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systems, the types of all objects that they will manipulate at run time. This rule, know
static typing — a notion defined precisely in the next sections — makes our softwa

• More reliable, by enabling compilers and other tools to suppress discrepan
before they have had time to cause damage.

• More readable, by providing precious information to authors of client system
future maintainers of our own software, and other readers.

• More efficient, since this information helps a good compiler generate better cod

Although the typing issue has been extensively discussed in non-O-O context
static typing applied to many non-O-O languages, the concepts are particularly cle
relevant in object technology since the approach as a whole is largely based on the
type, merged with the idea of module to yield the basic O-O construct, the class.

The desire to provide static typing has been a major influence on the mecha
discussed in earlier chapters. Here we need to take a comprehensive look at typi
devise solutions to the remaining difficulties raised by this concept.

17.1  THE TYPING PROBLEM

One nice thing can be said about the typing issue in object-oriented software constru
it may not be an easy problem, but it is a simple problem — simple, that is, to state.

The Basic Construct

The problem’s simplicity comes from the simplicity of the object-oriented mode
computation. If we put aside some of the details, only one kind of event ever occurs d
the execution of an object-oriented system: feature call, of the general form

x ● f (arg)

which executes on the object attached to x the operation f, using the argument arg, with
the understanding that in some cases arg stands for several arguments, or no argumen
all. Smalltalk programmers would say “pass to the object x the message f with argument
arg”, and use another syntax, but those are differences of style, not substance.

That everything relies on this Basic Construct accounts in part for the general fe
of beauty that object-oriented ideas arouse in many people.
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From the Basic Construct follows the basic kind of abnormal event that might o
at execution time:

The typing problem is the need to avoid such events:

The key word is when. If the feature or arguments do not match, you will find o
sooner or later: applying the feature “raise salary” to an instance of SUBMARINE or “fire
the torpedoes” to an instance of EMPLOYEE will not work; somehow the execution wil
fail. But you may prefer to find out sooner rather than later.

Static and dynamic typing

Although intermediate variants are possible, two main approaches present themsel

• Dynamic typing: wait until the last possible moment, the execution of each call.

• Static typing: rely on a set of rules that determine, from the text of a system, whe
its executions may cause type violations. Only execute systems for which the
guarantee that no violation will ever occur.

The names are easy to explain: with dynamic typing, type verification occu
execution time (dynamically); with static typing, it is performed on the text of the softw
(statically, that is to say before any execution).

The terms “typed” and “untyped” are sometimes used for “statically typed” and
“dynamically typed”. To avoid any confusion we will stick to the full names.

Static typing is only interesting if the rules can be checked automatically. S
software texts are usually processed by a compiler before being executed, it is conv
to have the compiler, rather than a separate tool, take care of these checks. The re
discussion will indeed assume for simplicity that the compiler and the type checker a
same tool. This assumption yields a simple definition:

Definition: type violation

A run-time type violation (or just type violation for short) occurs in the
execution of a call x ● f (arg), where x is attached to an object OBJ, if either:

V1 • There is no feature corresponding to f and applicable to OBJ.

V2 • There is such a feature, but arg is not an acceptable argument for it.

Object-oriented typing problem

When do we know whether the execution of an object-oriented system may
produce a type violation?

Definition: statically typed language
An object-oriented language is statically typed if it is equipped with a set of
consistency rules, enforceable by compilers, whose observance by a system
text guarantees that no execution of the system can cause a type violation.
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rule, page 474. 

Feature Call rule, 
page 473.
In the literature you will encounter the term “strong typing”. It corresponds to the
all-or-nothing nature of this definition, which demands rules that guarantee the abse
type violations. Weak forms of static typing, whose rules eliminate certain type violatio
but not all, are also possible, and some O-O languages are indeed weakly-statically
in this sense. We shall strive, however, for the strongest possible form.

Some authors also talk about strong forms of dynamic typing. But this is a contradiction.

In a dynamically typed language (also known as an “untyped” language), ther
no type declarations; entities simply become associated with whatever value
execution of the software attaches to them. No static type checking is possible.

Typing rules

Our object-oriented notation is statically typed. Its type rules have been introduc
earlier chapters; they boil down to three simple constraints:

• Every entity or function must be declared as being of a certain type, a
acc: ACCOUNT; every routine declares zero or more formal arguments, with a t
for each, as in put (x: G; i: INTEGER).

• In any assignment x := y, and in any routine call using y as the actual argument fo
the formal argument x, the type of the source y must conform to the type of the targe
x. The definition of conformance is based on inheritance — B conforms to A if it is
a descendant of A — complemented by rules for generic parameters.

• In a call of the form x ● f (arg), f must be a feature of the base class of x’s type, and
must be available to the class in which the call appears.

Realism

Although the definition of “statically typed language” is precise, it also highlights the n
for informal criteria in devising type rules. Consider the following two extreme cases

• An all-valid language in which every syntactically correct system is also typewis
valid, with no need for type rules. Such languages are possible (imagine for exa
a small notation for Polish-style additions and subtractions with intege
unfortunately, as readers familiar with the theory of computation will know,
useful general-purpose language can meet that criterion.

• An all-invalid language, easy to devise: just take any existing language and a
type rule that makes any system invalid! This makes the language typed accord
to the definition: since no system passes the rules, no system that passes the ru
cause a type violation.

We may say that an all-valid language is usable, but not useful for general-purpose
development; an all-invalid language may be useful, but it is not usable.

What we need in practice is a type system that makes the language both usef
usable: powerful enough to express the computations we need; convenient enough
force us into undue complications to satisfy the type rules.
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We will say that a language is realistic if it is both useful and usable. Unlike th
definition of static typing, which always yields an indisputable answer to the questioIs
language X statically typed?”, the definition of realism is partly subjective; reasonab
people may disagree on whether a language, equipped with certain type rules, is still
and usable.

In this chapter we will check that the typed notation defined in the preceding cha
is realistic.

Pessimism

In discussing approaches to O-O typing we should keep in mind another general pr
of static typing: it is always, by nature, a pessimistic policy. Trying to guarantee thno
computation shall ever fail, you disallow some computations that might succeed.

To see this, consider a trivial non-O-O language, Pascal-like, with distinct t
INTEGER and REAL. With the declaration n: INTEGER, the assignment n := r will be
rejected as violating the type rules. So all the following will be considered type-inv
and rejected by the compiler:

n := 0.0 [A]

n := 1.0 [B]

n := —3.67 [C]

n := 3.67 — 3.67 [D]

Of these invalid operations, [A], if permitted to execute, would always work s
any number system will provide an exact representation for the floating-point numbe
which can be transformed unambiguously to the integer 0. [B] would almost cert
work too. [C] is ambiguous (do we want the rounded version, the truncated version 
number?) But [D] would work. So would

if n ^ 2 < 0 then n := 3.67 end [E]

because the assignment will never be executed (n ^ 2 denotes the square of n). If we
replace n ̂  2 by just n, where n is read from user input just before the test, some execut
would work (those for which n is non-negative), others would not. Assigning to n a very
large real number, not representable as an integer, would not work. 

In a typed language, all these examples — those which would always work, 
which would never work, and those which would work some of the time — are eq
and mercilessly considered violations of the type rules, and any compiler will reject t

The question then is not whether to be pessimistic but how pessimistic we can afford
to be. We are back to the realism requirement: if the type rules are so pessimistic as
us from expressing in a simple way the computations that we need, we will reject them
if they achieve type safety with little loss of expressive power, we will accept them and
enjoy the benefits. For example making n := r invalid turns out to be good news if th
environment provides functions such as round and truncate, enabling you to convert a rea
into an integer in exactly the way you want, without the ambiguity of an implicit conversion.
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17.2  STATIC TYPING: WHY AND HOW

Although the advantages of static typing seem obvious, it is necessary to review the
of the debate.

The benefits

The reasons for using a statically typed form of object technology were listed at the
beginning of this chapter: reliability, readability and efficiency.

