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Principles of class design

Experienced software developers know that few issues are more critical than the prop
design of module interfaces. In a multi-person, or just multi-week software project, many
of the decisions, discussions, disputes and confusions tend to revolve around matters
module interface specification: “Who takes care of making sure. tAgt“But | thought

you only passed me normalized input, “Why are you processing this since | already
took care of it?”.

If there were just one advantage to expect from object technology, this would hav
to be it. From the outset of this presentation, object-oriented development has bee
described as an architectural technique for producing systems made of coherent, prope
interfaced modules. We have now accumulated enough technical background to revie
the design principles through which you can take advantage of the best O-O mechanisr
to develop modules with attractive interfaces.

In the following pages we will explore a set of class design principles which
extensive practice has shown to yield quality and durabiliécaBse what determines the
success of a class is how it will look to its clients, the emphasis here is not on the intern
implementation of a class but on how to make its interface simple, easy to learn, easy
remember, and able to withstand the test of time and change.

We will successively examine: whether functions should be permitted to have sid¢
effects; how many arguments a feature should reasonably have, and the associated noti
of operand and option; whether you should be concerned about the size of your classe
making abstract structures active; the role of selective exports; how to document a clas
how to deal with abnormal cases.

From this discussion will emerge an image of the class designer as a patier
craftsman who chisels out and polishes each class to make it as attractive as possible
clients. This spirit of treating classes as carefully engineered products, aiming a
perfection from the start and yet always perfectible, is a pervasive quality of well-appliec
object technology. For obvious reasons it is particularly visible in the construction of
library classes, and indeed many of the design principles reviewed in this chapte
originated in library design; in the same way that successful ideas first tried in Formula .
racing eventually trickle down to the engineering of cars for the rest of us, a technique th:
has shown its value by surviving the toughest possible test — being applied to th
development of a successful library of reusable components — will eventually benefit al
object-oriented software, whether or not initially intended for reuse.
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23.1 SIDE EFFECTS IN FUNCTIONS

The first question that we must address will have a deep effect on the style of our designs.
Is it legitimate for functions — routines that return a result — also to produce a side effect,
that is to say, to change something in their environment?

The gist of the answer is no, but we must first understand the role of side effects, and
distinguish between good and potentially bad side effects. We must also discuss the
question in light of all we now know about classes: their filiation from abstract data types,
the notion of abstraction function, and the role of class invariants.

Commands and queries

A few reminders on terminology will be useful. The features that characterize a cla“attributes and rou-
divided intocommand andquerie. A command serves to modify objects, a query tines”, page 173
return information about objects. A command is implemented as a procedure. A

may be implemented either as an attribute, that is to say by reserving a field in each run-

time instance of the class to hold the corresponding value, or as a function, that is to say

through an algorithm that computes the value when needed. Procedures (which also have

an associated algorithm) and functions are together called routines.

The definition of queries does not specify whether in the course of producing its
result a query may change objects. For commands, the answer is obviously yes, since it is
the role of commands (procedures) to change things. Among queries, the question only
makes sense for functions, since accessing an attribute cannot change anything. A change
performed by a function is known asside effec to indicate that it is ancillary to the
function’s official purpose of answering a query. Should we permit side effects?

Forms of side effect

Let us define precisely what constructs may cause side effects. The basic operation that
changes an object is an assignira::= b (or an assignment atterray?= b, or a creation
instruction!! a) where the targea is an attribute; execution of this operation will assign a
new value to the field of the corresponding object (the target of the current routine call).

We only care about such assignments wa is an attribute: ia is a local entity, its
value is only used during an execution of the routine and assignments to it have no
permanent effect; ais the entityResul denoting the result of the routine, assignments to
it help compute that result but have no effect on objects.

