
20
Design pattern: multi-panel
interactive systems
ome
ity to

ncipal
ted to
en to
om a
 this
s been
by the

y you
s of
book

mon
y a full-

certain
 user.
 (and

ill be
 of the
rpret

might
(for a
ation.
In our first example we will devise a design pattern which, in addition to illustrating s
typical properties of the object-oriented method, provides an excellent opportun
contrast it with other approaches, in particular top-down functional decomposition.

Because this example nicely captures on a small scale some of the pri
properties of object-oriented software construction, I have often used it when reques
introduce an audience to the method in a few hours. By showing concretely (ev
people who have had very little theoretical preparation) how one can proceed fr
classical decomposition to an O-O view of things, and the benefits gained in
transformation, it serves as a remarkable pedagogical device. This chapter ha
written so that it could play the same role for readers who have been directed to it
reference they found in the “spoiler” chapter at the beginning of this book.

To facilitate their task, it has been made as self-contained as possible; this is wh
will find a few repetitions with previous chapters, in particular a few short definition
concepts which you already know inside out if you have been reading this
sequentially and carefully from the start.

20.1 MULTI-PANEL SYSTEMS

The problem is to write a system covering a general type of interactive system, com
in business data processing, in which users are guided at each step of a session b
screen panel, with predefined transitions between the available panels.

The general pattern is simple and well defined. Each session goes through a
number of states. In each state, a certain panel is displayed, showing questions to the
The user will fill in the required answer; this answer will be checked for consistency
questions asked again until an acceptable answer is found); then the answer w
processed in some fashion; for example the system will update a database. A part
user’s answer will be a choice for the next step to perform, which the system will inte
as a transition to another state, where the same process will be applied again.

A typical example would be an airline reservation system, where the states
represent such steps of the processing as User Identification, Enquiry on Flights
certain itinerary on a certain date), Enquiry on Seats (for a certain flight) and Reserv

DESIGN CASE STUDY: MULTI-PANEL INTERACTIVE SYSTEMS§20.1676

nly
good

te. We
es and
tegers
 the top

tions,

veral

ll the
 come

rline
ds a
e) for
r yet,

A panel

The figure also
include state num-
bers, for use later in
the discussion.
A typical panel, for the Enquiry on Flights state, might look like the following (o
intended, however, to illustrate the ideas, and making no claim of realism or
ergonomic design). The screen is shown towards the end of a step; items in color italics
are the user’s answers, and items in bold color show an answer displayed by the system.

The session begins in an initial state, and ends whenever it reaches a final sta
can represent the overall structure by a transition graph showing the possible stat
the transitions between them. The edges of the graph are labeled by in
corresponding to the possible user choices for the next step at the end of a state. At
of the facing page is a graph for a simple airline reservation system.

The problem is to come up with a design and implementation for such applica
achieving as much generality and flexibility as possible. In particular:

G1 • The graph may be large. It is not uncommon to see applications with se
hundred states and correspondingly many transitions.

G2 • The structure is subject to change. The designers are unlikely to foresee a
possible states and transitions. As users start exercising the system, they will
up with requests for changes and additions.

G3 • Nothing in the given scheme is specific to the choice of application: the ai
reservation mini-system is just a working example. If your company nee
number of such systems, either for its own purposes or (in a software hous
various customers, it will be a big benefit to define a general design or, bette
a set of modules that you can reuse from application to application.

– Enquiry on Flights –

Flight sought from:

Departure on or after:

To:

On or before:

Preferred airline (s):
Special requirements:

AVAILABLE FLIGHTS: 1

Flt# AA 42 Dep 8:25 Arr 7:45 Thru: Chicago

Choose next action:

0 — Exit
1 — Help
2 — Further enquiry
3 — Reserve a seat

Santa Barbara

21 Nov

Paris

22 Nov

§20.2 A SIMPLE-MINDED ATTEMPT 677

ion is

nted
this:

A transition
diagram
20.2 A SIMPLE-MINDED ATTEMPT

Let us begin with a straightforward, unsophisticated program scheme. This vers
made of a number of blocks, one for each state of the system: BEnquiry, BReservation,
BCancellation etc. A typical block (expressed in an ad hoc notation, not the object-orie
notation of this book although it retains some of its syntactic conventions) looks like

BEnquiry:

“Display Enquiry on flights panel”

repeat
“Read user’s answers and choice C for the next step”

if “Error in answer” then “Output appropriate message” end
until not error in answer end
“ Process answer”
case C in

C0: goto Exit,

C1: goto BHelp,

C2: goto BReservation,

…
end

and similarly for each state.