The reliability  value comes from the use of static typing to detect errors that w
otherwise manifest themselves only at run time, and only in certain runs. The rule
forces you to declare entities and functions — the first of our three type rules abo
introduces redundancy into the software text; this enables the compiler, through the
two rules, to detect inconsistencies between the purpose and actual use of an entity,
or expression.

Catching errors early is essential, as correction cost grows quickly with the dete
delay. This property, intuitively clear to all software professionals, is confirm
quantitatively, for specification errors, by Boehm’s well-known studies, plotting the 
of correcting an error against the time at which it is found (base 1 if found at requirem
time), for both a set of large industrial projects and a controlled small project experim

The readability  benefit is also appreciable. As the examples appearing throug
this book should show convincingly, declaring every entity and function with a ce
type is a powerful way of conveying to the software reader some information abo
intended uses. This is particularly precious for maintainers of the software.

If readability were not part of the goal we might be able to obtain some of the other
benefits of typing without explicit declarations. It is possible indeed, under certain
conditions, to use an implicit form of typing in which the compiler, instead of requiring
software authors to declare entity types, attempts to determine the type of each entity
automatically from its uses. This is known as type inference. But from a software
engineering perspective explicit declarations are a help, not a penalty; types should be
clear not just to the compiler but to the human reader.
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For more details on 
the implementation 
techniques discussed 
in this section see 
“Dynamic binding 
and efficiency”, page 
508. On Self, see the 
bibliographical notes.

“COMPOSITE 
OBJECTS AND 
EXPANDED TYPES”,
8.7, page 254.

“Limits to polymor-
phism”, page 474.
Finally, the efficiency benefit can make the difference between success and fa
of object technology in practice. Without static typing, the execution of x ● f (arg) can take
an arbitrary long time: as we saw in the discussion of inheritance, the basic algorithm
for a feature f in the base class C of x’s type; if it does not find it, it looks in C’s parents,
and so on. This is a fatal source of inefficiency. It can be mitigated by improvemen
the basic algorithm, and the authors of the Self language have done extensive w
enable better code generation for a dynamically typed language. But it is through
typing that O-O software has been able to approach or equal the efficiency of tradi
software.

The key idea was explained in the earlier discussion. When the compiler gen
the code for x ● f (arg), it knows the type of x. Because of polymorphism, this is no
necessarily the type of the attached run-time object OBJ, and so does not uniquely
determine the proper version of f. But the declaration restricts the set of possible typ
enabling the compiler to generate tables providing run-time access to the righf at
minimum — and constant-bounded — expense. Further optimizations of static binding
and inlining, also facilitated by typing, eliminate the expense altogether in applicable cas

Arguments for dynamic typing

In spite of these benefits of static typing, dynamic typing keeps its supporters, fou
particular in the Smalltalk community. Their argument mainly follows from the real
issue cited above: they contend that static typing is too constraining, preventin
unfettered expression of software ideas. Terms such as “stranglehold” and “chastity
are often heard in such discussions.

This argument can be correct, but only for a statically typed language that m
some important facilities. It is indeed remarkable that all the type-related con
introduced in preceding chapters are necessary; remove any of them, and the straitjacket
comment becomes valid in at least some cases. But by including them all we o
enough flexibility to make static typing both practical and pleasurable.

The ingredients of successful typing

Let us review the mechanisms which permit realistic static typing. They have all 
introduced in earlier chapters, so that we only need a brief reminder for each; listing
all together shows the consistency and power of their combination.

Our type system is entirely based on the notion of class. Even basic types such a
INTEGER are defined by classes. So we do not need special rules for predefined 
(Here the notation departs from “hybrid” languages such as Object Pascal, Java an
which retain the type system of an older language along with the class-based sys
object technology.)

Expanded types give us more flexibility by allowing types whose values deno
objects along with types whose values denote object references.

Crucial flexibility is afforded by inheritance and the associated notion o
conformance. This addresses the major limitation of traditional typed languages suc
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GENERICITY”, 
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“ASSIGNMENT 
ATTEMPT”, 16.5, 
page 591.

Chapter 11.
Pascal and Ada, where an assignment x := y requires the types of x and y to be identical.
This rule is too strict: it prevents you from using an entity that may denote objec
various related types, such as a SAVINGS_ACCOUNT and a CHECKING_ACCOUNT.
With inheritance, all we require is that the type of y conform to the type of x; this is the
case if x is of type ACCOUNT, y of type SAVINGS_ACCOUNT, and the latter class is a
descendant of the former.

To be practical, a statically typed language requires its inheritance scheme to su
multiple inheritance. A principal part of common objections against static typing is t
it prevents you from looking at objects in different ways. For example an object of 
DOCUMENT might need to be transmitted over a network, and so will need the fea
associated with objects of type MESSAGE. But this is only a problem with a language th
is restricted to single inheritance; with multiple inheritance you can introduce as m
viewpoints as you need.

We also need genericity, to define flexible yet type-safe container data structur
For example a list class will be defined as class LIST [G] … Without this mechanism,
static typing would force us to declare a different class for each type of list element 
obviously unsustainable solution.

Genericity needs in some cases to be constrained, allowing us to apply certain
operations to entities of a generic type. For example if a generic class SORTABLE_LIST
has a sort operation, it requires a comparison operation on entities of type G, the generic
parameter. This is achieved by associating with G a generic constraint COMPARABLE:

class SORTABLE_LIST [G –> COMPARABLE] …

meaning that any actual generic parameter used for SORTABLE_LIST must be a
descendant of class COMPARABLE, which has the required comparison features.

Another indispensable mechanism is assignment attempt, to access objects whos
type the software does not control. If y denotes an object obtained from a database o
network, you cannot be sure it has the expected type; the assignment attempt x ?= y will
assign to x the value of y if it is of a compatible type, but otherwise will make x void.
Without assignment attempt we could not abide by the type rules in such cases.

Assertions — associated, as part of the idea of Design by Contract, with classes
features in the form of preconditions, postconditions and class invariants — allow y
describe semantic constraints which cannot be captured by type specifications. Alth
with the “interval types” of such languages as Pascal and Ada you can declar

MESSAGE

MAILABLE_DOCUMENT

DOCUMENT
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“ANCHORED 
DECLARATION”, 
16.7, page 599.
example, that a certain entity takes its values between 10 and 20, no type mechani
enable you to state that i must be either in that interval or negative, and always twice
much as j. Here class invariants come to the rescue, by letting you specify exactly 
you need, however sophisticated the constraint.

Anchored declarations are essential in practice to avoid redeclaration avalanc
By declaring y: like x you make sure that y will follow any redeclaration of the type of x
in a descendant. Without this mechanism developers would be endlessly redec
routines for type purposes only.

Anchored declarations are a specific case of our last required language mech
covariance, which will be discussed in more detail later in this chapter.

A practical property of the environment is also essential: fast incremental
recompilation. When you write a system or (more commonly) modify an existing syst
you will want to see the effect soon. With static typing you must first let the compile
typecheck the system. Traditional compiling techniques require recompiling the w
system (and going through a linking process); the time may be painfully long, especia
for a proportionally small change to a large system. This phenomenon has been a ma
contrario argument for interpreted approaches, such as those of early Lisp and Small
environments, which execute systems with no or little processing, hence no type che
But modern compiler technology removes this argument. A good compiler will de
what has changed since the last compilation, and reprocess only that part, keep
recompilation time small — and proportional to the size of the change, not of the sy

The Melting Ice Technology described in the last chapter of this book achieves this goal,
typically permitting recompilation in a matter of seconds after a small change even to a
large system.

“A little bit typed”?

It was noted above that we should aim for a strong form of static typing. This means tha
we should avoid any loopholes in the static requirements — or, if any such loop
remain, identify them clearly, if possible providing tools to flag any software using th

The most common loophole, in languages that are otherwise statically typed, 
presence of conversions that disguise the type of an entity. In C and its deriva
conversions are called “casts” and follow a simple syntax: (OTHER_TYPE) x denotes the
value of x presented to the compiler as if it were of type OTHER_TYPE; there are few
limitations on what that type may be, regardless of x’s actual type.

