20

Design pattern: multi-panel
Interactive systems

I n our first example we will devise a design pattern which, in addition to illustrating some
typical properties of the object-oriented method, provides an excellent opportunity tc
contrast it with other approaches, in particular top-down functional decomposition.

Because this example nicely captures on a small scale some of the principé
properties of object-oriented software construction, | have often used it when requested
introduce an audience to the method in a few hours. By showing concretely (even t
people who have had very little theoretical preparation) how one can proceed from
classical decomposition to an O-O view of things, and the benefits gained in this
transformation, it serves as a remarkable pedagogical device. This chapter has be
written so that it could play the same role for readers who have been directed to it by tf
reference they found in the “spoiler” chapter at the beginning of this book.

To facilitate their task, it has been made as self-contained as possible; this is why yc
will find a few repetitions with previous chapters, in particular a few short definitions of
concepts which you already know inside out if you have been reading this book
sequentially and carefully from the start.

20.1 MULTI-PANEL SYSTEMS

The problem is to write a system covering a general type of interactive system, commo
in business data processing, in which users are guided at each step of a session by a f
screen panel, with predefined transitions between the available panels.

The general pattern is simple and well defined. Each session goes through a certs
number ofstates In each state, a certain panel is displayed, showing questions to the use
The user will fill in the required answer; this answer will be checked for consistency (anc
guestions asked again until an acceptable answer is found); then the answer will k
processed in some fashion; for example the system will update a database. A part of t
user’s answer will be a choice for the next step to perform, which the system will interpre
as a transition to another state, where the same process will be applied again.

A typical example would be an airline reservation system, where the states migh
represent such steps of the processing as User Identification, Enquiry on Flights (for
certain itinerary on a certain date), Enquiry on Seats (for a certain flight) and Reservatior

676 DESIGN CASE STUDY: MULTI-PANEL INTERACTIVE SYSTEMS820.1

A typical panel, for the Enquiry on Flights state, might look like the following (only
intended, however, to illustrate the ideas, and making no claim of realism or good
ergonomic design). The screen is shown towards the end of a step; itcolor italics
are the user’s answers, and itembold color show an answer displayed by isystem.

— Enquiry on Flights —
Flight sought from: | Santa Barbara | To:
Departure on or aftef:21 Nov | On or before

Preferred airline (s):
Special requirements:

A panel

AVAILABLE FLIGHTS: 1
Flt# AA 42 Dep 8:25 Arr 7:45 Thru: Chicago

Choose next action:
0 — Exit
1 —Help
2 —Further enquiry
3 —Reserve a seat

The session begins in an initial state, and ends whenever it reaches a final stathe'figure also
can represent the overall structure by a transition graph showing the possible statinclude state num-
the transitions between them. The edges of the graph are labeled by in{e's for uselaterin

. . . the discussion
corresponding to the possible user choices for the next step at the end of a state. At
of the facing page is a graph for a simple airline reservation system.

The problem is to come up with a design and implementation for such applications,
achieving as much generality and flexibility as possible. In particular:

Gl « The graph may be large. It is not uncommon to see applications with several
hundred states and correspondingly many transitions.

G2 « The structure is subject to change. The designers are unlikely to foresee all the
possible states and transitions. As users start exercising the system, they will come
up with requests for changes and additions.

G3 « Nothing in the given scheme is specific to the choice of application: the airline
reservation mini-system is just a working example. If your company needs a
number of such systems, either for its own purposes or (in a software house) for
various customers, it will be a big benefit to define a general design or, better yet,
a set of modules that you can reuse from application to application.

§20.2 A SIMPLE-MINDED ATTEMPT 677

A transition
diagram

20.2 A SIMPLE-MINDED ATTEMPT

Let us begin with a straightforward, unsophisticated program scheme. This version
made of a number of blocks, one for each state of the syBg75ii, Breservation

Bcancellatior €tC. A typical block (expressed in an ad hoc notation, not the object-oriente
notation of this book although it retains some of its syntactic conventions) looks like thi:

BEnquir):
“Display Enquiry on flightspanel”
repeat
“Read user’s answers and choC for the next step”
if “Error in answer then “Output appropriate messa¢end
until not error in answe end
“Process answer”
case Cin
Cy: gotc Exit,
Cy: goto B,
Cy: goto BRreservation

end

and similarly foreach state.