Also note that as a result of information hiding principles we have been carefi“The client's privi-
the design of the object-oriented notation, to avoid any indirect form of ohleges on an .
modification. In particular, the syntax excludes assignments of the objratir := b, atiribute”, page 205
whose aim has to be achieved through a obj!' set_attr(b), where the procedure
set_attr(x:...) performs the attribute assignmatir := x.

The attribute assignment that causes a function to produce a side effect may be in the
function itself, or in another routine that the function calls. Hence the full definition:
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“Introducing a more
imperative view”,
page 14.

Definition: concrete side effect

A function produces a concrete side effect if its body contains any of the
following:

* An assignment, assignment attempt or creation instruction whose
target is an attribute.

* A procedure call.

(The term “concrete” will be explained below.) In a more fine-tuned definition we
would replace the second clause by “A call to a routine that (recursively) produces
concrete side effect”, the definition of side effects being extended to arbitrary routin
rather than just functions. But the above form is preferable in practice even though it rr
be considered both too strong and too weak:

¢ The definition seems too strong because any procedure call is considered to prod
a side effect whereas it is possible to write a procedure that changes nothing. S
procedures, however, are rarely useful — except if their role is to change someth
in the software’s environment, for example printing a page, sending a message to
network or moving a robot arm; but then we do want to consider this a side effe
even if it does not directly affect an object of the software itself.

« The definition seems too weak because it ignores the case of a fuf that calls a
side-effect-producing functiog. The convention will simply be thi can still be
considered side-effect-free. This is acceptable because the rule at which we v
arrive in this discussion will prohikall side effects of a certain kind, so we will need
to certify each function separately.

The advantage of these conventions is that to determine the side-effect status
function you only need to look at the body of the function itself. It is in fact trivial, if you
have a parser for the language, to write a simple tool that will analyze a function and
you whether it produces a concrete side effect according to thition.i

Referential transparency

Why should we be concerned about side effects in functions? After all it is in the natt
of software execution to change things.

The problem is that if we allow functions to change things as well as commands, \
lose many of the simple mathematical properties that enable us to reason about
software. As noted in the discussion of abstract data types, when we first encountered
distinction between the applicative and the imperative, mathematics is change-free: it te
about abstract objects and defines operations on these objects, but the operations d
change the objects. (Computin/2 does not change the number two.) This immutabi
is the principal difference between the worlds of mathematics and computer software.
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Some approaches to programming seek to retain the immutability of mathematics: Lisp
in its so-called “pure” form, “Functional Programming” languages such as Backus'’s FP,

and otheiapplicativelanguages shun change. But they have not caught on for practical

software development, suggesting that change is a fundamental property of software.

The object immutability of mathematics has an important practical consequence
known asreferential transparenc, a property defined as follows:

Definition: referential transparency “DTifZigfe”efg’rTLine

An expressiore is referentially transparent if it is possible to exchange|any  Dictionary of Com-

subexpression with its value without changing the valte. of wgmg;_zhttp://

If x has value three, we can ux instead of3, or conversely, in any part of eThe Swift quotation
referentially transparent expression. (Only Swift's Laputa academicians were willirwas on pag67z.
pay the true price of renouncing referential transparency: always carrying around &
things you will ever want to talk about.) As a consequence of the definition, if we know
thatx andy have the same value, we can use one interchangeably with the other. For that
reason referential transparency is also called “substitutivity of equals for equals”.

With side-effect-producing functions, referential transparency disappears. Assume a
class contains the attribute and the function

attr: INTEGER

sneak: INTEGERIs do attr := attr + 1 end Remember that
) ) . Resulin an integer
Then the value csneaky(meaning: of a call to that function) is always 0; but ydunction is initial-

cannot us« andsneak interchangeably, since an extract of the form ized to zer
attr := 0; if attr /= Othen print ("Something bizari!'") end
will print nothing, but would prinSomething bizar! if you replace by sneak.

