
18
Global objects and constants
eed to
he size
ctive

just
yle of
m nor
 our

about
 the

ing for
ty any
w do
omy,

s that
esides,
o others;

d in
ional

 first
L ocal knowledge is not always enough; components of a software system may n
access global information. It is easy to think of examples: a shared value, such as t
of available memory; an error window, to which all the components of an intera
system must be able to output messages; the gateway to a database or network.

In classical approaches, it is not difficult to provide for global objects; you
declare them as global variables, owned by the main program. In the modular st
design made possible by object-oriented techniques, there is neither a main progra
global variables. But even if our software texts do not include global variables
software executions may still need to share objects.

Such global objects pose a challenge to the method. Object technology is all
decentralization, all about modularity, all about autonomy. It has developed from
beginning of this presentation as a war of independence for the modules, each fight
its freedom from the excesses of central authority. In fact, there is no central authori
more. How then do we satisfy the need for common institutions? In other words, ho
we allow components to share data in a simple way, without jeopardizing their auton
flexibility and reusability?

It will not work, of course, to pass shared objects as arguments to the module
need them. This would soon become clumsy if too many components need them. B
argument passing assumes that one module owns the value and then passes it on t
in the case of a truly shared value no one module can claim ownership.

To find a better answer we will start from a well-known notion, which we nee
object-oriented software construction just as much as we did in more tradit
approaches: constants. What is, after all, a constant such as Pi if not a simple object shared
by many modules? Generalizing this notion to more complex objects will provide a
step towards fully general constant and shared objects.

18.1 CONSTANTS OF BASIC TYPES

Let us start with a simple notation to denote constant values.

GLOBAL OBJECTS AND CONSTANTS§18.1644

at the
n

lue 50

e value
e one
or all

) for

 at 1.

 as
 worth
stants

reat
 for all

e
y an

es of

“Manifest and sym-
bolic constants”,
page 884. See also
“Modular continu-
ity”, page 44.
Using symbolic constants

A rule of software style, the Symbolic Constant principle, states that when an algorithm
refers to a certain value — a number, a character, a string… — it should almost never use
it directly. Instead, a declaration should associate a name with the value, so th
algorithm can use the name (known as a symbolic constant) rather than the value (know
as a manifest constant). Two reasons justify this principle:

• Readability: someone who reads your software may not understand what the va
is doing in a certain algorithm; if instead you use the symbolic constant US_states_
count everything is clear.

• Extendibility: in practice, with a few exceptions (such as the value of π, unlikely to
change soon), the only constant thing about constants is change. To update th
of a constant it suffices, if you have been using symbolic constants, to chang
declaration. This is much nicer than having to chase throughout the software f
the places that may have relied on the earlier value.

The principle permits using manifest constants (hence the word “almost” above
zero elements of various operations, as in a loop from i := 1 until i > n … iterating over
the elements of an array whose numbering follows the default convention of starting
(But n should be symbolic, not manifest.)

Although few software developers apply the Symbolic Constant principle
systematically as they should, the benefits of declaring a symbolic constant are well
the small extra effort. So we need a clear and simple way of defining symbolic con
in an O-O framework.

Constant attributes

A symbolic constant, like everything else, will be defined in a class.We will simply t
a constant value as an attribute which happens to have a fixed value, the same
instances of the class.

For the syntax, we can reuse the keyword is which already serves to introduc
routines; only here it will be followed by a value of the appropriate type, rather than b
algorithm. The following examples include one for each of the basic types INTEGER,
BOOLEAN, REAL and CHARACTER:

Zero: INTEGER is 0
Ok: BOOLEAN is True
Pi: REAL is 3.1415926524
Backslash: CHARACTER is '\ '

Backslash is of type CHARACTER, its value a single character. Constants of string type,
denoting character strings of arbitrary length, will be discussed below.

As these examples illustrate, the recommended style convention for nam
constant attributes is to start with a capital letter, with the rest in lower case.

A descendant may not redefine the value of a constant attribute.

§18.2 USE OF CONSTANTS 645

y are

nstant

lass:

ants

 any
 some
aracter
Like other attributes, constant attributes are either exported or secret; if the
exported, clients of the class may access them through feature calls. So if C is the class
containing the above declarations and x, declared of type C, has a non-void value, then
x● Backslash denotes the backslash character.

