17
Typing

E ffective use of object technology requires that we clearly specify, in the texts of oul
systems, the types of all objects that they will manipulate at run time. This rule, known a
static typing — a notion defined precisely in the next sections — makes our software:

* More reliable, by enabling compilers and other tools to suppress discrepancies
before they have had time to cause damage.

» More readable by providing precious information to authors of client systems,
future maintainers of our own software, and other readers.

» Moreefficient since this information helps a good compiler generate better code.

Although the typing issue has been extensively discussed in non-O-O contexts, ar
static typing applied to many non-O-O languages, the concepts are particularly clear ar
relevant in object technology since the approach as a whole is largely based on the idea
type, merged with the idea of module to yield the basic O-O construct, the class.

The desire to provide static typing has been a major influence on the mechanisn
discussed in earlier chapters. Here we need to take a comprehensive look at typing a
devise solutions to the remaining difficulties raised by this concept.

17.1 THE TYPING PROBLEM

One nice thing can be said about the typing issue in object-oriented software constructio
it may not be an easy problem, but it isimpleproblem — simple, that is, to state.

The Basic Construct

The problem’s simplicity comes from the simplicity of the object-oriented model of
computation. If we put aside some of the details, only one kind of event ever occurs durin
the execution of an object-oriented system: feature call, of the general form

x. f (arg)

which executes on the object attached the operatiorf, using the argumerntrg, with

the understanding that in some casgsstands for several arguments, or no argument at
all. Smalltalk programmers would say “pass to the objegbe messagewith argument
arg”, and use another syntax, but those are differences of style, not substance.

That everything relies on this Basic Construct accounts in part for the general feelin
of beauty that object-oriented ideas arouse in many people.

612 TYPING 817.1

From the Basic Construct follows the basic kind of abnormal event that might occur
at execution time:

Definition: type violation

A run-time type violation (or just type violation for short) occurs in |the
execution of a calx. f (arg), wherex is attached to an objeOB., if either:

V1 e« There is no feature correspondin(f and applicable tOB..

V2 « There is such a feature, karg is not an acceptable argument for it,

The typing problem is the need to avoid such events:

Object-oriented typing problem

When do we know whether the execution of an object-oriented system may
produce a type violation?

The key word iswher. If the feature or arguments do not match, you will find out
sooner or later: applying the feature “raise salary” to an instarSUBMARINEor “fire
the torpedoes” to an instanceEMPLOYEEwill not work; somehow the execution will
fail. But you may prefer to find out sooner ratlthan later.

Static and dynamic typing

Although intermediate variants are possible, two main approaches present themselves:
» Dynamic typin: wait until the last possible moment, the execution of each call.

* Static typin¢ rely on a set of rules that determine, from the text of a system, whether
its executions may cause type violations. Only execute systems for which the rules
guarantee that no violation will ever occur.

The names are easy to explain: with dynamic typing, type verification occurs at
execution time (dynamically); with static typing, it is performed on the text of the software
(statically, that is to say before any execution).

The terms “typed” and “untyped” are sometimes used for “statically typed” and
“dynamically typed”. To avoid any confusion we will stick to the full names.

Static typing is only interesting if the rules can be checked automatically. Since
software texts are usually processed by a compiler before being executed, it is convenient
to have the compiler, rather than a separate tool, take care of these checks. The rest of the
discussion will indeed assume for simplicity that the compiler and the type checker are the
same tool. This assumption yields a simple definition:

Definition: statically typed language

An object-oriented language is statically typed if it is equipped with a get of
consistency rules, enforceable by compilers, whose observance by a system
text guarantees that no execution of the system can cause a type violation.

§17.1 THE TYPING PROBLEM 613

Type Conformance
rule, page474

Feature Call ruli;
page47:.

In the literature you will encounter the teristrong typing”. It corresponds to the

all-or-nothing nature of this definition, which demands rules that guarantee the absenc
type violationsWeal forms of static typing, whose rules eliminate certain type violations
but not all, are also possible, and some O-O languages are indeed weakly-statically-ty
in this sense. We shall strive, however, for the strongest possible form.

Some authors also talk about strong forms of dynamic typing. But this is a contradiction.

In a dynamically typed language (also known as an “untyped” language), there ¢

no type declarations; entities simply become associated with whatever values
execution of the software attaches to them. No static type checking is possible.

Typing rules

Our object-oriented notation is statically typed. Its type rules have been introduced
earlier chapters; they boil down to three simple constraints:

L]

Every entity or function must be declared as being of a certain type, as
acc ACCOUNT; every routine declares zero or more formal arguments, with a typ
for each, as iput(x: G; i: INTEGEF).

In any assignmerx :=y, and in any routine call usiry as the actual argument for
the formal argumerx, the type of the sourcy must conform to the type of the target
X. The definition of conformance is based on inheritancB conforms tcA if it is

a descendant (A — complemented by rules for generic parameters.

In a call of the fornmx.f (arg), f must be a feature of the base clasx’s type, and
must be available to the class in which the call appears.

Realism

Althoughthe definition of “statically typed language” is precise, it also highlights the nee
for informal criteria in devising type rules. Consider the following two extreme cases:

An all-valid languag«in which every syntactically correct system is also typewise-
valid, with no need for type rules. Such languages are possible (imagine for exam
a small notation for Polish-style additions and subtractions with integers)
unfortunately, as readers familiar with the theory of computation will know, nc
useful general-purpose language can meet that criterion.

An all-invalid languag, easy to devise: just take any existing language and add
type rule that makeany system invalid! This makes the language typed according
to the definition: since no system passes the rules, no system that passes the rule:
cause a type violation.

We may say that an all-valid languagwsable, but notuseful for general-purpose

development; an all-invalid language may be useful, but it is not usable.

What we need in practice is a type system that makes the language both useful

usable: powerful enough to express the computations we need; convenient enough n
force us into undue complications to satisfy the type rules.

614 TYPING 817.1

We will say that a language realistic if it is both useful and usable. Unlike the
definition of static typing, which always yields an indisputable answer to the quelstion “
language X statically typ¢?”, the definition of realism is partly subjective; reasonable
people may disagree on whether a language, equipped with certain type rules, is still useful
and usable.

In this chapter we will check that the typed notation defined in the preceding chapters
is redistic.

Pessimism

In discussing approaches to O-O typing we should keep in mind another general property
of static typing: it is always, by nature, a pessimistic policy. Trying to guarantenahat
computation shall ever f;, you disallowsome computations that might succeed

To see this, consider a trivial non-O-O language, Pascal-like, with distinct types
INTEGEF andREAL. With the declaratioin: INTEGEF, the assignmern := r will be
rejected as violating the type rules. So all the following will be considered type-invalid
and rejected by the compiler:

n:=0.0 [A]
n:=10 [B]
n:.=—267 [C]
n:=367 — .67 [D]

Of these invalid operations, [A], if permitted to execute, would always work since
any number system will provide an exact representation for the floating-point number 0.0,
which can be transformed unambiguously to the integer 0. [B] would almost certainly
work too. [C] is ambiguous (do we want the rounded version, the truncated version of the
number?) But [D] would work. So would

if n"2<0thenn:=367end [E]

because the assignment will never be execwn » Z denotes the square n). If we
replacen ” Zby justn, wheren is read from user input just before the test, some executions
would work (those for whicln is non-negative), others would not. Assignin¢n a very
large real number, not representable as an integer, would not work.

In a typed language, all these examples — those which would always work, those
which would never work, and those which would work some of the time — are equally
and mercilessly considered violations of the type rules, and any compiler will reject them.

The question then is nwhethe to be pessimistic bihow pessimistic we can afford
to be. We are back to the realism requirement: if the type rules are so pessimistic as to bar
us from expressing in a simple way the computations that we need, we will reject them. But
if they achieve type safety with little loss of expressive power, weaedépt them and
enjoy the benefits. For example makin := r invalid turns out to be good news if the
environment provides functions suchrounc andtruncate, enabling you to convert a real
into an integer in exactly the way you want, withthe ambigtty of animplicit conversion.

§17.2 STATIC TYPING: WHY AND HOW 615

17.2 STATIC TYPING: WHY AND HOW

Although the advantages of static typing seem obvious, it is necessary to review the te
of the debate.

The benefits

The reasons for using a statically typed form of object technology were listed at the v
beginning of this chapter: reliability, readability and efficiency.

Thereliability value comes from the use of static typing to detect errors that woul
otherwise manifest themselves only at run time, and only in certain runs. The rule tl
forces you to declare entities and functions — the first of our three type rules above
introduces redundancy into the software text; this enables the compiler, through the ot
two rules, to detectinconsistencies between the purpose and actual use of an entity, fe:
or expression.

