
22
How to find the classes
f O-O
vice on
of the

bject

on in
 such
btain
iring

oving
ction
th also

(like
r to a
le to
sign of

 The
 your

bject
orm of
ou can

ying
st all

que is
Foremost among the goals of object-oriented methodology, since the structure o
software is based on decomposition into classes, is that it should give us some ad
how to find these classes. Such is the purpose of the following pages. (In some
literature you will see the problem referred to as “finding the objects”, but by now we know
better: what is at stake in our software architectures is not individual objects, but o
types — classes.)

At first we should not expect too much. Finding classes is the central decisi
building an object-oriented software system; as in any creative discipline, making
decisions right takes talent and experience, not to mention luck. Expecting to o
infallible recipes for finding the classes is as unrealistic as would be, for an asp
mathematician, expecting to obtain recipes for inventing interesting theories and pr
their theorems. Although both activities — software construction and theory constru
— can benefit from general advice and the example of successful predecessors, bo
require creativity of the kind that cannot fully be covered by mechanical rules. If
many people in the industry) you still find it hard to compare the software develope
mathematician, just think of other forms of engineering design: although it is possib
provide basic guidelines, no teachable step-by-step rules can guarantee good de
buildings or airplanes.

In software too, no book advice can replace your know-how and ingenuity.
principal role of a methodological discussion is to indicate some good ideas, draw
attention to some illuminating precedents, and alert you to some known pitfalls.

This would be true with any other software design method. In the case of o
technology, the observation is tempered by some good news, coming to us in the f
reuse. Because much of the necessary invention may already have been done, y
build on others’ accomplishments.

There is more good news. By starting with humble expectations but stud
carefully what works and also what does not, we will be able, little by little and again
odds, to devise what in the end deserves to be called a method for finding the classes. One
of the key steps will be the realization that, as always in design, a selection techni
defined by two components: what to consider, and what to reject.

HOW TO FIND THE CLASSES§22.1720

 widely

t from
ory); in
ctions
s. So

ut as

ents
he
 they

, used
biguity
h may
of the

ious
 an
ssion
sses a
open to

ore
ing its
 the

ut will

s that

See the biblio-
graphical notes.
22.1 STUDYING A REQUIREMENTS DOCUMENT

To understand the problem of finding classes, it may be best to begin by assessing a
publicized approach.

The nouns and the verbs

A number of publications suggest using a simple rule for obtaining the classes: star
the requirements document (assuming there is one, of course, but that is another st
function-oriented design you would concentrate on the verbs, which correspond to a
(“do this”); in object-oriented design you underline the nouns, which describe object
according to this view a sentence of the form

The elevator will close its door before it moves to another floor.

would lead the function-oriented designer to detect the need for a “move” function; b
an object-oriented designer you should see in it three object types, ELEVATOR, DOOR
and FLOOR, which will give classes. Voilà!

Would it that life were that simple. You would bring your requirements docum
home at night, and play Object Pursuit around the dinner table. A good way to keep t
children away from the TV set, and make them revise their grammar lessons while
help Mom and Dad in their software engineering work.

But such a simple-minded technique cannot take us very far. Human language
to express system requirements, is so open to nuance, personal variation and am
that it is dangerous to make any important decision on the basis of a document whic
be influenced as much by the author’s individual style as by the actual properties
projected software system.

Any useful result that the “underline the nouns” method would give us is obv
anyway. Any decent O-O design for an elevator control system will include
ELEVATOR class. Obtaining such classes is not the difficult part. To repeat an expre
used in an earlier discussion, they are here for the picking. For the non-obvious cla
syntactic criterion — such as nouns versus verbs in a document that is by essence
many possible stylistic variants — is close to useless.

Although by itself the “underline the nouns” idea would not deserve much m
consideration, we can use it further, not for its own sake but as a foil; by understand
limitations we can gain insights into what it truly takes to find the classes and how
requirements document can help us in this endeavor.

Avoiding useless classes

The nouns of a requirements document will cover some classes of the final design, b
also include many “false alarms”: concepts that should not yield classes.

In the elevator example door was a noun. Do we need a class DOOR? Maybe, maybe
not. It is possible that the only relevant property of elevator doors for this system i

§22.1 STUDYING A REQUIREMENTS DOCUMENT 721

uffices

rtant
ct data

king
tical
will

ussion
nd
sts
blem;
ign),
s of a

ple is
e
r an

r the
r; then

Chapter 21.
they may be opened and closed. Then to express the useful properties of doors it s
to include in class ELEVATOR the query and commands

door_open: BOOLEAN;

close_door is
…
ensure

not door_open

end;

open_door is
…
ensure

door_open

end

In another variant of the system, however, the notion of door may be impo
enough to justify a separate class. The only resource here is the theory of abstra
types, and the only relevant question is:

Only your intuition and experience as a designer will tell you the answer. In loo
for it, you will be aided by the requirements document, but do not expect gramma
criteria to be of more than superficial help. Turn instead to the ADT theory, which
help you ask customers or future users the right questions.

We encountered a similar case in the undo-redo mechanism design. The disc
distinguished between commands, such as the line insertion command in a text editor, a
the more general notion of operation, which includes commands but also special reque
such as Undo. Both of these words figured prominently in the statement of the pro
yet only COMMAND yielded a data abstraction (one of the principal classes of the des
whereas no class in the solution directly reflects the notion of operation. No analysi
requirements document can suggest this striking difference of treatment.

Is a new class necessary?

Another example of a noun which may or may not give a class in the elevator exam
floor. Here (as opposed to the door and operation cases) the question is not whether th
concept is a relevant ADT: floors are definitely an important data abstraction fo
elevator system. But this does not necessarily mean we should have a FLOOR class.

The reason is simply that the properties of floors may be entirely covered, fo
purposes of the elevator system, by those of integers. Each floor has a floor numbe

Is “door” a separate data type with its own clearly identified operations, or
are all the operations on doors already covered by operations on other data
types such as ELEVATOR?

HOW TO FIND THE CLASSES§22.1722

ted with
t
ly the

 say,
tware

rights

ay by

h the
 heir
ifies

 class
ta type
rmal
ve a
n you
w can
ough
red by

is is
ware
ysis is
y or
ject-

em
. If an
hould

other

tion

Many hotels have
no floor 13, so the
arithmetic may be a
bit more elaborate.

See exercise E22.1,
page 745.

“BEYOND SOFT-
WARE”, 6.6, page
147.
if a floor (as seen by the elevator system) has no other features than those associa
its floor number, you may not need a separate FLOOR class. A typical floor feature tha
comes from a feature of integers is the distance between two floors, which is simp
difference of their floor numbers.

If, however, floors have properties other than those of their numbers — that is to
according to the principles of abstract data types and object-oriented sof
construction, significant operations not covered by those of integers — then a FLOOR
class will be appropriate. For example, some floors may have special access
defining who can visit them; then the FLOOR class could include a feature such as

rights: SET [AUTHORIZATION]

and the associated procedures. But even that is not certain: we might get aw
including in some other class an array

floor_rights: ARRAY [SET [AUTHORIZATION]]

which simply associates a set of AUTHORIZATION values with each floor, identified by
its number.

Another argument for having a specific class FLOOR would be to limit the available
operations: it makes sense to subtract two floors and to compare them (throug
infix "<" function), but not to add or multiply them. Such a class may be written as an
to INTEGER. The designer must ask himself, however, whether this goal really just
adding a new class.

This discussion brings us once again to the theory of abstract data types. A
does not just cover physical “objects” in the naïve sense. It describes an abstract da
— a set of software objects characterized by well-defined operations and fo
properties of these operations. A type of real-world objects may or may not ha
counterpart in the software in the form of a type of software objects — a class. Whe
are assessing whether a certain notion should yield a class or not, only the ADT vie
provide the right criterion: do the objects of the system under discussion exhibit en
specific operations and properties of their own, relevant to the system and not cove
existing classes?