Such mechanisms evade the constraints of type checking; casting is ind
pervasive feature of C programming, including in the ANSI C variant (which is “mo
typed than its precursor, the so-called Kernighan and Ritchie version). Even in 
examination of published software shows that casts, although less frequent, rem
accepted and possibly indispensable occasional practice.
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It seems difficult to accept claims of static typing if at any stage the develope
eschew the type rules through casts. Accordingly, the rest of this chapter will assum
the type system is strict and allows no casts.

You may have noted that assignment attempts, mentioned above as an essentia
component of a realistic type system, superficially resemble casts. But there is a
fundamental difference: an assignment attempt does not blindly force a different type; it
tries a candidate type, and enables the software to check whether the object actually
matches that type. This is safe, and indispensable in some circumstances. The C++
literature sometimes includes assignment attempts (“downcasts”) in its definition of
casts; clearly, the above prohibition of casts only covers the harmful variant, and does no
extend to assignment attempts.

Typing and binding: avoiding the confusion

Although as a reader of this book you will have no difficulty distinguishing static typ
from static binding, you may meet people who confuse the two notions. This may be
in part to the influence of Smalltalk, whose advocacy of a dynamic approach to 
typing and binding may leave the inattentive observer with the incorrect impression
the answer to both questions must be the same. (The analysis developed in thi
suggests that to achieve reliability and flexibility it is preferable to combine dyna
binding with static typing.) Let us carefully compare the two concepts.

Both have to do with the semantics of the Basic Construct x ● f (arg); they cover the
two separate questions that it raises:

Typing addresses the existence of at least one operation; binding addresses th
choice of the right one among these operations, if there is more than one candidate.

In object technology:

• The typing question follows from polymorphism: since x may denote run-time
objects of several possible types, we must make sure that an operation repres
f is available in all cases.

• The binding question follows from redeclaration: since a class can change a
inherited feature — as with RECTANGLE redefining perimeter inherited from
POLYGON — there may be two or more operations all vying to be the o
representing f for a particular call.

Both answers can be dynamic, meaning at execution time, or static, meaning b
execution. All four possibilities appear in actual languages:

Typing and binding

• Typing question: When do we know for sure that at run time there will
be an operation corresponding to f and applicable to the object attached to
x (with the argument arg)? 

• Binding question: Which operation will the call execute? 
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discussed in “The 
C++ approach to 
binding”, page 514.

Kinds of flying 
object
• Some non-O-O languages, such as Pascal and Ada, have both static typing an
binding. In these languages each entity represents objects of only one type, sp
statically; the approach yields reliability at the expense of flexibility.

• Smalltalk and other O-O languages influenced by it have dynamic binding
dynamic typing. This is the reverse choice: favoring flexibility at the expens
reliability enforcement.

• Some non-O-O languages are untyped (really meaning, as we have 
dynamically typed) and statically bound. They include assembly languages
some scripting languages.

• The notation developed in this book supports static typing and dynamic bindin

Note the peculiarity of C++ which supports static typing (although in a non-str
form because of the presence of casts) and, for binding, a static policy by default,
permitting dynamic binding at the price of explicit virtual  declarations.

The reason choosing static typing and dynamic binding is clear. To the first que
“when do we know we have a feature?”, the most attractive answer for reliable sof
engineering is the static one: “at the earliest possible time” — compilation time, to catch
errors before they catch you. To the second question, “what feature do we use?”, th
attractive answer is the dynamic one: “the right feature” — the feature directly adapted to
the object’s type. As discussed in detail in the presentation of inheritance, this is th
acceptable solution unless static and dynamic binding have the same effect.

The following fictitious inheritance hierarchy helps make these notions more vivid.

For a call of the form

my_aircraft● lower_ landing_gear

AIRCRAFT

PLANE
COPTER

BOEING AIRBUS

B_737

B_747

B_747_400

A_320

*

*

*

lower_landing_gear+

lower_landing_gear*

lower_landing_gear++

*  deferred
+ effected
++ redefined

*
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16.7, page 599.
the typing question is when to ascertain that there will be a feature lower_ landing_gear
applicable to the object (for a COPTER there would not be any); the binding question 
which version to choose (since we have several versions, as shown).

Static binding would mean that we disregard the object type and believe the 
declaration, leading us for example to apply to a Boeing 747-400 the version of a fe
such as lower_landing_gear, that has been defined for the standard Boeing 747 pla
instead of the version specially redefined for the 747-400 variant; this is clearly wro
the object is of the latter type. Dynamic binding will apply the operation that the ob
demands, based on its type; this is the right approach.

With static typing we will refuse the call at compile time unless we can guara
that whatever happens to my_aircraft at run time the type of the attached object will b
equipped with a feature corresponding to lower_landing_gear. The basic technique for
obtaining this guarantee is simple: since we must declare my_aircraft, we require that its
type’s base class include such a feature. This means that the declared type can
AIRCRAFT since there is no lower_landing_gear at that level; helicopters, for example
have no landing gears, for the purpose of this example at least. With such a declarat
compiler would reject our software with no possibility of appeal. But if we declare
entity as being of type PLANE, which has the required feature, all is well.

Smalltalk-style ynamic typing would mean waiting until execution to find out if th
is an applicable feature; acceptable perhaps for prototypes and experimental softwa
not for production systems. Run time is a little late to ask whether you have a landing gear.

17.3  COVARIANCE AND DESCENDANT HIDING

In a simple world a discussion of typing would stop here: we have defined the goal
advantages of static typing; examined the constraints that a realistic type system
meet; and reviewed the typing techniques of the object-oriented framework develop
the preceding chapters, checking that they satisfy the stated criteria.

The world is not simple. The combination of static typing with some of the softw
engineering requirements of object technology makes the issues more difficult than
appear at first. Two techniques raise difficulties: covariance, the change of argument
in redefinitions; and descendant hiding, the ability for a class to restrict the export s
of an inherited feature.

Covariance

The principal problem is what happens to arguments when we redefine a feature’s
We have encountered several cases already: devices and printers, linkable and bi-l
elements, points and their conjugates.

To understand the general nature of the issue let us use a fresh example. Bein
technical, it carries the usual risks of metaphors; but the closeness to software sche
obvious, and we will frequently come back to actual software examples.

”
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Kinds of skier
The example involves a high-school ski team preparing for a trip to a minor-le
championship, and the team members’ concerned parents. For brevity and simpl
uses the class names GIRL as an abbreviation for “member of the girls’ ski team” and BOY
as an abbreviation for “member of the boys’ ski team”. Some skiers on each tea
ranked, that is to say have already recorded good results in earlier championships. 
an important notion: ranked skiers will start first in a slalom, thus gaining a conside
advantage over the others since a slalom run is much harder to negotiate after too
competitors have already worked it. (This rule that ranked skiers go first is a w
privilege the already privileged, and may be the reason why skiing exerts su
fascination over many people: that it serves as an apt metaphor for life itself.) We g
new classes, RANKED_GIRL and RANKED_BOY.

Some rooms are reserved for boys only, girls only, ranked girls only; we may 
class hierarchy parallel to the one above: ROOM, GIRL_ROOM, RANKED_GIRL_ROOM
etc. The discussion will omit RANKED_BOY which is parallel to RANKED_GIRL.