Maintaining referential transparency in expressions is important to enable (See[Dijkstra 1968.
reason about our software. One of the central issues of software construction, an
clearly by Dijkstra many years ago, is the difficulty of getting a clear picture of
dynamic behavior (the myriad possible executions of even a simple software element)
from its static description (the text of the element). In this effort it is essential to be able
to rely on the proven form of reasoning, provided by mathematics. With the demise of
referential transparency, however, we lose basic properties of mathematics, so deeply
rooted in our practice that we may not even be aware of them. For example, it is no longer
true thain + nis the same thing 22 [ nif nis thesneak-like function

n: INTEGERIis do attr := attr + 1; Result:= attr end
since, withattr initially zero,2 [ nwill return 2 whereasn + n will return 3.

By limiting ourselves to functions that do not produce side effects, we will ensure
that talking about “functions” in software ceases to betray the meaning of this term in
ordinary mathematics. We will maintain a clear distinction between commands, which
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change objects but do not directly return results, and queries, which provide informati
about objects but do not change them.

Another way to express this rule informally is to state asking a question should
not change the anser.

Objects as machines

The following principle expresses the prohibition in more precise terms:

Command-Query Separation principle

Functions should not produce abstract side effects.

The definition of Note that we have only definconcrete side effects so far; for the moment you can

abstractside effects jgnore thedifference.
appears on page

751. As aresult of the principle, only commands (procedures) will be permitted to produ
side effects. (In fact, as noted, we not only permit but expect them to change objects
unlike in applicative, completely side-effect-free approaches.)

A list object as
list machine

I oe

start forth go put search

Kitem before a?ter index count

The view of objects that emerges from this discussiimetapho, to be treated with
care as usual) is that of a machine, with an internal state that is not directly observable,
two kinds of button: command buttons, rectangular on the picture, and query buttons, rou

Object lifecycle pic- Pressing a command button is a way to make the machine change state: it starts mo
ture: page366. and clicking, then comes back to a new stable state (one of the states shown in the ez
picture of object lifecycle). You cannot directly see the state — open the machine — |
you can press a query button. This does not change the state (remember: asking a que
does not change the answer) but yields a response in the form of a message appearing
display panel at the top; for boolean queries one of the two indicators in the display pat
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representing true and false, will light up. If you press the button several times in a row,
without touching the command buttons, you will get the same result each time. If, on the
other hand, you push a command button and then a query button, the answer that you get
will usually be different from what you would have obtained before the command.

Commands as well as queries may take arguments; these are figuratively entered in
the slot at the top left.

The figure is based on the example of a list object with the kind of interface hinted
at in earlier chapters and studied in more detail later in the present one. Commands include
start (move the cursor to the first elemeiforth (advance the cursor one positicsearch
(move the cursor to the next occurrence of the element entered into the top-left slot);
queries includdterm (show in the display panel the value of the element at cursor position)
andinde> (show the current cursor position). Note the difference between a notion such
as “cursor”, relative to the internal state and hence not directly visibldtem orindex
which provide more abstract, officially exported information about the state.

Functions that create objects

A technical point needs to be clarified before we examine further consequences of the
Command-Query Separation principle: should we treat object creation as a side effect?

The answer is yes, as we have seen, if the target of the creation is an &a: inute
this case, the instructic!! a changes the value of an object’s field. The answer is no if the
targetis a local entity of the routine. But what if the target is the result of the function itself,
as in!! Resul or the more general for!! Resultmake(...)?

Such a creation instruction need not be considered a side effect. It does not change
any existing object and so does not endanger referential transparency (at least if we
assume that there is enough memory to allocate all the objects we need). From a
mathematical perspective we may pretend that all of the objects of interest, for all times
past, present and future, are already inscribed in the Great Book of Objects; a creation
instruction is just a way to obtain one of them, but it does not by itself change anything in
the environment. Itis common, and legitimate, for a function to create, initialize and return
such an object.

These observations assume that in the second form the creation pramake¢ does not
produce side effects on any object other than the one being created.