Catching errors early is essential, as correction cost grows quickly with the detecti
delay. This property, intuitively clear to all software professionals, is confirmet
quantitatively, for specification errors, by Boehm’s well-known studies, plotting the cos
of correcting an error against the time at which it is found (base 1 if found at requireme
time), for both a set of large industrial projects and a controlled small project experime

Relative cost of A Correction cost
correcting 1000t
errors

After [Boehm 1981.
Reproduced with
permission. 500 4+

LARGE
PROJECTS

o

20 4 SMALL PROJECT
1 —t —t t i t - Time
Require- Design Code Develop- Accep- Opera- error
ments menttest tancetest tion found

Thereadability benefit is also appreciable. As the examples appearing througho
this book should show convincingly, declaring every entity and function with a certa
type is a powerful way of conveying to the software reader some information about
intended uses. This is particularly precious for maintainers of the software.

If readability were not part of the goal we might be able to obtain some of the other
benefits of typing without explicit declarations. It is possible indeed, under certain
conditions, to use an implicit form of typing in which the compiler, instead of requiring
software authors to declare entity types, attempts to determine the type of each entity
automatically from its uses. This is known type inferenc. But from a software
engineering perspective explicit declarations are a help, not a penalty; types should be
clear not just to the compiler but to the human reader.

616 TYPING 817.2

Finally, theefficiency benefit can make the difference between success and faggr more details on
of object technology in practice. Without static typing, the executiox f (arg) can take the implementation
an arbitrary long time: as we saw in the discussion of inheritance, the basic algorithmtechniques discussed
for a featuref in the base clasC of x's type; if it does not find it, it looks iC’s parents, I this section see

. . . L . “Dynamic binding
and so on. This is a fatal source of inefficiency. It can be mitigated by Improvemel, y iciency”, page
the basic algorithm, and the authors of the Self language have done extensive Wsoe on se|, see the
enable better code generation for a dynamically typed language. But it is through bibliographical notes
typing that O-O software has been able to approach or equal the efficiency of traditional
software.

The key idea was explained in the earlier discussion. When the compiler generates
the code forx.f (arg), it knows the type ox. Because of polymorphism, this is not
necessarily the type of the attached run-time obOB.J, and so does not uniquely
determine the proper version fiIBut the declaration restricts the set of possible types,
enabling the compiler to generate tables providing run-time access to thef aght
minimum — andconstant-bounded— expense. Further optimizations static binding
andinlining, also facilitated by typingJieninate the expense altogether in applicable cases.

Arguments for dynamic typing

In spite of these benefits of static typing, dynamic typing keeps its supporters, found in
particular in the Smalltalk community. Their argument mainly follows from the realism
issue cited above: they contend that static typing is too constraining, preventing the
unfettered expression of software ideas. Terms such as “stranglehold” and “chastity belt”
are often heard in such discussions.

This argument can be correct, but only for a statically typed language that misses
some important facilities. It is indeed remarkable that all the type-related concepts
introduced in preceding chapters are necessary; remove any of them, andtjhek&tta
comment becomes valid in at least some cases. But by including them all we obtain
enough flexibility to make static typing both practical and pleasurable.

The ingredients of successful typing

Let us review the mechanisms which permit realistic static typing. They have all been
introduced in earlier chapters, so that we only need a brief reminder for each; listing them
all together shows the consistency and power of their combination.

Our type system is entirely based on the notioclass. Even basic types such as
INTEGEF are defined by classes. So we do not need special rules for predefined types.
(Here the notation departs from “hybrid” languages such as Object Pascal, Java and C++,
which retain the type system of an older language along with the class-based system of

object technology.) “COMPOSITE
) o) OBJECTS AND
Expanded type: give us more flexibility by allowing types whose values dencexPANDEDTYPES"
objects along with types whose values denote object references. 8.7, page 224

Crucial flexibility is afforded byinheritance and the associated notion o“'—r:mitftOpo'yg‘zr'
conformance. This addresses the major limitation of traditional typed languages sucPem s Page ar:

§17.2 STATIC TYPING: WHY AND HOW

617

Chapterlt.

Multiple
inheritance

Chapterl0.

“CONSTRAINED
GENERICITY”,
16 .4, page 585

“ASSIGNMENT
ATTEMPT", 16.5,
page 591

Chapterll

Pascal and Ada, where an assignirx := y requires the types « andy to be identical.
This rule is too strict: it prevents you from using an entity that may denote objects
various related types, such aSAVINGS ACCOUN and aCHECKING_ACCOUNT
With inheritance, all we require is that the typey conform to the type ox; this is the
case ifx is of typeACCOUN", y of typeSAVINGS ACCOUN, and the latter class is a
descendant of the former.

To be practical, a statically typed language requires its inheritance scheme to supj
multiple inheritance. A principal part of common objections against static typing is that
it prevents you from looking at objects in different ways. For example an object of tyj
DOCUMENT might need to be transmitted over a network, and so will need the featur
associated with objects of tyMESSAGI. But this is only a problem with a language that
is restricted to single inheritance; with multiple inheritance you can introduce as ma

viewpoints a you need.

MAILABLE_DOCUMEN

We also neegenericity, to define flexible yet type-safe container data structures
For example a list class will be definedclass LIST [G] ... Without this mechanism,
static typing would force us to declare a different class for each type of list element —
obviously unsustainable solution.

Genericity needs in some cases toconstrainec, allowing us to apply certain
operations to entities of a generic type. For example if a genericSORTABLE LIST
has a sort operation, it requires a comparison operation on entities (G, the generic
parameter. This is achieved by associating 'Gi a generic constrailCOMPARABLLI:

class SORTABLE_LIS[G -> COMPARABL] ...

meaning that any actual generic parameter usedSORTABLE LIS must be a
descendant of clasCOMPARABLI, which has the required comparison features.

Another indispensable mechanisnmassignment attemp, to access objects whose
type the software does not controly denotes an object obtained from a database or
network, you cannot be sure it has the expected type; the assignment x ?=y will
assign tox the value oly if it is of a compatible type, but otherwise will max void.
Without assighment attempt we could not abide by the type rules in such cases.

Assertions —associated, as part of the idea of Design by Contract, with classes a
features in the form of preconditions, postconditions and class invariants — allow you
describe semantic constraints which cannot be captured by type specifications. Althot
with the “interval types” of such languages as Pascal and Ada you can declare,

618 TYPING 817.2

example, that a certain entity takes its values between 10 and 20, no type mechanism will
enable you to state thi must be either in that interval or negative, and always twice as
much agj. Here class invariants come to the rescue, by letting you specify exactly what
you need, however sophisticated the constraint.

Anchored declarations are essential in practice to avoid redeclaration avalanc‘ANCHORED
By declaringy: like x you make sure thiy will follow any redeclaration of the type xf ?&C'-ARAE'(%N"'
in a descendant. Without this mechanism developers would be endlessly redec.w'..’.‘;’,age -

routines for type purposes only.

Anchored declarations are a specific case of our last required language mechanism:
covariance, which will be discussed in more detail later in this chapter.

A practical property of the environment is also essenffast incremental
recompilation. When you write a system or (more commonly) modify an existing system,
you will want to see the effect soon. With static typing you must first let the compiler re-
typecheck the system. Traditional compiling techniques require recompiling the whole
system (and going throughlinking process); the time may be painfully long, especially
for a proportionally small change to a large system. This phenomenon has beena major
contrario argument fointerpreted approaches, such as those of early Lisp and Smalltalk
environments, which execute systems with no or little processing, hence no type checking.
But modern compiler technology removes this argument. A good compiler will detect
what has changed since the last compilation, and reprocess only that part, keeping the
recompilation time small — and proportional to the size of the change, not of the system.

TheMelting Ice Technolo¢described in the last chapter of this book achieves this goal,
typically permitting recompilation in a matter of seconds after a small change even to a
large system.

“A little bit typed”?

It was noted above that we should aim fstronc form of static typing. This means that
we should avoid any loopholes in the static requirements — or, if any such loopholes
remain, identify them clearly, if possible providing tools to flag any software using them.

The most common loophole, in languages that are otherwise statically typed, is the
presence of conversions that disguise the type of an entity. In C and its derivatives,
conversions are called “casts” and follow a simple syr(OTHER_TYP)) x denotes the
value ofx presented to the compiler as if it were of tOTHER_TYP; there are few
limitations on what that type may be, regardlesx’s actual type.

Such mechanisms evade the constraints of type checking; casting is indeed a
pervasive feature of C programming, including in the ANSI C variant (which is “more”
typed than its precursor, the so-called Kernighan and Ritchie version). Even in C++,
examination of published software shows that casts, although less frequent, remain an
accepted and possibly indispensable occasional practice.

