both valid, and after n := s they would have the same effect.

None of the following, however, is valid:

• l ●zoo, l ● fog, n● zoo, n● fog since neither LONDON nor NEW_YORK has a feature
called fog or zoo.

• s● foo since as a result of the renaming SANTA_BARBARA has no feature called foo.

Artificial as the names are, this example also illustrates the nature of the name
issue. Believe it or not, I have heard it presented as a “deep semantic problem”. It is n
semantic nor deep; rather, a simple syntactical problem. Had one of the class autho
led by the local context to choose the name fog in the first class or zoo in the second, no clash
would have occurred; yet in each case the change is just one letter. The name clash
were, a case of bad luck; it does not reveal any intrinsic problem with the classes o
ability to be combined. If you think of multiple inheritance as marriage, this is not a dram
case, discovered at the last minute, of a rare blood incompatibility; it is more like rea
that the spouses’ mothers are both called Tatiana, making life a little more complicat
their grandchildren to come, but easy to solve through proper naming conventions.

foo

foo fog
SANTA_

BARBARA

LONDON NEW_YORKfoo

foo zoo

MULTIPLE INHERITANCE §15.2538

herited
ctive
ct of

y, the

e

al
ingly,

 old
der its

 name
ature,

sarily
to the
h may
Renaming and redeclaration

In the last chapter we studied another inheritance mechanism: redeclaration of an in
feature. (Remember that redeclaration includes the redefinition of an already effe
feature, and the effecting of a deferred one.) It is illuminating to compare the effe
renaming and redeclaring a feature:

• Redeclaration changes the feature, but keeps its name.

• Renaming changes the name but keeps the feature.

With redeclaration you can ensure that the same feature name refers to different
actual features depending on the type of the object to which it is applied (that is to sa
dynamic type of the corresponding entity). This is a semantic mechanism.

Renaming is a syntactic mechanism, allowing you to refer to the same feature under
different names in different classes.

In some cases you may want to do both:

class SANTA_BARBARA inherit
LONDON

rename
foo as fog

redefine
fog

end
…

Then assuming l: LONDON; s: SANTA_BARBARA as before, and the polymorphic
assignment l := s, the calls l ● foo and s●fog will both trigger the redefined version (whos
declaration must appear in a feature clause of the class).

You will have noted that the redefine subclause uses the new name. This is norm
since that name is the only one under which the feature is known in the class. Accord
the rename clause appears before all other inheritance subclauses (redefine, and others
yet to be studied: export, undefine, select). Past the rename clause, the feature — like an
immigrant given a new identity at Ellis Island by a customs officer who found the
name too hard to pronounce — has shed its ancestral name and will be known un
new one to class, clients and descendants alike.

Local name adaptation

The ability to rename an inherited feature is interesting even in the absence of a
clash. It allows the designer of a class to define the appropriate name for every fe
whether immediate (declared in the class itself) or inherited.

The name under which a class inherits a facility from an ancestor is not neces
the most telling one for its clients. The original name may have been well adapted
ancestor’s clients, but the new class has its own context, its own abstraction, whic

§15.2 FEATURE RENAMING 539

stor’s
 us to

.
ut the

rvices
tors.

g —
 class
how it

ature

table
ltiple
with
 the

named

See “Standard
names”, page 882.
suggest its own naming conventions. To provide this abstraction it finds the ance
features useful, but not necessarily the feature names. Renaming, which enables
distinguish features from feature names, provides the solution.

The construction of class WINDOW as an heir of TREE provides a good example
TREE describes the hierarchical structure, common to general trees and windows; b
tree names may not be desirable for the interface that WINDOW presents to its clients.
Renaming provides the ability to put these names in tune with the local context:

class WINDOW inherit

TREE [WINDOW]

rename

child as subwindow, is_leaf as is_terminal, root as screen,

arity as child_count, …
end

RECTANGLE

feature

… Specific window features …

end

Similarly, TREE inheriting from CELL may rename right as right_sibling and so on.
Through renaming, a class may offer its clients a consistent set of names for the se
it offers, regardless of how these services were built from facilities provided by ances

The game of the name

The use of renaming for local name adaptation highlights the importance of namin
feature naming, but also class naming — in object-oriented software construction. A
is formally a mapping from feature names to features; the feature names determine
will be known to the rest of the world.

In a later chapter we will see a number of systematic rules for choosing fe
names. Interestingly, they promote a set of across-the-board names — count, put, item,
remove, … — to emphasize commonalities between abstractions over the inevi
differences. This style, which increases the likelihood of name clashes under mu
inheritance, decreases the need for “vanity” renaming of the kind illustrated
WINDOW. But whatever general naming conventions we follow, we must have
flexibility to adapt the names to the local needs of each class.

Using a parent’s creation procedure

Let us see one more example of renaming, illustrating a typical scheme where the re
feature is a creation procedure. Remember ARRAYED_STACK, obtained by inheritance
from STACK and ARRAY; the creation procedure of ARRAY allocates an array with given
bounds:

MULTIPLE INHERITANCE §15.2540

given

r
t occur

f
 a
ed,
make (minb, maxb: INTEGER) is
-- Allocate array with bounds minb and maxb
-- (empty if minb > maxb)

do … end

To create a stack, we must allocate the array so that it will accommodate a
number of items. The implementation will rely on the creation procedure of ARRAY:

class ARRAYED_STACK [G] inherit
STACK [G]

redefine change_top end
ARRAY [G]

rename
count as capacity, put as array_put, make as array_make

end
creation

make
feature -- Initialization

make (n: INTEGER) is
-- Allocate stack for at most n elements.

require
non_negative_size: n >= 0

do
array_make (1, n)

ensure
capacity_set: capacity = n
empty: count = 0

end
… Other features (see “The marriage of convenience”, page 530) …

invariant
count >= 0; count <= capacity

end -- class ARRAYED_STACK

Note that here our naming conventions — the use of make as the standard name fo
basic creation procedures — would cause a name clash, which, however, does no
thanks to renaming.

We also need to remove ambiguities for count and put, both used for features o
ARRAY as well as STACK. Query count, by convention, denotes the number of items in
structure; for ARRAYED_STACK, the relevant count is the number of elements push
that is to say, count from STACK; the other count, from ARRAY, becomes the stack’s
capacity — the maximum number of pushable items — and so is renamed capacity.
Similarly, put for stacks is the push operation; we keep the array put (the operation that
replaces the element at a certain array position) under the new name array_put. It is used,
as you will remember, in the effecting of the other put, the stack pushing procedure.

§15.3 FLATTENING THE STRUCTURE 541

d rich
r, and

rusive,
.

t
 the
hism

ce

anner,
 case
uch as

rite;
it for
.

tics
ance
to use

 the
 that
,

ived:
feature

ines
15.3 FLATTENING THE STRUCTURE

Renaming is only one of the tools that the inheritance craftsman can use to buil
classes satisfying the needs of his clients. Another is redefinition. Later in this chapte
in the next one, we will see a few more mechanisms: undefinition, join, select, descendant
hiding. The power of these combined mechanisms makes inheritance sometimes obt
and suggests the need for a special, inheritance-free version of a class: the flat form

The flat form

In the view that we see emerging, inheritance is a supplier technique more than a clien
technique. It is primarily an internal tool for constructing classes effectively. True,
client side will need to know about the inheritance structure if it is to use polymorp
and dynamic binding (with a1: A; b1: B you need to know that B is a descendant of A if
you are to use the assignment a1 := b1); apart from that case, however, the inheritan
structure that led to a particular class is none of the clients’ business.