The qualification “relevant to the system” is crucial. The aim of systems analys
not to “model the world”. This may be a task for philosophers, but the builders of soft
systems could not care less, at least for their professional activity. The task of anal
to model that part of the world which is meaningful for the software under stud
construction. This principle is reinforced by the ADT approach (that is to say, the ob
oriented method), which holds that objects are only defined by what we can do with th
— what the discussion of abstract data types called the Principle of Selfishness
operation or property of an object is irrelevant to the purposes of the system, then it s
not be included in the result of your analysis — however interesting it may be for
purposes. For a census processing system, the notion of PERSON may have features
mother and father; but for a payroll processing system which does not require informa
about the parents, every PERSON is an orphan.

§22.1 STUDYING A REQUIREMENTS DOCUMENT 723

 are
s of a
must

e
evant
r Aided
e

fail to
ources

e

ty of
ge of

edium
evator

tainly

cause
If all of the operations and properties that you can identify for a type of objects
irrelevant in this sense, or are already covered by the operations and propertie
previously identified class, the conclusion is that the object type itself is irrelevant: it
not yield a class.

This explains why an elevator system might not include FLOOR as a class becaus
(as noted above) from the point of view of the elevator system floors have no rel
properties other than those of the associated integer numbers, whereas a Compute
Design system designed for architects will have a FLOOR class — since in that case th
floor has several specific attributes and routines.

Missing important classes

Not only can nouns suggest notions which do not yield classes: they can also
suggest some notions which should definitely yield classes. There are at least three s
of such accidents.

Do not forget that, as noted, the aim of this discussion is no longer to convince ourselves
of the deficiencies of the “underline the nouns” approach, whose limitations are by now
so obvious that the exercise would not be very productive. Instead, we are analyzing thes
limitations as a way to gain more insight into the process of discovering classes.

The first cause of missed classes is simply due to the flexibility and ambigui
human language — the very qualities that make it suitable for an amazingly wide ran
applications, from speeches and novels to love letters, but not very reliable as a m
for accurate technical documents. Assume the requirements document for our el
example contains the sentence

The presence of the noun “record” suggests a class DATABASE_RECORD; but we
may totally miss a more important data abstraction: the notion of a move between two
floors. With the above sentence in the requirements document, you will almost cer
need a MOVE class, which could be of the form

class MOVE feature

initial , final: FLOOR; -- Or INTEGER if no FLOOR class

record (d: DATABASE) is …
… Other features …

end -- class MOVE

This will be an important class, which a grammar-based method would miss be
of the phrasing of the above sentence. Of course if the sentence had appeared as

A database record must be created every time the elevator moves from one
floor to another.

A database record must be created for every move of the elevator from one
floor to another.

HOW TO FIND THE CLASSES§22.1724

s! We
nt, and
dular

ay not
 book.
 cite

ion the
 have
es of the
or of
e

 and
.

es the
euse. It
anted
t and
ns of
tion.

loper
out the

ilable
pose

mes a
ers,
y of
s. The
in the

l.
r the
ess of
e has
 reuse

even
r you.

Panel-driven system:
chapter 20. Undo-
redo: chapter 21.

See “THE CHANG-
ING NATURE OF
ANALYSIS”, 27.2,
page 906.
then “move” would have been counted as a noun, and so would have yielded a clas
see once again the dangers of putting too much trust in a natural-language docume
the absurdity of making any serious property of a system design, especially its mo
structure, dependent on such vagaries of style and mood.

The second reason for overlooking classes is that some crucial abstractions m
be directly deducible from the requirements. Cases abound in the examples of this
It is quite possible that the requirements for a panel-driven system did not explicitly
the notions of state and application; yet these are the key abstractions, which condit
entire design. It was pointed out earlier that some external-world object types may
no counterpart among the classes of the software; here we see the converse: class
software that do not correspond to any external-world objects. Similarly, if the auth
the requirements for a text editor with undo-redo has written “the system must support lin
insertion and deletion”, we are in luck since we can spot the nouns insertion and deletion;
but the need for these facilities may just as well follow from a sentence of the form

leading the naïve designer to devote his attention to the trivial notions of “cursor”
“position” while missing the command abstractions (line insertion and line deletion)

The third major cause of missed classes, shared by any method which us
requirements document as the basis for analysis, is that such a strategy overlooks r
is surprising to note that much of the object-oriented analysis literature takes for gr
the traditional view of software development: starting from a requirements documen
devising a solution to the specific problem that it describes. One of the major lesso
object technology is the lack of a clear-cut distinction between problem and solu
Existing software can and should influence new developments.

When faced with a new software project, the object-oriented software deve
does not accept the requirements document as the alpha and omega of wisdom ab
problem, but combines it with knowledge about previous developments and ava
software libraries. If necessary, he will criticize the requirements document and pro
updates and adaptations which will facilitate the construction of the system; someti
minor change, or the removal of a facility which is of limited interest to the final us
will produce a dramatic simplification by making it possible to reuse an entire bod
existing software and, as a result, to decrease the development time by month
corresponding abstractions are most likely to be found in the existing software, not
requirements document for the new project.

Classes COMMAND and HISTORY_LOG from the undo-redo example are typica
The way to find the right abstractions for this problem is not to rack one’s brain ove
requirements document for a text editor: either you come upon them through a proc
intellectual discovery (a “Eureka”, for which no sure recipe exists); or, if someone els
already found the solution, you reuse his abstractions. You may of course be able to
the corresponding implementation too if it is available as part of a library; this is
better, as the whole analysis-design-implementation work has already been done fo

The editor must allow its users to insert or delete a line at the current
cursor position.

§22.1 STUDYING A REQUIREMENTS DOCUMENT 725

oses,
 has
n the

ore

h trust

 need
ts
sign

-

f this
 with
nt as

 and
 and
sed as
ome
d and
ed or

hapter.
idate
 are not
er, the
ad:

“Pseudo-random
number generators:
a design exercise”,
page 754.
Discovery and rejection

It takes two to invent anything. One makes up combinations; the other cho
recognizes what is important to him in the mass of things which the first
imparted to him. What we call genius is much less the work of the first tha
readiness of the second to choose from what has been laid before him.

Paul Valéry (cited in [Hadamard 1945]).

Along with its straightforward lessons, this discussion has taught us a few m
subtle consequences.

The simple lessons have been encountered several times: do not put too muc
in a requirements document; do not put any trust in grammatical criteria.

A less obvious lesson has emerged from the review of “false alarms”: just as we
criteria for finding classes, we need criteria for rejecting candidate classes — concep
which initially appear promising but end up not justifying a class of their own. The de
discussions of this book illustrate many such cases.

To quote just one example: a discussion, yet to come, of how best to provide for pseudo
random number generation, starts naturally enough by considering the notion of random
number, only to dismiss it as not the appropriate data abstraction.

The O-O analysis and design books that I have read include little discussion o
task. This is surprising because in the practice of advising O-O projects, especially
relatively novice teams, I have found that eliminating bad ideas is just as importa
finding good ones.

It may even be more important. Sit down with a group of users, developers
managers trying to get started with object technology with a fresh new project
enthusiasm fresher yet. There will be no dearth of ideas for classes (usually propo
“objects”). The problem is to dam the torrent before it damns the project. Although s
class ideas will probably have been missed, many more will have to be examine
rejected. As in a large-scale police investigation, many leads come in, prompt
spontaneous; you must sort the useful ones from the canards.

So we must adapt and extend the question that serves as the topic for this c
“How to find the classes” means two things: not just how to come up with cand
abstractions but also how to unmask the inadequate among them. These two tasks
executed one after the other; instead, they are constantly interleaved. Like a garden
object-oriented designer must all the time nurture the good plants and weed out the b

The rest of this chapter studies both components of the class elicitation process.

Class Elicitation principle

Class elicitation is a dual process: class suggestion, class rejection.

HOW TO FIND THE CLASSES§22.2726

with
p our

design

riginal
pter,
es”:

prompt
e the

most

und
its of
ss”

medy
action.

hich
y be an
les.

ith a

 does
hould

 using

“A typology of
rules”, page 666.