§17.2 STATIC TYPING: WHY AND HOW 619

It seems difficult to accept claims of static typing if at any stage the developer c:
eschew the type rules through casts. Accordingly, the rest of this chapter will assume 1
the type system is strict and allows no casts.

You may have noted that assignment attempts, mentioned above as an essential
component of a realistic type system, superficially resemble casts. But there is a
fundamental difference: an assignment attempt does not blindly force a different type; it
tries a candidate type, and enables the software to check whether the object actually
matches that type. This is safe, and indispensable in some circumstances. The C++
literature sometimes includes assignment attempts (“downcasts”) in its definition of
casts; clearly, the above prohibition of casts only covers the harmful variant, and does not
extend to assignment attempts.

Typing and binding: avoiding the confusion

Although as a reader of this book you will have no difficulty distinguishing static typing
from staticbinding, you may meet people who confuse the two notions. This may be dt
in part to the influence of Smalltalk, whose advocacy of a dynamic approach to bc
typing and binding may leave the inattentive observer with the incorrect impression tt
the answer to both questions must be the same. (The analysis developed in this k
suggests that to achieve reliability and flexibility it is preferable to combine dynami
binding with static typing.) Let us carefully compare the two concepts.

Both have to do with the semantics of the Basic Consxf (arg); they cover the
two separate questions that it raises:

Typing and binding

* Typing questior: When do we know for sure that at run time there will
be an operation correspondincf and applicable to the object attached to
x (with the argumenarg)?

* Binding questior: Which operation will the call execute?

Typing addresses the existenceat least one operation; binding addresses the
choice ofthe right one among these operations, if there is more than one candidate.

In object technology:

* The typing question follows fronpolymorphisr: sincex may denote run-time
objects of several possible types, we must make sure that an operation represen
f is available in all cases.

* The binding question follows frorredeclaratior: since a class can change an
inherited feature — as witRECTANGLI redefining perimete inherited from
POLYGOIM — there may be two or more operations all vying to be the on
representing for a particular call.

Both answers can be dynamic, meaning at execution time, or static, meaning bef
execution. All four possibilities appear in actual languages:

620

TYPING 817.2

Some non-0-0 languages, such as Pascal and Ada, have both static typing and static
binding. In these languages each entity represents objects of only one type, specified
statically; the approach yields reliability at the expense of flexibility.

Smalltalk and other O-O languages influenced by it have dynamic binding and
dynamic typing. This is the reverse choice: favoring flexibility at the expense of
reliability enforcement.

Some non-O-O languages are untyped (really meaning, as we have seen,
dynamically typed) and statically bound. They include assembly languages and
some scripting languages.

The notation developed in this book supports static typing and dynamic binding.

Note the peculiarity of C++ which supports static typing (although in a non-strthe c++ policy was

form because of the presence of casts) and, for binding, a static policy by default, discussed i“The
permitting dynamic binding at the price of explivirtual declarations. C++ approach to

binding”, page 51.}
The reason choosing static typing and dynamic binding is clear. To the first quec.....,

“when do we know we have a feature?”, the most attractive answer for reliable software
engineering is the static oneat the earliest possible tir" — compilation time, to catch

errors before they catch you. To the second question, “what feature do we use?”, the most
attractive answer is the dynamic onthe right featur” — the feature directly adapted to

the object’s type. As discussed in detail in the presentation of inheritance, this is the only
acceptable solution unless static and dynamic binding have the same effect.

The following fictitious inheritance hierarchy helps make these nomore vivid.
AIRCRAFT Klqu of flying
object

ower_landing_gedY
GoENS)

AIRBUS

lower_landing_geaf

* deferred

+ effected
B 747 400 lower_landing_geaf™ ++ redefined

For a call of the form

my_aircraft lower_landing_gear

§17.3 COVARIANCE AND DESCENDANT HIDING 621

See the original
discussionin
“TYPING AND
REDECLARATION”
, 16.6, page 5¢ anc
“ANCHORED
DECLARATION”,
16.7, page 5¢9

the typing question is when to ascertain that there will be a felower_landing_gear
applicable to the object (for COPTEF there would not be any); the binding question is
which version to choose (since we have several versions, as shown).

Static binding would mean that we disregard the object type and believe the ent
declaration, leading us for example to apply to a Boeing 747-400 the version of a featt
such adower_landing_geg, that has been defined for the standard Boeing 747 plane:
instead of the version specially redefined for the 747-400 variant; this is clearly wrong
the object is of the latter type. Dynamic binding will apply the operation that the obje
demands, based on its type; this is the right approach.

With static typing we will refuse the call at compile time unless we can guarante
that whatever happens my_aircraf at run time the type of the attached object will be
equipped with a feature correspondinglower landing gee. The basic technique for
obtaining this guarantee is simple: since we must demy_aircraf, we require that its
type’s base class include such a feature. This means that the declared type cannc
AIRCRAF" since there is nlower_landing _gec at that level; helicopters, for example,
have no landing gears, for the purpose of this example at least. With such a declaratior
compiler would reject our software with no possibility of appeal. But if we declare th
entity as being of typPLANE, which has the required feature, all is well.

Smalltalk-style ynamic typing would mean waiting until execution to find out if there
is an applicable feature; acceptable perhaps for prototypes and experimental software
not for production systems. Run time is a little late to ask wr you hae a linding gear.

17.3 COVARIANCE AND DESCENDANT HIDING

In a simple world a discussion of typing would stop here: we have defined the goals ¢
advantages of static typing; examined the constraints that a realistic type system n
meet; and reviewed the typing techniques of the object-oriented framework developec
the preceding chapters, checking that they satisfy the stated criteria.

The world is not simple. The combination of static typing with some of the softwar
engineering requirements of object technology makes the issues more difficult than tt
appear atfirst. Two techniques raise difficulties: covariance, the change of argument ty|
in redefinitions; and descendant hiding, the ability for a class to restrict the export sta
of an inherited feature.

Covariance

The principal problem is what happens to arguments when we redefine a feature’s ty
We have encountered several cases already: devices and printers, linkable and bi-link
elements, points and their conjugates.

To understand the general nature of the issue let us use a fresh example. Being |
technical, it carries the usual risks of metaphors; but the closeness to software schem
obvious, and we will frequently come back to actual software examples.

622 TYPING 817.3

The example involves a high-school ski team preparing for a trip to a minor-league
championship, and the team members’ concerned parents. For brevity and simplicity it
uses the class namGIRL as an abbreviation for “member of the girls’ skiteam” BOY
as an abbreviation for “member of the boys’ ski team”. Some skiers on each team are
ranked, that is to say have already recorded good results in earlier championships. This is
an important notion: ranked skiers will start first in a slalom, thus gaining a considerable
advantage over the others since a slalom run is much harder to negotiate after too many
competitors have already worked it. (This rule that ranked skiers go first is a way to
privilege the already privileged, and may be the reason why skiing exerts such a
fascination over many people: that it serves as an apt metaphor for life itself.) We get two
new classesRANKED GIRlandRANKED BO

Kinds of skier
RANKED_ GIRL RANKED BO

Some rooms are reserved for boys only, girls only, ranked girls only; we may use a
class hierarchy parallel to the one abcRCOM, GIRL_ROON, RANKED GIRL _ROOM
etc. The discussion will omRANKED BO' which is parallel tRANKED_ GIR..

Here is an outline of clasSKIEF:

classSKIERfeature
roommat: SKIER
-- This skier's roommate
share(other: SKIEF) is
-- Chooseother as roommate.
require
other/= Void
do
roommate:= other
end
... Other possible features omitted in this class and the following...nes
end -- clas: SKIER

We have two features of interest: the attritroommat; and the procedurshare,
which assigns a certain skier as roommate to the current skier, as in

§17.3 COVARIANCEAND DESCENDANT HIDING 623

sl, sz SKIER

sl share(s2)

Rather thanrSKIER you may have thought of using fother the anchored type
like roommate(or like Currentfor bothroommateandother). If so, you are most likely
right, but let us forget for a while that we know about anchored types: this will enable
tounderstand the covariance problem in its bare form; anchored types will soon come be

How does type redefinition get into the picture? Assume the rules require girls
share rooms only with girls, and ranked girls only with other ranked girls. We will redefin
the type of featureoommatgas shown below (in this class text and the next, the redefine

elements appear underlined
classGIRLinherit
SKIER
redefine roommatesnd
feature
roommate GIRL
-- This skier’'s roommate.
end -- classGIRL
We should correspondingly redefine the argument to procediare, so that a more
complete version of the class text is:
classGIRLinherit
SKIER
redefine roommateshareend
feature
roommate GIRL
-- This skier’'s roommate.
share(other. GIRL) is
-- Chooseotheras roommate.
require
other/= Void
do
roommate= other
end
end -- classGIRL

624 TYPING 817.3

All proper descendants must be adapted in this way (remember, we are depriving
ourselves from anchored types for the moment). The gepicture is this:

roommat: SKIER Skier
share(other: SKIEF) hierarchy and
/ redefinitions
o roommatc™
roommatc™ T share

sharet*

RANKED_GIRL roommatd*t Tttt
— share™ e

Since inheritance is specialization, the type rules require that if we redefine the IType Redeclaration
of a feature, herroommat, the new type must always be a descendant of the original (ule, page599
This also applies to the redefined type for the argurother of routineshare. This policy,
as we know, is called covariance, where the “co” indicates that the argument and result
vary together; the reverse policy is terncontravarianc:.