Like a good car mechanic, we are entirely led by the needs of our customers, but how we
go about taking care of them in the back of the garage is our responsibility.

As a consequence, it should be possible to present a class in a self-contained m
independent from any knowledge of its ancestry. This is particularly important in the
of using inheritance to separate various components of a composite abstraction, s
the tree and rectangle parts of the window concept.

The flat form of a class serves that purpose. It is not something you will ever w
instead, you will rely on a tool of the software development environment to produce
you, through a command-line script (flat class_name) or when you click on a certain icon

The flat form of a class C is a valid class text which has exactly the same seman
as C when viewed from a client, except for polymorphic uses, but includes no inherit
clause. It is what the class would have looked like had its author not been able
inheritance. To produce a flat form means:

• Removing the entire inherit clause if any.

• Keeping all the feature declarations or redeclarations of C.

• Adding declarations for all inherited features, copied from the declarations in
applicable parents and taking into account all the inheritance transformations
were specified in the inheritance clause: renaming, redefinition, undefinition
select, feature join.

• Adding to each inherited feature a comment line of the form from ANCESTOR
indicating the name of the proper ancestor from which the current version is der
the closest one that declared or redeclared the feature (and, in the case of a
join, described later in this chapter, the winning side).

• Reconstructing the full preconditions and postconditions of inherited rout
(according to the rules on assertion inheritance explained in the next chapter).

MULTIPLE INHERITANCE §15.3542

g

el, not
e

lf, are

lass
and
 the

et of
erived
 class

ion can

, not

An “immediate”
feature is one intro-
duced in the class
itself.

isplaying a
lat form
• Reconstructing the full invariant, by anding all the parents’ invariants, after applyin
the proper transformations if they use any renamed or selected feature.

The resulting class text shows all the features of the class at the same lev
making any difference (except for the from ANCESTOR comments) between immediat
and inherited features. If present, the labels of feature clauses — as in feature -- Access
— are retained; clauses with identical labels, whether from parents or the class itse
merged. Within each feature clause the features appear alphabetically.

The illustration below shows the beginning of the flat form of the Base library c
LINKED_TREE, produced in a Class Tool of ISE’s development environment (
scrolled past the indexing clause). To obtain this result, you target the Class Tool to
class, and click on the Flat format button.

Uses of the flat form

The flat form is a precious tool for developers: it enables them to see the full s
properties of a class, all together in one place, ignoring how these features were d
in the inheritance games. A potential drawback of inheritance is that when reading a
text you may not immediately see what a feature name means, since the declarat
be in any ancestor. The flat form solves this problem by giving you the full picture.

The flat form may also be useful to deliver a stand-alone version of a class
encumbered by the class history. That version will not be usable polymorphically.

D
f

Format buttons: flat flat-short short

§15.4 REPEATED INHERITANCE 543

 is of
new

rm,
rted

rs —
bout

cular
enting

class is
tential

u are
apter.

 class
ly

See “Using asser-
tions for documen-
tation: the short
form of a class”,
page 390.

Repeated
inheritance
The flat-short form

The flat form is a valid class text. So in its just mentioned role as documentation, it
interest for the supplier side — for developers working on the class itself or a
descendant. The client side needs more abstraction.

In an earlier chapter we saw the tool that provides this abstraction: short
(corresponding in the last figure to the second button to the right of flat .)

Combining the two notions yields the notion of flat-short form. Like the short fo
the flat-short form of a class only includes public information, removing any non-expo
feature and, for exported features, removing any implementation aspects, do clauses in
particular. But like the flat form, it treats all features, immediate or inherited, as pee
whereas for a class with parents the non-flat short form only shows information a
immediate features.

The flat-short form is the primary mechanism for documenting classes, in parti
reusable library classes, for the benefits of their users (client authors). The book pres
the Base libraries [M 1994a] provides all the class specifications in that form.

15.4 REPEATED INHERITANCE

As noted at the beginning of this chapter, repeated inheritance arises whenever a
a descendant of another in more than one way. This case causes some po
ambiguities, which we must resolve.

Repeated inheritance will only arise explicitly in advanced development; so if yo
only surveying the key components of the method you may skip directly to the next ch

Sharing ancestors

As soon as multiple inheritance is allowed into a language, it becomes possible for a
D to inherit from two classes B and C, both of which are heirs, or more general
descendants, of the same class A. This situation is called repeated inheritance.

A

D

B C

A

D

(1) Indirect (2) Direct

MULTIPLE INHERITANCE §15.4544

d
ted

ances
a class

les,
e

rhaps
ss this

e

 the
If B and C are heirs of proper descendants of A (case 1 in the figure), the repeate
inheritance is said to be indirect. If A, B and C are all the same class (case 2), the repea
inheritance is direct; this is achieved by writing

class D inherit
A
A
…

feature
…

end

Intercontinental drivers

The following system modeling example will enable us to see under what circumst
repeated inheritance may occur and to study the problem that it raises. Assume
DRIVER with attributes such as

age: INTEGER
address: STRING
violation_count: INTEGER -- The number of recorded traffic violations

and routines such as

pass_birthday is do age := age + 1 end
pay_ fee is

-- Pay the yearly license fee.
do … end

An heir of DRIVER, taking into account the specific characteristics of US tax ru
may be US_DRIVER. Another may be FRENCH_DRIVER (with reference to places wher
cars are driven, not citizenship).

Now we may want to consider people who drive in both France and the US, pe
because they reside in each country for some part of the year. A simple way to expre
situation is to use multiple inheritance: class FRENCH_US_DRIVER will be declared as
heir to both US_DRIVER and FRENCH_DRIVER. As shown by the figure at the top of th
facing page, this causes repeated inheritance.

To make sure that the example is a proper use of inheritance we assume that US_DRIVER
and FRENCH_DRIVER are not just distinguished by the value of some attribute
representing the country of driving, but are indeed distinct abstraction variants, each with
its specific features. Chapter 24 discusses in depth the methodology of using inheritance.

Sharing and replication

The first and principal problem of repeated inheritance appears clearly in
intercontinental driver example:

What is the meaning in the repeated descendant (FRENCH_US_DRIVER in
the example) of a feature inherited from the repeated ancestor (DRIVER)?

§15.4 REPEATED INHERITANCE 545

ing.

om
e age

s not

ere
lared
t we

der the
eature

ents
traffic

Kinds of driver

Page 536.
Consider a feature such as age. It is inherited from DRIVER by both US_DRIVER
and FRENCH_DRIVER; so at first sight the name clash rule seems to require renam
But this would be too stringent: there is no real conflict since age from US_DRIVER and
age from FRENCH_DRIVER are not really different features: they are one feature, fr
DRIVER. Unless you are trying to hide something from someone, you have the sam
wherever you happen to be driving. The same applies to procedure pass_birthday.