Here is an outline of class SKIER:

class SKIER feature

roommate: SKIER

-- This skier’s roommate

share (other: SKIER) is

-- Choose other as roommate.

require

other /= Void

do

roommate := other

end

… Other possible features omitted in this class and the following ones …
end -- class SKIER

We have two features of interest: the attribute roommate; and the procedure share,
which assigns a certain skier as roommate to the current skier, as in

BOY

SKIER

GIRL

RANKED_BOYRANKED_GIRL
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s1, s2: SKIER

…

s1● share (s2)

Rather than SKIER, you may have thought of using for other the anchored type
like roommate (or like Current for both roommate and other). If so, you are most likely
right, but let us forget for a while that we know about anchored types: this will enab
to understand the covariance problem in its bare form; anchored types will soon come

How does type redefinition get into the picture? Assume the rules require gir
share rooms only with girls, and ranked girls only with other ranked girls. We will rede
the type of feature roommate, as shown below (in this class text and the next, the redefi
elements appear underlined).

class GIRL inherit

SKIER

redefine roommate end

feature

roommate: GIRL

-- This skier’s roommate.

end -- class GIRL

We should correspondingly redefine the argument to procedure share, so that a more
complete version of the class text is:

class GIRL inherit

SKIER

redefine roommate, share end

feature

roommate: GIRL

-- This skier’s roommate.

share (other: GIRL) is

-- Choose other as roommate.

require

other /= Void

do

roommate := other

end

end -- class GIRL



TYPING §17.3624

riving

result
one.

 result

. Our

e

od’s

ice,
ype of
ng
uiring

Skier 
hierarchy and 
redefinitions

Type Redeclaration 
rule, page 599.

“Type inconsisten-
cies”, page 599.

Figure “Parallel hier-
archies”, page 598.
All proper descendants must be adapted in this way (remember, we are dep
ourselves from anchored types for the moment). The general picture is this:

Since inheritance is specialization, the type rules require that if we redefine the 
of a feature, here roommate, the new type must always be a descendant of the original 
This also applies to the redefined type for the argument other of routine share. This policy,
as we know, is called covariance, where the “co” indicates that the argument and
vary together; the reverse policy is termed contravariance.

Covariance is, according to all available evidence, what we need in practice
earlier software examples illustrate this clearly:

• A LINKABLE list element may be chained to any other linkable; a BI_LINKABLE
must be chained to another BI_LINKABLE. So the argument of procedure put_right
should be redefined covariantly.

• In the same example, any routine of LINKED_LIST that uses an argument of typ
LINKABLE will most likely need it to be of type BI_LINKABLE in TWO_WAY_
LIST.

• Procedure set_alternate takes a DEVICE argument in class DEVICE, a PRINTER
argument in class PRINTER.

Covariant redefinition is particularly common because of the O-O meth
emphasis on information hiding, which leads to procedures of the form

set_attrib (v: SOME_TYPE) is
-- Set attrib to v.

…
with attrib of type SOME_TYPE; such procedures are naturally covariant (and in pract
as we know, will usually rely on anchored types) since any class that changes the t
attrib will need to redefine set_attrib’s argument in the same way. The precedi
examples mostly belonged to this scheme, but it is by no means the only one req
covariance. Think for example of a procedure or function for concatenating a LINKED_
LIST to another: its argument will have to be redefined as a two-way-list in TWO_WAY_
LIST. The general addition operation, infix "+ " , takes a NUMERIC argument in

roommate: SKIER
share (other: SKIER)

roommate++

share++

roommate++

share++

roommate++

share++

BOY

SKIER

GIRL

RANKED_GIRL ++  Redefined
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NUMERIC, a REAL argument in REAL, an INTEGER argument in INTEGER. In the
parallel hierarchies

procedure start, which starts a phone service, may need an argument of type ADDRESS
representing the billing address; for a corporate account you will need a corporate addres

What about a contravariant solution? In the skier example, contravariance w
mean that if we go to class RANKED_GIRL, where the result of roommate is redefined to
be of type RANKED_GIRL, we may for the argument of routine share use type GIRL, or

SKIER of the most general kind. One type that is not permitted under contravariance i
RANKED_GIRL! Enough to justify the parents’ worst fears.

Parallel hierarchies

To leave no stone unturned, it is useful to consider a variant of the SKIER example with

two parallel hierarchies, rather than just one. This will model the situation evidenc

software examples  already cited: TWO_WAY_LIST → LINKED_LIST parallel to

BI_LINKABLE → LINKABLE, or the PHONE_SERVICE hierarchy. Just assume that w

have a ROOM hierarchy with descendants such as GIRL_ROOM (BOY variants omitted):

Then instead of roommate and share, the skier classes will have feature

accommodation and accommodate:

PHONE_
SERVICE

ADDRESS

CORPORATE_
ADDRESS

CORPORATE_
SERVICE

start

SKIER1 ROOM

GIRL_ROOMGIRL1

RANKED_
GIRL_ROOM

RANKED_
GIRL1

accommodate++

accommodate++

accommodate accommodation

accommodation++

accommodation++
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description: "New variant with parallel hierarchies"

class SKIER1 feature

accommodation: ROOM

accommodate (r: ROOM) is … require … do
roommate := other

end
end -- class SKIER1

Here too we need covariant redefinition: in class GIRL1 both accommodation and
the argument of accommodate should be redeclared of type GIRL_ROOM, in BOY1 they
should be of type BOY_ROOM, and so on. (Remember again that for the time being
are working without anchored types.) A contravariant policy would be as useless as
preceding form of the example.

Polymorphic perversity

Enough covariant examples. Why would anyone consider contravariance, which
against what we need in practice (not to mention proper behavior for young people
understand, we have to consider the problems that polymorphism may cause u
covariant policy. A harmful scheme is easy to make up, and you may have though
yourself already:

s: SKIER; b: BOY; g: GIRL

…
!!  b; !!  g; -- Creation of a BOY and GIRL objects.

s := b; -- Polymorphic assignment.

s● share (g)

The effect of the last call, although possibly to the boys’ liking, is exactly what
type definitions were attempting to exclude. A room assignment makes a boy o
known as b but also disguising itself polymorphically under the SKIER pseudonym s, the
roommate of the GIRL object attached to g. Yet the call appears type-correct, since share
is an exported feature of class SKIER, and GIRL, the type of argument g, conforms to
SKIER, the type declared for the formal argument of share in SKIER.

The corresponding scheme with the parallel hierarchy variant is just as simple
replace SKIER by SKIER1 etc., and the call to share by a a call s● accommodate (gr),
where gr is of type GIRL_ROOM: at run time this will assign a boy to a girl room.

With contravariance one would not have these problems: as you specialize the
of a call (s in the example), you would generalize the argument. Contravariance,
result, leads to simpler mathematical models of the inheritance-redefini
polymorphism mechanism. For that reason a number of theoretical articles have adv
contravariance. But the argument is not very convincing, since, as we have seen an
literature readily admits, contravariance is of essentially no practical use.



§17.3  COVARIANCE AND DESCENDANT HIDING 627

ould

ther
ing is
.

estion,
ically
 with

“SUBTYPE INHER
ITANCE AND 
DESCENDANT 
HIDING”, 24.7, 
page 835.
An argument often encountered in the programming literature is that one should strive for
techniques that have simple mathematical models. Mathematical elegance, however, is
only one of several design criteria; we should not forget to make our designs realistic and
useful too. In computing science as in other disciplines, it is after all much easier to devise
dramatically simple theories if we neglect to make them agree with reality.

So rather than trying to force a covariant body into a contravariant suit, we sh
accept the reality for what it is, covariant, and study ways to remove the unpleasant effects.

Descendant hiding

Before looking for solutions to the covariance problem, let us examine the o
mechanism that can cause type violations through polymorphism. Descendant hid
the ability for a class not to export a feature that was exported by one of its parents

A typical example is a feature add_vertex, which class POLYGON exports but its
descendant RECTANGLE hides, because it would violate the invariant of the class:

class RECTANGLE inherit

POLYGON

export {NONE}  add_vertex end

feature

…

invariant

vertex_count = 4

end

A non-software counterpart is the well-known example of OSTRICH inheriting from
a class BIRD equipped with a feature fly, which OSTRICH should not export.

Let us for the moment accept this scheme at face value, setting aside the qu
discussed in detail later, of whether such forms of inheritance are methodolog
legitimate. The modeling power of descendant hiding, like that of covariance, clashes
the tricks made possible by polymorphism. An example is trivial to build:

POLYGON

RECTANGLE

add_vertex

-
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p: POLYGON; r : RECTANGLE

…

!!  r ; -- Creation of a RECTANGLE object.

p := r; -- Polymorphic assignment.

p ● add_vertex (…)

Since add_vertex is an exported feature of POLYGON, the call appears type-correct; 
accepted, it would on execution add a vertex to a rectangle, producing an inconsistent object.