678 DESIGN CASE STUDY: MULTI-PANEL INTERACTIVE SYSTEMS820.3

This structure has something to speak for it: it is not hard to devise, and it will do the
job. But from a software engineering viewpoint it leaves much to be desired.

The most obvious criticism is the presencegoto instructions (implementing
conditional jumps similar to trswitch of C and the “Computed Goto” of Fortran), giving
the control structure that unmistakable “spaghetti bowl” look.

But thegotcs are the symptom, not the real flaw. We have taken the superficial
structure of the problem — the current form of the transition diagram — and hardwired it
into the algorithm; the branching structure of the program is an exact reflection of the
structure of the transition graph. This makes the software’s design vulnerable to any of the
simple and common changes cited above: any time someone asks us to add a state or
change atransition, we will have to change the system’s central control structure. And we
can forget, of course, any hope of reusability across applicationsG3 in the above
list), as the control structure would have to cover all applications.

This example is a sobering reminder that we should never get carried away when we hear
about the benefits of “modeling the real world” or “deducing the system from the analysis
of the reality”. Depending on how you describe it, the real world can be simple or messy;
a bad model will give bad software. What counts is not how close the software is to the
real world, but how good the description is. More on this topic at the end of this chapter.

To obtain not just a system but a good system we must think a little harder.

20.3 A FUNCTIONAL, TOP-DOWN SOLUTION

Repeating on this particular example the evolution of the programming species as a whole,
we will go from a low-levegoto-based structure to a top-down, hierarchically organized
solution, analyze its own limitations, and only then move on to an object-oriented version.
The hierarchical solution belongs to a general style also known as “structured”, although
this term should be used with care.

For one thing, an O-O solution is certainly structured too, although more in the sense of
“structured programming” as originally introduced in the seventies by Dijkstra and others
than relative to the quite distinct notion of “structured design”.

The transition function

The first step towards improving the solution is to get rid of the central role of the traversal
algorithm in the software’s structure. The transition diagram is just one property of the
system and it has no reason to rule over everything else. Separating it from the rest of the
algorithm will, if nothing else, rid us of trgotc instructions. And we should also gain
generality, since the transition diagram depends on the specific application, such as airline
reservation, whereas its traversal may be described generically.

What is the transition diagram? Abstractly, it is a funcitransition taking two
arguments, a state and a user choice, suctiransition (s, c) is the state obtained when
the user choosec when leaving states. Here the word “function” is used in its

§20.3 A FUNCTIONAL, TOP-DOWN SOLUTION 679

A transition
table

mathematical sense; at the software level we can choose to impitransitior either by

a function in the software sense (a routine returning a value) or by a data structure suc
an array. For the moment we can afford to postpone the choice between these solut
and just rely ortransition as an abstract notion.

In addition to the functiotransition we also need to designate one of the states, sa
stateinitial, as the place where all sessions start, and to designate one or more state
final through a boolean-valued functicis_final. Again this is a function in the
mathematical sense, regardless of its eventual implementation.

We can picture thtransitior function in tabular form, with rows representing states
and columns representing choices, as shown below.

Conventions used in this table: there is just Help state,0, with a special transition
Returr which goes back to the state from whHelp was reached, and just one final state,
—1. These conventions will n be necessary for the rest of the discussion but help keep
the table simple .

Choice - 0 1 2 3
| State
1 (Initial) -1 0 5 2
2 (Flights) 0 1 3
3 (Seat); 0 2 4
4 (Reser.) 0 3 5
5 (Confirr) 0 4 1
0 (Help) Return
—1 (Final)

The routine architecture

Following the traditional precepts of top-down decomposition, we choose a “top” (tf
main program) for our system. This should clearly be the roexecute sessicthat
describes how to execute a complete interactive session.

