
21
Inheritance case study:
“undo” in an interactive system
 almost

ple,
 and it
design.

, one
come,
is why
okes,
at we

ation,
 stage

tially
“OK”
g to
is, it

 of

ent, it
s of the
h it is
 few
For our second design example we examine a need that confronts the designers of
any interactive system: how to provide a way to undo commands.

The discussion will show how inheritance and dynamic binding yield a sim
regular and general solution to an apparently intricate and many-faceted problem;
will teach us a few general lessons about the issues and principles of object-oriented

21.1 PERSEVERARE DIABOLICUM

To err is human, it is said, but to foul things up for good takes a computer (aided
should add, by humans). The faster and more powerful our interactive systems be
the easier it becomes to make them perform actions that we do not really want. This
we all wish for a way to erase the recent past; not the “big red button” of computer j
but a Big Green Button that we can push to pretend that we did not do something th
did but wish we did not.

Undoing for fun and profit

In an interactive system, the equivalent of the Big Green Button is an Undo oper
which the system’s designer has provided for the benefit of any user who, at some
in a session, wants to cancel the effect of the last executed command.

The primary aim of an undo mechanism is to allow users to recover from poten
damaging input mistakes. It is all too easy to type the wrong character or click on
instead of “Cancel”. But a good undo facility goes further. It frees users from havin
concentrate nervously on every key they type and button they click. Beyond th
encourages a “What if… ?” style of interaction in which users try out various sorts
input, knowing that they can back up easily if the result is not what they expect.

Every good interactive system should provide such a mechanism. When pres
tends to be one of the most frequently used operations. (For that reason, the maker
computer on my desk have wisely provided an Undo key on the keyboard, althoug
neither green nor particularly big. It is only effective, of course, for those regrettably
software applications whose authors took notice of it.)

INHERITANCE CASE STUDY: “UNDO” IN AN INTERACTIVE SYSTEM §21.1696

Most
ect of
 ever
uble.
s

have
atter,
o not,
e to a
mit
t to at
ied.

rried
rsally
 that
e than

-O
 the

re (the
arily

few

 just
uests:

osh
o (for

 Redo
some
e than
uest, or

f this
Multi-level undo and redo

Offering an undo mechanism is better than not offering one, but it is not enough.
systems that provide Undo limit themselves to one level: you can only cancel the eff
the last command. If you never make two mistakes in a row, this is enough. But if you
go off in the wrong direction, and wish you could go back several steps, you are in tro
(Anyone having used Microsoft Word, the Unix Vi editor or FrameMaker, in the release
available at the time this book was published, will know exactly what I mean.)

There is really no excuse for the restriction to one level of undoing. Once you
set up the undoing machinery, going from one-level to multi-level undo is a simple m
as we will see in this chapter. And, please (this is a potential customer speaking) d
like so many application authors, limit the number of commands that can be undon
ridiculously small value; if you must limit it at all, let the user choose his own li
(through a “preferences” setting that will apply to all future sessions) and set defaul
least 20. The overhead is small if you apply the techniques below, and is well justif

With multi-level undo, you will also need a Redo operation for users who get ca
away and undo too much. With one-level undo no special Redo is required; the unive
applied convention is that an Undo immediately following an Undo cancels it, so
Redo and Undo are the same operation. But this cannot work if you can go back mor
one step. So we will have to treat Redo as a separate operation.

Practical issues

Although undo-redo can be retrofitted with reasonable effort into a well-written O
system, it is best, if you plan to support this facility, to make it part of the design from
start — if only because the solution encourages a certain form of software architectu
use of command classes) which, although beneficial in other respects, does not necess
come to mind if you do not need undoing.

To make the undo-redo mechanism practical you will have to deal with a
practical concerns.

First you must include the facility in the user interface. For a start, we may
assume that the set of operations available to users is enriched with two new req
Undo (obtained for example by typing control-U, although following the Macint
convention control-Z seems to have become the standard on PC tools) and Red
example control-R). Undo cancels the effect of the last command not yet undone;
re-executes the last undone command not yet redone. You will have to define
convention for dealing with attempts to undo more than what has been done (or mor
what is remembered), or to redo more than what has been undone: ignore the req
bring up a warning message.

This is only a first shot at user interface support for undo-redo. At the end o
chapter we will see that a nicer, more visual interface is possible.

§21.1 PERSEVERARE DIABOLICUM 697

lity of
t of a
less

ut the
t of a
tation
 this
ses for

s

neral
ns, to
e end
r you
ample
ecutes

e (you
 the

t
or
sults).

wing

ons,

Exercise E21.4,
page 716.
Second, not all commands are undoable. In some cases this is an impossibi
fact, as in the command “fire the missiles” (notwithstanding the televised commen
then-in-office US president, who thought one could command a U-turn) or,
ominously, “print the page”. In other cases, a command is theoretically undoable b
overhead is not worth the trouble; text editors typically do not let you undo the effec
Save command, which writes the current document state into a file. The implemen
of undoing will need to take into account such non-undoable commands, making
status clear in the user interface. Be sure to restrict non-undoable commands to ca
which this property is easily justifiable in user terms.

As a counter-example, a document processing tool which I frequently use tells its user,
once in a while, that in the current state of the document the command just requested i
not undoable, with no other visible justification than the whim of the program. At least it
says so in advance — in most cases.

Interestingly, this warning is in a sense a lie: you can undo the effect if you want, although
not through Undo but through “Revert to last saved version of the document”. This
observation yields a user interface rule: if there remains any case for which you feel
justified to make a command non-undoable, do not follow the document processing
system’s example by just displaying a warning of the form “This command will not be
undoable” and giving the choice between Continue anyway and Cancel. Give users
three possibilities: save document, then execute command; execute without saving;
cancel.