A clean style for class interfaces

From the Command-Query Separation principle follows a style of design that yields simple
and readable software, and tremendously helps reliability, reusability and extendibility.

As you may have realized, this style is very different from the dominant practices of
today, as fostered in particular by the C programming language. The predilection of C for
side effects — for ignoring the difference between an action and a value — is not just a
feature of the common C style (it sometimes seems just psychologically impossible for a
C programmer to resist the temptation, when accessing a value, also to motiitigitre
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passing); itis embedded deeply into the language, with such constrx++, meaning:
return the value ox, then increase it by one — saving a few keystrokey =rx++
compared tey = x; x:= x+1, and not to be confused wi++x which incrementbefore
computing the value. A whole civilization, in fact, is built on side effects.

It would be foolish to dismiss this side-effect-full style as thoughtless; its widesprez:
use shows that many people have found it convenient, and it may even be part of
reason for the amazing success of C and its derivatives. But what was attractive in
nineteen-seventies and eighties — when the software development population v
growing by an order of magnitude every few years, and the emphasis was on getting st
kind of job done rather than on long-term quality — may not be appropriate for tt
software technology of the twenty-first century. There we want software that will gros
with us, software that we can understand, explain, maintain, reuse and trust. T
Command-Query Separation principle is one of the required conditions for these goals

Applying a strict separation between commands and queries by prohibiting abstr:
side effects in functions is particularly appropriate for the development of large systen
where the key to success is to exert full control on every inter-module interaction.

If you have been used to the converse style, you may at first, like many people, fi
the new one too extreme. But after starting to practice it | think you will quickly realize it
benefits.

Quietly, the preceding chapters have already applied Command-Query Separatiol
its full extent. You may remember for example that the interface for all our stack class
included a procedurremov: describing the operation of popping a stack (removing the
top element), and a function or attribiterr which yields the top element. The firstis a
command, the second a query. In other approaches you might have seen apopitine
which both removes the element and returns it — a side-effect-producing function. Tl
example has, | hope, been studied in enough depth to show the gains of clarity :
simplicity that we achieve by keeping the two aspects cleanly separated.

Other consequences of the principles may seem more alarming at first. For read
input, many people are used to the style of using functions sigetint — the C name,
but its equivalent exists in many other languages — whose effect is to read a new in
element and return its value. This is a side-effect-producing function in all its splendor
call to the function, writtergetint () — with the empty parentheses so unmistakably
characteristic of the C look-and-feel — does not just return a value but affects the cont
(“asking a question changes the answer”); as typical consequences, excluding the ch:
case in which the input has two identical consecutive values:

« If you callgetint() twice you will get different answers.

e getint() + getint() anc 2 [ getint() will not yield the same value. (If an overzealous
“optimizing” compiler treats the first expression like the second, you will report :
bug to the compiler vendor, and you will be right.)

In other words, we lose the benefits of referential transparency — of reasoning ab
software functions as if they were mathematical functions, with a crystal-clear view
how we can build expressions from them and what values these expressions will denc
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The Command-Query Separation principle brireferential transparency back. Here
this means that we will distinguish between the procedure that advances the input cursor to
the next item and the function or attribute that yields the item last read. Ainput is of
type FILE; the instructions to read the next integer frominpui will be something like

input.advance
n:=input.last_integer

If you call last_intege ten times in a row you will, unlike witgetin, get ten times
the same result. If you are new to this style, it may take some getting used to; but the
resulting simplicity and clarity will soon remove any temptation to go back to side effects.

In this example as in thx++ case seen earlier, the traditional form beats the object-
oriented one if the goal of the game is to minimize keystrokes. This illustrates a general
observation: the productivity gains of object technology will not derive from trying to be

as terse as possible on a microscopic scale (a game at which APL or modern “scripting
languages” such as Perl will always win againsta good O-O language). The achievements
are on the global structure of a system: through reuse, through such mechanisms as
genericity and garbage collection, through the use of assertions, you can decrease the size
of your software by amounts far higher than anything you can achieve by skimping by a
character here or a line there. Keystroke-wise isn system-foolish.