Unlike variable attributes, constant attributes do not occupy any space at run time in
instances of the class. So there is no run-time penalty for adding as many co
attributes as you need.

18.2 USE OF CONSTANTS

Here is an example showing how clients may use constant attributes defined in a c

class FILE feature

error_code: INTEGER; -- Variable attribute

Ok: INTEGER is 0

Open_error: INTEGER is 1
…
open (file_name: STRING) is

-- Open file of name file_name
-- and associate it with current file object

do
error_code:= Ok
…
if “Something went wrong” then

error_code:= Open_error
end

end
… Other features …

end

A client may call open and compare the resulting error code to any of the const
to test how the operation went:

f: FILE; …
f ● open
if f ● error_code = f● Open_error then

“Appropriate action”
else

…
end

Often, however, a group of constants is needed without being attached to
particular object. For example, a system performing physics computations may use
numerical constants; or a text editor may need character constants describing the ch

GLOBAL OBJECTS AND CONSTANTS§18.3646

rouped
lass; it

d
nition
ves a

tants

s, are
at

is that

See “FACILITY
INHERITANCE”,
24.9, page 847.
keys associated with various commands. In such a case, the constants will still be g
in a class (where else could they be?), but there will not be any instances of that c
is simply used as parent for the classes that need to access the constants, as in

class EDITOR_CONSTANTS feature

Insert: CHARACTER is 'i '

Delete: CHARACTER is 'd'; -- etc.

…
end

class SOME_CLASS_FOR_THE_EDITOR inherit

EDITOR_CONSTANTS

… Other possible parents …
feature …

… Routines of the class have access to the constants

 declared in EDITOR_CONSTANTS …
end

A class such as EDITOR_CONSTANTS is used only to host a group of relate
constants, and its role as an “abstract data type implementation” (our working defi
of the notion of class) is less obvious than in earlier examples. But it definitely ser
useful purpose. We will examine its theoretical justification in a later chapter.

The scheme shown would not work without multiple inheritance, since SOME_
CLASS_FOR_THE_EDITOR may need other parents, either for access to other cons
or for more standard uses of inheritance.

18.3 CONSTANTS OF CLASS TYPES

Symbolic constants, allowing you to use identifiers to denote certain constant value
not just useful for predefined types such as INTEGER; the need also arises for types th
developers have defined, through classes. Here the solution is less obvious.

Manifest constants are inappropriate for class types

A typical example in which you may need to define a constant for a non-basic types
of a class describing complex numbers:

class COMPLEX creation

make_cartesian, make_polar

feature

x, y: REAL

-- Real and imaginary parts

§18.3 CONSTANTS OF CLASS TYPES 647

t

ts

ike

atible
ould
n.

ithout

 class

that it
s

m the
or
 usual

Not a retained nota
tion. For purposes o
illustration only.
make_cartesian (a, b: REAL) is
-- Initialize with real part a, imaginary part b.

do

x := a; y := b

end

… Other routines (x and y are the only attributes) …
end

You may want to define the complex number i, with real part 0 and imaginary par
1. The first idea that comes to mind is a manifest constant notation such as

i: COMPLEX is “Expression specifying the complex number (0, 1)”

How can you write the expression after is? For simple types, the manifest constan
were self-evident: 345 is a constant of type integer,'A' of type character. But no such
predefined notation is available for developer-defined class types.

One could imagine a notation based on the attributes of the class; something l

i: COMPLEX is COMPLEX (0, 1)

But such an approach (although present in some O-O languages) is incomp
with the principles of modularity which serve as the basis for object technology. It w
mean requiring clients of COMPLEX to describe constants in terms of the implementatio
This breaks information hiding. You could not add an attribute, even a secret one, w
invalidating client code; neither could you re-implement an attribute such as x as a
function (to switch internally to a polar representation).

Besides, how could you make sure that such manifest constants will satisfy the
invariant if there is one?

This last remark opens the way to a correct solution. An earlier chapter noted
is the responsibility of the creation procedures to make sure that every object satisfie
the invariant immediately upon creation. Creating objects in any other way (apart fro
safe companion mechanism, clone) would lead to error situations. So we should look f
a mechanism that, rather than manifest objects in the above style, will rely on the
technique for object creation.