NeXT documenta-
tion for OpenStep,
pre-release 4.0.
22.2 DANGER SIGNALS

To guide our search it is preferable to start with the rejection part. It will provide us
a checklist of typical pitfalls, alert us to the most important criteria, and help us kee
search for good classes focused on the most productive efforts.

Let us review a few signs that usually indicate a bad choice of class. Because
is not a completely formalized discipline, you should not treat these signs as proof of a bad
design; in each case one can think of some circumstances that may make the o
decision legitimate. So what we will see is not, in the terms of a previous cha
“absolute negatives” (sure-fire rules for rejecting a design) but “advisory negativ
danger signals that alert you to the presence of a suspicious pattern, and should
you to investigate further. Although in most cases they should lead you to revis
design, you may occasionally decide in the end that it is right as it stands.

The grand mistake

Many of the danger signals discussed below point to the most common and
damaging mistake, which is also the most obvious: designing a class that isn’t.

The principle of object-oriented software construction is to build modules aro
object types, not functions. This is the key to the reusability and extendibility benef
the approach. But beginners will often fall into the most obvious pitfall: calling “cla
something which is in fact a routine. Writing a module as class… feature … end does not
make it a true class; it may just be a routine in disguise.

This Grand Mistake is easy to avoid once you are conscious of the risk. The re
is the usual one: make sure that each class corresponds to a meaningful data abstr

What follows is a set of typical traits alerting you to the risk that a module w
presents itself as a candidate class, and has the syntactical trappings of a class, ma
illegal immigrant not deserving to be granted citizenship in the O-O society of modu

My class performs…

In a design meeting, an architecture review, or simply an informal discussion w
developer, you ask about the role of a certain class. The answer: “This class prints the
results” or “ this class parses the input”, or some other variant of “This class does…”.

The answer usually points to a design flaw. A class is not supposed to do one thing
but to offer a number of services (features) on objects of a certain type. If it really
just one thing, it is probably a case of the Grand Mistake: devising a class for what s
just be a routine of some other class.

Perhaps the mistake is not in the class itself but in the way it is being described,
phraseology that is too operational. But you had better check.

In recent years the “my class does…” style has become widespread. A NeXT document
describes classes as follows: “The NSTextView class declares the programmatic interface
to objects that display text laid out…”; “ An NSLayoutManager coordinates the layout

§22.2 DANGER SIGNALS 727

in a

is an

 of
tion

d by

class
uch

s have
class
s

lasses,
n then

her
rvation
 names
pler

t as

“Structure inherit-
ance”, page 831.

See chapter 21.
and display of characters…”; “ NSTextStorage is a semi-concrete subclass of
NSMutableAttributedString that manages a set of client NSLayoutManagers, notifying
them of any changes…”. Even if (as is most likely the case here) the classes discussed
represent valuable data abstractions, it would be preferable to describe them less
operationally by emphasizing these abstractions.

Imperative names

Assume that in a tentative design you find a class name such as PARSE or PRINT — a
verb in the imperative or infinitive. It should catch your attention, as signaling aga
probable case of a class that “does one thing”, and should not be a class.

Occasionally you may find that the class is right. Then its name is wrong. This
“absolute positive” rule:

Although like any other one pertaining to style this rule is partly a matter
convention, it helps enforce the principle that every class represents a data abstrac

The first form, nouns, covers the vast majority of cases. A noun may be use
itself, as in TREE, or with some qualifying words, as in LINKED_LIST, qualified by an
adjective, and LINE_DELETION, qualified by another noun.

The second case, adjectives, arises only for a specific case: structural property
classes describing an abstract structural property, as with the Kernel Library
COMPARABLE describing objects on which a certain order relation is available. S
classes should be deferred; their names (in English or French) will often end with ABLE.
They are meant to be used through inheritance to indicate that all instances of a clas
a certain property; for example in a system for keeping track of tennis rankings
PLAYER might inherit from COMPARABLE. In the taxonomy of inheritance kinds, thi
scheme will be classified as structure inheritance.

The only case that may seem to suggest an exception to the rule is command c
as introduced in the undo-redo design pattern to cover action abstractions. But eve
you should stick to the rule: call a text editor’s command classes LINE_DELETION and
WORD_CHANGE, not DELETE_LINE and REPLACE_WORD.

English leaves you more flexibility in the application of this rule than many ot
languages, since its grammatical categories are more an article of faith than an obse
of fact, and almost every verb can be nouned. If you use English as the basis for the
in your software it is fair to take advantage of this flexibility to devise shorter and sim
names: you may call a class IMPORT where other languages might treat the equivalen
a verb only, forcing you to use nouns such as IMPORTATION. But do not cheat: class

Class Name rule

A class name must always be either:

• A noun, possibly qualified.

• (Only for a deferred class describing a structural property) an adjective.

HOW TO FIND THE CLASSES§22.2728

t for

e

 one
just a
.

tions,
would
xamples
sually

senting

d
these
iction

lass:
is not
ly an
t to a
 the

vices:

tance
e and
t as a
the

in for
. Then
cture.
 that it

See “Small classes”,
page 714.

See “TAXOMA-
NIA”, 24.4, page
820.
IMPORT should cover the abstraction “objects being imported” (nominal), not, excep
a command class, the act of importing (verbal).

It is interesting to contrast the Class Name rule with the discussion of the “underline the
nouns” advice at the beginning of this chapter. “Underline the nouns” applied a formal
grammatical criterion to an informal natural-language text, the requirements document;
this is bound to be of dubious value. The Class Name rule, on the other hand, applies th
same criterion to a formal text — the software.

Single-routine classes

A typical symptom of the Grand Mistake is an effective class that contains only
exported routine, possibly calling a few non-exported ones. The class is probably
glorified subroutine — a unit of functional rather than object-oriented decomposition

A possible exception arises for objects that legitimately represent abstracted ac
for example a command in an interactive system, or what in a non-O-O approach
have been represented by a routine passed as argument to another routine. But the e
given in an earlier discussion show clearly enough that even in such cases there will u
be several applicable features. We noted that a mathematical software object repre
a function to be integrated will not just have the feature item (a: REAL): REAL, giving the
value of the function at point a: others may include domain of definition, minimum an
maximum over a certain interval, derivative. Even if a class does not yet have all
features, checking that it would make sense to add them later will reinforce your conv
that you are dealing with a genuine object abstraction.

In applying the single-routine rule, you should consider all the features of a c
those introduced in the class itself, and those which it inherits from its parents. It
necessarily wrong for a class text to declare only one exported routine, if this is simp
addition to a meaningful abstraction defined by its ancestors. It may, however, poin
case of taxomania, an inheritance-related disease which will be studied as part of
methodology of inheritance.

Premature classification

The mention of taxomania suggests a warning about another common mistake of no
starting to worry about the inheritance hierarchy too early in the process.

As inheritance is central in the object-oriented method, so is a good inheri
structure — more accurately, a good modular structure, including both inheritanc
client relations — essential to the quality of a design. But inheritance is only relevan
relation among well-understood abstractions. When you are still looking for
abstractions, it is too early to devise the inheritance hierarchy.

The only clear exception arises when you are dealing with an application doma
which a pre-existing taxonomy is widely accepted, as in some branches of science
the corresponding abstractions will emerge together with their inheritance stru
(Before accepting the taxonomy as the basis for your software’s structure, do check
is indeed well recognized and stable, not just someone’s view of things.)

§22.2 DANGER SIGNALS 729

ve at
ou to
ks of
esign
lasses

eople

ways
 is the

esign

nted
cess-
e O-

ilities

ts;
new
asses
fy

, be

ave no

 need
y the
f class

s not
hich

g more
lass for

“FACILITY INHER-
ITANCE”, 24.9, pag
847.

Command functions
were defined in “Func
tion categories”, pag
134.