680 DESIGN CASE STUDY: MULTI-PANEL INTERACTIVE SYSTEMS820.3

. Top-down
execute_sessign Level 3 functional
decomposition
- . execute o
initial transition state T is_final | Level 2
Level 1
display read correct messagsq process

Immediately below (level 2) we will find the operations relative to states: definition
of the initial and final states, transition structure, execute_sta which prescribes the
actions to be executed in each state. Then at the lowest level (1) we will find the
constituent operations (execute_sta: display a screen and so on. Note how such a
solution may be described, as well as anything object-oriented that we may later see, to
“reflect the real world”: the structure of the software perfectly mirrors the structure of an
application, which involves states, which involve elementary operations. Real-
worldliness is not, in this example and many others, a significant difference between O-O
and other approaches; what counthow we model the world.

In writing execute_sessi let us try to make it as application-independent as
possible. (The routine is again expressed in an ad hoc notation imitated from the O-O
notation of the rest of this book. Trepeai ... until ... loop is borrowed from Pascal.)

execute_sessics

-- Execute a complete session of the interactive system

local

state, choice INTEGER
do

state:= initial

repeat

execute_stat(state, — nex)
-- Routineexecute_statupdates the value nex.
state:= transition(state, nex)
until is_final (state) end
end

§20.3 A FUNCTIONAL, TOP-DOWN SOLUTION 681

The - notationis a
temporary conven-
tion, used only for this
particular procedure
and forreac below.

This is a typical transition diagram traversal algorithm. (The reader who has writte
a lexical analyzer will recognize the pattern.) At each stage we are in &statete
originally set tcinitial ; the process terminates wtstate satisfiesis _final. For a non-final
state we executexecute sta, which takes the current state and returns the user’
transition choice through its second argumnex, which the functiortransition uses,
together witkstate, to determine the next state.

The technigue using a procediexecute sta that changes the value of one of its
arguments would never be appropriate in good O-O design, but here it is the m
expedient. To signal it clearly, the notation flags an “out” argument sunex with an
arrow - . Instead of a procedure which modifies an argument, C developers would ma
execute_stata side-effect-producing function called next:= execute_stat(state); we
will see that this practice is subject to criticism too.

Sinceexecute_statdoes not show any information about any particular interactive
application, you must fill in the application-specific properties appearing on level 2 in tt
figure: transition function;initial statejis_final predicate.

To complete the design, we must refine execute statroutine describing the
actions to be performed in each state. Its body is essentially an abstracted form of
contents of the successive blocks in the ingotc-based version:

execute_stat(in s INTEGEF; out c: INTEGEF) is
-- Execute the actions associated with ssate
-- returning intoc the user’s choice for the next state.

local
a: ANSWEI, ok: BOOLEAN
do
repeat
display(s)
read(s, —a)
ok:= correct(s, a)
if not okthen messagi(s, a) end
until okend
process(s, a)
c:= next_choicqa)
end

This assumes level 1 routines with the following roles:
* display(s) outputs the panel associated with ss.te
* read(s, —a) reads intca the user’s answer to the display panel of ss. te

 correct (s, a) returns true if and only ia is an acceptable answer to the question
displayed in stats; if so, process(s, a) processes answa, for example by updating
a database or displaying more information; if messagi(s, a) outputs the relevant
error message.

682 DESIGN CASE STUDY: MULTI-PANEL INTERACTIVE SYSTEMS820.4

The typeANSWEI of the object representing the user’'s answer has not been refined
further. A valuea of that type globally represents the input entered by the user in a given
state; it is assumed to include the user’s choice for the next step, \next_choice(a).
(ANSWElLlis in fact already very much like a class, even though the rest of the architecture
is not object-oriented at all.)

To obtain a working application, you will need to fill in the various level 1 features:
display, read, correct, messag andproces s

20.4 A CRITIQUE OF THE SOLUTION

Have we now a satisfactory solution? Not quite. It is better than the first version, but still
falls short of our goals of extendibility and reusability.