Once functions

We may view a constant object as a function. For example i could be defined within class
COMPLEX itself as

i: COMPLEX is
-- Complex number with real part 0 and imaginary part 1

do
!! Result● make_cartesian (0, 1)

end

-
f

GLOBAL OBJECTS AND CONSTANTS§18.4648

to an
t will

:

cutes

the

s its
er, and
all, but

ly

nces
ndants
quence
 if a

irect

:

sm

l also

in a
t

This almost does the job, since the function will always return a reference
object of the desired form. Since we rely on normal creation procedures, the invarian
be satisfied, so we will only produce consistent objects.

The result, however, is not exactly what we need: each client use of i in the client
produces a new object, identical to all the others. This is a waste of time and space

To get the proper behavior, we need a special kind of function: one which exe
its body only the first time it is called. We can call this a once function. A once function
is otherwise similar to a normal function; syntactically, it will be distinguished by
keyword once, replacing the usual do, to introduce the body:

i: COMPLEX is
-- Complex number with real part 0 and imaginary part 1

once
!! Result● make_cartesian (0, 1)

end

The first time a once function is called during a system’s execution, it execute
body. In the example this creates an object representing the desired complex numb
returns a reference to that object. Every subsequent call executes no instruction at
terminates immediately, returning the result computed the first time around.

Regarding efficiency: a call to i other than the first should take only marginal
longer than an attribute access.

The result computed by the first call to a once function is applicable to all insta
of a class, in the general sense of the word “instance” covering instances of desce
as well, except of course for any descendant that redefines the function. As a conse
you can freely redefine functions from once to non-once and conversely. Here
descendant COMPLEX1 of COMPLEX redefines i, a call to i on an instance of
COMPLEX1 will use the redefined version (whether once or non-once); a call on a d
instance of COMPLEX or a descendant other than COMPLEX1 will use the once function,
that is to say the value computed by the first such call.

18.4 APPLICATIONS OF ONCE ROUTINES

The notion of once routine extends beyond examples such as i to more general applications
shared objects, global system parameters, initialization of common properties.

Shared objects

For reference types such as COMPLEX, as you may have noted, the “once” mechani
actually offers constant references, not necessarily constant objects. It guarantees that the
body of the function is executed only once, to compute a result, which later calls wil
return without further computation.

If the function returns a value of a reference type, its body will usually conta
creation instruction, as in the example of i. All calls will return a reference to the objec

The only change

§18.4 APPLICATIONS OF ONCE ROUTINES 649

vents
nism

dow
at any
indow,

m.

s not a
t in
ts
created by the first. Although the creation will never be executed again, nothing pre
callers from modifying the object through the reference. Therefore the mecha
provides shared objects rather than constant ones.

An example of a shared object, cited at the beginning of this chapter, is a win
showing error messages in an interactive system. Assume we have decided th
component of the system that detects a user error may output a message to that w
through a call of the form

Message_window● put_text ("Appropriate error message")

Here message_window is of type WINDOW, with class WINDOW declared as

class WINDOW creation

make

feature
make (…) is

-- Create window at size and position indicated by arguments.

do … end

text: STRING

-- Text to be displayed in window

put_text (s: STRING) is
-- Make s the text to be displayed in window.

do

text := s

end

… Other features …
end -- class WINDOW

Obviously Message_window must be the same for all components of the syste
This is achieved by declaring the corresponding feature as a once function:

Message_window: WINDOW is
-- Window where error messages will be output

once
!! Result● make ("…Size and position arguments…")

end

In this case the message window object must be shared by all its users, but it i
constant object: each call to put_text changes the object by putting its own chosen tex
it. The best place to declare Message_window is a class from which all system componen
needing access to the message window will inherit.

In the case of a shared object that denotes a constant, such as i, you may want to disallow
calls of the form i ● some_procedure that might change the fields. To achieve this, simply
include clauses i ● x = 0 and i ● y = 1 in the class invariant.

GLOBAL OBJECTS AND CONSTANTS§18.4650

tem
nstant

some

mory

er of
odules

nt them

 an

s seen
y other
rity:
 as
elated
uch as

ere

hared
 cases
ny one
per to
 this.

See “Modular
decomposability”,
page 40.
Once functions returning results of basic types

Another application of once functions is to represent global values — “sys
parameters” — used by several classes in a system. Such values will usually be co
over a given system execution; they are initially computed from user input, or from
information obtained from the environment. For example:

• The components of a low-level system may need to know the available me
space, obtained from the environment at initialization time.