Class and system validity

Some terminology will be useful to discuss the issues raised by covariance and desc
hiding. A system is class-valid if it satisfies the type rules summarized at the beginning
this chapter: every entity declared with a type; every assignment and actual-f
argument association satisfies conformance; and every call uses a feature of the t
type, exported to the caller.

The system is system-valid if no type violation can occur at run time.

Ideally these two notions (whose names will be justified later in this chapter) sh
be equivalent. What we have seen through the preceding examples is that with cova
and descendant hiding a system can be class-valid without being system-valid. S
error — making a system invalid although it is class-valid — will be called a system
validity erro r .

Practical scope

The simplicity of the examples of system validity error, resulting from covarianc
descendant hiding, makes up what we may call the static typing paradox. On 
introduced to object-oriented typing, an inquisitive newcomer can make up su
counter-example in a few minutes; yet in actual development, while violations of c
level validity rules are common (and, caught by the compiler, provide tremendous h
getting the software right), system validity errors are exceedingly rare, even in l
multi-year projects.

This is not an excuse for ignoring them. The rest of this chapter investigates
possible solutions.

An important note: because the problems discussed next are both delicat
infrequent, it is reasonable and indeed suggested, if this is your first reading, that yo
the rest of this chapter unless you are already well-versed in the practical and theo
aspects of object technology. If you are relatively new to the approach, you
understand the discussion much better after reading the methodological chapters 
D, in particular chapter 24 on the methodology of inheritance.
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17.4  FIRST APPROACHES TO SYSTEM VALIDITY

Let us concentrate first on the covariance issue, the more challenging of the two. Th
an abundant literature on the subject and we can take a look at various proposed so

Contravariance and novariance

Adopting a contravariant policy removes the theoretical problem of system validity er
But this approach makes the type system unrealistic, so we need not examine it fur

C++ is original in using a novariant policy: when you redefine a routine, you cann
change the types of its arguments! If C++ were a strongly typed language, this would
the type system quite unusable. The easiest solution, as with other such limitations o
(such as the absence of constrained genericity), is to use casts, and so to bypass th
mechanism altogether. This solution is not particularly attractive. Note, however,
some of the proposals discussed next rely on a form of novariance, made meaning
the introduction of new type mechanisms to replace covariant redefinition.

Using generic parameters

An interesting idea, originally introduced by Franz Weber, relies on genericity. We
declare our class SKIER1 with a generic parameter representing the roo
classSKIER1[G] or rather, using constrained genericity,

class SKIER1[G –> ROOM] feature

accommodation: G

accommodate (r: G) is … require… do accommodation := r end

end

Then class GIRL1 will inherit from SKIER1 [GIRL_ROOM] and so on. The same
technique may be applied to the variant without parallel hierarchies, although it s
stranger at first: class SKIER [G –> SKIER].

This approach solves the covariance problem. In any use of the class you n
specify an actual generic parameter — such as ROOM or GIRL_ROOM —, so the invalid
combinations become impossible. The language would become novariant, and sy
would satisfy their covariance needs entirely through generic parameters.

Unfortunately, the generic parameter technique is not really acceptable as a g
solution. It will lead to inflated generic parameter lists, with one parameter for each
of a possibly covariant argument. To use the class, a developer will have to prov
many types as there are parameters; this will make classes hard to understand.

Worse, adding a covariant routine with an argument of a type not yet covered w
require adding a generic parameter to the class, and hence changing its interface, 
invalidating all client classes. This is not acceptable.
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Type variables

Several authors (including Kim Bruce, David Shang, Tony Simons) have prop
solutions based on the introduction of type variables. Although it is impossibl
summarize these sophisticated proposals without being unfair, the basic idea is s
instead of covariant redefinition, permit type declarations to use type variables rathe
actual types; extend the conformance rules to handle type variables; make the lan
otherwise novariant; provide a facility to assign a type value to a type variable. 

Instead of ROOM, the declarations for attribute accommodation and for the
argument of accommodate would use a type variable, to which an actual type value ca
assigned separately.

These proposals are worth considering, and the interested reader should cons
corresponding articles, as well as complementary publications by Cardelli, Cast
Weber and others, starting from the paper and Web references cited in the bibliogra
notes to this chapter. We will not, however, pursue this line, for two reasons:

• The type variable mechanism, if designed properly, should subsume genericit
anchored declarations, the two existing mechanisms for using a type without
specifying it. At first this can be construed as an argument in favor of type varia
as they might enable us to replace two language constructs by one, and solve
problems at the same time. But the result may not be satisfactory in practice
both genericity and anchored types are simple, widely accepted and easy to e
it is not clear that an all-encompassing type variable mechanism can do as we

• Assuming we can indeed devise a type variable mechanism that solves the tec
difficulties of combining covariance and polymorphism (still ignoring descend
hiding for the moment), it will require perfect foresight from the class designer
knowing in advance which features are subject to type redefinition in descend
and which are not. The following section will further discuss this problem, wh
arises from a practical software engineering concern and, unfortunately, hampe
credibility of many theoretically satisfying schemes.

These considerations suggest trying a different approach: examining
mechanisms that we already have at our disposal — constrained and uncons
genericity, anchored types, and of course inheritance — to see how they can be 
constrained to remove the possibility of system validity errors.

17.5  RELYING ON ANCHORED TYPES

We can actually find an almost satisfactory solution to the covariance problem by tak
a closer look at a mechanism that we already know well: anchored declarations.

You must indeed have been itching, in the SKIER and SKIER1 examples, to use
anchored declarations, removing most of the need for type redefinitions. Anchori
the covariant mechanism par excellence: by declaring y: like x, you make y vary with x
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whenever x gets redefined to descendant-based types in descendant classes
examples become:

class SKIER feature

roommate: like Current

share (other: like  Current) is … require … do
roommate := other

end

…
end -- class SKIER

class SKIER1 feature

accommodation: ROOM

accommodate (r: like accommodation) is … require … do
accommodation := r

end
end -- class SKIER1

Then descendants need no redefinition in the SKIER version, and in the SKIER1
version they only need to redefine attribute accommodation. The anchored entities —
roommate and the arguments of share and accommodate — will automatically follow the
anchors’ redefinitions. This tremendous simplification, in line with what we saw in
original examples of anchored declaration, confirms that without anchoring (or s
alternate mechanism such as type variables) it would be impossible to write realistic
object-oriented software.

But does this eliminate system validity violations? No! At least not without a fur
restriction. We can still cheat the type checker into letting pass polymorphic assignm
that will cause run-time type violations.

True, the original examples will be rejected. In

s: SKIER; b: BOY; g: GIRL

º

!!  b;!!  g; -- Creation of a BOY and GIRL objects.

s := b; -- Polymorphic assignment.

s● share (g)

the argument g to share is not valid, since we need something of type like  s, and GIRL
does not conform to like s. The conformance rule for anchored types stated that no 
conforms to like s other than this type itself.

The relief is short-lived, however, The same rule stated that, in the other directi
conformance, like s conforms to the type of s. So we can fool the type checker, althoug
we have to be pretty devious, by using polymorphism not just on the target s of the call
but on its argument g:

m 
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s: SKIER; b: BOY; g: like s;

º

!!  b; -- Creation of a BOY and GIRL objects.

-- Go through s to attach g to the GIRL object.

s := b -- Polymorphic assignment.
s● share (g)

The effect is exactly the same as before.

There is a way out. If we are serious about using anchored declarations as th
covariance mechanism, then we can get rid of system validity errors by prohib
polymorphism altogether on anchored entities. This requires a language change: we
introduce a new keyword anchor, used in such declarations as

anchor s: SKIER

Then we would permit a declaration of the form like s only if s is declared in this form,
and adapt the conformance rule to make sure that s as well as elements of type like s can
be attached (assigned or argument-passed) only to each other.