Initial

Confirmation

Reservation

Enquiry_
on_flights

2

2

2

2

2

3

3

3

3

3

1
1 1 1

1

11

1

Enquiry_
on_seats

Help

Help

1
1

HelpHelp

Help

Help

1
1

1

2

3
4

5

DESIGN CASE STUDY: MULTI-PANEL INTERACTIVE SYSTEMS§20.3678

o the

g

icial
red it
f the
 of the
state or
nd we

r

whole,
ed

rsion.
ough

ersal
f the
t of the
n
 airline

n

This structure has something to speak for it: it is not hard to devise, and it will d
job. But from a software engineering viewpoint it leaves much to be desired.

The most obvious criticism is the presence of goto instructions (implementing
conditional jumps similar to the switch of C and the “Computed Goto” of Fortran), givin
the control structure that unmistakable “spaghetti bowl” look.

But the gotos are the symptom, not the real flaw. We have taken the superf
structure of the problem — the current form of the transition diagram — and hardwi
into the algorithm; the branching structure of the program is an exact reflection o
structure of the transition graph. This makes the software’s design vulnerable to any
simple and common changes cited above: any time someone asks us to add a
change a transition, we will have to change the system’s central control structure. A
can forget, of course, any hope of reusability across applications (goal G3 in the above
list), as the control structure would have to cover all applications.

This example is a sobering reminder that we should never get carried away when we hea
about the benefits of “modeling the real world” or “deducing the system from the analysis
of the reality”. Depending on how you describe it, the real world can be simple or messy;
a bad model will give bad software. What counts is not how close the software is to the
real world, but how good the description is. More on this topic at the end of this chapter.

To obtain not just a system but a good system we must think a little harder.

20.3 A FUNCTIONAL, TOP-DOWN SOLUTION

Repeating on this particular example the evolution of the programming species as a
we will go from a low-level goto-based structure to a top-down, hierarchically organiz
solution, analyze its own limitations, and only then move on to an object-oriented ve
The hierarchical solution belongs to a general style also known as “structured”, alth
this term should be used with care.

For one thing, an O-O solution is certainly structured too, although more in the sense of
“structured programming” as originally introduced in the seventies by Dijkstra and others
than relative to the quite distinct notion of “structured design”.

The transition function

The first step towards improving the solution is to get rid of the central role of the trav
algorithm in the software’s structure. The transition diagram is just one property o
system and it has no reason to rule over everything else. Separating it from the res
algorithm will, if nothing else, rid us of the goto instructions. And we should also gai
generality, since the transition diagram depends on the specific application, such as
reservation, whereas its traversal may be described generically.

What is the transition diagram? Abstractly, it is a function transition taking two
arguments, a state and a user choice, such that transition (s, c) is the state obtained whe
the user chooses c when leaving state s. Here the word “function” is used in its

§20.3 A FUNCTIONAL, TOP-DOWN SOLUTION 679

uch as
lutions

 say
ates as

es

(the

A transition
table
mathematical sense; at the software level we can choose to implement transition either by
a function in the software sense (a routine returning a value) or by a data structure s
an array. For the moment we can afford to postpone the choice between these so
and just rely on transition as an abstract notion.

In addition to the function transition we also need to designate one of the states,
state initial , as the place where all sessions start, and to designate one or more st
final through a boolean-valued function is_ final. Again this is a function in the
mathematical sense, regardless of its eventual implementation.

We can picture the transition function in tabular form, with rows representing stat
and columns representing choices, as shown below.

Conventions used in this table: there is just one Help state, 0, with a special transition
Return which goes back to the state from which Help was reached, and just one final state,
–1. These conventions will not be necessary for the rest of the discussion but help keep
the table simple.

The routine architecture

Following the traditional precepts of top-down decomposition, we choose a “top”
main program) for our system. This should clearly be the routine execute_session that
describes how to execute a complete interactive session.