• A terminal handler may start by querying the environment about the numb
terminal ports: once obtained, these data elements are then used by several m
of the application.

Such global values are similar to shared objects such as Message_window; but in
general they are values of basic types rather than class instances. You may represe
through once functions. The scheme is:

Const_value: T is
-- A system parameter computed only once

local
envir_param: T ' -- Any type (T or another)

once
“Get the value of envir_param from the environment”

Result:= “Some value computed from envir_param”

end

Such once functions of basic types describe dynamically computed constants.

Assume the above declaration is in a class ENVIR. A class needing to use Const_value
will get it simply by listing ENVIR among its parents. There is no need here for
initialization routine as might be used in classical approaches to compute Const_value,
along with all other global parameters, at the beginning of system execution. As wa
in an earlier chapter, such a routine would have to access the internal details of man
modules, and hence would violate the criteria and principles of modula
decomposability, few interfaces, information hiding etc. In contrast, classes such
ENVIR may be designed as coherent modules, each describing a set of logically r
global values. The first component that requests the value of a global parameter s
Const_value at execution time will trigger its computation from the environment.

Although Const_value is a function, components that use it may treat it as if it w
a constant attribute.

The introduction to this chapter mentioned that none of the modules that use a s
value has more claim to own it than any of the others. This is especially true in the
just seen: if, depending on the order of events in each execution of the system, a
among a set of modules may trigger the computation of the value, it would be impro
designate any single one among them as the owner. The modular structure reflects

§18.4 APPLICATIONS OF ONCE ROUTINES 651

.)

ll.

basis
 the
ing

es,
l. The
 first

yway:
called
ust as

her
 call
tions

ents.
he call

 the
t the
Once procedures

The function close should only be called once. We recommend using a
global variable in your application to check that close is not called more
than once.

(From the manual for a commercial C library

The “once” mechanism is interesting not just for functions but for procedures as we

A once procedure is appropriate when some facility used on a system-wide
must be initialized, but it is not known in advance which system component will be
first to use the facility. It is like having a rule that whoever comes in first in the morn
should turn on the heating.

A simple example is a graphics library providing a number of display routin
where the first display routine called in any system execution must set up the termina
library author could of course require every client to perform a setup call before the
display call. This is a nuisance for clients and does not really solve the problem an
to deal properly with errors, any routine should be able to detect that it has been
without proper setup; but if it is smart enough to detect this case, the routine might j
well do the setup and avoid bothering the client!

Once procedures provide a better solution:

check_setup is
-- Perform terminal setup if not done yet.

once

terminal_setup -- Actual setup action

end

Then every display routine in the library should begin with a call to check_setup. The
first call will do the setup; subsequent ones will do nothing. Note that check_setup does
not have to be exported; client authors do not need to know about it.

This is an important technique to improve the usability of any library or ot
software package. Any time you can remove a usage rule — such as “Always
procedure xyz before the first operation” — and instead take care of the needed opera
automatically and silently, you have made the software better.

Arguments

Like other routines, once routines — procedures and functions — can have argum
But because of the definition of the mechanism, these arguments are only useful in t
that gets executed first.

In the earlier analogy, imagine a thermostat dial which anyone coming into
building may turn to any marking, but such that only the first person to do so will se
temperature: subsequent attempts have no effect.

GLOBAL OBJECTS AND CONSTANTS§18.4652

ing.)

ypes

, the

tions

ny

ll; and

Warning: not valid.
See below.

Warning: not valid.
See below.
Once functions, anchoring and genericity

(This section addresses a specific technical point and may be skipped on first read

Once functions of class types carry a potential incompatibility with anchored t
and genericity.

Let us start with genericity. In a generic class EXAMPLE [G] assume a once function
returning a value whose type is the formal generic parameter:

f: G is once … end

and consider a possible use:

character_example: EXAMPLE [CHARACTER]
…
print (character_example● f)

So far so good. But you also try to do something with another generic derivation:

integer_example: EXAMPLE [INTEGER]
…
print (integer_example● f + 1)

The last instruction adds two integer values. Unfortunately, the first of them
result of calling f, has already been computed since f is a once function; and it is a
character, not an integer. The addition is not valid.

The problem is that we are sharing a value between different generic deriva
which expect the type of that value to depend on the actual generic parameter.