Covariance is, according to all available evidence, what we need in practice. Our
earlier software examples illustrate this clearly:

* A LINKABLE list element may be chained to any other linkablBl LINKABLE “Type inconsisten-
must be chained to anotrBl_LINKABLE. So the argument of procediput_right cies”, page 599
should be redefined covariantly.

< In the same example, any routineLINKED LIST that uses an argument of typFigure “Parallel hier-
LINKABLE will most likely need it to be of typBl LINKABLEin TWO_ WAY archies’, page598
LIST.

» Procedureset_alternat takes eDEVICE argument in clasDEVICE, aPRINTER
argument in clasPRINTEF.

Covariant redefinition is particularly common because of the O-O method’s
emphasis on information hiding, which leads to procedures of the form

set_attrib(v: SOME_TYP) is
-- Setattrib to v.

with attrib of typeSOME_TYP; such procedures are naturally covariant (and in practice,
as we know, will usually rely on anchored types) since any class that changes the type of
attrib will need to redefineset_attrit's argument in the same way. The preceding
examples mostly belonged to this scheme, but it is by no means the only one requiring
covariance. Think for example of a procedure or function for concatenalLINKED _

LIST to another: its argument will have to be redefined as a two-way-TWO_WAY _

LIST. The general addition operatioinfix "+", takes aNUMERIC argument in

§17.3 COVARIANCE AND DESCENDANT HIDING 625

NUMERIC, ¢ REAL argument inREAL, an INTEGEF argument inINTEGEF. In the
parallelhierarchies

PHONE_
SERVICE
ORPORATH
SERVICE

procedurestart, which starts a phone service, may need an argument oADDRESS
representing the billing address; for a corpoeateount you will need a corporate address.

Phone service
and billing start
addresses

ADDRESS

ORPORATE
ADDRES

What about a contravariant solution? In the skier example, contravariance wol
mean that if we go to claRANKED_GIR, where the result coommat is redefined to
be of typeRANKED GIR/|, we may for the argument of routishare use typeGIRL, or
SKIEF of the most general kind. One type thanot permitted under contravariance is
RANKED_GIRI Enough to justify the parents’ worst fears.

Parallel hierarchies

To leave no stone unturned, it is useful to consider a variant SKIEF example with
two parallel hierarchies, rather than just one. This will model the situation evidenced
software examples already citeTWO_WAY_LIST- LINKED_LIST parallel to
Bl_LINKABLE - LINKABLE, orthePHONE_SERVIC hierarchy. Just assume that we
have eROOWN hierarchy with descendants suctGIRL ROOM(BOY variants omittec:)

accommodate accommodat|on @

. accommodatiofi”
accommodate @ ——(GIRL_ROOM

accommodatiofi”

accommodafe’ RANKED

GIRL1

Then instead ofroommatt and share, the skier classes will have features
accommodatiolandaccommodai:2

626 TYPING 817.3

indexing

descriptior: "New variant with parallel hierarchi¢'s
classSKIERfeature

accommodatio: ROOM

accommodat(r: ROON) is ... require ... do
roommate:= other
end

end-- clas: SKIER1

Here too we need covariant redefinition: in clGIRL1 both accommodatio and
the argument caccommodai should be redeclared of ty|/GIRL_ROON, in BOY they
should be of typBOY_ROON, and so on. (Remember again that for the time being we
are working without anchored types.) A contravariant policy would be as useless as in the
preceding form of the emple.

Polymorphic perversity

Enough covariant examples. Why would anyone consider contravariance, which goes

against what we need in practice (not to mention proper behavior for young people)? To

understand, we have to consider the problems that polymorphism may cause under a
covariant policy. A harmful scheme is easy to make up, and you may have thought of it

yourself already:

s: SKIEF; b: BOY; g: GIRL

Mh; !l g -- Creation of éBOY andGIRL objects.
s:=b; -- Polymorphic assignment.
s. share(g)

The effect of the last call, although possibly to the boys’ liking, is exactly what the
type definitions were attempting to exclude. A room assignment makes a boy object,
known asb but also disguising itself polymorphically under 1SKIEF pseudonyns, the
roommate of thiGIRL object attached tg. Yet the call appears type-correct, siishare
is an exported feature of claSKIEF, and GIRL, the type of argumerg, conforms to
SKIEF, the type declared for the formal argumenshare in SKIEF.

The corresponding scheme with the parallel hierarchy variant is just as simple: just
replaceSKIER by SKIER1etc., and the call tshareby a a calls.accommodate(gr),
wheregr is of typeGIRL _ROON: at run time this will assign a boy to a girl room.

With contravariance one would not have these problems: as you specialize the target
of a call sin the example), you would generalize the argument. Contravariance, as a
result, leads to simpler mathematical models of the inheritance-redefinition-
polymorphism mechanism. For that reason a number of theoretical articles have advocated
contravariance. But the argument is not very convincing, since, as we have seen and as the
literature readily admits, contravariance is of essentially no practical use.

§17.3 COVARIANCE AND DESCENDANT HIDING 627

An argument often encountered in the programming literature is that one should strive for
techniques that have simple mathematical models. Mathematical elegance, however, is
only one of several design criteria; we should not forget to make our designs realistic and
useful too. In computing science as in other disciplines, it is after all much easier to devise
dramatically simple theories if we neglect to make them agree with reality.

So rather than trying to force a covariant body into a contravariant suit, we shot
accept the reality for what it is, covariant, and study ways to remove the unpldfectst e

Descendant hiding

Before looking for solutions to the covariance problem, let us examine the oth
mechanism that can cause type violations through polymorphism. Descendant hiding
the ability for a class not to export a feature that was exported by one of its parents.

@ add_vertex

A typical example is a featuladd verte, which classPOLYGOL exports but its
descendarRECTANGLI hides, because it would violate the invariant of the class:

classRECTANGLLI inherit
POLYGON
export {NONE} add_verteend

feature

invariant
vertex_coun=4

end

A non-software counterpart is the well-known examplOSTRICF inheriting from
“SUBTYPE INHER-

ITANCE AND a classBIRD equipped with a featuifly, whichOSTRIC} should not export.

DESCENDANT _))

HIDING”, 24.7, Let us for the moment accept this scheme at face value, setting aside the quest
page 835 discussed in detail later, of whether such forms of inheritance are methodologica

legitimate. The modeling power of descendant hiding, like that of covariance, clashes w
the tricks made possible by polymorphism. An example is trivial to build:

628 TYPING 817.3

p: POLYGOI; r: RECTANGLE

nr; -- Creation of eRECTANGLEoDbject.
p:=r; -- Polymorphic assignment.

p.add_vertex(...)

Sinceadd_verte is an exported feature POLYGON, the call appears type-correct; if
accepted, it would on execution add a vertex to a rectangle, producing an innt object.

Class and system validity

Some terminology will be useful to discuss the issues raised by covariance and descendant
hiding. A system iclass-validif it satisfies the type rules summarized at the beginning of
this chapter: every entity declared with a type; every assignment and actual-formal
argument association satisfies conformance; and every call uses a feature of the target's
type, exported to the caller.

The system isystem-valic if no type violation can occur at run time.

Ideally these two notions (whose names will be justified later in this chapter) stFor an explanation of
be equivalent. What we have seen through the preceding examples is that with covihe names see end of
and descendant hiding a system can be class-valid without being system-valid. g 174 pageest.
error — making a system invalid although it is class-valid — will be callsystem
validity error.

Practical scope

The simplicity of the examples of system validity error, resulting from covariance or
descendant hiding, makes up what we may call the static typing paradox. On being
introduced to object-oriented typing, an inquisitive newcomer can make up such a
counter-example in a few minutes; yet in actual development, while violations of class-
level validity rules are common (and, caught by the compiler, provide tremendous help in
getting the software right), system validity errors are exceedingly rare, even in large,
multi-year projects.