If you read carefully the rule about name clashes, you will have noted that it doe
preclude such cases. It stated:

A class that inherits different but identically named features from different
parents is invalid.

Here the versions of age and pass_birthday that FRENCH_US_DRIVER inherits
from its two parents are not “different” features, but a single feature in each case. So th
is no real name clash. (An ambiguity could still exist if one of the features was redec
in an intermediate ancestor; we will see shortly how to resolve it. For the momen
assume that nothing is redeclared.)

In such cases, when a feature coming from a repeated ancestor is inherited un
same name from two or more parents, the clear rule is that it should give a single f
in the repeated descendant. This case will be called sharing.

Is sharing always appropriate? No. Consider address, pay_fee, violation_count: our
dual drivers will most likely declare two different addresses to the respective Departm
of Motor Vehicles; paying the yearly fee is a separate process for each country; and
violations are distinct. For each of these features inherited from DRIVER, class FRENCH_
US_DRIVER needs not one but two different features. This case will be called replication .

FRENCH_US_
DRIVER

DRIVER

US_
DRIVER

FRENCH_
DRIVER

pass_birthday
pay_fee

age
address
violation_count

MULTIPLE INHERITANCE §15.4546

 what
tor or
 tune

rsion
g the

ly to
re; two
 feature

ation
r more
ine, it

l only:
tures.

class
What the example — and many others — also shows is that we could not get
we need with a policy that would either share all features of a repeated ances
replicate all of them. This is too coarse a level of granularity. We need the ability to
the policy separately for each repeatedly inherited feature.

We have seen how to obtain sharing: just do nothing — inherit the original ve
from both parents under the same name. How do we obtain replication? By doin
reverse: inheriting it under two different names.

This idea is consistent with the general rule, simple and clear, that we app
features and their names: within a class, a feature name denotes only one featu
separate names denote two separate features. So to replicate a repeatedly inherited
we simply make sure that some renaming occurs along the way.

This rule applies to attributes as well as routines. It gives us a powerful replic
mechanism: from one feature of a class, it is possible in a descendant to get two o
features. For an attribute, this means an extra field in all the instances; for a rout
means a new routine, initially with the same algorithm.

Except in special cases involving redeclaration, the replication can be conceptua
no code actually gets duplicated, but the repeated descendant has access to two fea

The rule gives us the desired flexibility for combining classes. For example the
FRENCH_US_DRIVER may look like this:

class FRENCH_US_DRIVER inherit
FRENCH_DRIVER

rename
address as french_address,
violation_count as french_violation_count,
pay_fee as pay_french_fee

end
US_DRIVER

rename
address as us_address,
violation_count as us_violation_count,
pay_fee as pay_us_fee

end
feature

…
end -- class FRENCH_US_DRIVER

Repeated Inheritance rule

In a repeated descendant, versions of a repeatedly inherited feature inherited
under the same name represent a single feature. Versions inherited under
different names represent separate features, each replicated from the original
in the common ancestor.

§15.4 REPEATED INHERITANCE 547

t some

nder

he

e
 the ones

 of

crete
ared

.
ritance

Sharing and
replication

Attribute
replication
The renaming occurs here at the last stage — in the repeated descendant — bu
or all of it could also have been done by intermediate ancestors FRENCH_DRIVER and
US_DRIVER; all that counts is whether in the end a feature is repeatedly inherited u
one name or more.

The features age and pass_birthday, which have not been renamed along any of t
inheritance paths, will remained shared, as desired.

A replicated attribute such as address will, as noted, yield a new field in each of th
instances of the repeated descendant. So assuming there are no other features than
listed, here is how instances of the classes will look:

(Instances of FRENCH_DRIVER and US_DRIVER have the same composition as those
DRIVER as shown.)

This is the conceptual picture, but with a good implementation it must be the con
representation too. Particularly important is the ability not to replicate the fields for sh
attributes such as age in FRENCH_US_DRIVER. A naïve implementation would replicate
all fields anyway; some fields, such as the duplicate age field, would simply never be used
Such waste of space is not acceptable, since it would accumulate as we go down inhe

FRENCH_US_
DRIVER

DRIVER

US_
DRIVER

FRENCH_
DRIVER

pass_birthday
pay_fee

age
address
violation_count

pay_ fee pay_french_fee
violation_count

 french_violations_count

address french_address

pay_fee pay_us_ fee
violation_count

 us_violations_count

address us_address

violation_count

address

age

(DRIVER)

(FRENCH_US_DRIVER)

french_violation_count
french_address

age

us_violation_count
us_address

MULTIPLE INHERITANCE §15.4548

ust be

nd of
ributes
ting

tional
ments

same

ue that

y

ated
not for
 object

ated

:

edundant
nheritance
hierarchies, and lead to catastrophic space inefficiency. (As a general rule, one m
very careful with attributes, as every attribute field will be present at run time in each one
of the potentially many instances of a class and its descendants.)

The compiling mechanism of the development environment described at the e
this book indeed makes sure that no attribute space is lost: conceptually shared att
are shared physically too. This is one of the most difficult parts of implemen
inheritance and the calling machinery of dynamic binding, especially under the addi
requirement that repeated inheritance must not affect the performance achieve
described in earlier chapters:

• Zero cost for genericity.

• Small, constant-bounded cost for dynamic binding (that cost must be the
whether or not a system includes repeated inheritance).

The implementation meets these goals, making repeated inheritance a techniq
any system can use at no extra cost.

Repeated inheritance in C++ follows a different pattern. The level of granularity for
deciding to share or duplicate is the class. So if you need to duplicate one field from the
repeated ancestor, you will need to duplicate all. For that reason, C++ users tend to sta
away from this mechanism altogether. Java has eliminated the problem — by eliminating
multiple inheritance.

Unobtrusive repeated inheritance

Cases of repeated inheritance similar to the “transcontinental drivers”, with duplic
features as well as shared ones, do occur in practice, but not frequently. They are
beginners; only after you have reached a good level of sophistication and practice in
technology should you encounter any need for them.

If you are writing a straightforward application and end up using repe
inheritance, you are probably making things more complicated than you need to.

The figure shows a typical beginner’s (or absent-minded developer’s) mistakeD is
made an heir of B, and also needs facilities from A; but B itself inherits from A. Forgetting
that inheritance is transitive, the developer wrote

R
i

A

D

B

§15.4 REPEATED INHERITANCE 549

, and of
uch a
ill be
,

 the

ing
e no

lt

 rules

See “THE GLOBAL
INHERITANCE
STRUCTURE”,
16.2, page 580.
class D… inherit

B

A

…

This case causes repeated inheritance, but what it really shows is redundant
inheritance. One of the pleasant consequences of the conventions discussed so far
the corresponding implementation, is that they will yield the expected behavior in s
case: in the absence of renaming, all features will be shared; no new features w
introduced, and there will be no performance overhead. Even if B renames some attributes
the only consequence will be some waste of space.

The only exception is the case in which B has redefined a feature of A, which causes
an ambiguity in D. But then, as explained below, you will get an error message from
compiler, inviting you to select one of the two versions for use in D.