A similar issue arises with anchored types. Assume a class B which adds an attribute
to the features of its parent A:

class B inherit A feature
attribute_of_B: INTEGER

end

Assume that A had a once function f, returning a result of anchored type:

f: like Current is once!! Result● make end

and that the first evaluation of f is in

a2 := a1● f

with a1 and a2 of type A. The evaluation of f creates a direct instance of A, and attaches it
to entity a2, also of type A. Fine. But assume now that a subsequent use of f is

b2 := b1● f

where b1 and b2 are of type B. If f were a non-once function, this would not cause a
problem, since the call would now produce and return a direct instance of B. Since here
we have a once function, the result has already been computed through the first ca
that result is a direct instance of A, not B. So an instruction such as

print (b2● attribute_of_B)

§18.5 CONSTANTS OF STRING TYPE 653

 to

f once
types.

result
lass,
The
tics of

t of a
a more

single

acter

ated

a once
will try to access a non-existent field in an object of type A.

The problem is that anchoring causes an implicit redefinition. Had f been explicitly
redefined, through a declaration appearing in B under the form

f: B is once!! Result● make end

assuming that the original in class A similarly returned a result of type A (rather than
like Current), then we would not have any trouble: direct instances of A use the A version,
direct instances of B use the B version. Anchoring, of course, was introduced precisely
rid us of such explicit redefinitions serving type needs only.

These two cases are evidence of incompatibilities between the semantics o
functions (procedures are fine) and the results of either anchored or formal generic

One way out, suggested by the last observation on implicit vs. explicit redefinition,
would be to treat such cases as we would explicit redefinitions: to specify that the
of a once function will be shared only within each generic derivation of a generic c
and, if the result is anchored, only within the direct instances of the class.
disadvantage of this solution, however, is that it goes against the expected seman
once functions, which from a client’s viewpoint should be the conceptual equivalen
shared attribute. To avoid confusion and possible errors it seems preferable to take
draconian attitude by banning such cases altogether:

18.5 CONSTANTS OF STRING TYPE

The beginning of this chapter introduced character constants, whose value is a
character. The example was

Backslash: CHARACTER is ' \ '

Often, classes will also need symbolic constants representing multi-char
strings.The notation for manifest string constants will use double quotes:

[S1]

Message: STRING is "Syntax error"

Recall that STRING is a class of the library, not a simple type. So the value associ
at run time with an entity such as Message is an object (an instance of STRING). As you
may have guessed, the above declaration is a shorthand for the declaration of
function, here of the form:

Once Function rule

The result type of a once function may not be anchored, and may not involve
any formal generic parameter.

GLOBAL OBJECTS AND CONSTANTS§18.6654

ts. Any
s.

ng or

noting
possible

See “Multi-branch”,
page 449.
Message: STRING is
-- String of length 12, with successive characters
-- S, y, n, t, a, x, , e, r, r, o, r

once
!! Result● make (12)
Result● put ('S', 1)
Result● put ('y', 2)
…
Result● put ('r ', 12)

end

The creation procedure for strings takes as argument the initial expected length of the
string; put (c, i) replaces the i-th character with c.

Such string values are therefore not constants but references to shared objec
class that has access to Message may change the value of one or more of its character

You can also use string constants as expressions, for argument passi
assignment:

Message_window● display ("CLICK LEFT BUTTON TO CONFIRM EXIT")
greeting:= "Hello!"

18.6 UNIQUE VALUES

It is sometimes necessary to define an entity that has several possible values de
possible cases. For example a read operation may produce a status code whose
values are codes meaning “successful”, “error on opening” and “error on reading”.

A simple solution is to use a variable integer attribute

code: INTEGER

with a set of associated integer constants, such as

[U1]
Successful: INTEGER is 1
Open_error: INTEGER is 2
Read_error: INTEGER is 3

so that you can write conditional instructions of the form

[U2]
if code = Successful then …

or multi-branch instructions of the form

[U3]
inspect

code
when Successful then

…
when …
end

§18.6 UNIQUE VALUES 655

 The

the
y the
ulti-

they
tive. So
he

riant

s. As
e non-
tures,
ore
d has

 others

s
; here

Ada,
ssion
It is tedious, however, to have to come up with the individual constant values.
following notation has the same practical effect as [U1]:

[U4]

Successful, Open_error, Read_error: INTEGER is unique

A unique value specification, coming in lieu of a manifest integer value in
declaration of a constant integer attribute, indicates that the value is chosen b
compiler rather than the developer. So the conditional instruction [U2] and the m
branch [U3] are still applicable.