Statism

Although on the surface it seems we have been able to separate the generic from the
application-specific, in reality the various modules are still tightly coupled with each other
and with the choice of application. The main problem is the data transmission structure of
the system. Consider the signatures (argument and result types) of the routines:

execute_state (fin s: STATE; out c: CHOICE)

display in s: STATH)

read ins: STATEﬁut a: ANSWEI) ~ State
correct in s: STATH; a: ANSWEI): BOOLEAN ('”terve”t'°”>
message in s: STATH; a: ANSWEI).

process ins: STAT§.; a: ANSWEI)

The observation (which sounds like an economist's lament) is that the role cThe architectural
state is too pervasive. The current state appears under thes as an argument in all thefigure is on page
routines, coming from the top modiexecute sessi, where it is known astate. So the
hierarchical structure shown in the last figure, seemingly simple and manageable, it
or more precisely a facade. Behind the formal elegance of the functional de doonpos
lies a jumble of data transmission. The true picture, shown at the top of the facing page,
must involve the data.

The background for object technology, as presented at the beginning of this book, is
the battle between tHunctior anddata (object aspects of software systems for control
of the architecture. In non-O-O approaches, the functions rule unopposed over the data;
but then the data take their revenge.

The revenge comes in the form of sabotBy attacking the very foundations of the
architecture, the data make the system impervious to change — until, like a government
unable to handle ilperestroik;, it will crumble under its own weight.

§20.4 A CRITIQUE OF THE SOLUTION 683

The flow of
data

execute_sessign Level 3
tate
initial transition execter s final |Level 2
state
g
state
/ state Level 1
display read correct messagsq process

In this example the subversion of the structure comes in particular from the need
discriminate on states. All the level 1 routines must perform different actions dependi
ons: to display the panel for a certain state; to read and interpret a user answer (mad
a number of input fields, different for each state); to determine whether the answer
correct; to output the proper error message; to process a correct answer — you must k
the state. The routines will perform a discrimination of the form

inspect
s

when Initial then

when Enquiry_on_ flightsthen

end

This means long and complex control structures and, worse yet, a fragile syste
any addition of a state will require changes throughout the structure. This is a typical c:
of unbridled knowledge distribution: far too many modules of the system rely on a pie
of information — the list of all possible states — which is subject to change.

The situation is in fact even worse than it appears if we are hoping for genel
reusable solutions. There is an extra implicit argument in all the routines considered
far: theapplicatior — airline reservation or anything else we are building. So to mak
routines such adisplaytruly general we would have to let them know about all states o
all possible applications in a given computing environment! Fundtransitior would
similarly contain the transition graph for all applications. This is of course unrealistic.

684 DESIGN CASE STUDY: MULTI-PANEL INTERACTIVE SYSTEMS820.5

20.5 AN OBJECT-ORIENTED ARCHITECTURE

The very deficiencies of top-down functional decomposition point to what we must do to
obtain a good object-oriented version.

The law of inversion

What went wrong? Too much data transmission in a software architecture usually signals
a flaw in the design. The remedy, which leads directly to object-oriented design, may be
expressed by the following design rule:

Law of inversion

If your routines exchange too many data, put your routines in your data.

Instead of building modules around operations (suchexecute sessioand
execute_sta) and distributing the data structures between the resulting routines, with all
the unpleasant consequences that we have seen, object-oriented design does the reverse: it
uses the most important data types as the basis for modularization, attaching each routine
to the data type to which it relates most closely. When objects take over, their former
masters, the functions, become their vassals.

The law of inversion is the key to obtaining an object-oriented design from a
classical functional (procedural) decomposition, as in this chapter. Such a need arises in
cases oreverse-engineerir an existing non-O-O system to make it more maintainable
and prepare its evolution; it is also frequent in teams that are new to object-oriented design
and think “functional” first.

It is of course best to design in an object-oriented fashion from the beginning; then
no inversion is needed. But the law of inversion is useful beyond cases of reverse-
engineering and novice developers. Even someone who has been exposed to the
principles of object-oriented software construction may come up with an initial design
that has pockets of functional decomposition in an object landscape. Analyzing data
transmission is a good way to detect and correct such design flaws. If you see — evenin a
structure intended as O-O — a data transmission pattern similar to what happens with
states in the example of this chapter, it should catch your attention. Probing further will in
most cases lead you to the discovery of a data abstraction that has not received its proper
due in the software’s architecture.