Pseudo-random number generators: a design exercise

An example sometimes quoted in favor of functions with side effects is that of pseudo-
random number generators, which return successive values from a sequence enjoying
adequate statistical properties. The sequence is initialized by a call of the form

random_see(see)

whereseeris a seed value provided by the client. A common way to get the successive
pseudo-random values is by calling a function:

xX:= next_randon()

But here too there is no reason to make an exception to the command/query
dichotomy. Before looking at the solution let us just forget that we have seen the above
and restart from scratch by asking the question: how should we handle random generation
in an object-oriented context? This will provide the opportunity of a little design exercise,
and will enable us, if the need arises, to explain the results to someone whose view has not
been unduly influenced by pre-O-O approaches.

As always in object technology, the relevant question — often the only one — is:
What are the data abstractic?s

The relevant abstraction here is not “random number generation” or “random
number generator”, both of them quite functional in nature, focusirwhat the system
doe: rather tharwhat it does it t.

Probing further, we might think “random number”, but that is not the right answer
yet. Remember, a data abstraction is characterized by features — commands and queries;
it is hard to think of features applicable to “random number”.
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“Discovery and
rejection”, page 725

An infinite list
as a machine

[M 1994a]

That “random number” leads to a dead end illustrates the Class Elicitation principle
encountered when we studied the general rules for finding the classes: a key step may be
to rejec! inappropriate candidates. And once again we see that not all promising nouns
yield classes: were a “requirements document” written for this problem, therandom
numberwould certainly figure prominently in it.

A random number does not mean much by itself; it must be understood in relation
its predecessors and successors in the sequence.

Wait a minute — here we have sequenc, more precisely pseudo-random number
sequence. This is the abstraction we have been looking for; a perfectly legitimate d
abstraction, similar to the cursor lists we have seen on a number of occasions, only infil
(do not look for arafter boolean query!). Features will include:

« Commandsmake— initialize with a certain seeforth — advance to next element.

* Queriesiterr — return the element at cur: position.

item

forth
start —

To get a new random number sequerand, clients will use!! rand. make(see(); to
advance to the next value, they will crand. forth; and they will obtain the current value
by xx:=rand.iterm.

There is really nothing specific random numbe sequences in the interface, except
for theseerargument to the creation procedure. Addirstart procedure which brings
the cursor to the first item (and whimake may call for random number sequences), what
we have is the framework for a deferred cICOUNTABLE_SEQUENC describing
arbitrary infinite sequences. Think for example of how to model prime numbers in ¢
object-oriented way; the answer is the same: define a PRIMES, an heir to
COUNTABLE_SEQUENC, whose successive elements are the prime numbers. Oth
sequences — Fibonacci numbers and the like Hb& modeled in the same way.

These examples illustrate in passing that contrary to popular belief it is quite possible, and
even trivial, to represent infinite structures on a computer. Abstract data types provide the
key: a structure is entirely defined by the applicable operations, of which there is of
course afinite number, three in this casistari, forth, item— plus any auxiliary features

we may want to add. The trick, of course, is that any execution will only try to evaluate
a finite number of elements of an infinite structure.

COUNTABLE_SEQUENCand its heirs such é?RIMEES are part of the universal
computing science hierarchy described in the companion guide to reusable componer
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Abstract state, concrete state

From the discussion of referential transparency it would seem desirable to bar all co“if it is baroque, fix
side effects from functions. Such a rule would have the advantage that — in line witit’, page 67¢

of our methodology precepts — we could build it into the language, since a compiler can

easily detect concrete side effects (as we saw just after the definition of this notion).