This is not an excuse for ignoring them. The rest of this chapter investigates three
possible solutions.

An important note: because the problems discussed next are both delicatSUGGESTED
infrequent, it is reasonable and indeed suggested, if this is your first reading, that yoSHORTCU: skip to
the rest of this chapter unless you are already well-versed in the practical and theol&LShapter
aspects of object technology. If you are relatively new to the approach, you will
understand the discussion much better after reading the methodological chapters of part

D, in particular chapte24 on the methodology of inheritance.

§17.4 FIRST APPROACHES TO SYSTEM VALIDITY 629

17.4 FIRST APPROACHES TO SYSTEM VALIDITY

Let us concentrate first on the covariance issue, the more challenging of the two. Ther
an abundant literature on the subject and we can take a look at various proposed soluti

Contravariance and novariance

Adopting a contravariant policy removes the theoretical problem of system validity errot
But this approach makes the type system unrealistic, so we need not examine it furthe

C++ is original in using novarian policy: when you redefine a routine, you cannot
change the types of its arguments! If C++ were a strongly typed language, this would m:
the type system quite unusable. The easiest solution, as with other such limitations of C
(such as the absence of constrained genericity), is to use casts, and so to bypass the t
mechanism altogether. This solution is not particularly attractive. Note, however, th
some of the proposals discussed next rely on a form of novariance, made meaningfu
the introduction of new type mechanisms to replace covariant redefinition.

Using generic parameters

An interesting idea, originally introduced by Franz Weber, relies on genericity. We c:
declare our classSKIERI with a generic parameter representing the room:
classSKIER1[G] or rather, using constrained genericity,

class SKIER1[G -> ROOM] feature

accommodatio: G

accommodat(r: G) is ... require... do accommodatior.= r end
end

Then classGIRL1 will inherit from SKIER1[GIRL_ROON] and so on. The same
techniqgue may be applied to the variant without parallel hierarchies, although it see
stranger at firstclassSKIER[G —> SKIEF].

This approach solves the covariance problem. In any use of the class you nee
specify an actual generic parameter — sucROON or GIRL_ROON —, so the invalid
combinations become impossible. The language would become novariant, and systt
would satisfy their covariance needs entirely through generic parameters.

Unfortunately, the generic parameter technique is not really acceptable as a gen
solution. It will lead to inflated generic parameter lists, with one parameter for each ty|
of a possibly covariant argument. To use the class, a developer will have to provide
many types as there are parameters; this will make classes hard to understand.

Worse, adding a covariant routine with an argument of a type not yet covered wol
require adding a generic parameter to the class, and hence changing its interface, the
invalidating all client classes. This is not acceptable.

630 TYPING 817.5

Type variables

Several authors (including Kim Bruce, David Shang, Tony Simons) have proposed
solutions based on the introduction of type variables. Although it is impossible to
summarize these sophisticated proposals without being unfair, the basic idea is simple:
instead of covariant redefinition, permit type declarations to use type variables rather than
actual types; extend the conformance rules to handle type variables; make the language
otherwise novariant; provide a facility to assign a type value to a type variable.

Instead of ROON, the declarations for attributaccommodatio and for the
argument oaccommodatwould use a type variable, to which an actual type value can be
assigned separately.

These proposals are worth considering, and the interested reader should consult the
corresponding articles, as well as complementary publications by Cardelli, Castagna,
Weber and others, starting from the paper and Web references cited in the bibliographical
notes to this chapter. We will not, however, pursue this line, for two reasons:

* The type variable mechanism, if designed properly, should subsume genericity and
anchored declarations, the two existing mechanisms for using a type without fully
specifying it. Atfirst this can be construed as an argument in favor of type variables,
as they might enable us to replace two language constructs by one, and solve other
problems at the same time. But the result may not be satisfactory in practice since
both genericity and anchored types are simple, widely accepted and easy to explain;
it is not clear that an all-encompassing type variable mechanism can do as well.

« Assuming we can indeed devise a type variable mechanism that solves the technical
difficulties of combining covariance and polymorphism (still ignoring descendant
hiding for the moment), it will requirperfect foresigl from the class designer:
knowing in advance which features are subject to type redefinition in descendants,
and which are not. The following section will further discuss this problem, which
arises from a practical software engineering concern and, unfortunately, hampers the
credibility of many theoretically satisfying schemes.

These considerations suggest trying a different approach: examining the
mechanisms that we already have at our disposal — constrained and unconstrained
genericity, anchored types, and of course inheritance — to see how they can be further
constrained to remove the possibility of system validity errors.

17.5 RELYING ON ANCHORED TYPES

We can actually fin an almost satisfactory solution to the covariance problem by taking
a closer look at a mechanism that we already know well: anchored declarations.

You must indeed have been itching, in SKIERandSKIER: examples, to use
anchored declarations, removing most of the need for type redefinitions. Anchoring is
the covariant mechanis par excellenc: by declaringy: like x, you makey vary with x

8§17.5 RELYING ON ANCHORED TYPES 631

wheneverx gets redefined to descendant-based types in descendant classes.
examples become:

Underlining indi- classSKIERfeature

cates the change from L
earlier versions roommat: like Current

share(othel: like Curren)is ... require ... do
roommate:= other
end

end -- clas: SKIER
classSKIER! feature
accommodatio: ROOM

accommodat(r: like accommodatia) is ... require ... do
accommodatior=r

end
end -- clas: SKIER1

Then descendants need no redefinition in SKIERversion, and in thiSKIER1
version they only need to redefine attribiaccommodatio. The anchored entities —
roommat and the arguments share andaccommodat— will automatically follow the
anchors’ redefinitions. This tremendous simplification, in line with what we saw in th
original examples of anchored declaration, confirms that without anchoring (or son
alternate mechanism such as type variables) it would be impossible to write realistic ty
object-oriented software.

But does this eliminate system validity violations? No! At least not without a furthe
restriction. We can still cheat the type checker into letting pass polymorphic assignme
that will cause run-time type violations.

True, the original examples will be rejected. In

s: SKIEF; b: BOY; g: GIRL

o

b g; -- Creation of éBOY andGIRL objects.
s:=b; -- Polymorphic assignment.

s. share(g)

“Rules on anchored the argumeng to share is not valid, since we need something of tlike s, andGIRL
types’, page 6(4 does not conform tlike <. The conformance rule for anchored types stated that no typ
conforms tdike < other than this type itself.

The relief is short-lived, however, The same rule stated that, in the other direction
conformancelike s conforms to the type . So we can fool the type checker, although
we have to be pretty devious, by using polymorphism not just on the s of the call
but on its argumerg:

632 TYPING 817.5

s: SKIEF; b: BOY, g: like s; actua_g: GIRL;

(o]

Il b; !l actual_g -- Creation of éBOY andGIRL objects.
s:=actual_¢g:=s -- Go througts to attactg to theGIRL object.
s=b -- Polymorphic assignment.

s. share(g)

The effect is exactly the same as before.

There is a way out. If we are serious about using anchored declarations as the sole
covariance mechanism, then we can get rid of system validity errors by prohibiting
polymorphism altogether on anchored entities. This requires a language change: we would
introduce a new keyworanchor, used in such declarations as

anchor < SKIER Warning: hypotheti-

. . . I . . cal construc, for
Then we would permit a declaration of the folike < only if s is declared in this form, yyrposes of discus-

and adapt the conformance rule to make sures as well as elements of ty|like s can sion only.
be attached (assigned or argument-passed) only to each other.

In the original rule there was a notionanchor-equivalent elements: wittx declared of

some non-anchored ty|T andy declareclike x, thenx andy are anchor-equivalent to
each other and to any other entity anchor-equivalent to either of them. An attachment to
an anchored target was valid only if the source was anchor-equivéthe target (which
makes the assignmeg:= svalid even thouglg is anchored ans is not); but there was

no such restriction the other way arouz := ywas valid for anz of typeT. With the new
approach this would not be permitted any more; in any attachmentinvolving an entity that
is either anchor or anchored, the source and the target must be anchor-equivalent.

With this approach, we would remove from the language the possibility of redefining
the type of any routine argument. (We could also prohibit redefining the result type, but
this is not necessary. We must retain, of course, the possibility of redefining an attribute
type.) All such redefinitions will now be obtained indirectly, through the anchoring
mechanism, which enforces covariance. Where with the earlier approach eDclass
redefined an inherited feature as

r(uy)...
from an original version, in a proper ance<C of D, that read

r(u: X) ...
with Y conforming tcX, you should now define the original C as

r (u: like your_ancho) ...
and only redefine iD the type olyour ancho.