Choice →

↓ State

0 1 2 3

1 (Initial) –1 0 5 2

2 (Flights) 0 1 3

3 (Seats) 0 2 4

4 (Reserv.) 0 3 5

5 (Confirm) 0 4 1

0 (Help) Return

–1 (Final)

DESIGN CASE STUDY: MULTI-PANEL INTERACTIVE SYSTEMS§20.3680

tion

 the
 a
ee, to
f an
eal-
 O-O

as
 O-O

Top-down
functional
decomposition
Immediately below (level 2) we will find the operations relative to states: defini
of the initial and final states, transition structure, and execute_state which prescribes the
actions to be executed in each state. Then at the lowest level (1) we will find
constituent operations of execute_state: display a screen and so on. Note how such
solution may be described, as well as anything object-oriented that we may later s
“reflect the real world”: the structure of the software perfectly mirrors the structure o
application, which involves states, which involve elementary operations. R
worldliness is not, in this example and many others, a significant difference between
and other approaches; what counts is how we model the world.

In writing execute_session let us try to make it as application-independent
possible. (The routine is again expressed in an ad hoc notation imitated from the
notation of the rest of this book. The repeat … until … loop is borrowed from Pascal.)

execute_session is

-- Execute a complete session of the interactive system

local

state, choice: INTEGER

do

state:= initial

repeat

execute_state (state, →next)
-- Routine execute_state updates the value of next.

state:= transition (state, next)

until is_final (state) end

end

execute_session

initial transition execute_
state is_final

display processmessagecorrectread

Level 1

Level 3

Level 2

§20.3 A FUNCTIONAL, TOP-DOWN SOLUTION 681

itten

er’s

ts
most

make

ive
 the

of the

on

The → notation is a
temporary conven-
tion, used only for this
particular procedure
and for read below.
This is a typical transition diagram traversal algorithm. (The reader who has wr
a lexical analyzer will recognize the pattern.) At each stage we are in a statestate,
originally set to initial ; the process terminates when state satisfies is_final. For a non-final
state we execute execute_state, which takes the current state and returns the us
transition choice through its second argument next, which the function transition uses,
together with state, to determine the next state.

The technique using a procedure execute_state that changes the value of one of i
arguments would never be appropriate in good O-O design, but here it is the
expedient. To signal it clearly, the notation flags an “out” argument such as next with an
arrow →. Instead of a procedure which modifies an argument, C developers would
execute_state a side-effect-producing function called as next:= execute_state (state); we
will see that this practice is subject to criticism too.

Since execute_state does not show any information about any particular interact
application, you must fill in the application-specific properties appearing on level 2 in
figure: transition function; initial state; is_final predicate.

To complete the design, we must refine the execute_state routine describing the
actions to be performed in each state. Its body is essentially an abstracted form
contents of the successive blocks in the initial goto-based version:

execute_state (in s: INTEGER; out c: INTEGER) is
-- Execute the actions associated with state s,
-- returning into c the user’s choice for the next state.

local
a: ANSWER; ok: BOOLEAN

do
repeat

display (s)
read (s, →a)
ok := correct (s, a)
if not ok then message (s, a) end

until ok end
process (s, a)
c := next_choice (a)

end

This assumes level 1 routines with the following roles:

• display (s) outputs the panel associated with state s.

• read (s, →a) reads into a the user’s answer to the display panel of state s.

• correct (s, a) returns true if and only if a is an acceptable answer to the questi
displayed in state s; if so, process (s, a) processes answer a, for example by updating
a database or displaying more information; if not, message (s, a) outputs the relevant
error message.

DESIGN CASE STUDY: MULTI-PANEL INTERACTIVE SYSTEMS§20.4682

fined
iven

cture

es:

t still

om the
ther
ure of

f the

 a lie,
s

 page,

ok, is
ol
 data;

e
nment

The architectural
figure is on page
680.
The type ANSWER of the object representing the user’s answer has not been re
further. A value a of that type globally represents the input entered by the user in a g
state; it is assumed to include the user’s choice for the next step, written next_choice (a).
(ANSWER is in fact already very much like a class, even though the rest of the archite
is not object-oriented at all.)

To obtain a working application, you will need to fill in the various level 1 featur
display, read, correct, message and process.

20.4 A CRITIQUE OF THE SOLUTION

Have we now a satisfactory solution? Not quite. It is better than the first version, bu
falls short of our goals of extendibility and reusability.