See “A checklist”,
page 770.
In other cases, you should only design the inheritance hierarchy once you ha
least a first grasp of the abstractions. (The classification effort may of course lead y
revise your choice of abstractions, prompting an iterative process in which the tas
class elicitation and inheritance structure design feed each other.) If, early in a d
process, you find the participants focusing on classification issues even though the c
are not yet well understood, they are probably putting the cart before the horse.

With novices, this may be a variant of the object-class confusion. I have seen p
start off with inheritance hierarchies of the “SAN_FRANCISCO and HOUSTON inherit
from CITY” kind — simply to model a situation where a single class, CITY, will have
several instances at run time.

No-command classes

Sometimes you will find a class that has no routine at all, or only provides queries (
to access objects) but no commands (procedures to modify objects). Such a class
equivalent of a record in Pascal or a structure in Cobol or C. It may indicate a d
mistake, but the mistake may be of two kinds and you will need to probe further.

First, let us examine three cases in which the class does not indicate improper design:

• It may represent objects obtained from the outside world, which the object-orie
software cannot change. They could be data coming from a sensor in a pro
control system, packets from a packet-switching network, or C structures that th
O system is not supposed to touch.

• Some classes are meant not for direct instantiation, but for encapsulating fac
such as constants, used by other classes through inheritance. Such facility
inheritance will be studied in the discussion of inheritance methodology.

• Finally, a class may be applicative, that is to say describe non-modifiable objec
instead of commands to modify an object it will provide functions that produce
objects, usually of the same type. For example the addition operation in cl
INTEGER, REAL and DOUBLE follows the lead of mathematics: it does not modi
any value but, given two values x and y, produces a third one x + y. In the abstract
data type specification such functions will, like others that yield commands
characterized as command functions.

In all these cases the abstractions are easy to recognize, so you should h
difficulty identifying the two cases that may indeed point to a design deficiency.

Now for these suspicious cases. In the first one, the class is justified and would
commands; the designer has simply forgotten to provide mechanisms to modif
corresponding objects. A simple checklist technique presented in the discussion o
design will help avoid such mistakes.

In the second case, most directly relevant to this discussion, the class wa
justified. It is not a real data abstraction, simply some piece of passive information w
might have been represented by a structure such as a list or array, or just by addin
attributes to another class. This case sometimes happens when developers write a c

e

-
e

HOW TO FIND THE CLASSES§22.2730

ecord

ere is
better

ply
ically
you do
e effort.

e

,

 than

e
,

y
n two

ange: a
imize
ll

l rule

 like.

Page-Jones 1995].
what would have been a simple record (structure) type in Pascal, Ada or C. Not all r
types cover separate data abstractions.

You should investigate such a case carefully to try to understand whether th
room for a legitimate class, now or in the future. If the answer is unclear, you may be
off keeping the class anyway even if it risks being overkill. Having a class may im
some performance overhead if it means dealing with many small objects, dynam
created one by one and occupying more space than simple array elements; but if
need a class and have not introduced it early enough, the adaptation may take som

We had such a false start in the history of ISE’s compiler. A compiler for an O-O
language needs some internal way to identify each class of a system it processes; th
identification used to be an integer. This worked fine for several years, but at some point
we needed a more elaborate class identification scheme, allowing us in particular to
renumber classes when merging several systems. The solution was to introduce a class
CLASS_IDENTIFIER, and to replace the earlier integers by instances of that class. The
conversion effort was more than we would have liked, as usually happens when you have
missed an important abstraction. Initially INTEGER was a sufficient abstraction because
no commands were applicable to class identifiers; the need for more advanced features
in particular renumbering commands, led to the recognition of a separate abstraction.

Mixed abstractions

Another sign of an imperfect design is a class whose features relate to more
one abstraction.

In an early release of the NeXT library, the text class also provided full visual text editing
capabilities. Users complained that the class, although useful, was too big. Large class siz
was the symptom; the true problem was the merging of two abstractions (character string
and interactively editable text); the solution was to separate the two abstractions, with a
class NSAttributedString defining the basic string handling mechanism and various others,
such as NSTextView, taking care of the user interface aspects.

Meilir Page-Jones uses the term connascence (defined in dictionaries as the propert
of being born and having grown together) to describe the relation that exists betwee
features when they are closely connected, based on a criterion of simultaneous ch
change to one will imply a change to the other. As he points out, you should min
connascence across class libraries; but features that appear within a given class should a
be related to the same clearly identified abstraction.

This universal guideline deserves to be expressed as a methodologica
(presented in “positive” form although it follows a discussion of possible mistakes):

The ideal class

This review of possible mistakes highlights, by contrast, what the ideal class will look
Here are some of the typical properties:

Class Consistency principle

All the features of a class must pertain to a single, well-identified abstraction.

[

§22.3 GENERAL HEURISTICS FOR FINDING CLASSES 731

traction

on.

classes
o.)

 cases,
 same

ing:
 the
how

may
t role

sses.

, design
s (for

of the

ernal

luded

ong to
alysis

esign
tural
• There is a clearly associated abstraction, which can be described as a data abs
(or as an abstract machine).

• The class name is a noun or adjective, adequately characterizing the abstracti

• The class represents a set of possible run-time objects, its instances. (Some
are meant to have only one instance during an execution; that is acceptable to

• Several queries are available to find out properties of an instance.

• Several commands are available to change the state of an instance. (In some
there are no commands but instead functions producing other objects of the
type, as with the operations on integers; that is acceptable too.)

• Abstract properties can be stated, informally or (preferably) formally, describ
how the results of the various queries relate to each other (this will yield
invariant); under what conditions features are applicable (preconditions);
command execution affects query results (postconditions).

This list describes a set of informal goals, not a strict rule. A legitimate class
have only some of the properties listed. Most of the examples that play an importan
in this book — from LIST and QUEUE to BUFFER, ACCOUNT, COMMAND, STATE,
INTEGER, FIGURE, POLYGON and many others — have them all.

22.3 GENERAL HEURISTICS FOR FINDING CLASSES

Let us now turn to the positive part of our discussion: practical heuristics for finding cla

Class categories

We may first note that there are three broad categories of classes: analysis classes
classes and implementation classes. The division is neither absolute nor rigorou
example one could find arguments to support attaching a deferred class LIST to any one
of the three categories), but it is convenient as a general guideline.

An analysis class describes a data abstraction directly drawn from the model
external system. PLANE in a traffic control system, PARAGRAPH in a document
processing system, PART in an inventory control system are typical examples.

An implementation class describes a data abstraction introduced for the int
needs of the algorithms in the software, such as LINKED_LIST or ARRAY.

In-between, a design class describes an architectural choice. Examples inc
COMMAND in the solution to the undo-redo problem, and STATE in the solution to the
problem of panel-driven systems. Like implementation classes, design classes bel
the solution space, whereas analysis classes belong to the problem space. But like an
classes and unlike implementation classes they describe high-level concepts.

As we study how to obtain classes in these three categories, we will find that d
classes are the most difficult to identify, because they require the kind of architec

HOW TO FIND THE CLASSES§22.3732

s not
e
reused

s in a
d (as
stem).
rld that

gram,
payroll

y

etimes
follow

ula 1,
eral-

es a set
ined
of the
f O-O
ystem
using

w of
ts first
e non-
loyees,

e

See “Reality: a
cousin twice
removed”, page 230.

 See “SIMULA”,
35.1, page 1113.
insight that sets the gifted designer apart. (That they are the most difficult to find doe
mean they are the most difficult to build, a distinction that usually belongs to th
implementation classes, unless of course you come across a ready-to-be-
implementation library.)

External objects: finding the analysis classes

Let us start with the analysis classes, modeled after external objects.

We use software to obtain answers to certain questions about the world (a
program that computes the solution to a specific problem), to interact with the worl
in a process control system), or to add things to the world (as in a text processing sy
In every case, the software must be based on some model of the aspects of the wo
are relevant to the application, such as laws of physics or biology in a scientific pro
the syntax and semantics of a computer language in a compiler, salary scales in a
system, and income tax regulations in tax processing software.