This solution to the covariance-polymorphism issue will be callecAnchoring
approach (short for the more accurate “Covariance through anchoring only”). Its
properties make it particularly attractive:

e It is based on a clear concept: strictly separatingcovariantelements from the
potentially polymorphicones (just “polymorphic” for short). Any entity declared as

8§17.5 RELYING ON ANCHORED TYPES 633

Page57.

anchor or aslike some_anchcis covariant; any other is polymorphic. You can have
attachments within each category; but no entity or expression will cross tt
boundary. For example you cannot assign a polymorphic source to a covariant tar

* The solution is simple, elegant, easy to explain even to relative beginners.

* It appears completely tight, removing any possibility of covariance-related syste
validity violation.

« It retains the framework defined in the preceding chapters, in particular the notio
of genericity, constrained or not. (As a result it is, in my opinion, preferable to th
introduction of type variables covering both covariance and genericity, since the
two mechanisms address clearly distinct practical needs.)

e It entails a small language change — adding one keyword, reinforcing
conformance rule — and no foreseeable implementation difficulty.

* Itis, atleastin a theoretical senrealistic: any system that was previously possible
can be rewritten using the transformation just outlined, replacing covarial
redefinitions by anchored redeclarations in the original. True, some attachments v
become invalid as a result; but they correspond to cases that could have led to t
violations, and can be replaced by assignment attempts, whose result the softw
can then check to ascertain at run time that everything is fine.

With such arguments we would seem to be at the end of the discussion. Why the
the Anchoring solution not fully satisfactory? First, it still leaves us with the descenda
hiding issue. But the fundamental reason is the software engineering concern alre
voiced during our brief encounter with the notion of type variables. The Yalta-lik
division of the world into a polymorphic part and a covariant part assumes that tl
designer of a class always has perfect foresight: for every entity that he introduces
particular every routine argument, he must decide once and for all between one of t
possibilities:

¢ The entity is potentially polymorphic: now or later, it may become attached (throug
argument passing if it is a formal argument of a routine, through assignme
otherwise) to objects of types other than its declared type. Then no descendant
be permitted to redefine that type.

* The entity is subject to type redefinition: then it is either anchored or an anchor itse

But how can the designer be sure in each case? Much of the attraction of the obj
oriented method, captured at the beginning of this book by the Open-Closed princif
comes from its support for late adaptation of original choices; from the way it accepts tl
designers of general-purpose modules rnot have infinite wisdom, since authors of
descendants can adapt some of their decisions.

In this imperfection-tolerant approach, both type redefinition and descendant hidir
are a safety valve, which enables us to reuse an existing, almost-suitable class:

« With type redefinition, you can adapt the type declaration in the descendant withc
touching the original (to which, of course, you may lack source access ¢
modification privileges). With the covariance-only solution you would need tc
change the original, using the transformation outlined earlier.

634 TYPING 817.6

» Descendant hiding similarly preserves you from suffering too much from the buseesusTYPE
of the design process. True, one may criticize a design whiclRECTANGLE INHERITANCE AR
inherit fromPOLYGOD and still wantadd_vertesin POLYGOV; instead, you may DESCENDANT HID

; . : : o ING”, 24.7, page 835

devise an inheritance structure that removes this problem, separating fixed pol\ich discusses tax-

from variable ones. Itis indeed preferable to stay away taxonomy exceptio in onomy exceptions

designing inheritance structures. But can we eliminate them altogether?

discussion of descendant hiding in a later chapter (where we will encounter

examples that cannot be restructured as easily as polygons and rectangles) suggests

that we cannot, for two reasons. First, various classification criteria may compete:

for example we may prefer to classify our polygons into regular and irregular ones.

Second, we have to accept that even where an ideal solution is possible some

designers will not have seen it, although we may still try to inherit from their classes.

If we want to preserve the flexibility of descendant adaptation, we will need to
permit covariant type redefinition — not just through anchoring — and descendant hiding.
The next ections describe how.

17.6 GLOBAL ANALYSIS

(This section describes an intermediate approach; readers interested in an overvievSkip to“‘BEWARE

main practical solutions may skip to the next section.) SEI';OC'XTMOR'

In studying the Anchoring solution we noted that the basic idea was to separaCALLS"", 17.7, page
covariant part from the polymorphic part. Indeed, if you consider the two instruction ™"

s=b...
s. share(g)

each is a legitimate application of an important O-O mechanism: the first applies
polymorphism; the second uses type redefinition. Things start to go wrong when you
combine these operations for the sés. Similarly, in

p:=r...
p.add_vertex(...)

the problem arises from the combination of two individually blameless operations. Here too
you can use either instruction by itself without a hitch; include both and you are in trouble.

The type violations follow from erroneous calls. In the first example, the
polymorphic assignment attacts to aBOY object, makin gan illegal argument tshare
sinceg is attached to GIRL object. In the second example the assignment attir to &
RECTANGLEobject, makin add_vertea non-exported feature.

Hence an idea for a new solution: determine in advance — statically, as part of the
type checking performed by the compiler or set of tools —typese of each entity, short
for “dynamic type set”, comprising the types of all objects to which the entity might
become attached at run time. Then verify, still statically, that each call is valid for each
element of the typesets of the target and arguments.

§17.6 GLOBAL ANALYSIS 635

In our examples, the assignmes := b indicates thaBOY is in the typeset os
(becauseBOYis in the typeset cb as a result of the creation instructil! b); GIRL is in
the typeset og because of the instructid! g; but then the call tsharewould not be valid
for a targeis of typeBOY and an argumelg of typeGIRL. Similarly, RECTANGLI is in
the typeset op because of the polymorphic assignment, but the cadd_verteswould
not be valid forp of type RECTANGLI:

These observations lead to what we may calGlobal approach, based on a new
typing rule:

System Validity rule

A call x. f (arg) is system-valid if and only if it is class-valid ix having any|
type in its own typeset, ararg having any type in its own typeset.

In this definition a call is “class-valid” if it is valid according to the Feature Call rule
recalled at the beginning of this chapterC is the base class x's type,f must be an
exported feature (C, and the type carg must conform to the type of the formal argument
of f. (Remember that for simplicity we assume that each routine has exactly one argum:
the rule is trivially transposed to an arbitrary number of arguments.)

System validity is the same thing as ordinary class validity, except that we do not jt
consider the type declared for the tarx and the argumenarg: we apply class validity
to every possible type in their typesets.

Here is the basic rule for determining the typeset of all entities:
T1 « Start out with an empty typeset for every entity.

T2 « For every creation instruction of the foll SOME_TYPE a, addSOME_TYPE
to the typeset oa. (For simplicity, assume that any instructi!! a has been
replaced by ATYPE! a, whereATYPE is the type declared f@.)

T3 « For every assignment of the foia := b, add all the elements of the typesebof
to the typeset ca.

T4 « If ais a formal argument of a routine, for every corresponding actual argibment
in a call, add all the elements of the typeseh to the typeset ca.

T5 ¢ Repeat stepT3 andT4 until no typeset changes.

This description does not take genericity into account, but the extension is not ha
The repetition T5) is necessary because of the possibility of attachment chains (
attachment ob to a, of cto b and so on). It is easy to see, however, that the process wi
terminate after a finite number of steps.

The number of steps is bounded by the maximum length of attachment chains, that is to
say the maximurn such that the system contains attachmenx;, 7tox, fori =1, 2, ...
n—1. The repetition 0T3 andT4 is known as a “fixpoint” technique.

As you may have noted, the rule does not consider instruction sequencing. F
example, in

636 TYPING 817.6

'TYPELt, s:=t; !'TYPE2!'t

we will include bottTYPE. andTYPEZinto the typeset cs, even thougls can only, with

the instructions given, become attached to an object of TYPE. Taking instruction
sequencing into account would force the compiler to perform extensive flow analysis,
leading to undue complexity. Instead, the rules are more pessimistic: they will flag any
occurrence of all three operations

b
s=b
s. share(g)

as system-invalid, even if their possible run-time sequencing cannot possibly lead to a type
violation.

The global analysis approach was presented (with more details) in chapter 22 of
[M 1992]. It solves both the covariance problem and the descendant hiding problem. It
suffers, however, from an annoying practical deficiency: although it does not require flow
analysis, it assumes that you are checkinentire systen at once, rather than each class
incrementally. The killer rule iT4, which for any calx. f (b) corresponding to a routine
f (a: ARG_TYPI), adds the typeset b to that ofa. If f is a routine from a library class,
this means that adding a call f in a new client can affect the typesetsf’s formal
arguments, and ripple over to existing calls in other clients.