Finally, it may be tempting to offer, besides Undo and Redo, the more ge
“Undo, Skip and Redo” scheme, allowing users, after one or more Undo operatio
skip some of the commands before triggering Redo. The user interface shown at th
of this chapter could support this extension, but it raises a conceptual problem: afte
skip some commands, the next one may not make sense any more. As a trivial ex
assume a text editor session, with a text containing just one line, and a user who ex
the two commands

(1) Add a line at the end.
(2) Remove the second line.

Our user undoes both, then wants to skip (1) and redo (2). Unfortunately at this stage
(2) is meaningless: there is no second line. This is less a problem in the user interfac
could somehow indicate to the user that the command is impossible) than in
implementation: the command Remove the second line was applicable to the objec
structure obtained as a result of (1), but applying it to the object structure that exists pri
to (1) may be impossible (that is to say, cause a crash or other unpleasant re
Solutions are certainly possible, but they may not be worth the trouble.

Requirements on the solution

The undo-redo mechanism that we set out to provide should satisfy the follo
properties.

U1 • The mechanism should be applicable to a wide class of interactive applicati
regardless of the application domain.

INHERITANCE CASE STUDY: “UNDO” IN AN INTERACTIVE SYSTEM §21.1698

tion-
ple a
s its

an

other
ure of

ciple
add a

 undo-
e
ide
 record

tion:
mand
rribly
 the

ow.

been
hen to

d idea,

See “Single
Choice”, page 61.

On STORABLE see
“Deep storage: a first
view of persistence”,
page 250.
U2 • The mechanism should not require redesign for each new command.

U3 • It should make reasonable use of storage.

U4 • It should be applicable to both one-level and arbitrary-level Undo.

The first requirement follows from the observation that there is nothing applica
specific about undoing and redoing. To facilitate the discussion, we will use as exam
kind of tool familiar to everyone: a text editor (such as Notepad or Vi), which enable
users to enter texts and to perform such commands as INSERT_LINE, DELETE_LINE,
GLOBAL_REPLACEMENT (of a word by another) and so on. But this is only
example and none of the concepts discussed below is specific to text editors.

The second requirement excludes treating Undo and Redo as just any
command in the interactive system. Were Undo a command, it would need a struct
the form

if “Last command was INSERT_LINE” then

“Undo the effect of INSERT_LINE”

elseif “Last command was DELETE_LINE” then

“Undo the effect of DELETE_LINE”

etc.

We know how bad such structures, the opposite of what the Single Choice prin
directs us to use, are for extendibility. They have to be changed every time you
command; furthermore, the code in each branch will mirror the code for the corresponding
command (the first branch, for example, has to know a lot about what INSERT_LINE
does), pointing to a flawed design.

The third requirement directs us to be sparing in our use of storage. Supporting
redo will clearly force us to store some information for every Undo; for example when w
execute a DELETE_LINE, we will not be able to undo it later unless we put as
somewhere, before executing the command, a copy of the line being deleted and a
of its position in the text. But we should store only what is logically necessary.

The immediate effect of this third requirement is to exclude an obvious solu
saving the whole system state — the entire object structure — before every com
execution; then Undo would just restore the saved image. This would work but is te
wasteful of space. Too bad, since the solution would be trivial to write: just use
STORABLE facilities for storing and retrieving an entire object structure in a single bl
But we must look for something a little more sophisticated.

The final requirement, supporting an arbitrary depth of undoing, has already
discussed. It will turn out to be easier to consider a one-level mechanism first, and t
generalize it to multi-level.

These requirements complete the presentation of the problem. It may be a goo
as usual, to spend a little time looking for a solution on your own before proceeding with
the rest of this chapter.

§21.2 FINDING THE ABSTRACTIONS 699

re the

 of the
 — or

rred.
 as
21.2 FINDING THE ABSTRACTIONS

The key step in an object-oriented solution is the search for the right abstraction. He
fundamental notion is staring us in the eyes.

Command as a class

The problem is characterized by a fundamental data abstraction: COMMAND,
representing any editor operation other than Undo and Redo. Execution is only one
features that may be applied to a command: the command might be stored, tested
undone. So we need a class of the provisional form

deferred class COMMAND feature
execute is deferred end
undo is deferred end

end

COMMAND describes the abstract notion of command and so must remain defe
Actual command types are represented by effective descendants of this class, such

class LINE_DELETION inherit
COMMAND

feature

deleted_line_index: INTEGER

deleted_line: STRING

set_deleted_line_index (n: INTEGER) is
-- Set to n the number of next line to be deleted.

do
deleted_line_index:= n

end

execute is
-- Delete line.

do
“Delete line number deleted_line_index”
“Record text of deleted line in deleted_line”

end

undo is
-- Restore last deleted line.

do
“Put back deleted_line at position deleted_line_index”

end
end

And similarly for each command class.

INHERITANCE CASE STUDY: “UNDO” IN AN INTERACTIVE SYSTEM §21.2700

ution
t
and

 local
ce
ble us

into
ct data

ver.
ld not
son the

a class
e only

ct

A command
object

See “Requirements
on the solution”,
page 697.

Command
class hierarchy

“The nouns and the
verbs”, page 720.
What do such classes represent? An instance of LINE_DELETION, as illustrated
below, is a little object that carries with it all the information associated with an exec
of the command: the line being deleted (deleted_line, a string) and its index in the tex
(deleted_line_index, an integer). This is the information needed to undo the comm
should this be required later on, or to redo it.

The exact attributes — such as deleted_line and deleted_line_index here — will
differ for each command class, but they should always be sufficient to support the
variants of execute and undo. Such objects, conceptually describing the differen
between the states that precede and follow the application of a command, will ena
to satisfy requirement U3 of the earlier list — storing only what is strictly necessary.

The inheritance structure of command classes may look like this:

The graph shown is flat (all proper descendants of COMMAND at the same level),
but nothing precludes adding more structure by grouping command types
intermediate categories; this will be justified if such categories make sense as abstra
types, that is to say, have specific features.