In the original rule there was a notion of anchor-equivalent elements: with x declared of
some non-anchored type T and y declared like x, then x and y are anchor-equivalent to
each other and to any other entity anchor-equivalent to either of them. An attachment to
an anchored target was valid only if the source was anchor-equivalent to the target (which
makes the assignment g:= s valid even though g is anchored and s is not); but there was
no such restriction the other way around: z := y was valid for any z of type T. With the new
approach this would not be permitted any more; in any attachment involving an entity that
is either anchor or anchored, the source and the target must be anchor-equivalent.

With this approach, we would remove from the language the possibility of redefi
the type of any routine argument. (We could also prohibit redefining the result type
this is not necessary. We must retain, of course, the possibility of redefining an att
type.) All such redefinitions will now be obtained indirectly, through the anchor
mechanism, which enforces covariance. Where with the earlier approach a clD
redefined an inherited feature as

r (u: Y) …
from an original version, in a proper ancestor C of D, that read

r (u: X) …
with Y conforming to X, you should now define the original in C as

r (u: like your_anchor) …
and only redefine in D the type of your_anchor.

This solution to the covariance-polymorphism issue will be called the Anchoring
approach (short for the more accurate “Covariance through anchoring only”)
properties make it particularly attractive:

• It is based on a clear concept: strictly separating the covariant elements from the
potentially polymorphic ones (just “polymorphic” for short). Any entity declared a

actual_g: GIRL;

!!  actual_g

s := actual_g; g := s
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Page 57.
anchor or as like some_anchor is covariant; any other is polymorphic. You can ha
attachments within each category; but no entity or expression will cross
boundary. For example you cannot assign a polymorphic source to a covariant t

• The solution is simple, elegant, easy to explain even to relative beginners.

• It appears completely tight, removing any possibility of covariance-related sys
validity violation.

• It retains the framework defined in the preceding chapters, in particular the no
of genericity, constrained or not. (As a result it is, in my opinion, preferable to
introduction of type variables covering both covariance and genericity, since t
two mechanisms address clearly distinct practical needs.)

• It entails a small language change — adding one keyword, reinforcin
conformance rule — and no foreseeable implementation difficulty.

• It is, at least in a theoretical sense, realistic: any system that was previously possib
can be rewritten using the transformation just outlined, replacing covar
redefinitions by anchored redeclarations in the original. True, some attachment
become invalid as a result; but they correspond to cases that could have led t
violations, and can be replaced by assignment attempts, whose result the so
can then check to ascertain at run time that everything is fine.

With such arguments we would seem to be at the end of the discussion. Why t
the Anchoring solution not fully satisfactory? First, it still leaves us with the descen
hiding issue. But the fundamental reason is the software engineering concern a
voiced during our brief encounter with the notion of type variables. The Yalta-
division of the world into a polymorphic part and a covariant part assumes tha
designer of a class always has perfect foresight: for every entity that he introduc
particular every routine argument, he must decide once and for all between one o
possibilities:

• The entity is potentially polymorphic: now or later, it may become attached (thro
argument passing if it is a formal argument of a routine, through assignm
otherwise) to objects of types other than its declared type. Then no descenda
be permitted to redefine that type.

• The entity is subject to type redefinition: then it is either anchored or an anchor i

But how can the designer be sure in each case? Much of the attraction of the o
oriented method, captured at the beginning of this book by the Open-Closed prin
comes from its support for late adaptation of original choices; from the way it accept
designers of general-purpose modules need not have infinite wisdom, since authors o
descendants can adapt some of their decisions.

In this imperfection-tolerant approach, both type redefinition and descendant h
are a safety valve, which enables us to reuse an existing, almost-suitable class:

• With type redefinition, you can adapt the type declaration in the descendant wi
touching the original (to which, of course, you may lack source acces
modification privileges). With the covariance-only solution you would need
change the original, using the transformation outlined earlier.
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• Descendant hiding similarly preserves you from suffering too much from the bu
of the design process. True, one may criticize a design which has RECTANGLE
inherit from POLYGON and still want add_vertex in POLYGON; instead, you may
devise an inheritance structure that removes this problem, separating fixed pol
from variable ones. It is indeed preferable to stay away from taxonomy exceptions in
designing inheritance structures. But can we eliminate them altogether?
discussion of descendant hiding in a later chapter (where we will encou
examples that cannot be restructured as easily as polygons and rectangles) s
that we cannot, for two reasons. First, various classification criteria may com
for example we may prefer to classify our polygons into regular and irregular o
Second, we have to accept that even where an ideal solution is possible 
designers will not have seen it, although we may still try to inherit from their clas

If we want to preserve the flexibility of descendant adaptation, we will nee
permit covariant type redefinition — not just through anchoring — and descendant hi
The next sections describe how.

17.6  GLOBAL ANALYSIS

(This section describes an intermediate approach; readers interested in an overview
main practical solutions may skip to the next section.)

In studying the Anchoring solution we noted that the basic idea was to separa
covariant part from the polymorphic part. Indeed, if you consider the two instruction

s := b …
s● share (g)

each is a legitimate application of an important O-O mechanism: the first ap
polymorphism; the second uses type redefinition. Things start to go wrong when
combine these operations for the same s. Similarly, in 

p := r …
p ● add_vertex (…)

the problem arises from the combination of two individually blameless operations. He
you can use either instruction by itself without a hitch; include both and you are in tro

The type violations follow from erroneous calls. In the first example, 
polymorphic assignment attaches s to a BOY object, making g an illegal argument to share
since g is attached to a GIRL object. In the second example the assignment attaches r to a
RECTANGLE object, making add_vertex a non-exported feature.

Hence an idea for a new solution: determine in advance — statically, as part 
type checking performed by the compiler or set of tools — the typeset of each entity, short
for “dynamic type set”, comprising the types of all objects to which the entity m
become attached at run time. Then verify, still statically, that each call is valid for 
element of the typesets of the target and arguments.
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In our examples, the assignment s := b indicates that BOY is in the typeset of s
(because BOY is in the typeset of b as a result of the creation instruction !!  b); GIRL is in
the typeset of g because of the instruction !!  g; but then the call to share would not be valid
for a target s of type BOY and an argument g of type GIRL. Similarly, RECTANGLE is in
the typeset of p because of the polymorphic assignment, but the call to add_vertex would
not be valid for p of type RECTANGLE.

These observations lead to what we may call the Global approach, based on a new
typing rule:

In this definition a call is “class-valid” if it is valid according to the Feature Call r
recalled at the beginning of this chapter: if C is the base class of x’s type, f must be an
exported feature of C, and the type of arg must conform to the type of the formal argume
of f. (Remember that for simplicity we assume that each routine has exactly one argu
the rule is trivially transposed to an arbitrary number of arguments.)

System validity is the same thing as ordinary class validity, except that we do no
consider the type declared for the target x and the arguments arg: we apply class validity
to every possible type in their typesets.

Here is the basic rule for determining the typeset of all entities:

T1 • Start out with an empty typeset for every entity.

T2 • For every creation instruction of the form ! SOME_TYPE ! a, add SOME_TYPE
to the typeset of a. (For simplicity, assume that any instruction !!  a has been
replaced by ! ATYPE ! a, where ATYPE is the type declared for a.)

T3 • For every assignment of the form a := b, add all the elements of the typeset of b
to the typeset of a.

T4 • If a is a formal argument of a routine, for every corresponding actual argumeb
in a call, add all the elements of the typeset of b to the typeset of a.

T5 • Repeat steps T3 and T4 until no typeset changes.

This description does not take genericity into account, but the extension is not
The repetition (T5) is necessary because of the possibility of attachment chains
attachment of b to a, of c to b and so on). It is easy to see, however, that the process
terminate after a finite number of steps.

The number of steps is bounded by the maximum length of attachment chains, that is to
say the maximum n such that the system contains attachments of xi+1 to xi for i = 1, 2, …
n–1. The repetition of T3 and T4 is known as a “fixpoint” technique.