Although there have been proposals for incremental algorifM 1989b, their
practicality has not been established. This means that in a development environment
supporting incremental compilation the global analysis technique would need to be
implemented as a check on an entire system, rather than as part of the local (and fast)
operations that the compiler performs each time a user changes a few classes. Even though
there are precedents for such an approach — C developers, for examplmssmely
on a tool calledint, separate from the compilation process, to look for inconsistencies —
it is not really attractive, especially in today’s sophisticated environments whose users
expect the tools to provide fast and complete responses.

As aresult, the global validity approach has not to my knowledge been implemented.
(Another reason is probably that the rule may appear difficult to teach, especially when
given with all the details of genericity etc.)

In passing we have seen the reason for some terminology used since the be(Classandsystem
of this discussion. A system was said toclass-valic if it satisfied the basic type rule:vaidty’,page62’
according to each entity’'s type declaration; the name indicates that, as we just saw, this
can be checked (and checked fast) by an incremental compiler working class-by-class. A
system may be class-valid but not 'system-valic if its execution can still cause type
violations. With the techniques seen so far, detecting this possibility seems to require a
global (system-wide) analysis.

In spite of the name, however, it is in fact possible to avoid system validity errors
through completely incremental checking. This will be our final tack on the issue.

§17.7 BEWARE OF POLYMORPHIC CATCALLS! 637

Pessimism in type
checking was dis-
cussed irPessi-
mism”, page 614

17.7 BEWARE OF POLYMORPHIC CATCALLS!

The System Validity rule of global analysis, it was noted, is pessimistic: to simplify typ
rules and their enforcement, it may reject harmless combinations. Paradoxical as this
seem, we will obtain our last solution by turning to an emore pessimisticrule. This

will of course raise the question of how realistic the result is.

Back to Yalta

The gist of theCatcall solution — the name, to be explained shortly, for the new
approach — is to come back to the Yalta-like character of the Anchoring solutio
dividing the world into a polymorphic part and a covariant part (the latter also having,
its satellite, a descendant hiding part), but to remove the need for perfect foresight.

As before we narrow down the covariance issue to two operations: in our ma
example, the polymorphic assignmes = b, and the call to a covariant routine,
s.share(g). Analyzing what is truly wrong, we note that the argung is not an issue in
itself; any other argument, which has to be of tSKIERor a descendant, would be just
as bad sincs is polymorphic anshare covariantly redefines its argument. So wother
statically declared of typSKIEF and dynamically attached toSKIEF object, the call
s.share(othel), which would seem to be ideally valid on its static face, will cause a typ
violation if s has been polymorphically assigned the valub. of

The fundamental problem, then, is that we are trying tos in two incompatible
ways: as a polymorphic entity; and as the target of a call to a covariant routine. (In 1
other working example, the problem is that we p as both polymorphic entity and target
of a call to a descendant-hidden routadd verte.)

The Catcall solution is drastic, in line with the Anchoring solution: it prohibits using
an entity both polymorphically and covariantly. Like the Global solution, it will determine
statically which entities can be polymorphic, but it will not try to be smart: instead ¢
finding out the typeset, it just treats any polymorphic entity as suspect enough to warr
lifetime exclusion from any covariance or descendant hiding establishment.

Rule and definitions

The type rule of the Catcall approach is simple:

Catcall type rule

Polymorphic catcalls are invalid.

638 TYPING 817.7

This is based on equally simple definitions. First, polymorphic entity:

Definition : Polymorphic entity
An entity x of reference (non-expanded) type is polymorphic if it satigfies
any of the following properties:

P1 - It appears in an assignmex :=y wherey is of a different type of
(recursively) polymorphic.

P2+ It appears in a creation instructicc OTHER TYPE! x where
OTHER_TYP is not the type declared fix.

P3 . Itis a formal routine argument.

P4 « It is an external function.

The aim of the definition is to capture as polymorphic (“potentially polymorphic”
would be more accurate) any entity that may at run time become attached to objects of
more than one type. The definition only applies to reference types, since expanded entities
cannot by nature be polymorphic.

In our examples, the skis and the polygoip are both polymorphic from rulP1,
since they appear in assignments, the first with ab and the second with a rectanr.e

If you have read the definition of the typeset concept in the Global approach, note
how much more pessimistic the notion of polymorphic entity is, and simpler to check.
Instead of trying to find out all the possible dynamic types of an entity, we settle for a
binary property: can it be polymorphic, or can it not? Most strikingly (P3), we
consider thaany formal argument of a routine is polymorphic(unless it is expanded,
as with integers and the like). We do not even bother to consider the calls to a routine: if
you are an argument, you are at the beck and call of any client, so we cannot trust your
type. This rule is closely tied to the reusability goal of object technology, where any class
has the potential, ultimately, to become part of a reusable library where any client software
will be able to call it.

The distinctive feature of this rule is that it does not require any global check. To
determine whether an entity is polymorphic, it suffices to examine the text of a class.
There is not even any need to examine proper ancestors’ texts, provided we record, for
each query (attribute or function) of each class, whether it is polymorphic. (We need this
information since undeP1 the assignmenx = f will make x polymorphic if f is
polymorphic, whether or not it comes from the same class.) Unlike the computation of
typesets in the Global approach, the detection of polymorphic entities can proceed class
by class, as part of the checks performed by an incremental compiler.

See optimizatio Sz,

As discussed in the presentation of inheritance, this analysis can also be precious fopageSll

optimization purposes

§17.8 AN ASSESSMENT 639

Page637.

Calls, as well as entities, may be polymorphic:

Definition: Polymorphic call

A call is polymorphic if its target is polymorphic.

The calls of both examples are polymorplsitshare(g) sinces is polymorphic, and
p.add_vertex(...) sincepis polymorphic. The definition implies that only qualified calls
a.f(...) can be polymorphic. (Writing an unqualified cfz(...) asCurrent. f (...) changes
nothing sinceCurreni, to which no assignment is possible, cannot be polymorphic.)

Next we need the notion of catcall, based on the notion of CAT. A routine is a CA
(short for Changing Availability or Type) if some redefinition of the routine, in a
descendant, makes a change of one of the two kinds we have seen as potent
troublesome: retyping an argument (covariantly), or hiding a previously exported featu

Definition: CAT (Changing Availability or Type)

A routine is a CAT if some redefinition changes its export status or theg type
of any of its arguments.

This property is again incrementally checkable: any argument type redefinition
change of export status makes a routine a CAT. It yields the notion of catcall: any call t
a CAT change could make invalid. This completes the set of definitions used by t
Catcall type rule:

Definition: Catcall

A call is a catcall if some redefinition of the routine would make it invalid
because of a change of export status or argument type.

The Catcall type rule promotes our Yalta view by separating calls into two disjoir
categories: polymorphic calls and catcalls. Polymorphic calls yield some of the express
power of the O-O method; catcalls yield the ability to redefine types and hide featur:
Using terminology introduced at the beginning of this chapter: polymorphism enhanc
theusefulnes of the approach; type redefinition enhancewusability.

The calls of our examples are catcalls sishare redefines its argument covariantly,
andadd_verte, exported inRECTANGL|, is hidden inPOLYGON. Since they are also
polymorphic, they are prime examples of polymorphic catcalls and hence made invalid
the Catcall type rule.

17.8 AN ASSESSMENT

Before trying to summarize what we have learned on the covariance and descenc
hiding issues, we should recall once more that system validity violations arise extrem
rarely. The most important properties of static O-O typing are the ones summarized at

640 TYPING 817.9

beginning of this chapter: the impressive array of type-related mechanisms which, with
class-level validity, open the way to a safe and flexible method of software construction.

We have seen three solutions to the covariance problem, two of them also addressing
descendant hiding. Which one is right?

The answer may not be final. The consequences of subtle interactions between O-O
typing and polymorphism are not as well understood as the topics of the preceding
chapters. The past few years have seen the appearance of numerous publications on the
question, to which the bibliographical notes give the basic pointers. | hope that the present
chapter has provided the elements for a definitive solution or something close to it.

The Global solution seems impractical because of the implied need for system-wide
checking. But it helps understand the issue.

The Anchoring solution is extremely tempting. It is simple, intuitive, easy to
implement. We must all the more regret its failure to support some of the key software
engineering requirements of the object-oriented method, as summarized by the Open-
Closed principle. If you have perfect foresight, then the Anchoring solution is great; but
what designer can promise to have perfect foresight, or assume perfect foresight from the
authors of the library classes he reuses through inheritance?

This assumption limits the usefulness of many of the published approaches, such as those
relying on type variables. If we can be assured that the developer always knows in advance
which types may change, the theoretical problem becomes much easier, but it does not
accurately model the practical problem of typed object-oriented software construction.

If we must give up the Anchoring approach, the Catcall type rule seems to be the
appropriate one, easy enough to explain and enforce. Its pessimism should not exclude
useful combinations. If a case that appears legitimate yields a polymorphic catcall, it is
always possible to let it through safely by introducing an assignment attempt; this is a way
to transfer some of the checks to run time. This should only happen in a marginal number
of cases.