Statism

Although on the surface it seems we have been able to separate the generic fr
application-specific, in reality the various modules are still tightly coupled with each o
and with the choice of application. The main problem is the data transmission struct
the system. Consider the signatures (argument and result types) of the routines:

execute_state (in s: STATE; out c: CHOICE)

display (in s: STATE)

read (in s: STATE; out a: ANSWER)

correct (in s: STATE; a: ANSWER): BOOLEAN

message (in s: STATE; a: ANSWER)

process (in s: STATE; a: ANSWER)

The observation (which sounds like an economist’s lament) is that the role o
state is too pervasive. The current state appears under the name s as an argument in all the
routines, coming from the top module execute_session, where it is known as state. So the
hierarchical structure shown in the last figure, seemingly simple and manageable, is
or more precisely a façade. Behind the formal elegance of the functional decompoition
lies a jumble of data transmission. The true picture, shown at the top of the facing
must involve the data.

The background for object technology, as presented at the beginning of this bo
the battle between the function and data (object) aspects of software systems for contr
of the architecture. In non-O-O approaches, the functions rule unopposed over the
but then the data take their revenge.

The revenge comes in the form of sabotage. By attacking the very foundations of th
architecture, the data make the system impervious to change — until, like a gover
unable to handle its perestroika, it will crumble under its own weight.

State
intervention

§20.4 A CRITIQUE OF THE SOLUTION 683

ed to
ding

ade of
er is
t know

stem:
l case
iece

neral
ed so
ake
 of

.

The flow of
data
In this example the subversion of the structure comes in particular from the ne
discriminate on states. All the level 1 routines must perform different actions depen
on s: to display the panel for a certain state; to read and interpret a user answer (m
a number of input fields, different for each state); to determine whether the answ
correct; to output the proper error message; to process a correct answer — you mus
the state. The routines will perform a discrimination of the form

inspect

s

when Initial then

…
when Enquiry_on_flights then

…
…
end

This means long and complex control structures and, worse yet, a fragile sy
any addition of a state will require changes throughout the structure. This is a typica
of unbridled knowledge distribution: far too many modules of the system rely on a p
of information — the list of all possible states — which is subject to change.

The situation is in fact even worse than it appears if we are hoping for ge
reusable solutions. There is an extra implicit argument in all the routines consider
far: the application — airline reservation or anything else we are building. So to m
routines such as display truly general we would have to let them know about all states
all possible applications in a given computing environment! Function transition would
similarly contain the transition graph for all applications. This is of course unrealistic

execute_session

initial transition execute_
state is_final

display processmessagecorrectread

Level 1

Level 3

Level 2

state
state

state
state

state

DESIGN CASE STUDY: MULTI-PANEL INTERACTIVE SYSTEMS§20.5684

o to

ignals
ay be

th all
verse: it
routine
rmer

m a
ises in
ble
design

 then
erse-
to the
sign
 data
en in a
s with
ill in

 proper

 data
odular
stractly
20.5 AN OBJECT-ORIENTED ARCHITECTURE

The very deficiencies of top-down functional decomposition point to what we must d
obtain a good object-oriented version.

The law of inversion

What went wrong? Too much data transmission in a software architecture usually s
a flaw in the design. The remedy, which leads directly to object-oriented design, m
expressed by the following design rule:

Instead of building modules around operations (such as execute_session and
execute_state) and distributing the data structures between the resulting routines, wi
the unpleasant consequences that we have seen, object-oriented design does the re
uses the most important data types as the basis for modularization, attaching each
to the data type to which it relates most closely. When objects take over, their fo
masters, the functions, become their vassals.

The law of inversion is the key to obtaining an object-oriented design fro
classical functional (procedural) decomposition, as in this chapter. Such a need ar
cases of reverse-engineering an existing non-O-O system to make it more maintaina
and prepare its evolution; it is also frequent in teams that are new to object-oriented
and think “functional” first.

It is of course best to design in an object-oriented fashion from the beginning;
no inversion is needed. But the law of inversion is useful beyond cases of rev
engineering and novice developers. Even someone who has been exposed
principles of object-oriented software construction may come up with an initial de
that has pockets of functional decomposition in an object landscape. Analyzing
transmission is a good way to detect and correct such design flaws. If you see — ev
structure intended as O-O — a data transmission pattern similar to what happen
states in the example of this chapter, it should catch your attention. Probing further w
most cases lead you to the discovery of a data abstraction that has not received its
due in the software’s architecture.