As you may have noted, the rule does not consider instruction sequencing
example, in

System Validity rule

A call x ● f (arg) is system-valid if and only if it is class-valid for x having any
type in its own typeset, and arg having any type in its own typeset.
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! TYPE1 ! t; s := t; ! TYPE2 ! t

we will include both TYPE1 and TYPE2 into the typeset of s, even though s can only, with
the instructions given, become attached to an object of type TYPE1. Taking instruction
sequencing into account would force the compiler to perform extensive flow ana
leading to undue complexity. Instead, the rules are more pessimistic: they will flag
occurrence of all three operations

!!  b

s := b

s● share (g)

as system-invalid, even if their possible run-time sequencing cannot possibly lead to
violation.

The global analysis approach was presented (with more details) in chapter 
[M 1992]. It solves both the covariance problem and the descendant hiding proble
suffers, however, from an annoying practical deficiency: although it does not require
analysis, it assumes that you are checking an entire system at once, rather than each clas
incrementally. The killer rule is T4, which for any call x ● f (b) corresponding to a routine
f (a: ARG_TYPE), adds the typeset of b to that of a. If  f is a routine from a library class
this means that adding a call to f in a new client can affect the typesets of f ’s formal
arguments, and ripple over to existing calls in other clients.

Although there have been proposals for incremental algorithms [M 1989b], their
practicality has not been established. This means that in a development enviro
supporting incremental compilation the global analysis technique would need t
implemented as a check on an entire system, rather than as part of the local (an
operations that the compiler performs each time a user changes a few classes. Even
there are precedents for such an approach — C developers, for example, sometimes rely
on a tool called lint , separate from the compilation process, to look for inconsistencie
it is not really attractive, especially in today’s sophisticated environments whose 
expect the tools to provide fast and complete responses.

As a result, the global validity approach has not to my knowledge been impleme
(Another reason is probably that the rule may appear difficult to teach, especially 
given with all the details of genericity etc.)

In passing we have seen the reason for some terminology used since the beg
of this discussion. A system was said to be class-valid if it satisfied the basic type rules
according to each entity’s type declaration; the name indicates that, as we just sa
can be checked (and checked fast) by an incremental compiler working class-by-cl
system may be class-valid but not yet system-valid if its execution can still cause type
violations. With the techniques seen so far, detecting this possibility seems to req
global (system-wide) analysis.

In spite of the name, however, it is in fact possible to avoid system validity e
through completely incremental checking. This will be our final tack on the issue.
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17.7  BEWARE OF POLYMORPHIC CATCALLS!

The System Validity rule of global analysis, it was noted, is pessimistic: to simplify 
rules and their enforcement, it may reject harmless combinations. Paradoxical as th
seem, we will obtain our last solution by turning to an even more pessimistic rule. This
will of course raise the question of how realistic the result is.

Back to Yalta

The gist of the Catcall solution — the name, to be explained shortly, for the n
approach — is to come back to the Yalta-like character of the Anchoring solu
dividing the world into a polymorphic part and a covariant part (the latter also havin
its satellite, a descendant hiding part), but to remove the need for perfect foresight.

As before we narrow down the covariance issue to two operations: in our 
example, the polymorphic assignment, s := b, and the call to a covariant routine
s● share(g). Analyzing what is truly wrong, we note that the argument g is not an issue in
itself; any other argument, which has to be of type SKIER or a descendant, would be jus
as bad since s is polymorphic and share covariantly redefines its argument. So with other
statically declared of type SKIER and dynamically attached to a SKIER object, the call
s● share (other), which would seem to be ideally valid on its static face, will cause a t
violation if s has been polymorphically assigned the value of b.

The fundamental problem, then, is that we are trying to use s in two incompatible
ways: as a polymorphic entity; and as the target of a call to a covariant routine. (I
other working example, the problem is that we use p as both polymorphic entity and targe
of a call to a descendant-hidden routine add_vertex.)

The Catcall solution is drastic, in line with the Anchoring solution: it prohibits us
an entity both polymorphically and covariantly. Like the Global solution, it will determ
statically which entities can be polymorphic, but it will not try to be smart: instead
finding out the typeset, it just treats any polymorphic entity as suspect enough to w
lifetime exclusion from any covariance or descendant hiding establishment.

Rule and definitions

The type rule of the Catcall approach is simple:

Catcall type rule

Polymorphic catcalls are invalid.
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This is based on equally simple definitions. First, polymorphic entity:

The aim of the definition is to capture as polymorphic (“potentially polymorph
would be more accurate) any entity that may at run time become attached to obje
more than one type. The definition only applies to reference types, since expanded e
cannot by nature be polymorphic.

In our examples, the skier s and the polygon p are both polymorphic from rule P1,
since they appear in assignments, the first with a boy b and the second with a rectangle r.

If you have read the definition of the typeset concept in the Global approach,
how much more pessimistic the notion of polymorphic entity is, and simpler to ch
Instead of trying to find out all the possible dynamic types of an entity, we settle 
binary property: can it be polymorphic, or can it not? Most strikingly (rule P3), we
consider that any formal argument of a routine is polymorphic (unless it is expanded
as with integers and the like). We do not even bother to consider the calls to a rout
you are an argument, you are at the beck and call of any client, so we cannot trus
type. This rule is closely tied to the reusability goal of object technology, where any 
has the potential, ultimately, to become part of a reusable library where any client so
will be able to call it.

The distinctive feature of this rule is that it does not require any global check
determine whether an entity is polymorphic, it suffices to examine the text of a c
There is not even any need to examine proper ancestors’ texts, provided we reco
each query (attribute or function) of each class, whether it is polymorphic. (We nee
information since under P1 the assignment x := f will make x polymorphic if f is
polymorphic, whether or not it comes from the same class.) Unlike the computati
typesets in the Global approach, the detection of polymorphic entities can proceed
by class, as part of the checks performed by an incremental compiler.

As discussed in the presentation of inheritance, this analysis can also be precious fo
optimization purposes

Definition : Polymorphic entity

An entity x of reference (non-expanded) type is polymorphic if it satisfies
any of the following properties:

P1 • It appears in an assignment x := y where y is of a different type or
(recursively) polymorphic.

P2 • It appears in a creation instruction ! OTHER_TYPE ! x where
OTHER_TYPE is not the type declared for x.

P3 • It is a formal routine argument.

P4 • It is an external function.
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Calls, as well as entities, may be polymorphic:

The calls of both examples are polymorphic: s● share (g) since s is polymorphic, and
p● add_vertex (…) since p is polymorphic. The definition implies that only qualified cal
a● f (…) can be polymorphic. (Writing an unqualified call f (…) as Current● f (…) changes
nothing since Current, to which no assignment is possible, cannot be polymorphic.)

Next we need the notion of catcall, based on the notion of CAT. A routine is a 
(short for Changing Availability or Type) if some redefinition of the routine, in
descendant, makes a change of one of the two kinds we have seen as pote
troublesome: retyping an argument (covariantly), or hiding a previously exported fea

This property is again incrementally checkable: any argument type redefinitio
change of export status makes a routine a CAT. It yields the notion of catcall: any ca
a CAT change could make invalid. This completes the set of definitions used b
Catcall type rule:

The Catcall type rule promotes our Yalta view by separating calls into two dis
categories: polymorphic calls and catcalls. Polymorphic calls yield some of the expre
power of the O-O method; catcalls yield the ability to redefine types and hide feat
Using terminology introduced at the beginning of this chapter: polymorphism enha
the usefulness of the approach; type redefinition enhances its usability.

The calls of our examples are catcalls since share redefines its argument covariantly
and add_vertex, exported in RECTANGLE, is hidden in POLYGON. Since they are also
polymorphic, they are prime examples of polymorphic catcalls and hence made inva
the Catcall type rule.

17.8  AN ASSESSMENT

Before trying to summarize what we have learned on the covariance and desce
hiding issues, we should recall once more that system validity violations arise extre
rarely. The most important properties of static O-O typing are the ones summarized

Definition: Polymorphic call

A call is polymorphic if its target is polymorphic.

Definition : CAT (Changing Availability or Type)

A routine is a CAT if some redefinition changes its export status or the type
of any of its arguments.