State as a class

The “state” example is typical. Such a data type, appearing so pervasively in the data

transmissions between routines, is a prime candidate for serving as one of the modular
components of an object-oriented architecture, which must be based on classes (abstractly
described data types).

§20.5 AN OBJECT-ORIENTED ARCHITECTURE 685

STATE
features

The notion of state was important in the original problem statement, but in tt
functional architecture that importance was lost: the state was just represented b
variable, passed from routine to routine as if it were some kind of lowlife. We have se
how it avenged itself. Now we are ready to give it the status it desSTATEshould be
a class, one of the principals in the structure of our new object-oriented system.

In that class we will find all the operations that characterize a state: displaying t
corresponding screeidisplay), analyzing a user’'s answeread), checking the answer
(correci), producing an error message for an incorrect ansmessag), processing a
correct answerproces). We must also includexecute_sta, expressing the sequence of
actions to be performed whenever the session reaches a given state; since the ori
name would be over-qualifying in a class caSTATE, we can replace it by juexecut.:

Starting from the original top-down functional decomposition picture, we cal
highlight the set of routines that should be handed ovSTATE:

execute_sessiqn Level 3
initial transition execliel is_final | Level 2
STATE
Level 1
display read correct messagg | process

The class will have the following form:

... classSTATE feature
input: ANSWER
choice: INTEGER
executeisdo ... end
displayis ...
readis ...
correct: BOOLEAN:s ...
messagis ...

processis ...
end

686 DESIGN CASE STUDY: MULTI-PANEL INTERACTIVE SYSTEMS820.5

Featuresdnput andchoice are attributes; the others are routines. Compared to their
counterparts in the functional decomposition, the routines have lost their explicit state
arguments, although the state will reappear in calls made by clients, sstexecut.:

In the previous approactexecute(formerly execute sta) returned the user'sse“sipe
choice for the next step. But such a style violates principles of good design. It is preftEFFECTS IN
to treatexecuteas a command, whose execution determines the result of the query ‘gchpTa:;eN%’é
choice did the user make in the last state?”, available through the attchoice. =~ '
Similarly, the ANSWEI argument to the level 1 routines is now replaced by the secret
attributeinpul. The reason is information hiding: client code does not need to look at
answers except through the interface provided by the exported features.

Inheritance and deferred classes

ClassSTATEdoes not describe a particular state, but the general notion of state. Procedure
execut is the same for all states, but the other routines are state-specific.

Inheritance and deferred classes ideally address such situationsSTATE level,
we know the procedurexecutein full detail and the attributes. We also know the
existence of the level 1 routinedisplay etc.) and their specifications, but not their
implementations. These routines should be deferred; STATE, which describes a set
of variants, rather than a fully spelled out abstraction, is itself a deferred class. This gives:

indexing
descriptior: "States for interactive panel-driven applicatit'ns
deferred class
STATE
feature -- Access
choice: INTEGER
-- User’s choice for next step
input: ANSWER
-- User’s answer to questions asked in this state.
feature -- Status report
correct: BOOLEAN:Is
-- Isinputa correct answer?
deferred
end
feature -- Basic operations
displayis
-- Display panel associated with current state.
deferred
end

§20.5 AN OBJECT-ORIENTED ARCHITECTURE 687

executeis
-- Execute actions associated with current state
-- and sechoiceto denoteuser’s choice for next state.
local
ok: BOOLEAN
do
It is easy to remove from ok:= False until ok loop
the test from within display; reac; ok:= correct
g}ﬁcli%?]%tor better if not okthen messagend
’ end
process
ensure
ok
end
messagis
-- Output error message correspondininpult.
require
not correct
deferred
end
readis
-- Obtain user’s answer ininputand choice intnext_choic 2
deferred
end
processis
-- Proces inpul.
require
correct
deferred
end
end-- classSTATE

To describe a specific state you will introduce descendanSTATEproviding
effectings (implementations) of the deferfeatures:

State class /_D
hierarchy STATE

"RESER- "CONEIR-

INITIAL
VATION MATION

688 DESIGN CASE STUDY: MULTI-PANEL INTERACTIVE SYSTEMS820.5

An example would look like:

classENQUIRY_ON_FLIGHT inherit
STATE
feature
displayis
do
... Specific display procedu...
end
... And similarly forreac, correci, messag andproces::...
end-- classENQUIRY_ON_FLIGHTS

This architecture separates, atthe exact grain of detail required, elements common to
all states and elements specific to individual states. The common elements, such as
procedureexecut, are concentrated iSTATE and do not need to be redeclared in
descendants such ENQUIRY_ON_FLIGHT. The Open-Closed principle is satisfied:
STATE s closed in that it is a well-defined, compilable unit; but it is also open, since you
can add any number of descendants at any time.