To talk about the world being modeled we should avoid the term “real world”, which is
misleading, both because software is no less “real” than anything else and because man
of the non-software “worlds” of interest are artificial, as in the case of a mathematical
program dealing with equations and graphs. (An earlier chapter discussed this question
in detail.) We should talk about the external world, as distinct from the internal world of
the software that deals with it.

Any software system is based on an operational model of some aspect of the
external world. Operational because it is used to generate practical results and som
to feed these results back into the world; model because any useful system must
from a certain interpretation of some world phenomena.

Nowhere perhaps is this view of software as inescapable as in the area of simulation.
It is no accident that the first object-oriented language, Simula 67, evolved from Sim
a language for writing discrete-event simulations. Although Simula 67 itself is a gen
purpose programming language, it retained the name of its predecessor and includ
of powerful simulation primitives. Well into the nineteen-seventies, simulation rema
the principal application area of object technology (as a look into the proceedings
annual Association of Simula Users conferences suffices to show). This attraction o
ideas for simulation is easy to understand: to devise the structure of a software s
simulating the behavior of a set of external objects, what could be better than
software components which directly represent those objects?

In a broad sense, of course, all software is simulation. Capitalizing on this vie
software as operational modeling, object-oriented software construction uses as i
abstractions some types deduced from analyzing the principal types of objects, in th
software sense of the term, in the external world: sensors, devices, airplanes, emp
paychecks, tax returns, paragraphs, integrable functions.

These examples, by the way, suggest only part of the picture. As Waldén and Nerson not
in their presentation of the B.O.N. method:

§22.3 GENERAL HEURISTICS FOR FINDING CLASSES 733

s that
ts or
ays a
seful
ns and

es
e class
e had
 from
l and

roblem
f their

: they
re, the

ke their
re has
know
ng a

that
le
e

uired
log of
 most
rally
t data
es and
s key,
ion to

[Waldén 1995],
pages 182-183.
A class representing a car is no more tangible than one that models the job
satisfaction of employees. What counts is how important the concepts are to
the enterprise, and what you can do with them.

Keep this comment in mind when looking for external classes: they can be quite abstract.
SENIORITY_RULE for a parliament voting system and MARKET_TENDENCY for a
trading system may be just as real as SENATOR and STOCK_EXCHANGE. The smile of
the Cheshire Cat has as much claim to objectness as the Cheshire Cat.

Whether material or abstract, external classes represent the abstraction
specialists of the external world, be they aerospace engineers, accountan
mathematicians, constantly use to think and talk about their domain. There is alw
good chance — although not a certainty — that such an object type will yield a u
class, because typically the domain experts will have associated significant operatio
properties with it.

The key word, as usual, is abstraction. Although it is desirable that analysis class
closely match concepts from the problem domain, this is not what makes a candidat
good. The first version of our panel-driven system dramatically showed why: there w
a model directly patterned after some properties of the external system, but terrible
a software engineering viewpoint because the selected properties were low-leve
subject to change. A good external class will be based on abstract concepts of the p
domain, characterized (in the ADT way) through external features chosen because o
lasting value.

For the object-oriented developer such pre-existing abstractions are precious
provide some of the system’s fundamental classes; and, as we may note once mo
objects are here for the picking.

Finding the implementation classes

Implementation classes describe the structures that software developers use to ma
systems run on a computer. Although the fashion in the software engineering literatu
been, for the past fifteen years, to downplay the role of implementation, developers
the obvious — that implementation consumes a large part of the effort in buildi
system, and much of the intelligence that goes into it.

The bad news is that implementation is difficult. The good news is
implementation classes, although often hard to build in the absence of good reusab
libraries, are not the most difficult to elicit, thanks to the ample body of literature on th
topic. Since “Data Structures and Algorithms”, sometimes known as “CS 2”, is a req
component of computing science education, many textbooks survey the rich cata
useful data structures that have been identified over the years. Better yet, although
existing textbooks do not explicitly use an object-oriented approach, many natu
follow an abstract data type style, even if they do not use the phrase, to presen
structures; for example to introduce various forms of table such as binary search tre
hash tables you have first to state the various operations (insert an element with it
search for an element through its key and so on) with their properties. The transit
classes is fairly straightforward.

HOW TO FIND THE CLASSES§22.3734

bject-

rse at
ach of
at are
hat is
linked
rth, or
te that
 from

es is

nted)
 if they
itance
ations
f

h as
 keep
ing to

e
lassify

endible

esign
ve data

es are

s and
any

their

 About iterators and
MVC see the biblio-
graphical notes.

[M 1993].
Recently, some textbooks have started to go further by applying a thoroughly o
oriented approach to the traditional CS 2 topics.

Whether or not he has gone through a Data Structures and Algorithms Cou
school, every software engineer should keep a good textbook on the topic within re
hand, and go back to it often. It is all too easy to waste time reinventing concepts th
well known, implement a less-than-optimal algorithm, or choose a representation t
not appropriate for the software’s use of a data structure — for example a one-way
list for a sequential structure that the algorithms must regularly traverse back and fo
an array for a structure that constantly grows and shrinks in unpredictable ways. No
here too the ADT approach reigns: the data structure and its representation follow
the services offered to clients.

Beyond textbooks and experience, the best hope for implementation class
reusable libraries, as we will see at the end of this chapter.

Deferred implementation classes

Traditional data structures textbooks naturally emphasize effective (fully impleme
classes. In practice, much of the value of a set of implementation classes, especially
are meant to be reusable, lies in the underlying taxonomy, as defined by an inher
structure that will include deferred classes. For example, various queue implement
will be descendants of a deferred class QUEUE describing the abstract concept o
sequential list.

“Deferred implementation class”, then, is not an oxymoron. Classes suc
QUEUE, although quite abstract, help build the taxonomies thanks to which we can
the many varieties of implementation structures coherent and organized, assign
every class a precise place in the overall scheme.

In another book [M 1994a] I have described a “Linnaean” taxonomy of th
fundamental structures of computing science, which relies on deferred classes to c
the principal kinds of data structure used in software development.

Finding the design classes

Design classes represent architectural abstractions that help produce elegant, ext
software structures. STATE, APPLICATION, COMMAND, HISTORY_LIST, iterator
classes, “controller” classes as in the Smalltalk MVC model are good examples of d
classes. We will see other seminal ideas in subsequent chapters, such as acti
structures and “handles” for platform-adaptable portable libraries.

Although, as noted, there is no sure way to find design classes, a few guidelin
worth noting:

• Many design classes have been devised by others before. By reading book
articles that describe precise solutions to design problems, you will gain m
fruitful ideas. For example the book Object-Oriented Applications contains chapters
written by the lead designers of various industrial projects who describe

§22.4 OTHER SOURCES OF CLASSES 735

with
ial

g

od as

e that
eas,

s. As
ould

ss is
ty is a
 class

ferent
uitful.
sed the

d that

in the
ng its
e and

etail
f the
 later
ou to

[Gamma 1995].

See “GENERALI-
ZATION”, 28.5,
page 928.

See “Variation
inheritance”, page
828.
architectural solutions in detail, providing precious guidance to others faced
similar problems in telecommunications, Computer-Aided Design, artific
intelligence and other application areas.

• The book on “design patterns” by Gamma et al. has started an effort of capturin
proven design solutions and is now being followed by several others.

• Many useful design classes describe abstractions that are better understo
machines than as “objects” in the common (non-software) sense.

• As with implementation classes, reuse is preferable to invention. One can hop
many of the “patterns” currently being studied will soon cease to be mere id
yielding instead directly usable library classes.

22.4 OTHER SOURCES OF CLASSES

A number of heuristics have proved useful in the quest for the right abstractions.

Previous developments

The advice of looking first at what is available does not just apply to library classe
you write applications, you will accumulate classes which, if properly designed, sh
facilitate later developments.