Unfortunately, this would be unacceptably restrictive, explaining why the
Command-Query Separation principle only prohilabstrac side effects, a notion that
will now be defined. The problem is that some concrete side effects are not only harmless
but necessary. They are of two kinds.

The first category includes functions which, in the course of their execution, modify
the state, sometimes drastically, and affecting very visible features; but then they restore
the original state. Consider for example a class describing integer lists with cursor, and the
following function for computing the maximum of a list:

maxis
-- The highest value of items in the list
require
not empty
local
original_inde». INTEGER
do
original_index:= index
from
star; Result:= item
until is_lastloop
forth; Resuli:= Resultmax(item)
end
go (original_inde)
end

To traverse the list, the algorithm needs to move the cursor over all elements. The
function, calling such procedures stari, forth andgg, is indeed full of concrete side
effects on the cursor position; but it begins by noting the cursor positicoriginal _index
and ends by returning the cursor to that position through a cgc. All is well that ends
well: the function leaves the list in exactly the state in which it found it. But no compiler in
the world is going to detect that the side effect is only apparent.

Side effects of the second acceptable category may change the state of the objerages3761to 37¢.
only affecting properties that are not visible to clients. To understand the concef
depth, it will be useful to make sure that you are familiar with the discussion of
“abstraction function” and “implementation invariants” in the presentation of Design by
Contract. (In particular, take a look at the accompanying figures to refresh your memory.)
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Figure page751.

We saw then that an object of our softwarconcrete object) is the representation
of an abstract object, and that two concrete objects may represent the same abstract ol
For example two different stack representations, each made of an array and a top ma
coun, represent the same stack if they have the same valcountand the same array
elements up to indecoun. They may differ in other properties, such as the array size:
and the values stored at indices abcoun'. In mathematical terms, every concrete object
belongs to the domain of the abstraction funca, and we can havcl # c2 even with
a(cl) =a(c?).

What this means for us is that a function that modifies a concrete object is harml
if the result of this modification still represents the same abstract object — yields the sa
avalue. For example assume in a function on stacks contains the operation

representationput (some_valu, count + J)

(with the guarantee that the array’s capacity is at count + 1). This side effect changes
a value above the stack-significant section of the array; it can do no ill.

More generally, a concrete side effect which changes the concrete state of an ob
c is anabstract side effe if it also changes itabstract stat, that is to say the value of
a (c) (a more directly usable definition of abstract side effects will appear shortly). If a sic
effect is only concrete — does not affect the abstract state — it is harmless.

In the object-as-machine metaphor, functions producing concrete-only side effects
correspond to query buttons that may produce an internal state change having
absolutely no effect on the answers given by any query button. For example the
machine might save energy by automatically switching off some internal circuits if
nobody presses a button for some time, and turning them on again whenever someone
presses any button, queries included. Such an internal state change is unnoticeable from
the outside and hence legitimate.

The object-oriented approach is particularly favorable to clever implementatior
which, when computing a function, may change the concrete state behind the sce
without producing any visible side effect. The example of a stack function that chang
array elements above the top is somewhat academic, but we will see below a practical
useful design that relies on this technique.

Since not every class definition is accompanied by a full-fledged specification of tt
underlying abstract data type, we need a more directly usable definition of “abstract s
effect”. This is not difficult. In practice, the abstract data type is defined by the interfac
offered by a class to its clients (expressed for example as the short form of the class
side effect will affect the abstract object if it changes the result of any query accessible
these clients. Hence the definition:

Definition: abstract side effect

An abstract side effect is a concrete side effect that can change the value of
a non-secret query.
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This is the notion used by the Command-Query Separation principle — the priThe principle
that prohibits abstract side effects in functions. appears on pag751.

The definition refers to “non-secret” rather than exported queries. The reason is that
in-between generally exported and fully secret status, we must permit a query to be
selectively exported to a set of clients. As soon as a query is non-secret — exported to any
client other tharNONE— we consider that changing its result is an abstract side effect,
since the change will be visible to at least some clients.