State as a class

The “state” example is typical. Such a data type, appearing so pervasively in the
transmissions between routines, is a prime candidate for serving as one of the m
components of an object-oriented architecture, which must be based on classes (ab
described data types).

Law of inversion

If your routines exchange too many data, put your routines in your data.

§20.5 AN OBJECT-ORIENTED ARCHITECTURE 685

 the
 by a
seen

g the

f
original

can

STATE
features
The notion of state was important in the original problem statement, but in
functional architecture that importance was lost: the state was just represented
variable, passed from routine to routine as if it were some kind of lowlife. We have
how it avenged itself. Now we are ready to give it the status it deserves. STATE should be
a class, one of the principals in the structure of our new object-oriented system.

In that class we will find all the operations that characterize a state: displayin
corresponding screen (display), analyzing a user’s answer (read), checking the answer
(correct), producing an error message for an incorrect answer (message), processing a
correct answer (process). We must also include execute_state, expressing the sequence o
actions to be performed whenever the session reaches a given state; since the
name would be over-qualifying in a class called STATE, we can replace it by just execute.

Starting from the original top-down functional decomposition picture, we
highlight the set of routines that should be handed over to STATE:

The class will have the following form:

… class STATE feature

input: ANSWER

choice: INTEGER

execute is do … end

display is …

read is …
correct: BOOLEAN is …

message is …
process is …

end

execute_session

initial transition execute_
state is_final

display processmessagecorrectread

Level 1

Level 3

Level 2

STATE

DESIGN CASE STUDY: MULTI-PANEL INTERACTIVE SYSTEMS§20.5686

heir
state

rable
what

cret
k at

edure

e
ir
t
ives:

See “SIDE
EFFECTS IN
FUNCTIONS”,
23.1, page 748.
Features input and choice are attributes; the others are routines. Compared to t
counterparts in the functional decomposition, the routines have lost their explicit
arguments, although the state will reappear in calls made by clients, such as s● execute.

In the previous approach, execute (formerly execute_state) returned the user’s
choice for the next step. But such a style violates principles of good design. It is prefe
to treat execute as a command, whose execution determines the result of the query “
choice did the user make in the last state?”, available through the attribute choice.
Similarly, the ANSWER argument to the level 1 routines is now replaced by the se
attribute input. The reason is information hiding: client code does not need to loo
answers except through the interface provided by the exported features.

Inheritance and deferred classes

Class STATE does not describe a particular state, but the general notion of state. Proc
execute is the same for all states, but the other routines are state-specific.

Inheritance and deferred classes ideally address such situations. At the STATE level,
we know the procedure execute in full detail and the attributes. We also know th
existence of the level 1 routines (display etc.) and their specifications, but not the
implementations. These routines should be deferred; class STATE, which describes a se
of variants, rather than a fully spelled out abstraction, is itself a deferred class. This g

indexing

description: "States for interactive panel-driven applications"

deferred class

STATE

feature -- Access

choice: INTEGER
-- User’s choice for next step

input: ANSWER

-- User’s answer to questions asked in this state.

feature -- Status report

correct: BOOLEAN is

-- Is input a correct answer?

deferred

end

feature -- Basic operations

display is

-- Display panel associated with current state.

deferred

end

§20.5 AN OBJECT-ORIENTED ARCHITECTURE 687

It is easy to remove
the test from within
the loop for better
efficiency.

State class
hierarchy
execute is
-- Execute actions associated with current state
-- and set choice to denote user’s choice for next state.

local
ok: BOOLEAN

do
from ok := False until ok loop

display; read; ok := correct
if not ok then message end

end
process

ensure
ok

end

message is
-- Output error message corresponding to input.

require
not correct

deferred
end

read is
-- Obtain user’s answer into input and choice into next_choice.

deferred
end

process is
-- Process input.

require
correct

deferred
end

end -- class STATE

To describe a specific state you will introduce descendants of STATE providing
effectings (implementations) of the deferred features:

STATE

INITIAL RESER-
VATION

CONFIR-
MATION

∗

…

DESIGN CASE STUDY: MULTI-PANEL INTERACTIVE SYSTEMS§20.5688

mon to
ch as
in
:

 you

on
t the
and
tained

tional

m” as
any

more
capable

is the
line

own
es of

l be
and

“Don’t call us, we’ll
call you”, page 505.