All unique values within a class are guaranteed to be positive and different; if
are declared together, as the three in [U4], they are also guaranteed to be consecu
if you want to express that code will only receive one of their values, you can include t
invariant clause

code >= Successful; code <= Read_error

With this invariant, a descendant — which, as we know, may change the inva
only by strengthening it — may constrain the possible values of code further, for example
to just two possibilities; it may not extend the set of possibilities.

You should only use Unique values to represent a fixed set of possible value
soon as this set is open to variation, or the instructions in a structure such as [U3] ar
trivial, it is preferable to devise a set of classes which variously redefine some fea
and then to rely on dynamic binding, satisfying the Open-Closed principle. M
generally, do not use unique values for classification since the object-oriented metho
better techniques. The preceding example is typical of good uses of the mechanism;
would be traffic light states (green, yellow, red: INTEGER is unique) or, as seen earlier,
notes on the scale (do, re, mi, …: INTEGER is unique). But a declaration savings,
checking, money_market: INTEGER is unique is probably a misuse if the various kind
of account have different features or different implementations of a common feature
inheritance and redefinition will most likely provide a better solution.

These observations can be summed up as a methodological rule:

Although similar in some respects to the “enumerated types” of Pascal and
unique declarations do not introduce new types, only integer values. The discu
section will explore the difference further.

Discrimination principle

Use unique values to describe a fixed number of possible cases. For
classification of data abstractions with varying features, use inheritance.

GLOBAL OBJECTS AND CONSTANTS§18.7656

s and
ase.

 issue:
on in

neral
uest a

riable

lude

t

s, and
ages
st
or a
ram.

 hence
nd in
y its

orm

onflict
onflict
nes.

st be
med
ntexts
rious
18.7 DISCUSSION

In this discussion, the term “global object” refers both to global constants of basic type
to shared complex objects; their “initialization” includes object creation in the latter c

Initializing globals and shared objects: language approaches

The principal problem addressed by this chapter is an instance of a general software
how to deal with global constant and shared objects, and particularly their initializati
libraries of software components.

Since the initialization of a global object should be done just once, the more ge
issue is how to enable a library component to determine whether it is the first to req
certain service.

This boils down to an apparently simple question: how to share a boolean va
and initialize it consistently. We can associate with a global object p, or any group of
global objects that need to be initialized at the same time, a boolean indicator, say ready,
which has value true if and only if initialization has been performed. Then we may inc
before any access to p the instruction

if not ready then
“Create or compute p”

ready:= True
end
The initialization problem still applies to ready, itself a global object that mus

somehow be initialized to false before the first attempt to access it.

This problem has not changed much since the dawn of programming language
the early solutions are still with us. A common technique in block-structured langu
such as Algol or Pascal is to use for ready a global variable, declared at the highe
syntactical level. The main program will do the initialization. But this does not work f
library of autonomous modules which, by definition, is not connected to any main prog

In Fortran, a language designed to allow routines to be compiled separately (and
to enjoy a certain degree of autonomy), the solution is to include all global objects, a
particular ready indicators, in a shared data area called a common block, identified b
name; every subroutine accessing a common block must include a directive of the f

COMMON /common_block_name/ data_item_names

There are two problems with this approach:

• Two sets of routines may use a common block of the same name, triggering a c
if an application needs them both. Changing one of the names to remove the c
may cause trouble since common blocks, by nature, are shared by many routi

• How do we initialize the entities of a common block, such as our ready indicators?
Because there is no default initialization rule, any data in a common block mu
initialized in a special module called a “block data” unit. Fortran 77 allows na
block data units, so that developers can combine global data from various co
— provided they do not forget to include all the relevant block data units. A se
risk of accidental inconsistency exists.

§18.7 DISCUSSION 657

e C
itial
’s
 such

viated

a or
 Ada

ckage,
age,

n 77
n
pter is

 allows

bjects)

class

uages.
tion,
guage
hese
sing a
ugh

f the
y as
for

n
 and
rsal,

On the ARRAY case
see “Efficiency con-
siderations”, page
327.
The C solution is conceptually the same as in Fortran 77. The ready indicator should
be declared in C as an “external” variable, common to more than one “file” (th
compilation unit). Only one file may contain the declaration of the variable with its in
value (false in our case); others will use an extern declaration, corresponding to Fortran
COMMON directive, to state that they need the variable. The usual practice is to group
definitions in special “header” files, with names conventionally ending with ● h; they
correspond to the block data units of Fortran. The same problems arise, partially alle
by “Make” utilities which help programmers keep track of dependencies.