STATE is typical ofbehavior classe — deferred classes capturing the comm¢Don'tcallus, we'l
behavior of a large number of possible objects, implementing what is fully known g% YoU". page 505.
most general levelexecut) in terms of what depends on each variant. Inheritance
the deferred mechanism are essential to capture such behavior in a self-con__...__
reusable omponent.

Describing a complete system

To complete the design we must still take care of managing a session. In the funcFinding the top”,
decomposition this was the task of procecexecute_sessi, the main program. But nowPage 107

we know better. As discussed in an earlier chapter, the “topmost function of a syste

posited in the top-down method is mythical. A large software system performs r

equally important functions. Here again, the abstract data type approach is more
appropriate; it considers the system, taken as a whole, as a set of abstract objects capable

of rendering a certain number of services.

We have captured one key abstractiSTATE (along with ANSWEI). What
abstraction is our design still missing? Central in the understanding of the problem is the
notion of APPLICATION, describing specific interactive systems such as the airline
reservation system. This will yield a new class.

It turns out that the remaining components of the functional decomposition, shown
in the figure, are all features of an application and will find their true calling as features of
classAPPLICATION:

* execute_sessi, describing how to execute an application. Here the name will be
simplified to execut since the enclosing class provides qualification enough (and
there is no possible confusion wexecut of STATE).

§20.5 AN OBJECT-ORIENTED ARCHITECTURE 689

STATEand
APPLICATION
features

APPLICATION execute_sessiqn Level 3
initial transition exsei‘g?ete__ is_final | Level 2
STATE
Level 1
display read correct messagsg process

* initial andis_final, indicating which states have special status in an application. Not
that it is proper to have these feature:APPLICATION rather tharSTATE since
they describe properties of applications rather than states: a state is not initial or fi
per se, but only with respect to an application. (If we reuse states betwe
applications, a state may well be final in a certain application but not in another.)

* transitior to describe the transition between states in the application.

The components of the functional decomposition have all found a place as featu
of the classes in the O-O decomposition — sonSTATE, some irAPPLICATION. This
should not surprise us. Object technology, as has been repeatedly emphasized in this k
is before anything else earchitecturalmechanism, primarily affecting how we organize
software elements into coherent structures. The elements themselves may be, at the lo
level, the same ones that you would find in a non-O-O solution, or at least similar (dz
abstraction, information hiding, assertions, inheritance, polymorphism and dynarr
binding help make them more simple, general and powerful).

A panel-driven system of the kind studied in this chapter will always need to hay
operations for traversing the application graexecute sessi, now execut), reading
user input read), detecting final statesis final). Deep down in the structure, then, we
will find some of the same building blocks regardless of the method. What changesis h
you group them to produce a modular architecture.

Of course we do not need to limit ourselves to features that come from the earl
solution. What for the functional decomposition was the end of the process — buildi
execut for applications and all the other mechanisms that it needs — is now just
beginning. There are many more things we may want to do on an application:

690 DESIGN CASE STUDY: MULTI-PANEL INTERACTIVE SYSTEMS820.5

* Add a new state.

* Add a new transition.

« Build an application (by repeated application of the preceding two operations).
* Remove a state, a transition.

« Store the complete application, its states and transitions, into a database.

» Simulate the application (for example on a line-oriented display, or with stubs
replacing the routines of claSTATE, to check the transitions only).

« Monitor usage of the application.

All these operations, and others, will yield features of CAPPLICATION They
are no less and no more important than our former “main program”, procexecut,
now just one of the features of the clénter pare: but not everprimus. By renouncing
the notion of top, we make room for evolution and reuse.