As a caveat, | should note that at the time of writing the Catcall solution has not yet
been implemented. Until a compiler has been adapted to enforce the Catcall type rule and
applied successfully to many representative systems, small and large, where success
means evidence that the rule is realistic (that all useful systems will pass muster, possibly
at the expense of a few easily justifiable changes) and that checking it imposes no
significant penalty on incremental recompilation times, we must refrain from proclaiming
that on the problem of reconciling static typing and polymorphism with covariance and
descendant hiding we have heard the last word.

17.9 THE PERFECT FIT

As a complement to the discussion of covariance it is useful to study a general technique
addressing a common problem. This technique was devised as a result of the Catcall
theory, but it can be used in the basic language framework without any new rule.

Assume that we have two lists of skiers, where the second list includes the roommate
choice of each skier at the corresponding position in the first list. We want to perform the

§17.9 THE PERFECT FIT 641

ONnGENERAI
conforms_tcand
same_typ, see
“Universal fea-
tures”, page 582

correspondinghare operations, but only if they are permitted by the type rules, that is t
say girls with girls, ranked girls with ranked girls and so on. Problems of this kind al
presumably frequent.

A simple solution is possible, based on the preceding discussion and on assignir
attempt. Consider the following general-purpose function:

fitted (other: GENERAI): like otheris

-- Current object if its type conforms to that of object attached to
-- othelr; void otherwise.

do
if other/= Void and ther conforms_tc(othetr) then

Result?= Current

end

end

Functionfitted returns the current object, but known through an entity of a type
anchored to the argument; if this is not possible, that is to say if the type of the curre
object does not conform to that of the object attached to the argument, it returns void. N
the role of assignment attempt. The function reliesconforms_t, a feature of class
GENERAI that determines whether the type of an object conforms to that of another.

Replacingconforms_tcby same_typ, anotheIGENERAI feature, yields a function
perfect_fittecthat returns void unless the types are exactly the same.

Functionfitted gives us a simple solution to the problem of matching skiers withou
violating type rules. We can for example add the following procedure toSKIEF and
use itin lieu oishare (perhaps makinsharea secret procedure for more control):

safe_shar¢other SKIEF) is
-- Chooseotheras roommate if permissible.
local
gender_ascertained_otf: like Current

do
gender_ascertained_oth:= other. fitted (Curreni)

if gender_ascertained_oth/= Voidthen
share(gender_ascertained_oth)er
else
“Report that matching is impossible fother”
end
end

For other of arbitrary SKIEF type — not jusilike Current— we define a version
gender_ascertained_ott which has a type anchored Curreni. To enforce identical
types — so that RANKED_GIRI goes only with anotheRANKED _GIR/, not with a
mereGIRL — useperfect_fitterinstead ofitted.

If you have two parallel lists of skiers, representing planned roommate assignmer
occupant, occupant: LIST[SKIEF]
you can iterate over the lists, applying at each stage

642 TYPING §17.10

occupantl item. safe_share¢occupant2 item)
to match elements at corresponding positions if and only if their types are compatible.

| find this technique elegant; | hope you will too. And of course parents anxious
about what really happens during the ski trip should breathe a sigh of relief.

17.10 KEY CONCEPTS STUDIED IN THIS CHAPTER

 Static typing is essential for reliability, readability and efficiency.

« Static typing, to be realistic, requires a combination of mechanisms, including
assertions, multiple inheritance, assignment attempt, constrained and unconstrained
genericity, anchored declarations. The type system must not allow loopholes
(“casts”).

 Practical rules for routine redeclarations should permit covariant redeclaration: both
results and arguments may be redefined to types conforming to the originals.

« Covariance, as well as the ability to hide in a descendant a feature that was exported
in an ancestor, raise the rare but serious possibility of type violations when combined
with polymorphism.

* Such type violations can be avoided through global analysis (impractical), limiting
covariance to anchored types (conflicting with the Open-Closed principle), or the
“catcall” technique which bars any covariance or descendant hiding for any routine
used with a polymorphic target.

17.11 BIBLIOGRAPHICAL NOTES

Some of the material of this chapter originated with a keynote talk given at the OOPSLA
95 and TOOLS PACIFIC 95 conferences and publishe[M 1996a. Some of the
overview material has been drawn from a journal art[M 1989¢.

The notion of automatic type inference was introduce(Milner 1989], which
describes an inference algorithm for the functional language ML. The connection between
polymorphism and type checking is further explore[Cardelli 1984a,

Techniques for improving the efficiency of dynamically typed language
implementations are described, in the context of the Self langug[Ungar 1992

Luca Cardelli and Peter Wegner are the authors of an influential theoretical aFor an introduction

. . .) . to lambda calculus
on types in programming languag[Cardelli 1985; using lambda calculus as thg "cp o «pe o
mathematical framework, it has served as a basis for much of the subsequent wconception-Prog-

followed another foundational article by Card[Cardelli 1984. rammation par
Objets”, Mémoire de
An ISE manua[M 1988a included a brief presentation of the issues raised by licence, Université

combination of polymorphism with covariance and descendant hiding. The absence cLibre de Bruxelles
an analysis in the first edition of this book led to some critical discussions (predatt(Belg'un)’ 198t
comments in a student’s bachelor thesis report by Philippe Elinck), n(Cook 1989]

and[America 1989¢. Cook’s paper showed several examples of the covariance problem

§17.11 BIBLIOGRAPHICAL NOTES 643

and attempted a solution. At TOOLS EUROPE 1992, Franz Weber proposed a solut
based on the use of generic parameters for covariant elfWeber 1992. [M 1992]
defines precisely the notions of class-level and system-level validity, and propose:
solution based on system-wide analysis. Catcall solution described in the present
chapter was first presented[M 1996a; see also on-line materiiM-Web].

The Anchoring solution was presented in a talk | gave at a TOOLS EUROPE 19
workshop. | had, however, overlooked the nee@nchor declarations and the associated
restriction on conformance. Paul Dubois and Amiram Yehudai immediately pointed o
that the covariance problem could still arise under these conditions. Along with othe
including Reinhardt Budde, Karl-Heinz Sylla, Kim Waldén and James McKim, the
provided many further comments that were fundamental to the work leading to the pres
chapter (without being committed to its conclusions).

There is an abundant literature on the covariance is[Castagna 199! and
[Castagna 199 provide both a bibliography and a mathematical overview. For a list o
links to on-line articles on O-O type theory and researchers’ Web pages, see Laul
Dami’'s page[Dami-Web. The terms “covariance” and “contravariance” come, by the
way, from category theory; it appears that their introduction into discussions of softwa
typing is due to Luca Cardelli, who started to use them in talks in the early eightie
although they seem not to have appeared in print until the end of that decade.

Techniques based on type variables are describ[Simons 199&, [Shang 199¢,]
[Bruce 1997

The Sather language uses contravaria[Szypersky 199: presents the rationale.

644 TYPING §17.11

	17 17 Typing
	17.1 THE TYPING PROBLEM
	The Basic Construct
	Definition: type violation
	Object-oriented typing problem

	Static and dynamic typing
	Definition: statically typed language

	Typing rules
	Realism
	Pessimism

	17.2 STATIC TYPING: WHY AND HOW
	The benefits
	Relative cost of correcting errors
	After [Boehm 1981]. Reproduced with permission.

	Arguments for dynamic typing
	The ingredients of successful typing
	Multiple inheritance

	“A little bit typed”?
	Typing and binding: avoiding the confusion
	Typing and binding
	Kinds of flying object

	17.3 COVARIANCE AND DESCENDANT HIDING
	Covariance
	Kinds of skier
	Skier hierarchy and redefinitions
	Phone service and billing addresses

	Parallel hierarchies
	Polymorphic perversity
	Descendant hiding
	Class and system validity
	Practical scope

	17.4 FIRST APPROACHES TO SYSTEM VALIDITY
	Contravariance and novariance
	Using generic parameters
	Type variables

	17.5 RELYING ON ANCHORED TYPES
	17.6 GLOBAL ANALYSIS
	System Validity rule

	17.7 BEWARE OF POLYMORPHIC CATCALLS!
	Back to Yalta
	Rule and definitions
	Catcall type rule
	Definition: Polymorphic entity
	Definition: Polymorphic call
	Definition: CAT (Changing Availability or Type)
	Definition: Catcall

	17.8 AN ASSESSMENT
	17.9 THE PERFECT FIT
	17.10 KEY CONCEPTS STUDIED IN THIS CHAPTER
	17.11 BIBLIOGRAPHICAL NOTES