When defining a notion, it is always important to indicate what it does not co
Here the concept of command does not include Undo and Redo; for example it wou
make sense to undo an Undo (except in the sense of doing a Redo). For this rea
discussion uses the term operation for Undo and Redo, reserving command for operations
which can be undone and redone, such as line insertion. There is no need for
covering the notion of operation, since non-command operations such as Undo hav
one relevant feature, their ability to be executed.

This is a good example of the limitations of simplistic approaches to “find the objects”,
such as the famous “Underline the nouns” idea studied in a later chapter. In the
specification of the problem, the nouns command and operation are equally important;
but one gives a fundamental class, the other does not give a class at all. Only the abstra
data type perspective — studying abstractions in terms of the applicable operations and
their properties — can help us find the classes of our object-oriented systems.

"Some text"

deleted_line_index

deleted_line

45

*

LINE_ …

execute*
undo*

INSERTION
LINE_

DELETION

COMMAND

STRING_
REPLACE

§21.2 FINDING THE ABSTRACTIONS 701

-level

of the

cuted

e loop
hical

the
The basic interactive step

To get started we will see how to support one-level undo. The generalization to multi
undo-redo will come next.

In any interactive system, there must be somewhere, in a module in charge
communication with users, a passage of the form

basic_interactive_step is

-- Decode and execute one user request.

do

“Find out what the user wants us to do next”

“Do it (if possible)”

end

In a traditionally structured system, such as editor, these operations will be exe
as part of a loop, the program’s “basic loop”:

from start until quit_has_been_requested_and_confirmed loop

basic_interactive_step

end

whereas more sophisticated systems may use an event-driven scheme, in which th
is external to the system proper (being managed by the underlying grap
environment). But in all cases there is a need for something like basic_interactive_step.

In light of the abstractions just identified, we can reformulate the body of
procedure as

“Get latest user request”

“Decode request”

if “Request is a normal command (not Undo)” then

“Determine the corresponding command in our system”

“Execute that command”

elseif “Request is Undo” then

if “There is a command to be undone” then

“Undo last command”

elseif “There is a command to be redone” then

“Redo last command”

end

else

“Report erroneous request”

end

INHERITANCE CASE STUDY: “UNDO” IN AN INTERACTIVE SYSTEM §21.2702

Undo
do. In

 and
tered,

tions

es us to

some
he
ch
l state.

Exercise E21.2,
page 716.

See “Requirements
on the solution”,
page 697.
This implements the convention suggested earlier that Undo applied just after
means Redo. A request to Undo or Redo is ignored if there is nothing to undo or re
a simple text editor with a keyboard interface, “Decode request” would analyze the user
input, looking for such codes as control-I (for insert line), control-D (for delete line)
so on. With graphical interfaces you have to determine what input the user has en
such as a choice in a menu, a button clicked in a menu, a key pressed.

Remembering the last command

With the notion of command object we can be more specific about the opera
performed by basic_interactive_step. We will use an attribute

requested: COMMAND

-- Command requested by interactive user

representing the latest command that we have to execute, undo or redo. This enabl
refine the preceding scheme of basic_interactive_step into:

“Get and decode latest user request”

if “Request is normal command (not Undo)” then

“Create appropriate command object and attach it to requested”
-- requested is created as an instance of some
-- descendant of COMMAND, such as LINE_DELETION
-- (This instruction is detailed below.)

; undoing_mode:= False

elseif “request is Undo” and requested /= Void then

if undoing_mode then

“This is a Redo; details left to the reader”

else

; undoing_mode:= True

end

else

“Erroneous request: output warning, or do nothing”

end

The boolean entity undoing_mode determines whether the last operation was an Undo. In
this case an immediately following Undo request would mean a Redo, although the
straightforward details have been left to the reader; we will see the full details of Redo
implementation in the more interesting case of a multi-level mechanism.

The information stored before each command execution is an instance of
descendant of COMMAND such as LINE_DELETION. This means that, as announced, t
solution satisfies the property labeled U3 in the list of requirements: what we store for ea
command is the difference between the new state and the previous one, not the ful

requested● execute
Dynamic
Binding

requested● undo

§21.2 FINDING THE ABSTRACTIONS 703

 is

ypes

efined

hich

of the
tures
e the

s,

t will

ystem,
del of
else.
lained

ct. The
 to

n

er

“Polymorphic cre-
ation”, page 479.
The key to this solution — and its refinements in the rest of this chapter —
polymorphism and dynamic binding. Attribute requested is polymorphic: declared of type
COMMAND, it will become attached to objects of one of its effective descendant t
such as LINE_INSERTION. The calls requested● execute and requested● undo only make
sense because of dynamic binding: the feature they trigger must be the version red
for the corresponding command class, executing or undoing a LINE_INSERTION, a
LINE_DELETION or a command of any other type as determined by the object to w
requested happens to be attached at the time of the call.

The system’s actions

No part of the structure seen so far is application-specific. The actual operations
application, based on its specific object structures — for example the struc
representing the current text in a text editor — are elsewhere; how do we mak
connection?

The answer relies on the execute and undo procedures of the command classe
which must call application-specific features. For example procedure execute of class
LINE_DELETION must have access to the editor-specific classes to call features tha
yield the text of the current line, give its position in the text, and remove it.

As a result there is a clear separation between the user interaction parts of a s
largely application-independent, and the application-specific parts, closer to the mo
each application’s conceptual model — be it text processing, CAD-CAM or anything
The first component, especially when generalized to a history mechanism as exp
next, will be widely reusable between various application domains.

How to create a command object

After decoding a request, the system must create the corresponding command obje
instruction appeared abstractly as “Create appropriate command object and attach it
requested” ; we may express it more precisely, using creation instructions, as

if “Request is LINE INSERTION” then
! LINE_INSERTION ! requested● make (input_text, cursor_index)

elseif “Request is LINE DELETION” then
! LINE_DELETION ! requested● make (current_line, line_index)

elseif
…

This uses the ! SOME_TYPE ! x … form of the creation instruction, which creates a
object of type SOME_TYPE and attaches it to x; remember that SOME_TYPE must
conform to the type declared for x, as is the case here since requested is of type
COMMAND and all the command classes are descendants of COMMAND.