Definition : Catcall

A call is a catcall if some redefinition of the routine would make it invalid
because of a change of export status or argument type.
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beginning of this chapter: the impressive array of type-related mechanisms which
class-level validity, open the way to a safe and flexible method of software construc

We have seen three solutions to the covariance problem, two of them also addr
descendant hiding. Which one is right?

The answer may not be final. The consequences of subtle interactions betwee
typing and polymorphism are not as well understood as the topics of the prec
chapters. The past few years have seen the appearance of numerous publication
question, to which the bibliographical notes give the basic pointers. I hope that the p
chapter has provided the elements for a definitive solution or something close to it.

The Global solution seems impractical because of the implied need for system
checking. But it helps understand the issue.

The Anchoring solution is extremely tempting. It is simple, intuitive, easy
implement. We must all the more regret its failure to support some of the key sof
engineering requirements of the object-oriented method, as summarized by the 
Closed principle. If you have perfect foresight, then the Anchoring solution is great
what designer can promise to have perfect foresight, or assume perfect foresight fro
authors of the library classes he reuses through inheritance?

This assumption limits the usefulness of many of the published approaches, such as thos
relying on type variables. If we can be assured that the developer always knows in advanc
which types may change, the theoretical problem becomes much easier, but it does no
accurately model the practical problem of typed object-oriented software construction.

If we must give up the Anchoring approach, the Catcall type rule seems to b
appropriate one, easy enough to explain and enforce. Its pessimism should not e
useful combinations. If a case that appears legitimate yields a polymorphic catcal
always possible to let it through safely by introducing an assignment attempt; this is 
to transfer some of the checks to run time. This should only happen in a marginal nu
of cases.

As a caveat, I should note that at the time of writing the Catcall solution has no
been implemented. Until a compiler has been adapted to enforce the Catcall type ru
applied successfully to many representative systems, small and large, where s
means evidence that the rule is realistic (that all useful systems will pass muster, po
at the expense of a few easily justifiable changes) and that checking it impos
significant penalty on incremental recompilation times, we must refrain from proclaim
that on the problem of reconciling static typing and polymorphism with covariance
descendant hiding we have heard the last word.

17.9  THE PERFECT FIT

As a complement to the discussion of covariance it is useful to study a general tech
addressing a common problem. This technique was devised as a result of the C
theory, but it can be used in the basic language framework without any new rule.

Assume that we have two lists of skiers, where the second list includes the room
choice of each skier at the corresponding position in the first list. We want to perform
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corresponding share operations, but only if they are permitted by the type rules, that i
say girls with girls, ranked girls with ranked girls and so on. Problems of this kind
presumably frequent.

A simple solution is possible, based on the preceding discussion and on assig
attempt. Consider the following general-purpose function:

fitted (other: GENERAL): like other is
-- Current object if its type conforms to that of object attached to
-- other; void otherwise.

do
if  other /= Void and then conforms_to (other) then

 Result ?= Current
end

end

Function fitted returns the current object, but known through an entity of a ty
anchored to the argument; if this is not possible, that is to say if the type of the cu
object does not conform to that of the object attached to the argument, it returns void
the role of assignment attempt. The function relies on conforms_to, a feature of class
GENERAL that determines whether the type of an object conforms to that of anothe

Replacing conforms_to by same_type, another GENERAL feature, yields a function
perfect_ fitted that returns void unless the types are exactly the same. 

Function fitted gives us a simple solution to the problem of matching skiers with
violating type rules. We can for example add the following procedure to class SKIER and
use it in lieu of share (perhaps making share a secret procedure for more control):

safe_share (other: SKIER) is
-- Choose other as roommate if permissible.

local
gender_ascertained_other: like Current

do
gender_ascertained_other := other● fitted (Current)
if  gender_ascertained_other /= Void then

share (gender_ascertained_other)
else

“Report that matching is impossible for other”
end

end

For other of arbitrary SKIER type — not just like Current — we define a version
gender_ascertained_other which has a type anchored to Current. To enforce identical
types — so that a RANKED_GIRL goes only with another RANKED_GIRL, not with a
mere GIRL — use perfect_ fitted instead of fitted.

If you have two parallel lists of skiers, representing planned roommate assignm

occupant1, occupant2: LIST [SKIER]

you can iterate over the lists, applying at each stage 
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occupant1● item● safe_share (occupant2● item)

to match elements at corresponding positions if and only if their types are compatib

I find this technique elegant; I hope you will too. And of course parents anx
about what really happens during the ski trip should breathe a sigh of relief.

17.10  KEY CONCEPTS STUDIED IN THIS CHAPTER

• Static typing is essential for reliability, readability and efficiency.

• Static typing, to be realistic, requires a combination of mechanisms, inclu
assertions, multiple inheritance, assignment attempt, constrained and unconst
genericity, anchored declarations. The type system must not allow looph
(“casts”).

• Practical rules for routine redeclarations should permit covariant redeclaration:
results and arguments may be redefined to types conforming to the originals.

• Covariance, as well as the ability to hide in a descendant a feature that was ex
in an ancestor, raise the rare but serious possibility of type violations when com
with polymorphism. 

• Such type violations can be avoided through global analysis (impractical), lim
covariance to anchored types (conflicting with the Open-Closed principle), o
“catcall” technique which bars any covariance or descendant hiding for any ro
used with a polymorphic target.

17.11  BIBLIOGRAPHICAL NOTES

Some of the material of this chapter originated with a keynote talk given at the OOP
95 and TOOLS PACIFIC 95 conferences and published as [M 1996a]. Some of the
overview material has been drawn from a journal article, [M 1989e].

The notion of automatic type inference was introduced by [Milner 1989], which
describes an inference algorithm for the functional language ML. The connection be
polymorphism and type checking is further explored in [Cardelli 1984a].

Techniques for improving the efficiency of dynamically typed langua
implementations are described, in the context of the Self language, in [Ungar 1992].

Luca Cardelli and Peter Wegner are the authors of an influential theoretical a
on types in programming languages [Cardelli 1985]; using lambda calculus as th
mathematical framework, it has served as a basis for much of the subsequent w
followed another foundational article by Cardelli [Cardelli 1984].

An ISE manual [M 1988a] included a brief presentation of the issues raised by
combination of polymorphism with covariance and descendant hiding. The absence o
an analysis in the first edition of this book led to some critical discussions (predat
comments in a student’s bachelor thesis report by Philippe Élinck), notably [Cook 1989]
and [America 1989a]. Cook’s paper showed several examples of the covariance pro
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and attempted a solution. At TOOLS EUROPE 1992, Franz Weber proposed a so
based on the use of generic parameters for covariant entities [Weber 1992]. [M 1992]
defines precisely the notions of class-level and system-level validity, and propo
solution based on system-wide analysis. The Catcall solution described in the prese
chapter was first presented in [M 1996a]; see also on-line material [M-Web].

The Anchoring solution was presented in a talk I gave at a TOOLS EUROPE 
workshop. I had, however, overlooked the need for anchor declarations and the associate
restriction on conformance. Paul Dubois and Amiram Yehudai immediately pointed
that the covariance problem could still arise under these conditions. Along with o
including Reinhardt Budde, Karl-Heinz Sylla, Kim Waldén and James McKim, t
provided many further comments that were fundamental to the work leading to the p
chapter (without being committed to its conclusions).

There is an abundant literature on the covariance issue; [Castagna 1995] and
[Castagna 1996] provide both a bibliography and a mathematical overview. For a lis
links to on-line articles on O-O type theory and researchers’ Web pages, see La
Dami’s page [Dami-Web]. The terms “covariance” and “contravariance” come, by t
way, from category theory; it appears that their introduction into discussions of soft
typing is due to Luca Cardelli, who started to use them in talks in the early eigh
although they seem not to have appeared in print until the end of that decade.

Techniques based on type variables are described in [Simons 1995], [Shang 1996],
[Bruce 1997].

The Sather language uses contravariance. [Szypersky 1993] presents the rationale. 
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