A solution would appear to be at hand with modular languages such as Ad
Modula 2 where routines may be gathered in a higher-level module, a “package” in
terms: if all the routines using a group of related global objects are in the same pa
the associated ready indicators may be declared as boolean variables in that pack
which will also contain the initialization. But this approach (also applicable in Fortra
and C using techniques described in chapter 18) does not solve the problem of initializatio
in autonomous library components. The more delicate question discussed in this cha
what to do for global objects that must be shared between routines in different and
independent modules. Ada and Modula provide no simple answer in this case.

In contrast, the “once” mechanism preserves the independence of classes, but
context-dependent initializations.

Manifest string constants

The notation allows string constants (or more properly, as we have seen, shared o
to be declared in manifest form, using double quotes: "…" . A consequence of this policy
is that the language definition, and any compiler, must rely on the presence of
STRING in the library. This is a compromise between two extreme solutions:

• STRING could have been a predefined basic type, as is the case in many lang
This, however, would have meant adding all string operations (concatena
substring extraction, comparison etc.) as language constructs, making the lan
considerably more complex, even though only few applications require all t
operations; some do not even need strings at all. Among the advantage of u
class is the ability to equip its operations with precise specifications thro
assertions, and to allow other classes to inherit from it.

• Treating STRING as just any other class would preclude manifest constants o
"…" form [S1], requiring developers always to enter the characters individuall
in form [S2]. It might also prevent the compiler from applying optimizations
time-sensitive operations such as character access.

So STRING, like its companion ARRAY, leads a double life: predefined type whe
you need manifest constants and optimization, class when you need flexibility
generality. All this, of course, is part of the general effort to have a single, unive
consistent type system entirely based on the notion of class.

Unique values and enumerated types

Pascal and derivatives allow declaring a variable as

code: ERROR

GLOBAL OBJECTS AND CONSTANTS§18.7658

:

e the
h

ment
 of the

 the
s, that
o such
erated

re one

n in
Since

ect a
ast
r with
round
ion to
lexity
where ERROR is declared as an “enumerated type”:

type ERROR = (Normal, Open_error, Read_error)

Being declared of type ERROR, variable code may only take the values of this type
the three symbolic codes given.

We have seen how to obtain the equivalent effect in the O-O notation: defin
symbolic codes as unique integer constants, and code as an integer attribute, possibly wit
an invariant clause stating that its value must lie between Normal and Read_error. The
result at execution time is almost identical, since Pascal compilers typically imple
values of an enumerated type by integers. (A good compiler may take advantage
small number of possible values to represent entities such as code by short integers.)

The unique technique involves no new type. It seems indeed hard to reconcile
notion of enumerated type with object technology. All our types are based on classe
is to say abstractly characterized by the applicable operations and their properties. N
characterization exists for enumerated types, which are mere sets of values. Enum
types actually raise problems even in non-O-O languages:

• The status of the symbolic names is not clear. Can two enumerated types sha
or more symbolic names (as Orange both in type FRUIT and in type COLOR)? Are
they exportable and subject to the same visibility rules as variables?

• It is difficult to pass values of an enumeration type to and from routines writte
other languages, such as C or Fortran, which do not support this notion.
unique values are plain integers they cause no such problem.

• Enumerated values may require special operators. For example you will exp
next operator yielding the next value, but it will not be defined for the l
enumeration element. You will also need an operator to associate an intege
every enumerated value (its index in the enumeration). To go the other way a
requires more operators since we must know the bounds of the enumerat
restrict applicable integer values. The resulting syntactic and semantic comp
seems out of proportion with the mechanism’s contribution to the language.