A case of redundant but harmless inheritance may occur when A is a class
implementing general-purpose facilities like input or output (such as the class STD_FILES
from the Kernel library), needed by D as well as B. It is enough for D to inherit from B:
this makes D a descendant of A, giving it access to all the needed features. Inherit
redundantly will not, however, have any harmful consequences — in fact, it will hav
consequences at all.

Such involuntary and innocuous cases of repeated inheritance may also occur as a resu
of inheritance from universal classes ANY and GENERAL, studied in the next chapter.

The renaming rule

(This section introduces no new concept but gives a more precise formulation of the
seen so far, and an explanatory example.)

We can now give a precise working of the rule prohibiting name clashes:

Definition: final name

The final name of a feature in a class is:

• For an immediate feature (that is to say, a feature declared in the class
itself), the name under which it is declared.

• For an inherited feature that is not renamed, its final name (recursively)
in the parent from which it is inherited.

• For a renamed feature, the name resulting from the renaming.

Single Name rule

Two different effective features of a class may not have the same final name.

MULTIPLE INHERITANCE §15.4550

ame
e clash

ause.

ited

more

 one
se:

 coming

re
A name clash occurs if two different features, both effective, still have the s
name even after renaming subclauses have been taken into account. Such a nam
makes the class invalid, but is easy to correct by adding the proper renaming subcl

The key word is different features. If a feature from a repeated ancestor is inher
from both parents under the same name, the sharing rule applies: only one feature is being
inherited, so there is no name clash.

The prohibition of name clashes only applies to effective features. If one or
homonymous features are deferred, you can actually merge them since there is no
incompatibility between implementations; the details will be seen shortly.

The rules are simple, intuitive and straightforward. To check our understanding
final time, let us build a simple example showing a legitimate case and an invalid ca

class A feature
this_one_OK: INTEGER

end

class B inherit A feature
portends_trouble: REAL

end

class C inherit A feature

portends_trouble: CHARACTER

end

class D inherit
-- This class is invalid!

B

C

end

That class D inherits this_one_OK twice — once from B, once from C — does not
cause a name clash, since the feature will be shared; it is indeed the same feature,
from A, in each case.

The two features called portends_trouble, however, deserve their name: they a
different features, and so they cause a name clash, making class D invalid. (They have
different types, but giving them the same type would not affect this discussion.)

It is easy to make class D valid through renaming; for example:

class D inherit
-- This class is now quite valid.

B
rename portends_trouble as does_not_portend_trouble_any_more end

C

end

A

D

B C

this_one_OK

portends_trouble portends_trouble

§15.4 REPEATED INHERITANCE 551

s. What
t is

sual
e that

fined:

e
hich

eated

haring:
ities:

lty:
rule
een

Redefinition
causing
potential
ambiguity
Conflicting redefinitions

In the cases seen so far only names could change along the various inheritance path
if some intermediate ancestor, such as B or C on the last figure, redeclares a feature tha
then repeatedly inherited? Under dynamic binding there may be an ambiguity in D.

Two simple mechanisms, undefinition and selection, will solve the issue. As u
you will be invited to participate in the development of these mechanisms and will se
once a problem is stated clearly the language solution follows immediately.

Assume that somewhere along the way a repeatedly inherited feature gets rede

Class B redefines feature C (this is the conventional meaning of the ++ symbol, as
you will recall). So now you have two variants of f available in D: the redefined version
from B, and the version from C, which here is the original version from A. (We might
assume that C also redefines f in its own way, but this would bring nothing to th
discussion except more symmetry.) This is different from all the previous cases, in w
there was only one version of the feature, possibly inherited under different names.

What are the consequences? The answer depends on whether D inherits the two
versions of f under the same name or different names, that is to say whether the rep
inheritance rule implies sharing or replication. Let us review the two cases in turn.

Conflicts under sharing: undefinition and join

Assume first that the two versions are inherited under the same name. This is the s
case: with just one feature name, there must be exactly one feature. Three possibil

S1 • If one of the two versions is deferred and the other effective, there is no difficu
the effective version will serve to effect the other. Note that in the Single Name
this case was explicitly permitted: the rule only prohibited name clashes betw
two effective features.

A

D

B C

f

f ++

MULTIPLE INHERITANCE §15.4552

sion,

ame

tain

is the

he S3

nism:

that it

other
s this
ted

Two parents
with features
to be merged
S2 • If both versions are effective, but each of them appears in a redefine subclause,
there is no problem either: both inherited versions are merged into a new ver
whose redefinition appears in the class.

S3 •But if the versions are both effective and not both redefined, we have a true n
clash: class D will be rejected as violating the Single Name rule.

Often S3 will indeed reflect an error: you have created an ambiguity for a cer
feature name, and you must resolve it. The usual resolution is to rename one of the two
variants; then instead of sharing you get replication — two different features. This
other main case, replication, studied next.

In some situations, however, you may want a more sophisticated resolution of t
conflict: letting one of the two variants, say the one from B, take over. Then the obvious
solution is to transform this case into S1 by making one of the two variants deferred.

The rules on redefinition allow us to redefine an effective f into a deferred version;
but they would force us to introduce an intermediate class, say C', an heir of C whose only
role is to redefine f into a deferred version; then we would make D inherit from C' rather
than C. This is heavy and inelegant. Instead, we need a simple language mecha
undefine. It will yield a new subclause in the inheritance part:

class D inherit
B

C
undefine f end

feature
…

end

If more than one subclause is present, undefine naturally comes after rename (since
any undefinition should apply to the final name of a feature) but before redefine (since we
should take care of any undefinition before we redefine anything).

A sign that a proposed language mechanism is desirable is, almost always,
should solve several problems rather than just one. (Conversely, bad language
mechanisms tend to cause as many problems, through their interactions with
language traits, as they purport to solve.) The undefinition mechanism satisfie
property: it gives us the ability to join features under multiple — not necessarily repea
— inheritance. Assume that we wish to combine two abstractions into one:

D

B Cf g

§15.4 REPEATED INHERITANCE 553

s
y), and
o keep
n:

 All
nd the

 by a
 name,

 just
e for
f a

t is to
ifferent

The need for
selection
We want D to treat the two features f and g as a single feature; this clearly require
that they have compatible signatures (number and types of arguments and result if an
compatible semantics. Assuming that they have different names, and that we want t
the f name, we can achieve the desired result by combining renaming with undefinitio

class D inherit
B

C
rename

g as f
undefine

f
end

feature
…

end

Here the victory of B is total: it imposes both the feature and the feature name.
other combinations are possible: we may get the feature from one of the parents a
name from the other; or we may rename both features to an entirely new name for D.

Another way to join features is more symmetric: replace both inherited versions
new one. To achieve this, simply make sure that the features have the same final
adding a rename subclause if necessary, and list them both in redefine subclauses, with a
new declaration in the class. Then there is no illicit name clash (this is case S2 above), and
both features are joined into the new version.

Note the versatility of the renaming mechanism (showing that it satisfies the
introduced criterion for good language traits): originally introduced as a techniqu
removing name clashes, it now enables us to introduce name clashes — name clashes o
desirable kind, resolved by undefining one of the inherited versions to let the other take over.

Conflicts under replication: selection

There remains to consider the case of conflicting redefinitions under replication, tha
say when the repeated descendant inherits the separately redefined features with d
names, and they are both effective.