If each command type uses a unique integer or character code, a slightly simpl
form relies on an inspect:

INHERITANCE CASE STUDY: “UNDO” IN AN INTERACTIVE SYSTEM §21.3704

oice
es a

ve
es is
 needs
mand.

anch

ward

the last

e

s a

 style

cipal

). By

“Single Choice”,
page 61.

“Precomputing
command objects”,
page 708.

See chapter 9 on
garbage collection.
inspect
request_code

when Line_insertion then
! LINE_INSERTION ! requested● make (input_text, cursor_ position)

etc.

Both forms are multiple-branch choices, but they do not violate the Single Ch
principle: as was pointed out in the discussion of that principle, if a system provid
number of alternatives some part of it must know the complete list of alternatives. The abo
extract, in either variant, is that point of single choice. What the principle preclud
spreading out such knowledge over many modules. Here, no other part of the system
access to the list of commands; every command class deals with just one kind of com

It is in fact possible to obtain a more elegant structure and get rid of the multi-br
choice totally; we will see this at the end of presentation.

21.3 MULTI-LEVEL UNDO-REDO

Supporting an arbitrary depth of undoing, with the attendant redoing, is a straightfor
extension of the preceding scheme.

The history list

What has constrained us to a single level of undoing was the use of just one object,
created instance of COMMAND available through requested, as the only record of
previously executed commands.

In fact we create as many objects as the user executes commands. But because th
software only has one command object reference, requested, always attached to the last
command, every command object becomes unreachable as soon as the user execute
new command. It is part of the elegance and simplicity of a good O-O environment that
we do not need to worry about such older command objects: the garbage collector will
take care of reclaiming the memory they occupy. It would be a mistake to try to reclaim
the command objects ourselves, since they may all be of different shapes and sizes.

To provide more depth of undoing we need to replace the single command requested
by a list of recently executed commands, the history list:

history: SOME_LIST [COMMAND]

SOME_LIST is not a real class name; in true object-oriented, abstract data type
we will examine what features and properties we need from SOME_LIST and draw the
conclusion as to what list class (from the Base library) we can use. The prin
operations we need are straightforward and well known from previous discussions:

• put to insert an element at the end (the only place where we will need insertions
convention, put will position the list cursor on the element just inserted.

• empty to find out whether the list is empty.

§21.3 MULTI-LEVEL UNDO-REDO 705

dition

t) on
ve
; if

ser has
h the
ater by

mand
ely to
 Redo
ginning
uence

t is to

A history list

Skip is the subject
of exercise E21.4,
page 716.
• before, is_first and is_last to answer questions about the cursor position.

• back to move the cursor back one position and forth to advance it one position.

• item to access the element at cursor position, if any; this feature has the precon
(not empty) and (not before), which we can express as a query on_item.

In the absence of undoing, the cursor will always be (except for an empty lis
the last element, making is_last true. If the user starts undoing, the cursor will mo
backward in the list (all the way to before if he undoes every remembered command)
he starts redoing, the cursor will move forward.

The figure shows the cursor on an element other than the last; this means the u
just executed one or more Undo, possibly interleaved with some Redo, althoug
number of Undo must always be at least as much as the number of Redo (it is gre
two in the state captured in the figure). If at that stage the user selects a normal com
— neither Undo nor Redo —, the corresponding object must be inserted immediat
the right of the cursor element. The remaining elements on the right are lost, since
would not make sense in that case; this is the same situation that caused us at the be
of this chapter to relegate the notion of Skip operation to an exercise. As a conseq
we need one more feature in SOME_LIST: procedure remove_all_right, which deletes all
elements to the right of the cursor.

An Undo is possible if and only if the cursor is on an element, as stated by on_item. A
Redo is possible if and only if there has been at least one non-overridden Undo, tha
say, (not empty) and (not is_last), which we may express through a query not_last.

Implementing Undo

With the history list, it is easy to implement Undo:

if on_item then

history● item● undo

history● back

else

message ("Nothing to undo")

end

Oldest
Most recent
command

remembered
command

EXECUTE, REDOUNDO

back forth

is_first is_lastbefore Cursor

item

1 count

INHERITANCE CASE STUDY: “UNDO” IN AN INTERACTIVE SYSTEM §21.3706

nsures

r
uting
ility,
fault

her

A history list
with its various
command
objects

“Don’t call us,
we’ll call you”,
page 505.
See once again how dynamic binding is essential. The history list is a polymorphic
data structure:

As the cursor moves left, each successive value of history● item may be attached to
an object of any of the available command types; in each case, dynamic binding e
that history● item● undo automatically selects the appropriate version of undo.

Implementing Redo

Redo is similar:

if not_last then

history●forth

history●item● redo

else

message ("Nothing to redo")

end

This assumes a new procedure, redo, in class COMMAND. So far we had taken for
granted that redo is the same thing as execute, and indeed in most cases it will be; but fo
some commands re-executing after an undo might be slightly different from exec
from scratch. The best way to handle such situations — providing enough flexib
without sacrificing convenience for the common cases — is to provide the de
behavior in class COMMAND:

redo is

-- Re-execute command that has been undone

-- by default, the same thing as executing it.

do

execute

end

This makes COMMAND a behavior class: along with deferred execute and undo, it
has an effective procedure redo which defines a behavior based, by default, on the ot
two. Most descendants will keep this default, but some of them may redefine redo to
account for special cases.

Instance of
LINE_
DELETION

Instance of
LINE_
DELETION

Instance of
LINE_
INSERTION

Instance of
LINE_
MOVE

Instance of
STRING_
REPLACE

Instance of
CHARACTER
_CHANGE

§21.4 IMPLEMENTATION ASPECTS 707

by a
but
to the

f this
logical

nique
res of

t the
ated

:

rent
ttribute
eation
Executing a normal command

If a user operation is neither Undo nor Redo, it is a normal command identified
reference that we may still call requested. In this case we must execute the command,
we must also insert it into the history list; we should also, as noted, forget any item
right of the cursor. So the sequence of instructions is:

if not is_last then remove_all_right end
history●put (requested)

-- Recall that put inserts at the end of the list and moves
-- the cursor to the new element.

requested●execute

With this we have seen all the essential elements of the solution. The rest o
chapter discusses a few implementation-related topics and draws the methodo
lessons from the example.