The application class

To finish classAPPLICATIONhere are a few possible implementation decisions:

* Number states 1 tn for the application. Note that these numbers are not absolute
properties of the states, but only relative to a certain application; so there is no “state
number” attribute in clasSTATE. Instead, a one-dimensional arrassociated_
state, an attribute oAPPLICATION, yields the state associated with a given number.

« Represent thiransition function by another attribute, a two-dimensional array of
sizen x m, wherem is the number of possible exit choices.

* The number of the initial state is kept in the attrikinitial and set by the routine
choose_initie. For final states we can use the convention that a transition to pseudo-
state 0 denotes session termination.

e The creation procedure APPLICATION uses the creation procedures of the library
classesARRA andARRAY. The latter describes two-dimensional classes and is
patterned aftel ARRA; its creation procedurmake takes four arguments, as in
Il'a.make (1, 25, 1, 10), and itsitem and putl routines use two indices, as in
a.put(x, 1, 2). The bounds of a two-dimensional ara area.lower] etc.

Here is the class resulting from these decisions:

indexing
descriptior. "Interactive panel-driven applicatio”is
class APPLICATION creation

make

§20.5 AN OBJECT-ORIENTED ARCHITECTURE 691

feature -- Initialization
make(n, m: INTEGEF) is
-- Allocate application witin states anm possible choices.
do
1! transition. make(Z, n, 1, m)
Il associated_statmake(1, n)
end
feature -- Access

initial: INTEGER
-- Initial state’s number

feature -- Basic operations

executes
-- Perform a user session
local
st: STATE st_numbe: INTEGER
do
from
st _number:= initial
invariant
0<=st_numbe; st numbe<=n
until st_ numbe=0loop
st:= associated_statitem(st_numbe)
-- This refers of course to thexecut procedure of
STATE
-- (see next page for comments on this key instruction).
st_number:= transition.item (st_numbe, st choice)
end
end

feature -- Element change

put_state(st: STATE; sr: INTEGEF) is
-- Enter statest with indexsn.
require
1 <=sr; sn<= associated_statupper
do
associated_statput(st, sr)
end

692 DESIGN CASE STUDY: MULTI-PANEL INTERACTIVE SYSTEMS §20.5

choose_initial(sn INTEGER is
-- Define state numbesmn as the initial state.

require

1 <= sn sn<= associated_statapper
do

initial := sn
end

put_transition(source target label INTEGER is
-- Enter transition labeleldbel
-- from state numbegourceto state numbearget
require
1 <= source source<= associated_statepper
0 <=target target<= associated_statepper
1 <= label, label <= transition upper2
do
transition. put (source label, targe)
end

feature {NONE -- Implementation
transition: ARRAYZSTATH
associated_statétARRAY[STATH
... Other features..
invariant
transition.upperl= associated_statepper
end --classAPPLICATION

Note how simply and elegantly the highlighted call on the preceding page,
st.execute captures some of the problem’s essential semantics. The feature called is
executefrom STATE although effective because it describes a known general behavior,
executerelies on deferred featuresad messaggecorrect, display, process deferred at
the level of STATEand effected only in its proper descendants suchEESERVATION
When we place the callt executein APPLICATIONS own execute we have no idea
what kind of statetdenotes — although we do know that it is a state (this is the benefit of
static typing). To come to life, the instruction needs the machinery of dynamic binding:
when st becomes attached at run time to a state object of a particuldr kay
RESERVATIONcalls toread, messageand consorts will automatically trigger the right
version.

The value ofst is obtained fromassociated_statea polymorphic data structure
which may contain objects of different types, all conformingTé\TE Whatever we find
at the current indext_numbewill determine the next state operations.

§20.6 DISCUSSION 693

Instance oHELP
-

st_numbe - | |

Instance ofZONFIRMATION

1 — Instance o0RESERVATION

associated_state Instance 0RESERVATION

Here is how you build an interactive application. The application will be represente
by an entity, saair _reservatiol, declared of typitAPPLICATION. You must create the
corresponding object:

I air_reservationmake(number_of_stat, number_of possible_choiqes

You will separately define and create the application’s states as entities
descendant types STATE, either new or reused from a state library. You assign to eac
states a numbeii for the application:

air_reservationput_state(s, i).