A

D

B C

f

f bf++

MULTIPLE INHERITANCE §15.4554

g

 the
he
 both

f

er will
due to
,
n

d
s:

aming
ty, let
thor of

ity:

d and
On the B branch in the figure, feature f is renamed bf and is also redefined. Favorin
again simplicity over symmetry we assume no change in the C branch; renaming or
redefining f in C would not affect the discussion. Also, note that the result would be
same if B redefined the feature without renaming it, the renaming then occurring at tD
level. Let us assume this is not a case of join (which would arise if we redefined
features, under S2 above, or undefined one of them).

Because the features are inherited under different names bf and f, replication applies:
D gets two separate features from the feature f of A. In contrast with previous cases o
replication, these are not duplicates of the same feature, but different features.

Here, unlike in the sharing case, there is no name clash. But as the careful read
have noted, a different problem arises (the last issue of repeated inheritance),
dynamic binding. Assume that a polymorphic entity a1 of type A, the common ancestor
becomes attached at run time to an instance of D, the common descendant. What the
should the call a1● f do?

The rule of dynamic binding states that the version of f to apply is the one deduce
from the type of the target object, here D. But now for the first time that rule is ambiguou
D has two versions — known locally as bf and f — of the original f of A.

The observation made in the case of name clashes, which led to the ren
mechanism, applies here too: we cannot, in an approach favoring clarity and reliabili
the compiler make the choice behind the scenes through some default rule. The au
the software must be in control.

This shows the need for a simple language mechanism to resolve the ambigu

class D inherit
B

C
select f end

feature
…

end

to trigger C’s version under dynamic binding for an entity of type A, and

class D inherit
B

select bf end

C
feature

…
end

to select B’s version instead. The select clause will naturally appear after rename,
undefine and redefine if present (you select variants once everything has been name
defined). Here is the rule governing its usage:

§15.4 REPEATED INHERITANCE 555

class

ost of
 of

s cited
e

vor.

 by
rent

ht
at

ading.)

ined
,

avier)

The case in which
both are redefined
corresponds to S2,
page 552.

“Using the original
version in a redefin
tion”, page 493.
The select resolves the ambiguity once and for all: proper descendants of the
do not need to repeat it (and should not).

Selecting everything

Every redefinition conflict must be resolved through select. When combining two classes
that cause several such conflicts, you may want one of the classes to win all or m
these conflicts. This happens in particular with inheritance of the “marriage
convenience” form, as illustrated by ARRAYED_STACK inheriting from STACK and
ARRAY, if the parents have a common ancestor. (In the Base libraries, both classe
are indeed distant descendants of a general CONTAINER class.) In such a case, since on
of the parents — what has been called the noble parent, here STACK — provides the
specification, you will probably want to resolve all conflicts, or most of them, in its fa

The following important notational facility simplifies your task in such cases,
avoiding the need to list all conflicting features individually. At most one of the pa
listings in the inherit clause may be of the form

SOME_PARENT
select all end

The effect is simply, as suggested by the keyword all, to resolve in favor of
SOME_PARENT all redefinition conflicts — more precisely all the conflicts that mig
remain after the application of other select subclauses. This last qualification means th
you can still request some other parent’s version for certain features.

Keeping the original version of a redefined feature

(This section describes a more specialized technique and may be skipped on first re

In the introduction to inheritance we saw a simple construct allowing a redef
feature to call the original version: Precursor. The repeated inheritance mechanism
through its support for feature duplication, provides a more general (but also he
solution in those rare cases for which the basic mechanism does not suffice.

Consider again the earlier example: BUTTON inheriting from WINDOW and
redefining display as

display is
-- Display button on the screen.

do
window_display
special_button_actions

end

Select rule

A class that inherits two or more different effective versions of a feature from
a repeated ancestor, and does not redefine them both, must include exactly one
of them in a select clause.

i-

MULTIPLE INHERITANCE §15.4556

ow,
on’s

es
 the
where window_display takes care of displaying the button as if it were a normal wind
and special_button_actions adds button-specific elements such as displaying the butt
border. Feature window_display is exactly the same as the WINDOW version of display.

We have seen how to write window_display simply as Precursor. (If there is any
ambiguity, that is to say if two or more parents redefine their display routine into the new
one, the selected parent will appear in double braces, as in {{ WINDOW}} Precursor.) We
can achieve the same goal, although less simply, through repeated inheritance:

indexing
WARNING: "This is a first attempt — this version is invalid!"

class BUTTON inherit
WINDOW

redefine display end
WINDOW

rename display as window_display end
feature

…
end -- class BUTTON

Because one of the branches renames display, the repeated inheritance rule indicat
that BUTTON will have two versions of that feature, one redefined and keeping
original name, the other not redefined but having the name window_display.

As indicated, this is almost valid but not quite: we need a select. If (as will usually
be the case) we want to select the redefined version, this will give:

indexing
note: "This the (valid!) repeated inheritance scheme for continuing to use %

%the original version of a redefined feature"
class BUTTON inherit

WINDOW
redefine

display
select

display
end

WINDOW
rename

display as window_display
export

{NONE} window_display
end

feature
…

end -- class BUTTON

The selection

§15.4 REPEATED INHERITANCE 557

s, you

e all

nder

eds to

 both.

ion of

n for

n, as

nding

ork.

ting

ed

nd.

ce the
If several features need this scheme, you can list them together (in other word

do not need to inherit more than twice from the parent). Often you will want to resolv

conflicts in favor of the redefined versions; in that case, use select all.

The export clause (studied only in the next chapter, although there is little more to it than

shown here) changes the export status of an inherited feature: WINDOW probably
exported the original display, now known as window_display, but BUTTON makes it

secret. Although window_display is a full-fledged feature of the class, which needs it for
its internal purposes, clients have no use for it. As discussed in earlier examples,

exporting the original version of an inherited feature might make the class formally
incorrect if that version does not satisfy the new class invariant.

To apply hiding to all features inherited along a certain branch you can, here too, use the
keyword all , as in export { NONE} all.

This pattern of exporting only the redefined version, making the original secret u

a new name, is the most common. It is not universal; the heir class sometimes ne

export both versions (assuming the original does not violate the invariant), or to hide

How useful is this technique using repeated inheritance to keep the original vers

a redefined feature? Usually you do not need it: the Precursor construct suffices. You

should use repeated inheritance when you do not just require the old versio

implementing the redefined one, but want to keep it, along with the redefined versio

one of the features of the new class.

Remember that if both are exported they must both make sense for the correspo

abstraction; in particular, they must preserve the invariant.

An advanced example

Here is an extensive example showing various aspects of repeated inheritance at w

The problem, similar in spirit to the last example, comes from an interes

discussion in the basic book on C++ [Stroustrup 1991].

Consider a class WINDOW with its display procedure and two heirs, WINDOW_

WITH_BORDER and WINDOW_WITH_MENU representing the abstractions suggest

by their names. Each redefines display so that it will first perform the standard window

display, and then display the border in the first case, and the menu cells in the seco

We may want to describe windows that have both a border and a menu; hen

use of repeated inheritance for class WINDOW_WITH_BORDER_AND_MENU.