Not all reusable software was born reusable. Often, the first version of a cla
produced to meet some immediate requirement rather than for posterity. If reusabili
concern, however, it pays to devote some time, after the development, to making the
more general and robust, improving its documentation, adding assertions. This is dif
from the construction of software meant from the start to be reusable, but no less fr
Having evolved from components of actual systems, the resulting classes have pas
first test of reusability, namely usability: they serve at least one useful purpose.

Adaptation through inheritance

When you discover the existence of a potentially useful class, you will sometimes fin
it does not exactly suit your present need: some adaptation may be necessary.

Unless the adaptation addresses a deficiency which should be corrected
original as well, it is generally preferable to leave the class undisturbed, preservi
clients according to the Open-Closed principle. Instead, you may use inheritanc
redefinition to tune the class to your new need.

This technique, which our later taxonomy of uses of inheritance will study in d
under the name variation inheritance, assumes that the new class describes a variant o
same abstraction as the original. If used properly (according to the guidelines of the
discussion) it is one of the most remarkable contributions of the method, enabling y
resolve the reuse-redo dilemma: combining reusability with extendibility.

HOW TO FIND THE CLASSES§22.4736

alyze
solve a
arity
ctly
ightly
 is too

flow.
bjects
le, you
most
alysis,

 than
e why

ea of
ful in

ob; it
ad of
 with

e with
rent

 and

e data
block
re is a
is not

gs in
ock to

Chapter 20.

On garbage common
blocks see “Small
Interfaces”, page 48.
Evaluating candidate decompositions

Criticism is said to be easier than art; a good way to learn design is to learn to an
existing designs. In particular, when a certain set of classes has been proposed to
certain problem, you should study them from the criteria and principles of modul
given in chapter 3: do they constitute autonomous, coherent modules, with stri
controlled communication channels? Often, the discovery that two modules are too t
coupled, that a module communicates with too many others, that an argument list
long, will pinpoint design errors and lead to a better solution.

An important criterion was explored in the panel-driven system example: data
We saw then how important it is to study, in a candidate class structure, the flow of o
passed as arguments in successive calls. If, as with the notion of State in that examp
detect that a certain item of information is transmitted over many modules, it is al
certainly a sign that you have missed an important data abstraction. Such an an
which we applied to obtain the class STATE, is an important source of abstractions.

It is of course preferable to find the classes right from the start; but better late
never. After such an a posteriori class discovery, you should take the time to analyz
the abstraction was initially missed, and to reflect on how to do better next time.

Hints from other approaches

The example of analyzing data flow in a top-down structure illustrates the general id
deriving class insights from concepts of non-O-O decompositions. This will be use
two non-disjoint cases:

• There may already exist a non-O-O software system which does part of the j
may be interesting to examine it for class ideas. The same would apply if, inste
a working system, you can use the result of an analysis or design produced
another, older method.

• Some of the people doing the development may have had extensive experienc
other methods, and as a consequence may initially think in terms of diffe
concepts, some of which may be turned into class ideas.

Here are examples of this process, starting with programming languages
continuing with analysis and design techniques.

Fortran programs usually include one or more common blocks — data areas that can
be shared by several routines. A common block often hides one or more valuabl
abstractions. More precisely, good Fortran programmers know that a common
should only include a few variables or arrays, covering closely related concepts; the
good chance that such a block will correspond to one class. Unfortunately, this
universal practice, and even programmers who know better than to use the “garbage
common block” mentioned at the beginning of this book tend to put too many thin
one common block. In this case you will have to examine patterns of use of each bl
discover the abstraction or abstractions that it covers.

§22.4 OTHER SOURCES OF CLASSES 737

 record
 type
ly on
 If not,

pes.

ten

,

 be
abase

ng from
 to be

ntial
not of

ented

ome
 view,

ome

stem
t lend
id, he
arted
ns as
 his
Pascal and C programs use records, known in C as structures. (Pascal only has
types; in C you can have structure types as well as individual structures.) A record
often corresponds to a class, but only if you can find operations acting specifical
instances of the type, usually (as we saw) including commands as well as queries.
the type may just represent some attributes of another class.

Cobol also has structures, and its Data Division helps identify important data ty

In entity-relationship (ER) modeling, analysts isolate “entities” which can of
serve as seeds for classes.

People with a long practice of ER modeling are among those who sometimes find it
initially hard to apply object-oriented ideas effecively, because they are used to treating
the entities and relationships as being different in nature, and the “dynamic” behavior of
the system as completely separate from them. With O-O modeling both the relationships
and the behavior yield features attached to the types of objects (entities); thinking of
relations and operations as variants of the same notion, and attaching them to entities
sometimes proves to be a little hard to swallow at first.

In dataflow design (“structured analysis and design”) there is little that can
directly used for an object-oriented decomposition, but sometimes the “stores” (dat
or file abstractions) can suggest an abstraction.

Files

The comment about stores suggests a more general idea, useful again if you are comi
a non-O-O background. Sometimes much of the intelligence of a traditional system is
found outside of the software’s text, in the structure of the files that it manipulates.

To anyone with Unix experience, this idea will be clear: for some of the esse
information that you need to learn, the essential documentation is the description
specific commands but of certain key files and their formats: passwd for passwords,
printcap for printer properties, termcap or terminfo for terminal properties. One could
characterize these files as data abstractions without the abstraction: although docum
at a very concrete level (“Each entry in the printcap file describes a printer, and is a line
consisting of a number of fields separated by: characters. The first entry for each printer
gives the names which are known for the printer, separated by | characters”, etc.), they
describe important data types accessible through well-defined primitives, with s
associated properties and usage conditions. In the transition to an object-oriented
such files would play a central role.

A similar observation applies to many programs, whose principal files embody s
of the principal abstractions.

I once participated in a consulting session with the manager of a software sy
who was convinced that the system — a collection of Fortran programs — could no
itself to object-oriented decomposition. As he was describing what the programs d
casually mentioned a few files through which the programs communicated. I st
asking questions about these files, but initially he kept dismissing these questio
unimportant, immediately coming back to the programs. I insisted, and from

HOW TO FIND THE CLASSES§22.4738

g the
f these
cture;

e key

se case,

 call”
system,
aller-id

ificant

ion
od
d
us on
n

ge in
ying

ese
Less
el as
hasis
n use

ration.
 fully
icture
t. Your
te
puter

[Jacobson 1992],
page 154. Jacobson
uses the term
“actor” for users of
the future system.

See “Ordering and
O-O development”,
page 111 and
“Structure and
order: the software
developer as arson-
ist”, page 201.
explanations realized that the files described complex data structures embodyin
programs’ essential information. The lesson was clear: as soon as the relevance o
files was recognized, they conquered the central place in the object-oriented archite
in an upheaval typical of object-oriented rearchitecturing, the programs, formerly th
elements of the architecture, became mere features of the resulting classes.

Use cases

Ivar Jacobson has advocated relying on use cases as a way to elicit classes. A u
called a scenario by some other analysis and design authors (and a trace in theoretical
computing science, especially the study of concurrency), is a description of

a complete course of events initiated by a [user of the future system] and [of]
the interaction between [the user] and the system.

In a telephone switching system, for example, the use case “customer-initiated
has the sequence of events: customer picks handset, identification gets sent to the
system sends dial tone, and so on. Other use cases for the system might include “c
service installation” and “customer disconnection”.

Use cases are a not a good tool for finding classes. Relying on them in any sign
way raises several risks:

• Use cases emphasize ordering (“When a customer places an order over the phone, his
credit card number is validated. Then the database is updated and a confirmat
number is issued”, etc.). This is incompatible with object technology: the meth
shuns early reliance on sequentiality properties, because they are so fragile an
subject to change. The competent O-O analyst and designer refuses to foc
properties of the form “The system does a, then b”; instead, he asks the questio
“What are the operations available on instances of abstraction A, and the constraints
on these operations?”. The truly fundamental sequentiality properties will emer
the form of high-level constraints on the operations; for example, instead of sa
that a stack supports alternating sequences of push and pop operations with never
more pop than push, we define the preconditions attached with each of th
operations, which imply the ordering property but are more abstract.
fundamental ordering requirements simply have no place in the analysis mod
they destroy the system’s adaptability and hence its future survival. Early emp
on ordering is among the worst mistakes an O-O project can make. If you rely o
cases for analysis, this mistake is hard to avoid.