You choose one of the states, say the state numig, as initial:
air_reservatiorchoose_initial(i)

To set up a transition from state numsn to state numbetn, with labell, you use
air_reservatiorenter_transitior(sr, tn, |)

This includes exit transitions, for whidn is 0 (the default). You may now execute
the application:

air_reservatiorexecute_sessi. n

During system evolution you may at any time use the same routines to add a n
state or a new transition.

It is of course possible to extend cl:éAPPLICATION, either by changing it or by
adding descendants, to accommodate more features such as deletion, simulation, or a
the others mentioned in the course of the presentation.

20.6 DISCUSSION

This example provides a striking picture of the differences between object-orient
software construction and earlier approaches. It shows in particular the benefits of gett
rid of the notion of main program. By focusing on the data abstractions and forgetting, |
as long as possible, what is “the” main function of the system, we obtain a structure t

694 DESIGN CASE STUDY: MULTI-PANEL INTERACTIVE SYSTEMS820.7

is much more likely to lend itself gracefully to future changes and to reuse across many
different variants.

This equalizing effect is one of the characteristic properties of the method. It takes
some discipline to apply it consistently, since it means resisting the constant temptation to
ask: “What does the system do?”. This is one of the skills that sets the true object-oriented
professional from people who (although they may have been using O-O techniques and an
0O-0O language for a while) have not yet digested the method, and will still produce
functional architectures behind an object facade.

We have also seen a heuristic that is often useful to identify key abstractions in an
object-oriented (to “find the objects”, or rather the classes, the topic of a subsequent
chapter): analyzing data transmissions and being on the lookout for notions that show up
in communications between numerous components of a system. Often this is an indication
that the structure should be turned upside down, the routines becoming attached to the data
abstraction rather than the reverse.

A final lesson of this chapter is that you should be wary of attaching too much
importance to the notion that object-oriented systems are directly deduced from the “real
world”. The modeling power of the method is indeed impressive, and it is pleasant to
produce software architectures whose principal components directly reflect the
abstractions of the external system being modeled. But there are many ways to model the
real world, and not all of them will lead to a good system. Our ‘gotc-filled version
was as close to the real world as the other two — closer actually, since it is directly
patterned after the structure of the transition diagram, whereas the other two require
introducing intermediate concepts. But it is a software engineering disaster.

In contrast, the object-oriented decomposition that we finally produced is good
because the abstractions that it use'STATE, APPLICATION ANSWEI — are clear,
general, manageable, change-ready, and reusable across a broad application area.
Although once you understand them they appear as real as anything else, to a newcomer
they may appear less “natural” (that is to say, less close to an informal perception of the
underlying reality) than the concepts used in the inferior solutions studied first.

To produce good software, what counts is not how close you are to someone’s
perception of the real world, but how good are the abstractions that you choose both to
model the external systems and to structure your own software. This is indeed the very
definition of object-oriented analysis, design and implementation, the task that you will
have to execute well, day in and day out, to make your project succeed, and the skill that
distinguishes object experts from object amatefinding the right abstractior.s

20.7 BIBLIOGRAPHICAL NOTE

Variants of the example discussed in this chapter were used to illustrate object-oriented
concepts iffM 1983]and[M 1987].

	20 20 Design pattern: multi-panel interactive syst...
	20.1 MULTI-PANEL SYSTEMS
	A panel

	20.2 A SIMPLE-MINDED ATTEMPT
	A transition diagram

	20.3 A FUNCTIONAL, TOP-DOWN SOLUTION
	The transition function
	A transition table

	The routine architecture
	Top-down functional decomposition

	20.4 A CRITIQUE OF THE SOLUTION
	Statism
	The flow of data

	20.5 AN OBJECT-ORIENTED ARCHITECTURE
	The law of inversion
	Law of inversion

	State as a class
	STATE
	features

	Inheritance and deferred classes
	State class hierarchy

	Describing a complete system
	STATE and APPLICATION features

	The application class
	A polymorphic array of states

	20.6 DISCUSSION
	20.7 BIBLIOGRAPHICAL NOTE