Uses of enumeration types in Pascal and Ada tend to be of the form

type FIGURE_SORT = (Circle, Rectangle, Square, …)

to be used in connection with variant record types of the form

FIGURE =
record

perimeter: INTEGER;
… Other attributes common to figures of all types …
case fs: FIGURE_SORT of

Circle: (radius: REAL; center: POINT);
Rectangle: … Attributes specific to rectangles …;
…

end
end

themselves used in case discrimination instructions:

§18.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER 659

ing a
ss.

 that
ber of
uities
ut the
ers

 for
, and

 its

pying

ould

any
same

iant to

tion of

y look

but to
butes:
er
procedure rotate (f: FIGURE)

begin case f of
Circle: … Appropriate actions to rotate a circle …;

Rectangle: …;

…

which we have learned to handle in a better way to preserve extendibility: by defin
different version of procedures such as rotate for each new variant, represented by a cla

When this most important application of enumerated types disappears, all
remains is the need, in some cases, to select integer codes having a fixed num
possible values. Defining them as integers avoids many of the semantic ambig
associated with enumerated types; for example there is nothing mysterious abo
expression Circle + 1 if Circle is officially an integer. The only unpleasantness of integ
would be to have to assign the values yourself; unique values solve that problem.

18.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

• A challenging problem in any approach to software construction is how to allow
global data: objects that must be shared by various modular components
initialized at run time by whatever component happens to need them first.

• A constant can be manifest (expressed as a self-describing representation of
value) or symbolic (expressed by a name).

• You can declare manifest constants of basic types as constant attributes, occu
no space in objects.

• Except for strings, developer-defined types have no manifest constants, which w
damage information hiding and extendibility.

• A once routine, which differs from a normal function by one keyword, once instead
of do, is evaluated only once during a system’s execution: the first time
component of the system calls it. For a function, subsequent calls return the
value as the first; for a procedure, subsequent calls have no effect.

• Shared objects may be implemented as once functions. You can use the invar
specify that they are constant.

• Use once procedures for operations to be performed only once over the execu
a system, such as initializations of global parameters.

• The type of a once function may not be anchored or generic.

• Constants of string types are treated internally as once functions, although the
like manifest constants written in double quotes.

• Enumerated types à la Pascal do not go well with the object-oriented method,
represent codes with several possible values there is a need for “unique” attri
symbolic constants of type INTEGER, whose value is chosen by the compiler rath
than by the software writer.

GLOBAL OBJECTS AND CONSTANTS§18.9660

t may

, if not

es. A
idered
once
tions
tes?

See “Once functions,
anchoring and
genericity”, page 652.
18.9 BIBLIOGRAPHICAL NOTES

[Welsh 1977] and [Moffat 1981] study the difficulties raised by enumerated types.

Some of the techniques of this chapter were introduced in [M 1988b].

EXERCISES

E18.1 Emulating enumerated types with once functions

Show that in the absence of Unique types a Pascal enumerated type of the form

type ERROR = (Normal, Open_error, Read_error)

could be represented by a class with a once function for each value of the type.

E18.2 Emulating unique values with once functions

Show that in a language that does not support the notion of unique declaration it is
possible to obtain the effect of

value: INTEGER is unique

by a declaration of the form

value: INTEGER is once … end

where you are requested to fill in the body of the once function and anything else tha
be needed.

E18.3 Once functions in generic classes

Give an example of a once function whose result involves a generic parameter and
corrected, would yield a run-time error.

E18.4 Once attributes?

Examine the usefulness of a notion of “once attribute”, patterned after once routin
once attribute would be common to all instances of the class. Issues to be cons
include: how does a once attribute get initialized? Is the facility redundant with
functions without arguments and, if not, can you explain clearly under what condi
each facility is appropriate? Can you think of a good syntax for declaring once attribu

	18 18 Global objects and constants
	18.1 CONSTANTS OF BASIC TYPES
	Using symbolic constants
	Constant attributes

	18.2 USE OF CONSTANTS
	18.3 CONSTANTS OF CLASS TYPES
	Manifest constants are inappropriate for class typ...
	Once functions

	18.4 APPLICATIONS OF ONCE ROUTINES
	Shared objects
	Once functions returning results of basic types
	Once procedures
	Arguments
	Once functions, anchoring and genericity
	Once Function rule

	18.5 CONSTANTS OF STRING TYPE
	18.6 UNIQUE VALUES
	Discrimination principle

	18.7 DISCUSSION
	Initializing globals and shared objects: language ...
	Manifest string constants
	Unique values and enumerated types

	18.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
	18.9 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E18.1 Emulating enumerated types with once functio...
	E18.2 Emulating unique values with once functions
	E18.3 Once functions in generic classes
	E18.4 Once attributes?