• Relying on a scenario means that you focus on how users see the system’s ope
But the system does not exist yet. (A previous system might exist, but if it were
satisfactory you would not be asked to change or rewrite it.) So the system p
that use cases will give you is based on existing processes, computerized or no
task as a system builder is to come up with new, better scenarios, not to perpetua
antiquated modes of operation. There are enough examples around of com
systems that slavishly mimic obsolete procedures.

§22.4 OTHER SOURCES OF CLASSES 739

proach
rries a
o the
arios

ed use
“
 are
system
ing to
inced
a few
signs

s; but
 that
 know

esign
 and

of lines.
niques.
ses as
ystem

main a
been

 inspect
 team

users.
erent
• Use cases favor a functional approach, based on processes (actions). This ap
is the reverse of O-O decomposition, which focuses on data abstractions; it ca
serious risk of reverting, under the heading of object-oriented development, t
most traditional forms of functional design. True, you may rely on several scen
rather than just one main program. But this is still an approach that considerswhat
the system does as the starting point, whereas object technology considers what it
does it to. The clash is irreconcilable.

The practical consequences are obvious. A number of teams that have embrac
cases find themselves, without realizing it, practicing top-down functional design (the
system must do a, then b, …”) and building systems that are obsolete on the day they
released, yet hard to change because they are tied to a specific view of what the
does. I have sat, as an outside consultant, in design reviews for such projects, try
push for more abstraction. But it is difficult to help, because the designers are conv
that they are doing object-oriented design; they expect the consultant to make
suggestions, criticize a few details and give his blessing to the overall result. The de
that I saw were not object-oriented at all, and were bound to yield flawed system
trying to convey this observation politely was about as effective as telling the group
the sun was not shining outside — we work from use cases, and doesn’t everyone
that use cases are O-O?

The risks are perhaps less severe with a very experienced object-oriented d
team — experience being evidenced by the team’s previous production of large
successful O-O systems, in the thousands of classes and hundreds of thousands
Such a group might find use cases useful as a complement to other analysis tech
But for a novice team, or one with moderate experience only, the benefits of use ca
an analysis tool are so uncertain, and the risk of destroying the quality of the future s
so great, as to recommend staying away altogether from this technique:

This principle does not mean that use cases are a worthless concept. They re
potentially valuable tool but their role in object-oriented software construction has
misunderstood. Rather than an analysis tool they are a validation tool. If (as you should)
you have a separate quality assurance team, it may find use cases useful as a way to
a proposed analysis model or tentative design for possibly missing features. The QA
can check that the system will be able to run the typical scenarios identified by the
(In some cases of negative answer you may find that the model will support a diff
scenario that achieves the same or better results. This is of course satisfactory.)

Use Case principle

Except with a very experienced design team (having built several successful
systems of several thousand classes each in a pure O-O language), do not rely
on use cases as a tool for object-oriented analysis and design.

HOW TO FIND THE CLASSES§22.5740

ation,
outines
lying

s to it,

 cases
esign
ns, not

signers
e. The
pically
. Its

terize

 them
ated

t the
ses on
ases) is
 miss
ment
ble and
cases,

on of

K. Beck and W. Cun-
ningham: “A Labora-
tory for Teaching O-
O Thinking”, OOP-
SLA ‘89 Proceedings,
pages 1-6.
Another possible application of use cases is to the final aspects of implement
to make sure that the system includes routines for typical usage scenarios. Such r
will often be of the abstract behavior kind, describing a general effective scheme re
on deferred routines which various components of the system, and future addition
may redefine in different ways. ([Jacobson 1992] indeed mentions a notion of abstract use
case that mirrors the object-oriented concept of behavior class.

In these two roles as a validation mechanism and an implementation guide, use
can be beneficial. But in object technology they are not a useful analysis or d
mechanism. The system analysts and builders should concentrate on the abstractio
on particular ways of scheduling operations on these abstractions.

CRC cards

For completeness it is necessary to mention an idea that is sometimes quoted as a
technique to find classes. CRC cards (Class, Responsibility, Collaboration) are paper
cards, 4 inches by 6 inches (10.16 centimeters by 15.24 centimeters), on which de
discuss potential classes in terms of their responsibilities and how they communicat
idea has the advantage of being easy on the equipment budget (a box of cards is ty
cheaper than a workstation with CASE tools) and of fostering team interaction
technical contribution to the design process — to helping sort out and charac
valuable abstractions — is, however, unclear.

22.5 REUSE

The easiest and most productive way of finding classes is not to have to invent
yourself, but to get them from a library, pre-written by other designers and pre-valid
by the experience of earlier reusers.

The bottom-up component

The bottom-up nature of object-oriented development should apply throughou
software development process, starting with analysis. An approach that solely focu
the requirements document and user requests (as reflected for example by use c
bound to lead to a one-of-a-kind system that will be expensive to build and may
important insights obtained by previous projects. It is part of the task of a develop
team, beginning at the requirements capture phase, to look at what is already availa
see how existing classes may help with the new development — even if, in some
this means adapting the original requirements.

Too often, when we talk about finding classes, we mean devising them. With the
development of object technology, the growth of quality libraries and the penetrati
reusability ideas, finding will more and more retain the dictionary’s sense of coming
across.

§22.6 THE METHOD FOR OBTAINING CLASSES 741

t

ot too
rture,
g the

lated
mong
e two
asses;
Class wisdom

There used to live in the province of Ood a young man who longed to know the
secret of finding classes. He had approached all the local masters, but none of
them knew.

Having attended the public penance of Yu-Ton, a former abbot of the Sacred
Order of Arrows and Bubbles, he thought that perhaps this could mean the end
of his search. Upon entering Yu’s cell, however, he found him still trying to
understand the difference between Classes and Objects. Realizing that no
enlightenment would come from there, he left without asking any questions.

On his way home he overheard two donkey-cart pushers whispering about a
famous elder who was said to know the secret of classes. The next day he se
out to find that great Master. Many a road he walked, many a hill he climbed,
many a stream he crossed, until at last he reached the Master’s hideout. By
then he had searched for so long that he was no longer a young man; but like
all other pilgrims he had to undergo the thirty-three-month purification rite
before being permitted to meet the object of his quest.

Finally, one black winter day as the snow was savagely hitting all the
surrounding mountain peaks, he was admitted into the Master’s audience room.
With his heart beating at the pace of a boulder rolling down the bed of a dried-
up torrent, he faintly uttered his question: “Master, how can I find the
classes?”.

The old sage lowered her head and answered in a slow, quiet tone. “Go back
to where you came from. The classes were already there.”

So stunned was the questioner that it took him a few moments to notice that the
Master’s attendants were already whisking her away. He barely had time to
run after the frail figure now disappearing forever. “Master”, he asked again
(almost shouting this time), “Just one more question! Please! Tell me how this
story is called!”

The old Teacher tiredly turned back her head. “Should you not already know?
It is the story of reuse.”

22.6 THE METHOD FOR OBTAINING CLASSES

Touch by touch, the ideas discussed in this chapter amount to what we may n
pretentiously call (provided we remember that a method is a way to incubate, nu
channel and develop invention, not a substitute for invention) the method for obtainin
classes in object-oriented software construction.

The method recognizes that class identification requires two inextricably re
activities: coming up with class suggestions; and weeding out the less promising a
them. The two tables which follow summarize what we have learned about thes
activities. Only a few of the entries cover specific kinds of class, such as analysis cl
the rest of the advice is applicable to all cases.

HOW TO FIND THE CLASSES§22.6742

Sources of
possible classes
First, sources of class ideas:

Source of ideas What to look for

Existing libraries
• Classes that address needs of the application.

• Classes that describe concepts relevant to the
application.