MULTIPLE INHERITANCE §15.4558

y the

l
simply

indow
ariants
In class WINDOW_WITH_BORDER_AND_MENU we will again redefine display;
here the redefined version should apply the standard window display, then displa
border, then display the menu.

The original WINDOW class has the following form:

class WINDOW feature

display is
-- Display window (general algorithm)

do
…

end

… Other features …
end

For an heir such as WINDOW_WITH_BORDER we need to apply the origina
display and add border display. We do not need repeated inheritance here, but can
rely on the Precursor construct:

class WINDOW_WITH_BORDER inherit
WINDOW

redefine display end
feature -- Output

display is
-- Draw window and its border.

do
Precursor
draw_border

end

feature { NONE} -- Implementation

draw_border is do … end
…

end

WINDOW_WITH_
BORDER_AND_MENU

WINDOW

WINDOW_
WITH_BORDER

display

WINDOW_
WITH_MENU

W
v

§15.4 REPEATED INHERITANCE 559

n
 to
Note the addition of a procedure draw_border which displays the border. It has bee
hidden from clients (exported to NONE), since from the outside it makes no sense
display the border only. Class WINDOW_WITH_MENU is exactly symmetrical:

class WINDOW_WITH_MENU inherit

WINDOW

redefine display end

feature -- Output

display is
-- Draw window and its menu.

do

Precursor

draw_menu

end

feature { NONE} -- Implementation

draw_menu is do … end

…
end

It remains to write the common heir WINDOW_WITH_BORDER_AND_MENU
of these two classes, a repeated descendant of WINDOW. Here is a first attempt:

indexing

WARNING: "This is a first attempt — this version will not work properly!"

class WINDOW_WITH_BORDER_AND_MENU inherit

WINDOW_WITH_BORDER

redefine display end

WINDOW_WITH_MENU

redefine display end

feature

display is
-- Draw window and its border.

do
{{ WINDOW_WITH_BORDER}} Precursor

{{ WINDOW_WITH_MENU}} Precursor

end

…
end

Note the need to name the parent in each use of Precursor: each parent has a display
feature, each redefined into the same new display (otherwise we would have an invalid
name clash, of course), so in each case we must say which one we want.

MULTIPLE INHERITANCE §15.4560

rent
ly
e new

nts of

g

 this
ed
. You

Exercise E15.10,
page 568.
But, as Stroustrup notes (for a different solution), this is not correct: both pa
versions call the original WINDOW version, which will end up being called twice, possib
producing garbled output. To get a correct form, we may among other solutions let th
class inherit directly from WINDOW, making it a triple descendant of that class:

indexing
note: "This is a correct version"

class WINDOW_WITH_BORDER_AND_MENU inherit
WINDOW_WITH_BORDER

redefine
display

export { NONE}
draw_border

end
WINDOW_WITH_MENU

redefine
display

export { NONE}
draw_menu

end
WINDOW

redefine display end
feature

display is
-- Draw window and its border.

do
{{ WINDOW}} Precursor
draw_border
draw_menu

end
…

end

Note that for good measure we have made features draw_border and draw_menu
hidden in the new class, as there does not seem to be any reason for clie
WINDOW_WITH_BORDER_AND_MENU to call them directly.

In spite of its lavish use of repeated inheritance, this class does not need anyselect
since it redefines all inherited versions of display into one. This is the benefit of usin
Precursor rather than feature replication.

A good way to test your understanding of repeated inheritance is to rewrite
example without making use of the Precursor construct, that is to say by using repeat
inheritance to obtain feature replication at the level of the two intermediate classes
will, of course, need select subclauses.

§15.4 REPEATED INHERITANCE 561

tend

tely of

n:

 could
eters.
nce):

The only changes a
the additions marke
with an arrow.
In the version obtained above, there is sharing only, no replication. Let us ex
Stroustrup’s example by assuming that WINDOW also has a query id (perhaps an integer)
used to identify each window. If each window is identified at most once, then id will be
shared and we do not need to change anything. But if we want to keep track separa
instances of each window type, an instance of WINDOW_WITH_BORDER_AND_MENU
will have three separate identifiers. The new class combines sharing with replicatio

indexing
note: "More complete version with separate identifiers"

class WINDOW_WITH_BORDER_AND_MENU inherit
WINDOW_WITH_BORDER

rename
id as border_id

redefine
display

export { NONE}
draw_border

end
WINDOW_WITH_MENU

rename
id as menu_id

redefine
display

export { NONE}
draw_menu

end
WINDOW

rename
id as window_id

redefine
display

select
window_id

end
feature

…. The rest as before …
end

Note the need for selecting one of the versions of id.

Repeated inheritance and genericity

To finish this review of repeated inheritance, we must consider a specific case which
cause trouble if left unchecked. It arises for features involving formal generic param
Consider the following scheme (which could also arise with indirect repeated inherita

re
d

MULTIPLE INHERITANCE §15.4562

 occur

nt of

ding.)

ity, but
eated
ts on
class A [G] feature

f: G; …
end

class B inherit

A [INTEGER]

A [REAL]

end

In class B, the repeated inheritance rule would imply that f is shared. But this leaves
an ambiguity on its type: does it return an integer or a real? The same problem would
if f were a routine with an argument of type G.

Such an ambiguity is not acceptable. Hence the rule:

You can remove the ambiguity by renaming the offending feature at the poi
inheritance, to get duplication rather than renaming.

Rules on names

(This section only formalizes previously seen rules, and may be skipped on first rea

We have seen that name clashes are prohibited when they could cause ambigu
that some cases are valid. To finish off this presentation of multiple and rep
inheritance without leaving any ambiguity, it is useful to summarize the constrain
name clashes with a single rule:

Genericity in Repeated Inheritance rule

The type of any feature that is shared under the repeated inheritance rule, and
the type of any of its arguments if it is a routine, may not be a generic
parameter of the class from which the feature is repeatedly inherited.

Name clashes: definition and rule

In a class obtained through multiple inheritance, a name clash occurs when
two features inherited from different parents have the same final name.

A name clash makes the class invalid except in any of the following cases:

N1 •The two features are inherited from a common ancestor, and none has
been redeclared from the version in that ancestor.

N2 •Both features have compatible signatures, and at least one of them is
inherited in deferred form.

N3 •Both features have compatible signatures, and they are both redefined
in the class.

§15.5 DISCUSSION 563

nt,

e
lass
rents.
 one,

ll not
t was

hers.

ition

, of

 is
ll as
er

er.

shes.
nly two

age.
Case N1 is the sharing case under repeated inheritance.

In case N2, a feature is “inherited in deferred form” if it was deferred in the pare
or if it was effective but the class undefines it.

Cases N2 and N3 have been separated but can be merged into a single case, thjoin
case. Considering n features (n >= 2) rather than just two, these cases arise when the c
gets n features with the same name, and compatible signatures, from its various pa
The name clash is valid if we can let the inheritance join all of these features into
without any ambiguity. This means that:

• You can have any number of deferred features among the lot since they wi
cause any conflicting definitions. (As noted, a deferred feature is either one tha
already deferred, or one that the class undefines.)

• If exactly one of the features is effective, it imposes its implementation to the ot

• If two or more features are effective, the class must provide a common redefin
for all of them. (An example was the joining in WINDOW_WITH_BORDER_AND_
MENU of the display procedures of the three parents.) The redefinition will also
course, serve as effecting for any deferred feature participating in the clash.