“Finding the top”,
page 107.
An example would look like:

class ENQUIRY_ON_FLIGHTS inherit
STATE

feature

display is
do

… Specific display procedure …
end

… And similarly for read, correct, message and process …
end -- class ENQUIRY_ON_FLIGHTS

This architecture separates, at the exact grain of detail required, elements com
all states and elements specific to individual states. The common elements, su
procedure execute, are concentrated in STATE and do not need to be redeclared
descendants such as ENQUIRY_ON_FLIGHTS. The Open-Closed principle is satisfied
STATE is closed in that it is a well-defined, compilable unit; but it is also open, since
can add any number of descendants at any time.

STATE is typical of behavior classes — deferred classes capturing the comm
behavior of a large number of possible objects, implementing what is fully known a
most general level (execute) in terms of what depends on each variant. Inheritance
the deferred mechanism are essential to capture such behavior in a self-con
reusable component.

Describing a complete system

To complete the design we must still take care of managing a session. In the func
decomposition this was the task of procedure execute_session, the main program. But now
we know better. As discussed in an earlier chapter, the “topmost function of a syste
posited in the top-down method is mythical. A large software system performs m
equally important functions. Here again, the abstract data type approach is
appropriate; it considers the system, taken as a whole, as a set of abstract objects
of rendering a certain number of services.

We have captured one key abstraction: STATE (along with ANSWER). What
abstraction is our design still missing? Central in the understanding of the problem
notion of APPLICATION, describing specific interactive systems such as the air
reservation system. This will yield a new class.

It turns out that the remaining components of the functional decomposition, sh
in the figure, are all features of an application and will find their true calling as featur
class APPLICATION:

• execute_session, describing how to execute an application. Here the name wil
simplified to execute since the enclosing class provides qualification enough (
there is no possible confusion with execute of STATE).

§20.5 AN OBJECT-ORIENTED ARCHITECTURE 689

ote

r final
een

r.)

tures

s book,
e
 lowest
(data
amic

ave

e
s how

arlier
lding
st a

STATE and
APPLICATION
 features
• initial and is_final, indicating which states have special status in an application. N
that it is proper to have these features in APPLICATION rather than STATE since
they describe properties of applications rather than states: a state is not initial o
per se, but only with respect to an application. (If we reuse states betw
applications, a state may well be final in a certain application but not in anothe

• transition to describe the transition between states in the application.

The components of the functional decomposition have all found a place as fea
of the classes in the O-O decomposition — some in STATE, some in APPLICATION. This
should not surprise us. Object technology, as has been repeatedly emphasized in thi
is before anything else an architectural mechanism, primarily affecting how we organiz
software elements into coherent structures. The elements themselves may be, at the
level, the same ones that you would find in a non-O-O solution, or at least similar
abstraction, information hiding, assertions, inheritance, polymorphism and dyn
binding help make them more simple, general and powerful).

A panel-driven system of the kind studied in this chapter will always need to h
operations for traversing the application graph (execute_session, now execute), reading
user input (read), detecting final states (is_ final). Deep down in the structure, then, w
will find some of the same building blocks regardless of the method. What changes i
you group them to produce a modular architecture.

Of course we do not need to limit ourselves to features that come from the e
solution. What for the functional decomposition was the end of the process — bui
execute for applications and all the other mechanisms that it needs — is now ju
beginning. There are many more things we may want to do on an application:

execute_session

initial transition execute_
state is_final

display processmessagecorrectread

Level 1

Level 3

Level 2

STATE

APPLICATION

DESIGN CASE STUDY: MULTI-PANEL INTERACTIVE SYSTEMS§20.5690

tubs

lute
“state

er.

 of

udo-

ry
d is
n
n

• Add a new state.

• Add a new transition.

• Build an application (by repeated application of the preceding two operations).

• Remove a state, a transition.

• Store the complete application, its states and transitions, into a database.

• Simulate the application (for example on a line-oriented display, or with s
replacing the routines of class STATE, to check the transitions only).

• Monitor usage of the application.