The policy

As announced at the beginning of this discussion, abstract side effects are (unlike concrete
side effects) not easily detectable by a compiler. In particular it does not suffice to check
that a function preserves the values of all non-secret attributes: the effect on other queries
might be indirect, or (as in ttrma> example) several concrete side effects mightin the end
cancel out. The most a compiler can do would be to issue a warning if a function modifies
an exported attribute.

So the Command-Query Separation principle is a methodological precept, not a
language constraint. This does not, however, diminish its importance.

Past what for some people will be an initial shock, every object-oriented developer
should apply the principle without exception. | have followed it for years, and would never
write a side-effect-producing function. ISE appliesitin all its O-O software (for the C part
we have of course to adapt to the dominant style, although even here we try to apply the
principle whenever we can). It has helped us produce much better results — tools and
libraries that we can reuse, explain to others, extend and scale up.

Objections

It is important here two deal with two common objections to the side-effect-free style.

The first has to do with error handling. Sometimes a function with side effects is
really a procedure, which in addition to doing its job returns a status code indicating how
things went. But there are better ways to do this; roughly speaking, the proper O-O
technique is to enable the client, after an operation on an object, to perform a query on the
status, represented for example by an attribute of the object, as in

target.some_operatiol(...)
how_did_it_gc= target status

Note that the technique of returning a status as function result is lame anyway. It
transforms a procedure into a function by adding the status as a result; but it does not work
if the routine was already a function, which already has a result of its own. It is also
problematic if you need more than one status indicator. In such cases the C approach is
either to return a “structure” (the equivalent of an object) with several components, which
is getting close to the above scheme, or to use global variables — which raises a whole set
of new problems, especially in a large system where many modules can trigger errors.
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The second objection is a common misconception: the impression that Commat
Query Separation, for example the list-with-cursor type of interface, is incompatible wi
concurrent access to objects. That belief is remarkably widespread (this is one of
places where | know that, if | am lecturing on these topics, someone in the audience
raise his hand, and the question will be the same whether we are in Santa Barbara, Se
Singapore, Sydney, Stockholm or Saint-Petersburg); but it is incorrect nonetheless.

Chapter3C. The misconception is that in a concurrent context it is essential to have aton
access-cum-modification operations, for examgel on a buffer — the concurrent
equivalent of a first-in, first out queue. Sucge function non-interruptibly performs, in
our terminology, both a call item (obtain the oldest element) aremov¢ (remove that
element), returning the resultitenr as the result cge. But using such an example as an
argument foiget-style functions with side effects is confusing two notions. What we nee
in a concurrent context is a way to offer a client exclusive access to a supplier object
certain operations. With such a mechanism, we can protect a client extract of the form

X = buffer.item; buffer.remove

thereby guaranteeing that the buffer element returned by the itemis indeed the same
one removed by the following call removt«. Whether or not we permit functions to have
side effects, we will have to provide a mechanism to ensure such exclusive access;
example a client may need to dequeue two elements

buffer.remove, buffer.remove

with the guarantee that the removed elements will be consecutive; this requires exclus
access, and is unrelated to the question of side effects in functions.

Chapter3C. See in par- Later in this book we will have an extensive discussion of concurrency, where v
“CU'af“SLépF’O’T for  will study a simple and elegant approach to concurrent and distributed computation, fu
fgtggmagaé%“%éiwabompatible with the Command-Query Separation principle — which in fact will help u

arrive at it.

Legitimate side effects: an example

To conclude this discussion of side effects let us examine a typical case of legitimate ¢
effects — functions that do not change the abstract state, but can change the concrete :
and for good reason. The example is representative of a useful design pattern.