21.4 IMPLEMENTATION ASPECTS

Let us examine a few details that help obtain the best possible implementation.

Command arguments

Some commands will need arguments. For example a LINE_INSERTION needs to know
the text of the line to be inserted.

A simple solution is to add to COMMAND an attribute and a procedure:

argument: ANY

set_argument (a: like argument) is
do argument:= a end

Then any command class can redefine argument to the proper type. To handle
multiple arguments, it suffices to choose an array or list type. This was the tech
assumed above when we passed various arguments to the creation procedu
command classes.

This technique is appropriate for all simple applications. Note, however, tha
COMMAND class in ISE’s libraries uses a different technique, slightly more complic
but more flexible: there is no argument attribute, but procedure execute takes an argument
(in the usual sense of argument to a routine), representing the command argument

execute (command_argument: ANY) is …

The reason is that it is often convenient, in a graphical system, to let diffe
instances of the same command type share the same argument; by removing the a
we can reuse the same command object in many different contexts, avoiding the cr
of a new command object each time a user requests a command.

INHERITANCE CASE STUDY: “UNDO” IN AN INTERACTIVE SYSTEM §21.4708

nces

since
mand
only

onding

at set

rst let

ining
m the

most
e
re

y

Exercise E21.4,
page 716.

Page 704.
The small complication is that the elements of the history list are no longer insta
of COMMAND; they must instead be instances of a class COMMAND_INSTANCE with
attributes

command_type: COMMAND

argument: ANY

For a significant system, the gain in space and time is worth this complication,
you will create one command object per command type, rather than one per com
execution. This technique is recommended for production applications. You will
need to change a few details in the preceding class extracts.

Precomputing command objects

Before executing a command we must obtain, and in some cases create, the corresp
command object. The instruction was abstractly written as “Create appropriate command
object and attach it to requested” and the first implementation draft was

inspect

request_code

when Line_insertion then

! LINE_INSERTION ! requested● make (…)

etc. (one branch for each command type)

As pointed out, this instruction does not violate the Single Choice principle: it is in
fact the point of single choice — the only place in the entire system that knows wh
of commands is supported. But we have by now developed a healthy loathing forif or
inspect instructions with many branches, so even if this one appears inevitable at fi
us see if perhaps we could get rid of it anyway.

We can — and the design pattern, which may be called precomputing a
polymorphic instance set, is of wide applicability.

The idea is simply to create once and for all a polymorphic data structure conta
one instance of each variant; then when we need a new object we simply obtain it fro
corresponding entry in the structure.

Although several data structures would be possible for such as a list, it is
convenient to use an ARRAY [COMMAND], allowing us to identify each command typ
with an integer between 1 and command_count, the number of command types. We decla

commands: ARRAY [COMMAND]

and initialize its elements in such a way that the i-th element (1 <= i <= n) refers to an
instance of the descendant class of COMMAND corresponding to code i; for example, we
create an instance of LINE_DELETION, associate it with the first element of the arra
(assuming line deletion has code 1), and so on.

§21.4 IMPLEMENTATION ASPECTS 709

ta

lasses
be set

 code,
lier as
e.)

y,
ory list

mand
es of
y

h just:

The array of
command
templates

The figure show-
ing a history list
example was on
page 706.
A similar technique can be applied to the polymorphic array associated_state used in the
O-O solution to the last chapter’s problem (panel-driven applications).

The array commands is another example of the power of polymorphic da
structures. Its initialization is trivial:

!! commands● make (1, command_count)

! LINE_INSERTION ! requested● make; commands●put (requested, 1)
! STRING_REPLACE ! requested● make; commands● put (requested, 2)
… And so on for each command type …

Note that with this approach the creation procedures of the various command c
should not have any arguments; if a command class has attributes, they should
separately later on through specific procedures, as in li ●make (input_text, cursor_position)
where li is of type LINE_INSERTION.

Then there is no more need for any if or inspect multi-branch instruction. The above
initialization serves as the point of single choice; you can now write the operation “Create
appropriate command object and attach it to requested” as

requested:= clone (commands @ code)

where code is the code of the last command. (Since each command type now has a
corresponding to its index in the array, the basic user interface operation written ear
“Decode request” analyzes the user’s request and determines the corresponding cod

The assignment to requested uses a clone of the command template from the arra
so that you can have more than one instance of the same command type in the hist
(as in the earlier example, where the history includes two LINE_DELETION objects).

If, however, you use the suggested technique of completely separating the com
arguments from the command objects (so that the history list contains instanc
COMMAND_INSTANCE rather than COMMAND), then the clone is not necessary an
more, and you can go on using references to the original objects from the array, wit

requested:= commands @ code

In very long sessions the savings can be significant.

Instance of
LINE_
DELETION

Instance of
LINE_
INSERTION

Instance of
LINE_
MOVE

Instance of
STRING_
REPLACE

Instance of
CHARACTER
_CHANGE

commands

1

command_
count

INHERITANCE CASE STUDY: “UNDO” IN AN INTERACTIVE SYSTEM §21.4710

ass
lass

y. Let
cility
ould
 and in
 default

rlier

ers in
hnut:

g
le
s are
d
 be

See “A buffer is a
separate queue”,
page 990.

Bounded
circular list
implemented by
an array

An alternative to
reserving a free
position is to keep
track of count, the
number of elements,
in an attribute. See
“Unconstrained
genericity”, page
1181 for yet another
variant.
A representation for the history list

For the history list a type SOME_LIST was posited, with features put, empty, before, is_
first, is_last, back, forth, item and remove_all_right. (There is also on_item, expressed in
terms of empty and before, and not_last, expressed in terms of empty and is_last.)