All these operations, and others, will yield features of class APPLICATION. They
are no less and no more important than our former “main program”, procedure execute,
now just one of the features of the class, inter pares but not even primus. By renouncing
the notion of top, we make room for evolution and reuse.

The application class

To finish class APPLICATION here are a few possible implementation decisions:

• Number states 1 to n for the application. Note that these numbers are not abso
properties of the states, but only relative to a certain application; so there is no
number” attribute in class STATE. Instead, a one-dimensional array associated_
state, an attribute of APPLICATION, yields the state associated with a given numb

• Represent the transition function by another attribute, a two-dimensional array
size n × m, where m is the number of possible exit choices.

• The number of the initial state is kept in the attribute initial and set by the routine
choose_initial. For final states we can use the convention that a transition to pse
state 0 denotes session termination.

• The creation procedure of APPLICATION uses the creation procedures of the libra
classes ARRAY and ARRAY2. The latter describes two-dimensional classes an
patterned after ARRAY; its creation procedure make takes four arguments, as i
!! a ●make (1, 25, 1, 10), and its item and put routines use two indices, as i
a ●put (x, 1, 2). The bounds of a two-dimensional array a are a●lower1 etc.

Here is the class resulting from these decisions:

indexing

description: "Interactive panel-driven applications"

class APPLICATION creation

make

§20.5 AN OBJECT-ORIENTED ARCHITECTURE 691

).
feature -- Initialization

make (n, m: INTEGER) is
-- Allocate application with n states and m possible choices.

do

!! transition● make (1, n, 1, m)

!! associated_state● make (1, n)

end

feature -- Access

initial : INTEGER
-- Initial state’s number

feature -- Basic operations

execute is
-- Perform a user session

local

st: STATE; st_number: INTEGER

do

from

st_number:= initial

invariant

0 <= st_number; st_number <= n

until st_number = 0 loop

st := associated_state● item (st_number)

st● execute

-- This refers of course to the execute procedure of
STATE

-- (see next page for comments on this key instruction

st_number:= transition● item (st_number, st● choice)

end

end

feature -- Element change

put_state (st: STATE; sn: INTEGER) is

-- Enter state st with index sn.

require

1 <= sn; sn <= associated_state● upper

do

associated_state● put (st, sn)

end

DESIGN CASE STUDY: MULTI-PANEL INTERACTIVE SYSTEMS §20.5692

age,
led is
vior,

fit of
ding:

t

choose_initial (sn: INTEGER) is
-- Define state number sn as the initial state.

require

1 <= sn; sn <= associated_state●upper

do

initial := sn

end

put_transition (source, target, label: INTEGER) is
-- Enter transition labeled label

-- from state number source to state number target.

require

1 <= source; source <= associated_state● upper

0 <= target; target <= associated_state● upper

1 <= label; label <= transition● upper2

do

transition● put (source, label, target)

end

feature { NONE} -- Implementation

transition: ARRAY2 [STATE]

associated_state: ARRAY [STATE]

… Other features …

invariant

transition● upper1 = associated_state● upper

end -- class APPLICATION

Note how simply and elegantly the highlighted call on the preceding p
st●execute, captures some of the problem’s essential semantics. The feature cal
execute from STATE; although effective because it describes a known general beha
execute relies on deferred features read, message, correct, display, process, deferred at
the level of STATE and effected only in its proper descendants such as RESERVATION.
When we place the call st● execute in APPLICATION’s own execute, we have no idea
what kind of state st denotes — although we do know that it is a state (this is the bene
static typing). To come to life, the instruction needs the machinery of dynamic bin
when st becomes attached at run time to a state object of a particular kind, say
RESERVATION, calls to read, message and consorts will automatically trigger the righ
version.

The value of st is obtained from associated_state, a polymorphic data structure
which may contain objects of different types, all conforming to STATE. Whatever we find
at the current index st_number will determine the next state operations.

§20.6 DISCUSSION 693

nted

s of
ach

e

 new

r any of

nted
etting
g, for
e that
Here is how you build an interactive application. The application will be represe
by an entity, say air_reservation, declared of type APPLICATION. You must create the
corresponding object:

!! air_reservation● make (number_of_states, number_of_possible_choices)

You will separately define and create the application’s states as entitie
descendant types of STATE, either new or reused from a state library. You assign to e
state s a number i for the application:

air_reservation● put_state (s, i).