Here then is the precise rule on the Precursor (…) construct. If a redefinition uses a
precursor version, case N3 is the only one causing ambiguity as to whose version
intended. Then you must resolve the ambiguity by writing the precursor ca
{{ PARENT}} Precursor (…) where PARENT is the name of the desired class. In all oth
cases (simple inheritance, or multiple outside of N3) naming the parent is optional.

15.5 DISCUSSION

Let us probe further the consequences of some of the decisions made in this chapt

Renaming

Any language that has multiple inheritance must deal with the problem of name cla
Since we cannot and should not require developers to change the original classes, o
conventions are possible besides the solution described in this chapter:

• Require clients to remove any ambiguity.

• Choose a default interpretation.

With the first convention, a class C inheriting two features called f, one from A and
one from B, would be accepted by the compiler, possibly with a warning mess
Nothing bad would happen unless a client of C contained something like

x: C
… x● f …

which would be invalid. The client would have to qualify the reference to f, with a notation
such as x ● f | A or x ● f | B, to specify one of the variants.

MULTIPLE INHERITANCE §15.5564

 this
e class
 uses.

ect

orting
efault
y two

 as the

estion
e in

me to

e same

f

en

w,

 same

ore

“Syntactic over-
loading”, page 93.
This solution, however, runs contrary to one of the principles emphasized in
chapter: that the inheritance structure leading to a class is a private affair between th
and its ancestors, not relevant for clients except through its influence on polymorphic
When I use service f from C, I should not need to know whether C introduced it itself or
got it from A or B.

With the second convention, x● f is valid; the underlying language mechanisms sel
one of the variants, based on some criterion such as the order in which C lists its parents;
a notation may be available for requesting another variant explicitly.

This approach has been implemented in several Lisp-based languages supp
multiple inheritance. But it is dangerous to let some underlying system choose a d
semantics. The solution is also incompatible with static typing: there is no reason wh
features with the same name in different parents should be typewise compatible.

The renaming mechanism solves these problems; it brings other benefits, such
ability to rename inherited features with names that are meaningful to clients.

O-O development and overloading

This chapter’s discussion of the role of names brings the final perspective on the qu
of in-class name overloading, complementing the preliminary observations mad
earlier chapters.

Recall that in languages such as Ada (83 and 95) you can give the same na
different features within the same syntactical unit, as in

infix "+ " (a, b: VECTOR) is …
infix "+ " (a, b: MATRIX) is …

which could both appear in the same Ada package. C++ and Java have made th
possibility available within a single class.

An earlier presentation called this facility syntactic overloading. It is a static
mechanism: to disambiguate a given call, such as x + y, it suffices to look at the types o
the arguments x and y, which are apparent from the program text.

Object technology introduces a more powerful of overloading: semantic (or
dynamic) overloading. If classes VECTOR and MATRIX both inherit a feature

infix "+ " (a: T) is …

from a common ancestor NUMERIC, and each redeclares it in the appropriate way, th
a call x + y will have a different effect depending on the dynamic type of x. (Infix features
are just a notational convenience: with a non-infix feature the call x + y would be written
something like x● plus (y).) Only at run time will the ambiguity be resolved. As we kno
this property is key to the flexibility of O-O development.

Semantic overloading is the truly interesting mechanism. It allows us to use the
name, in different classes, for variants of what is essentially the same operation — such
as addition from NUMERIC. The next chapter’s rules on assertions will make it even m
clear that a feature redeclaration must keep the same fundamental semantics.

§15.5 DISCUSSION 565

rd to
ld use
e the

 form

e

o
,
, but
 base
tions

action
hapter
l
s.) A
tering
.

 On
olds
g the
g, this

t of
l, in

eally
r
 string
by any
ecially

nted
actic
s and
ation

se

“Multiple creation
and overloading”,
page 239.
Does this leave a role for syntactic overloading in object technology? It is ha
find any. One can understand why Ada 83, which does not have classes, shou
syntactic overloading. But in an object-oriented language, to let developers choos
same name for two different operations is to create the possibility of confusion.

The problem is that the syntactic form of overloading clashes with the semantic
provided by polymorphism and dynamic binding. Consider a call x● f (a). If it follows the
possibly polymorphic assignments x := y and a := b, the result is exactly the same, in th
absence of renaming, as that of y● f (b), even if y and b have other types than x and a. But
with overloading this property is not true any more! f may be the overloaded name of tw
features, one for the type of a and one for the type of b. Which rule takes precedence
syntactic overloading or the O-O concept of dynamic binding? (Probably the former
not until it has fooled a few developers, novice or not.) To make things worse, the
class of y’s type may redefine either or both of the overloaded features. The combina
are endless; so are the sources of confusion and error.

What we are witnessing here is the unpleasant consequences of the inter
between two separate language traits. (A language addition, as noted earlier in this c
on another topic, should whenever possible solve new problems beyond its origina
purpose — not create new problems through its interaction with other mechanism
prudent language designer, having toyed with a possible new facility, and encoun
such incompatibilities with more important properties of the design, quickly retreats

What, against these risks, is the potential benefit of syntactic overloading?
careful examination it seems dubious to start with. A simple principle of readability h
that within the same module a reader should have absolutely no hesitation makin
connection between a name and the meaning of that name; with in-class overloadin
property collapses.

A typical example — sometimes mentioned in favor of overloading — is tha
features of a STRING class. To append another string or a single character you wil
the absence of overloading, use different feature names, as in s1● add_string(s2) and
s1● add_character ('A'), or perhaps, using infix operators, s := s1 ++ s2 and s := s1 + 'A'.
With overloading, you can use a single name for both operations. But is this r
desirable? Objects of types CHARACTER and STRING have quite different properties; fo
example appending a character will always increase the length by 1; appending a
may leave the length unchanged (if the appended string was empty) or increase it
amount. It seems not only reasonable but desirable to use different names — esp
since the confusions cited above are definitely possible (assume that CHARACTER
inherits from STRING and that another descendant redefines add_string but not add_
character.)

Finally, we have already encountered the observation that even if we wa
overloading we would in general need a different disambiguating criterion. Synt
overloading distinguishes competing routines by looking at their signatures (number
types of arguments); but this is often not significant. The typical example was the cre
procedures for points, or complex numbers: make_cartesian and make_polar both take
two arguments of type REAL — to mean completely different things. You cannot u

MULTIPLE INHERITANCE §15.6566

es are
 life to

d

ntext
ers of
 cases
.) In a
le —
, every

ject
is is

rents

 for
ries.

g.

y for

an be
 from

ultiple
s.

single

amic

ature

 by
overloading here! The routines’ signatures are irrelevant. To express that two featur
different, we should use the obvious technique, the same that we apply in everyday
express that two things or concepts are different: give them different names.

For creation operations (“constructors”) such as make_cartesian and make_polar the
Java and C++ solution is particularly ironic: you may not give them different names but
are forced to rely on overloading, using the class name. I have been unable to find a goo
solution to this problem other than adding an artificial third argument.