Many of the classes in the Base libraries can be used to implement SOME_LIST; for
example we could rely on TWO_WAY_LIST or one of the descendants of the deferred cl
CIRCULAR_LIST. To obtain a stand-alone solution let us devise an ad hoc c
BOUNDED_LIST. Unlike a linked implementation such as TWO_WAY_LIST, this one
will rely on an array, so it keeps only a bounded number of commands in the histor
remembered be the maximum number of remembered commands. If you use this fa
for a system to build, remember (if only to avoid receiving an angry letter from me sh
I ever become a user) to make this maximum user-settable, both during the session
a permanent user profile consulted at the beginning of each session; and choose a
that is not too small, for example 20.

BOUNDED_LIST can use an array, managed circularly to enable reusing ea
positions as the number of commands goes beyond remembered. With this technique,
common for representing bounded queues (it will show up again for bounded buff
the discussion of concurrency), we can picture the array twisted into a kind of doug

The size capacity of the array is remembered + 1; this convention means settin
aside one of the positions (the last, at index capacity) and is necessary if we want to be ab
to distinguish between an empty list and a full list (see below). The occupied position
marked by two integer attributes: oldest is the position of the oldest remembere
command, and next is the first free position (the one at which the next command will
inserted). The integer attribute index indicates the current cursor position.

Here is the implementation of the various features. For put (c), inserting command c
at the end of the list, we execute

1

remembered

next

oldest

capacity

Occupied position

Free position

Reserved position

index

§21.5 A USER INTERFACE FOR UNDOING AND REDOING 711

 taken
se the

plete
,
sible
be
 of any

A history
window, before
any undoing
representation● put (x, next); -- where representation is the name of the array

next:= (next \\ remembered) + 1

index:= next

where \\ is the integer remainder operation. The value of empty is true if and only if
next= oldest; that of is_ first, if and only if index= oldest; and that of before if and only if
(index\\ remembered) + 1 = oldest. The body of forth is

index:= (index\\ remembered) + 1

and the body of back is

index:= ((index + remembered – 2) \\ remembered) + 1

The +remembered term is mathematically redundant, but is included because of the
lack of universal conventions as to the computer meaning of remainder operations for
negative operands.

The query item giving the element at cursor position returns representation @ index,
the array element at indexindex. Finally, the procedure remove_all_right, removing all
elements to the right of the cursor position, is simply implemented as

next:= (index\\ remembered) + 1

21.5 A USER INTERFACE FOR UNDOING AND REDOING

Here is part of a possible user interface support for the undo-redo mechanism. It is
from ISE’s Case analysis and design workbench, but several of our other products u
same scheme.

Although keyboard shortcuts are available for Undo and Redo, the com
mechanism involves bringing up a history window (by clicking on a button in the interface
or selecting an item in the Tools menu). The history window is the exact user-vi
equivalent of the history list as it exists inside the software. Once it is up, it will
regularly updated as you execute commands and other operations. In the absence
undoing, it will look like this:

INHERITANCE CASE STUDY: “UNDO” IN AN INTERACTIVE SYSTEM §21.6712

y will
ion) is

e the

 few

 calls

 the

 the

ally

 the
rming
tly

it will
also
ject-

A history
window, in the
middle of an
undo-redo
process
This shows the list of recent commands. As you execute new commands, the
appear at the end of the list. The currently active command (the one at cursor posit
highlighted in inverse video, like change relation label on the last figure.

To undo the active command, you can click on the up arrow button or us

keyboard shortcut (such as ALT-U). The cursor moves up (back) in the list; after a
such Undo, the window would look like this:

As you know, this internally means that the software has been performing a few
to back. At this stage you have a choice between several possibilities:

• You can perform more Undo operations by clicking on the up arrow button;
highlighting moves to the previous line.

• You can perform one or more Redo by clicking on the down arrow or using

equivalent keyboard shortcut; the highlighting goes to the next line, intern
performing calls to forth.

• You can execute a normal command. As we have seen, this will remove from
history any commands that have been undone but not redone, internally perfo
a remove_all_right; in the interface, all the commands below the curren
highlighted one disappear.

21.6 DISCUSSION

The design pattern presented in this chapter has an important practical role, as
enable you to write significantly better interactive systems at little extra effort. It
brings an interesting theoretical contribution, by illuminating some aspects of ob
oriented methodology worth exploring further.

§21.6 DISCUSSION 713

it was
tion
 the

tion
 have
erse!
his
tware
al) tell

e-

 too
nately
ds to
e, that

olved.
ertise;
orst

 in an
ys be
t. And
umber
m a

s of
 allow

 from
loops
s the
 the

abstract
tional

More on seamlessne
and reversibility in
chapter 28.
The role of implementation

A striking property of the example user interface presented in the last section is that
directly deduced from the implementation: we took the internal, developer-relevant no
of history list and translated it into an external, user-relevant history window, with
attendant user interaction mechanism.

One may always imagine that someone could have devised the external view first, or at
any rate independently from the implementation. But this is not the way it happened,
either in this presentation or in history of our products’ development.

Instituting such a relation between a system’s functionality and its implementa
goes against all that traditional software engineering methodology has taught. We
been told to deduce the implementation from the specification, not the rev
Techniques of “iterative development” and “spiral lifecycle” change little to t
fundamental rule that implementation is slave to prior concept, and that the sof
developers must do what the “users” (meaning, the customers, usually non-technic
them. Here we are violating every taboo by asserting that the implementation can tell us
what the system should be doing in the first place. In earlier times questioning such tim
honored definitions of what depends on what could have led one to the stake.