Requirements
document

• Terms that occur frequently.

• Terms to which the text devotes explicit
definitions.

• Terms that are not defined precisely but taken
for granted throughout the presentation.

• (Disregard grammatical categories.)

Discussions with
customers and future
users

• Important abstractions of the application
domain.

• Specific jargon of the application domain.

• Remember that classes coming from the
“external world” can describe conceptual
objects as well as material objects.

Documentation (such
as user manuals) for
other systems (e.g.
from competitors) in
the same domain

• Important abstractions of the application
domain.

• Specific jargon of the application domain.

• Useful design abstractions

Non-O-O systems or
system descriptions

• Data elements that are passed as arguments
between various components of the software,
especially if they travel far.

• Shared memory areas (COMMON blocks in
Fortran).

• Important files.

• DATA DIVISION units (Cobol).

• Record types (Pascal), structures and structure
types (C, C++), playing an important role in
the software, in particular if they are used by
various routines or modules (files in C).

• Entities in ER modeling.

Discussions with
experienced designers

• Design classes having been successfully used
in previous developments of a similar nature.

Algorithms and data
structure literature

• Known data structures supporting efficient
algorithms.

O-O design literature • Applicable design patterns.

§22.7 KEY CONCEPTS INTRODUCED IN THIS CHAPTER 743

ibly

are

inate

Reasons for
rejecting a
candidate class
Then, criteria for investigating potential classes more carefully, and poss

rejecting them:

22.7 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

• Identifying the classes is one of the principal tasks of object-oriented softw

construction.

• To identify the classes is a dual process: class suggestion and class rejection. Just

as important as identifying potential class candidates is the need to elim

unsuitable ideas.

Danger signal Why suspicious

Class with verbal
name (infinitive or
imperative)

• May be a simple subroutine, not a class.

Fully effective class
with only one
exported routine

• May be a simple subroutine, not a class.

Class described as
“performing”
something

• May not be a proper data abstraction.

Class with no routine
• May be an opaque piece of information, not an

ADT. Or may be an ADT, the routines having
just been missed.

Class introducing no
or very few features
(but inherits features
from parents)

• May be a case of “taxomania”.

Class covering several
abstractions

• Should be split into several classes, one per
abstraction

HOW TO FIND THE CLASSES§22.8744

main

ique

It may

epts of

isions,

pts as

ly the

erred

gnized

finalize

ism.

 types

tt.

Russell J. Abbott in
Comm. ACM, 26,
11, Nov. 1983, pp.
882-894.
• To identify the classes is to identify the relevant abstractions in the modeled do

and the solution space.

• “Underlining the nouns in the requirements document” is not a sufficient techn

for finding the classes, since its results are too dependent on stylistic issues.

cause designers both to miss useful classes and to include unnecessary ones.

• A broad characterization of classes distinguishes analysis classes, tied to conc

the external world being modeled, design classes, describing architectural dec

and implementation classes, describing data structures and algorithms.

• Design classes tend to be the most difficult to invent.

• In designing external classes, remember that external objects include conce

well as material things.

• To decide whether a certain notion justifies defining an associated class, app

criteria of data abstraction.

• Implementation classes include both effective classes and their def

counterparts, describing abstract categories of implementation techniques.

• Inheritance provides a way to reuse previous designs while adapting them.

• A way to obtain classes is to evaluate candidate designs and look for any unreco

abstraction, in particular by analyzing inter-module data transmission.

• Use cases, or scenarios, may be useful as a validation tool and as a guide to

an implementation, but should not be used as an analysis and design mechan

• The best source of classes is reusable libraries.

22.8 BIBLIOGRAPHICAL NOTES

The advice to use nouns from the requirements as a starting point for finding object

was made popular by [Booch 1986], which credits the idea to an earlier article by Abbo

Further advice appears in [Wirfs-Brock 1990].

§E22.1 EXERCISES 745

y
uage

ation
such
ard

s.

te
s
in the
ions for

ran)
 some
of the
code,

) is

ation

in a

nd
lass”.

See “Is a new class
necessary?”, page 72.
An article on formal specification [M 1985a] analyzes the problems raised b
natural-language requirements documents. Working from a short natural-lang
problem description which has been used extensively in the program verific
literature, it identifies a large number of deficiencies and offers a taxonomy of
deficiencies (noise, ambiguity, contradiction, remorse, overspecification, forw
reference); it discusses how formal specifications can remedy some of the problem

[Waldén 1995] presents useful advice for identifying classes.

Appendix B of [Page-Jones 1995] lists numerous “problem symptoms” in candida
object-oriented designs (for example “class interface supports illegal or dangerou
behaviors”), alerting designers to danger signals such as have been pointed out
present chapter. The table, as well as the rest of Page-Jones’s book, offers suggest
correcting design deficiencies.

[Ong 1993] describes a tool for converting non-O-O programs (essentially Fort
to an object-oriented form. The conversion is semi-automatic, that is to say relies on
manual effort. Relevant to the present chapter is the authors’ description of some
heuristics they use for identifying potential classes through analysis of the original
in particular by looking at COMMON blocks.

Simula 1 (the simulation language that led to modern versions of Simula
described in [Dahl 1966]. See chapter 35 for more Simula references.

Typical data structures books, providing a precious source of implement
classes, include Knuth’s famous treatise [Knuth 1968] [Knuth 1981] [Knuth 1973] and
numerous college textbooks such as [Aho 1974] [Aho 1983].

A recent text, [Gore 1996], presents fundamental data structures and algorithms
thoroughly object-oriented way.

Sources of design classes include [Gamma 1995], presenting a number of “design
patterns” for C++, and [M 1994a], a compendium of library design techniques a
reusable classes, discussing in detail the notions of “handle class” and “iterator c
[Krief 1996] presents the Smalltalk MVC model.

EXERCISES

E22.1 Floors as integers

Show how to define a class FLOOR as heir to INTEGER, restricting the applicable
operations.

1

HOW TO FIND THE CLASSES§E22.2746

sign

From [Halbert 1987],
slightly abridged.
E22.2 Inspecting objects

Daniel Halbert and Patrick O’Brien discuss the following problem, arising in the de
of software development environments:

Consider the design of an inspector facility, used to display information about
an object in a debugger window: the contents of its fields, and perhaps some
computed values. Different kinds of inspector are needed for different object
types. For instance, all the relevant information about a point can be displayed
at once in a simple format, while a large two-dimensional array might best be
displayed as a matrix scrollable horizontally and vertically.

You should first decide where to put the behavior of the inspector: in the
[generating class] of the object to be inspected or in a new, separate class?

Answer this question by considering the pros and cons of various alternatives. (Note: the
inheritance-related discussions of the following chapters may be useful.)

	22 22 How to find the classes
	22.1 STUDYING A REQUIREMENTS DOCUMENT
	The nouns and the verbs
	Avoiding useless classes
	Is a new class necessary?
	Missing important classes
	Discovery and rejection
	Class Elicitation principle

	22.2 DANGER SIGNALS
	The grand mistake
	My class performsº
	Imperative names
	Class Name rule

	Single-routine classes
	Premature classification
	No-command classes
	Mixed abstractions
	Class Consistency principle

	The ideal class

	22.3 GENERAL HEURISTICS FOR FINDING CLASSES
	Class categories
	External objects: finding the analysis classes
	Finding the implementation classes
	Deferred implementation classes
	Finding the design classes

	22.4 OTHER SOURCES OF CLASSES
	Previous developments
	Adaptation through inheritance
	Evaluating candidate decompositions
	Hints from other approaches
	Files
	Use cases
	Use Case principle

	CRC cards

	22.5 REUSE
	The bottom-up component
	Class wisdom

	22.6 THE METHOD FOR OBTAINING CLASSES
	Sources of possible classes
	Reasons for rejecting a candidate class

	22.7 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
	22.8 BIBLIOGRAPHICAL NOTES

	EXERCISES
	E22.1 Floors as integers
	E22.2 Inspecting objects