In summary: syntactic (in-class) overloading appears in an object-oriented co
to create many problems for no visible benefit. (Some methodological advice to us
languages such as C++, Java and Ada 95: do not use this facility at all, except for
such as multiple constructor functions in which the language leaves no other choice
consistent and productive application of object technology we should stick to the ru
simple, easy to teach, easy to apply and easy to remember — that, within a class
feature has a name and every feature name denotes one feature.

15.6 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

• The construction-box approach to software construction favored by ob
technology requires the ability to combine several abstractions into one. Th
achieved by multiple inheritance.

• In the simplest and most common cases of multiple inheritance, the two pa
represent disjoint abstractions.

• Multiple inheritance is frequently needed, both for system modeling and
everyday software development, in particular the construction of reusable libra

• Name clashes under multiple inheritance should be removed through renamin

• Renaming also serves to provide classes with locally adapted terminolog
inherited features.

• Features should be distinguished from feature names. The same feature c
known under different names in different classes. A class defines a mapping
feature names to features.

• Repeated inheritance, an advanced technique, arises as a result of m
inheritance when a class is a descendant of another through two or more path

• Under repeated inheritance, a feature from the common ancestor yields a
feature if it is inherited under a single name, separate features otherwise.

• Competing versions from a common ancestor must be disambiguated, for dyn
binding, through a select subclause.

• The replication mechanism of repeated inheritance should not replicate any fe
involving generic parameters.

• In an object-oriented framework, the semantic form of overloading provided
dynamic binding is more useful than syntactic overloading.

§15.7 BIBLIOGRAPHICAL NOTES 567

tation
d the
nce.

w

he

igure.

s,

help.).

ts
s of

Exercise E15.8,
page 568.

See also “Itera-
tors”, page 848.
15.7 BIBLIOGRAPHICAL NOTES

The renaming mechanism and the repeated inheritance rules originated with the no
of this book. The undefinition mechanism is an invention of Michael Schweitzer, an
selection mechanism an invention of John Potter, both in unpublished corresponde

The walking menu example comes from [M 1988c].

EXERCISES

E15.1 Windows as trees

Class WINDOW inherits from TREE [WINDOW]. Explain the generic parameter. Sho
that it yields an interesting clause in the class invariant.

E15.2 Is a window a string?

A window has an associated text, described by an attribute text of type STRING. Rather
than having this attribute, should WINDOW be declared as an heir to STRING?

E15.3 Doing windows fully

Complete the design of the WINDOW class, showing exactly what is needed from t
underlying terminal handling mechanism.

E15.4 Figure iterators

The presentation of class COMPOSITE_FIGURE mentioned the possibility of using
iterator classes for all operations that perform a certain operation on a composite f
Develop the corresponding iterator classes. (Hint : [M 1994a] presents library iterator
classes which provide the basic pattern.)

E15.5 Linked stacks

Write the class LINKED_STACK which describes a linked list implementation of stack
as an heir to both STACK and LINKED_LIST.

E15.6 Circular lists and chains

Explain why the LIST class may not be used for circular lists. (Hint : a look at the
assertions, benefiting from the discussion at the beginning of the next chapter, may
Define a class CHAIN that can be used as parent both to LIST and to a new class
CIRCULAR describing circular lists. Update LIST and if necessary its descendan
accordingly. Complete the class structure to provide for various implementation
circular lists.

MULTIPLE INHERITANCE §E15.7568

 of the

sed in

t entry

the

ng an
 Sun’s

ry,

e
to the

Walking
menus

(The last entry of the
submenu, Demos,
denotes in turn a
submenu.)
E15.7 Trees

One way to look at a tree is to see it as a recursive structure: a list of trees. Instead
technique described in this chapter, where TREE is defined as heir to both LINKED_LIST
and LINKABLE, it seems possible to define

class TREE [G] inherit
LIST [TREE [G]]

feature … end

Can you expand this definition into a usable class? Compare it with the method u
the discussion of this chapter.

E15.8 Walking menus

Window systems offer a notion of menu, which we can cover through a class MENU, with
a query giving the list of entries and commands to display the menu, move to the nex
etc. Since menus are made of entries we also need a class MENU_ENTRY with queries
such as parent_menu and operation (the operation to execute when a user selects
entry), and commands such as execute (which executes operation).

Many systems offer cascading menus, also called “walking menus”, where selecti
entry causes the display of a submenu. The figure illustrates a walking menu under
Open Windows manager, where selecting the entry Programs brings up a submenu:

Show how to define the class SUBMENU. (Hint : a submenu is a menu and a menu ent
whose operation must display the submenu.)

Could this notion be described elegantly in a language with no multiple inheritance?

E15.9 The flat precursor

What should the flat form of a class show for an instruction using the Precursor construct?

E15.10 Repeated inheritance for replication

Write the WINDOW_WITH_BORDER_AND_MENU class without recourse to th
Precursor construct, using replication under repeated inheritance to gain access
parent version of a redefined feature. Make sure to use the proper select subclauses and to
give each feature its proper export status.

	15 15 Multiple inheritance
	15.1 EXAMPLES OF MULTIPLE INHERITANCE
	What not to use as an introductory example
	A case of multiple inheritanceº
	º that is a case of repeated inheritance

	Can an airplane be an asset?
	Company planes

	Numeric and comparable values
	Windows are trees and rectangles
	Multiple structure inheritance
	Windows and subwindows

	Trees are lists and list elements
	A tree of integers
	Definition: tree

	Composite figures
	Elementary figures
	A composite figure
	A composite figure is a figure and a list of figur...

	The marriage of convenience
	A marriage of convenience

	Structure inheritance
	Facility inheritance
	Buttonholes
	Pick-and- throw

	An assessment

	15.2 FEATURE RENAMING
	Name clashes
	Effects of renaming
	A name clash, removed

	Renaming and redeclaration
	Local name adaptation
	The game of the name
	Using a parent’s creation procedure

	15.3 FLATTENING THE STRUCTURE
	The flat form
	Displaying a flat form

	Uses of the flat form
	The flat-short form

	15.4 REPEATED INHERITANCE
	Sharing ancestors
	Repeated inheritance

	Intercontinental drivers
	Sharing and replication
	Kinds of driver
	Repeated Inheritance rule
	Sharing and replication
	Attribute replication

	Unobtrusive repeated inheritance
	Redundant inheritance

	The renaming rule
	Definition: final name
	Single Name rule

	Conflicting redefinitions
	Redefinition causing potential ambiguity

	Conflicts under sharing: undefinition and join
	Two parents with features to be merged

	Conflicts under replication: selection
	The need for selection
	Select rule

	Selecting everything
	Keeping the original version of a redefined featur...
	An advanced example
	Window variants

	Repeated inheritance and genericity
	Genericity in Repeated Inheritance rule

	Rules on names
	Name clashes: definition and rule

	15.5 DISCUSSION
	Renaming
	O-O development and overloading

	15.6 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
	15.7 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E15.1 Windows as trees
	E15.2 Is a window a string?
	E15.3 Doing windows fully
	E15.4 Figure iterators
	E15.5 Linked stacks
	E15.6 Circular lists and chains
	E15.7 Trees
	E15.8 Walking menus
	Walking menus

	E15.9 The flat precursor
	E15.10 Repeated inheritance for replication