The legitimate emphasis on involving customers — meant to avoid the all
common horror stories of systems that do not do what their users need — has unfortu
led to downplaying the software developers’ contribution, whose importance exten
the most external and application-related aspects. It is naïve to believe, for exampl
customers will suggest the right interface facilities. Sometimes they will, but often they
reason on the basis of the systems they know, and they will not see all the issues inv
That is understandable: they have their own jobs to do, and their own areas of exp
getting everything right in a software system is not their responsibility. Some of the w
interactive interfaces in the world were designed with too much user influence. Where
users are truly irreplaceable is for negative comments: they will see practical flaws
idea which at first seems attractive to the developers. Such criticism must alwa
heeded. Users can make brilliant positive suggestions too, but do not depend on i
once in a while, a developer’s suggestion will seduce the users — possibly after a n
of iterations taking their criticism into account — even though it draws its origin fro
seemingly humble implementation technique, such as the history list.

This equalization of traditional relationships is one of the distinctive contribution
object technology. By making the development process seamless and reversible, we
a great implementation idea to influence the specification. Instead of a one-way flow
analysis to design and “coding”, we have a continuous process with feedback
throughout. This assumes, of course, that implementation is no longer viewed a
messy, low-level component of system construction; its results, developed with
techniques described throughout this book, can and should be as clear, elegant and
as anything one can produce in the most implementation-abhorrent forms of tradi
analysis and design.

ss

INHERITANCE CASE STUDY: “UNDO” IN AN INTERACTIVE SYSTEM §21.6714

lve a
 is no
nce the
o be as
ories.)

ve to
ake it

cts the
ut is

uld
ion, as

eople
 a class
 of
denced
entive.
as

 need

 that

 used.

ore
t first,
roach

u will

 an
 the
ay at
 way
d is told
ces of
Small classes

The design described in this chapter may, for a typical interactive system, invo
significant number of relatively small classes: one for each type of command. There
reason, however, to be concerned about the effect on system size and complexity si
inheritance structure on these classes will remain simple, although it does not have t
flat as the one sketched in this chapter. (You may want to group commands into categ

In a systematic O-O approach, similar questions arise whenever you ha
introduce classes representing actions. Although some object-oriented languages m
possible to pass routines as arguments to other routines, such a facility contradi
basic idea of the method — that a function (action, routine) never exists by itself b
always relative to a certain data abstraction. So instead of passing an operation we sho
pass an object equipped, through a routine of its generating class, with that operat
with an instance of COMMAND equipped with the execute operation.

Sometimes the need to write a wrapper class seems artificial, especially to p
used to passing routines around as arguments. But every time I have seen such
legitimately being introduced, originally for the sole purpose (it was thought)
encapsulating an operation, it turned out to reveal a useful data abstraction, as evi
by the later addition of other features beyond the one that served as the original inc
Class COMMAND does not fall into this category, since right from the start it w
conceived as a data abstraction, and had two features (execute and undo). But it is typical
of the process, since if you start using commands seriously you will soon realize the
for even more features such as:

• argument: ANY to represent the command argument (as in one of the versions
we have encountered).

• help: STRING, to provide on-line help associated with each command.

• Logging and statistical features, to keep track of how often each command type is

Another example, drawn from the domain of numerical software, is m
representative of situations where the introduction of a class may seem artificial a
because the object-oriented designer will pass an object where a traditional app
would have passed a routine as argument. In performing scientific computation yo
often need integration mechanisms, to which you give a mathematical functionf to
compute its integral on a certain interval. The traditional technique is to represent f as a
routine, but in object-oriented design we recognize that “Integrable function” is
important abstraction, with many possible features. For someone coming from
functional world of C, Fortran and top-down design, the need to provide a class m
first appear to be a kind of programming trick: not finding in the language manual a
to pass a routine as argument, he asks his colleagues how to achieve this effect, an
that he must write a class with the corresponding feature, then pass objects (instan
that class) rather than the feature itself.

§21.7 BIBLIOGRAPHICAL NOTES 715

uirks
iable in
s he
roper

nd the

ctural
982
ing

sign
ed in
y.

f the
 full

In [Cox 1986].
He may at first accept this technique — perhaps grudgingly — as one of those q
that programming languages impose on their users, as when you want a boolean var
C and have to declare it of type integer, with 0 for false and 1 for true. But then a
continues his design he will realize that the technique was not a hack, simply the p
application of object-oriented principles: INTEGRABLE_FUNCTION is indeed one of the
major abstractions of his problem domain, and soon new, relevant features (beyo
original one item (a: REAL): REAL, giving the value of the function at point a) will start
piling up.

What was thought to be a trick turns out to yield a major component of the design.

21.7 BIBLIOGRAPHICAL NOTES

The undo-redo mechanism described in this chapter was present in the stru
document constructor Cépage developed by Jean-Marc Nerson and the author in1
[M 1984], and has been integrated into many of ISE’s interactive tools (includ
ArchiText [ISE 1996], the successor to Cépage).

In a position paper for a panel at the first OOPSLA conference in 1986, Larry Tesler
cites a mechanism based on the same ideas, part of Apple’s MacApp interactive
framework.

[Dubois 1997] explains in detail how to apply object-oriented concepts to the de
of numerical software, with abstractions such as “Integrable function” (as mention
the last section), and describes in detail a complete object-oriented numerical librar

EXERCISES

E21.1 Putting together a small interactive system (programming project)

This small programming project is an excellent way to test your understanding o
topics of this chapter — and more generally of how to build a small system making
use of object-oriented techniques.

Write a line-oriented editor supporting the following operations:

• p: Print text entered so far.

• ↓: move cursor to next line if any. (Use the code l, for low, if that is more
convenient.)

• ↑: move cursor to previous line if any. (Use h, for high, if that is more convenient.)

• i: insert a new line after cursor position.

• d: delete line at cursor position.

• u: Undo last operation if not Undo; if it was Undo, redo undone command.

INHERITANCE CASE STUDY: “UNDO” IN AN INTERACTIVE SYSTEM §E21.2716

l cases
 start

 non-
ructure

d the
o, as
 by a

y from
ct

and,
ands.

t of a

See “Practical
issues”, page 696
and “The history
list”, page 704.

See “Command
arguments”, page
707.