You choose one of the states, say the state numbered i0, as initial:

air_reservation● choose_initial (i0)

To set up a transition from state number sn to state number tn, with label l, you use

air_reservation● enter_transition (sn, tn, l)

This includes exit transitions, for which tn is 0 (the default). You may now execut
the application:

air_reservation● execute_session.

During system evolution you may at any time use the same routines to add a
state or a new transition.

It is of course possible to extend class APPLICATION, either by changing it or by
adding descendants, to accommodate more features such as deletion, simulation, o
the others mentioned in the course of the presentation.

20.6 DISCUSSION

This example provides a striking picture of the differences between object-orie
software construction and earlier approaches. It shows in particular the benefits of g
rid of the notion of main program. By focusing on the data abstractions and forgettin
as long as possible, what is “the” main function of the system, we obtain a structur

Instance of RESERVATION

Instance of RESERVATION

Instance of CONFIRMATION

Instance of HELP

associated_state

st_number

1

DESIGN CASE STUDY: MULTI-PANEL INTERACTIVE SYSTEMS§20.7694

many

takes
tion to
iented
and an
duce

 in an
quent
ow up
ication
he data

uch
 “real
nt to
 the
del the

rectly
quire

ood

n area.
comer

of the

one’s
oth to
e very
 will
ill that

iented
is much more likely to lend itself gracefully to future changes and to reuse across
different variants.

This equalizing effect is one of the characteristic properties of the method. It
some discipline to apply it consistently, since it means resisting the constant tempta
ask: “What does the system do?”. This is one of the skills that sets the true object-or
professional from people who (although they may have been using O-O techniques
O-O language for a while) have not yet digested the method, and will still pro
functional architectures behind an object façade.

We have also seen a heuristic that is often useful to identify key abstractions
object-oriented (to “find the objects”, or rather the classes, the topic of a subse
chapter): analyzing data transmissions and being on the lookout for notions that sh
in communications between numerous components of a system. Often this is an ind
that the structure should be turned upside down, the routines becoming attached to t
abstraction rather than the reverse.

A final lesson of this chapter is that you should be wary of attaching too m
importance to the notion that object-oriented systems are directly deduced from the
world”. The modeling power of the method is indeed impressive, and it is pleasa
produce software architectures whose principal components directly reflect
abstractions of the external system being modeled. But there are many ways to mo
real world, and not all of them will lead to a good system. Our first, goto-filled version
was as close to the real world as the other two — closer actually, since it is di
patterned after the structure of the transition diagram, whereas the other two re
introducing intermediate concepts. But it is a software engineering disaster.

In contrast, the object-oriented decomposition that we finally produced is g
because the abstractions that it uses — STATE, APPLICATION, ANSWER — are clear,
general, manageable, change-ready, and reusable across a broad applicatio
Although once you understand them they appear as real as anything else, to a new
they may appear less “natural” (that is to say, less close to an informal perception
underlying reality) than the concepts used in the inferior solutions studied first.

To produce good software, what counts is not how close you are to some
perception of the real world, but how good are the abstractions that you choose b
model the external systems and to structure your own software. This is indeed th
definition of object-oriented analysis, design and implementation, the task that you
have to execute well, day in and day out, to make your project succeed, and the sk
distinguishes object experts from object amateurs: finding the right abstractions.

20.7 BIBLIOGRAPHICAL NOTE

Variants of the example discussed in this chapter were used to illustrate object-or
concepts in [M 1983] and [M 1987].

	20 20 Design pattern: multi-panel interactive syst...
	20.1 MULTI-PANEL SYSTEMS
	A panel

	20.2 A SIMPLE-MINDED ATTEMPT
	A transition diagram

	20.3 A FUNCTIONAL, TOP-DOWN SOLUTION
	The transition function
	A transition table

	The routine architecture
	Top-down functional decomposition

	20.4 A CRITIQUE OF THE SOLUTION
	Statism
	The flow of data

	20.5 AN OBJECT-ORIENTED ARCHITECTURE
	The law of inversion
	Law of inversion

	State as a class
	STATE
	features

	Inheritance and deferred classes
	State class hierarchy

	Describing a complete system
	STATE and APPLICATION features

	The application class
	A polymorphic array of states

	20.6 DISCUSSION
	20.7 BIBLIOGRAPHICAL NOTE