See“Composite fig-
ures”, page 527.
You may add more commands, or choose a more attractive user interface, but in al
you should produce a complete, workable system. (You may also apply right from the
the improvement described in the next exercise.)

E21.2 Multi-level Redo

Complete the previous exercise’s one-level scheme by redefining the meaning of u as

• u: Undo last operation other than Undo and Redo.

and adding

• r : Redo last undone command (when applicable).

E21.3 Undo-redo in Pascal

Explain how to obtain a solution imitating the undo-redo technique of this chapter in
O-O languages such as Pascal, Ada (using record types with variants) or C (using st
and union types). Compare with the object-oriented solution.

E21.4 Undo, Skip and Redo

Bearing in mind the issues raised early in the discussion, study how to exten
mechanism developed in this chapter so that it will support Undo, Skip and Red
well as making it possible to redo an undone command that has been followed
normal command.

Discuss the effect on both the user interface and the implementation.

E21.5 Saving on command objects

Adapt all the class extracts of this chapter to treat command arguments separatel
commands (adding a routine argument to execute) and create only one command obje
per command type.

If you have done the preceding exercise, apply this technique to its solution.

E21.6 Composite commands

For some systems it may be useful to introduce a notion of composite comm
describing commands whose execution involves executing a number of other comm
Write the corresponding class COMPOSITE_COMMAND, an heir of COMMAND,
making sure that composite commands can be undone, and that a componen
composite command may itself be composite.

Hint : use the multiple inheritance scheme presented for composite figures.

§E21.7 EXERCISES 717

e the

ber).

s.

lar for

active

grate

ments;

edo”

e
ystem

nism

cute a

 for

st few

t

ters

any

gers,

more
cilities

and

at any
that
E21.7 Non-undoable commands

A system may include commands that are not undoable, either by nature (“Fir

missiles”) or for pragmatic reasons (when there is too much information to remem

Refine the solution of this chapter so that it will account for non-undoable command
(Hint : introduce heirs UNDOABLE and NON_UNDOABLE to class COMMAND.) Study

carefully the effect on the algorithms presented, and on the user interface, in particu

an interface using the history windows as presented at the end of the chapter.

E21.8 A command library (design and implementation project)

Write a general-purpose command library, meant to be used by an arbitrary inter

system and supporting an unlimited undo-redo mechanism. The library should inte

the facilities discussed in the last three exercises: separating commands from argu

composite commands; non-undoable commands. (Integrating an “Undo, Skip and R

facility is optional.) Illustrate the applicability of your library by building thre
demonstration systems of widely different natures, such as a text editor, a graphics s

and a training tool.

E21.9 A history mechanism

A useful feature to include in a command-oriented interactive tool is a history mecha

which remembers the last commands executed, and allows the user to re-exe

previous command, possibly modified, using simple mnemonics. Under Unix,

example, you may direct the C-shell (a command language) to remember the la

executed commands; then you may type !–2 to mean “re-execute the next-to-las

command”, or ̂yes^no ̂to mean “re-execute the last command, replacing the charac

yes in the command text by no”. Other environments offer similar facilities.

History mechanisms, when they exist, are built in an ad hoc fashion. On Unix, m

interactive tools running under the C-shell, such as the Vi editor or various debug

would greatly benefit from such a mechanism but do not offer one. This is all the
regrettable that the same concept of command history and the same associated fa

are useful for any interactive tool independently of the functions it performs — comm

language, editor, debugger.

Design a class implementing a general-purpose history mechanism, in such a way th
interactive tool needing such a mechanism will obtain it by simply inheriting from

class. (Note that multiple inheritance is essential here.)

Discuss the extension of this mechanism to a general USER_INTERFACE class.

INHERITANCE CASE STUDY: “UNDO” IN AN INTERACTIVE SYSTEM §E21.10718

cilities
em to

ng
in the

es for
de a
See “Small
classes”, page 714.
For a full-fledged
solution see
[Dubois 1997].
E21.10 Testing environment

Proper testing of a software component, for example a class, requires a number of fa
to prepare the test, input test data, run the test, record the results, compare th
expected results etc. Define a general TEST class that defines an appropriate testi
environment and may be inherited by any class in need of being tested. (Note aga
importance of multiple inheritance.)

E21.11 Integrable functions

(For readers familiar with the basics of numerical analysis.) Write a set of class
integrating real functions of a real variable over arbitrary intervals. They should inclu
class INTEGRABLE_FUNCTION, as well as a deferred class INTEGRATOR to describe
integration methods, with proper descendants such as RATIONAL_FIXED_
INTEGRATOR.

	21 21 Inheritance case study:� “undo” in an intera...
	21.1 PERSEVERARE DIABOLICUM
	Undoing for fun and profit
	Multi-level undo and redo
	Practical issues
	Requirements on the solution

	21.2 FINDING THE ABSTRACTIONS
	Command as a class
	A command object
	Command class hierarchy

	The basic interactive step
	Remembering the last command
	The system’s actions
	How to create a command object

	21.3 MULTI-LEVEL UNDO-REDO
	The history list
	A history list

	Implementing Undo
	A history list with its various command objects

	Implementing Redo
	Executing a normal command

	21.4 IMPLEMENTATION ASPECTS
	Command arguments
	Precomputing command objects
	The array of command templates

	A representation for the history list
	Bounded circular list implemented by an array

	21.5 A USER INTERFACE FOR UNDOING AND REDOING
	A history window, before any undoing
	A history window, in the middle of an undo-redo pr...

	21.6 DISCUSSION
	The role of implementation
	Small classes

	21.7 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E21.1 Putting together a small interactive system ...
	E21.2 Multi-level Redo
	E21.3 Undo-redo in Pascal
	E21.4 Undo, Skip and Redo
	E21.5 Saving on command objects
	E21.6 Composite commands
	E21.7 Non-undoable commands
	E21.8 A command library (design and implementation...
	E21.9 A history mechanism
	E21.10 Testing environment
	E21.11 Integrable functions