Consider the implementation of complex numbers. As with points, discussed in .
earlier chapter, two representations are possible: cartesian (by axis cooix andy) and
polar (by distance to the origp and angle€8). Which one do we choose? There is no easy
answer. If we take, as usual, the abstract data type approach, we will note that what co
is the applicable operations — addition, subtraction, multiplication and division amor
others, as well as queries to accx, y, p and6 — and that for each of them one of the
representations is definitely better: cartesian for addition, subtraction and such, polar
multiplication and division. (Try expressing division in cartesian coordinates!)
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We could let the client decide what representation to use. But this would make our
classes difficult to use, and violate information hiding: for the client author, the
representation should not matter.

Alternatively, we could keebotl representations up to date at all times. But this
may cause unnecessary performance penalties. Assume for example that a client only
performs multiplications and divisions. The operations use polar representations, but after
each one of them we must recompix anc y, a useless but expensive computation
involving trigonometric functions.

A better solution is to refuse to choose between the representa priori, but
update each of them only when we need it. As compared to the preceding approach, we
do not gain anything in space (since we will still need attributesdoh olx, y, p and®,
plus two boolean attributes to tell us which of the representations are up to date); but we
avoid wasting computation time.

We may assume the following public operations, among others:

classCOMPLEX feature
... Feature declarations for:
infix "+", infix "=", infix "C", infix "/",
add, subtrac, multiply, divide,
X, Y, rho, thetg, ...
end

The queries, y, rho andthetz are exported functions returning real values. They
are always defined (excethete for the complex number 0) since a client may request
thex anc y of a complex number even if the number is internally represented in polar,
and itsp and6 even if it is in cartesian. In addition to the functic'+" etc., we assume
procedure@adc etc. which modify an objeczl + z2is a new complex number equal to
the sum oz1andz2, whereas the procedure czll add(z2) changez1to represent that
sum. In practice, we might need only the functions or only the procedures.

Internally, the class includes the following secret attributes for the representation:

cartesian_read: BOOLEAN
polar_read: BOOLEAN
private », private_\, private_rhg, private_thet: REAL
Not all of the four real attributes are necessarily up to date at all times; in fact only two
need be up to date. More precisely, the following implementation invariant should be
included in the class:
invariant
cartesian_reador polar_ready
polar_readyimplies (0 <= private_theteand private_thete<= Two_p)
-- cartesian_readimplies (private_xanc private_yare up to date)
-- polar_read\ implies (private_rhoanc private_thetzare up to date)
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The value ofTwo_p is assumed to b2n. The last two clauses may only be expressed
informally, in the form of comments.

At any time at least one of the representations is up to dateyghtboth may be. Any
operation requested by a client will be carried out in the most appropriate representation;
may require computing that representation if it was not up to date. If the operation produ
a (concrete) side effect, the other representation will cease to be up to date.

Two secret procedures are available for carrying out representation changes:

prepare_cartesiais
-- Make cartesian representation available
do
if not cartesian_readthen
checkpolar_readyend
-- (Because the invariant requires at least one of the
-- two representations to be up to date)
private_x:= private_rhol cos(private_thet).
private_y:= private_rhoC sin (private_thet)
cartesian_read = True
-- Here botfcartesian_read andpolar_read are true:
-- Both representations are available
end
ensure
cartesian_ready
end

prepare_polais
-- Make polar representation available

do
if not polar_readythen
checkcartesian_read end
private_rho:= sqrt(private_x " 2 + private_y ")2
private_thete:= atan2(private_y, private_ )
polar_ready:= True
-- Here botfcartesian_read andpolar_read are true:
-- Both representations are available
end
ensure
polar_ready
end

Functionscos, sin, sgri andatanz are assumed to be taken from a standard mathematic:
library; atan2(y, x) should compute the arc tangenty / x.

We will also need creation procedumake_cartesia andmake_polar
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make_cartesia(a, b: REAL) is

-- Initialize with abscissia, ordinateb.

do
private_x:= a; private_y:= b
cartesian_read:= True; polar_ready:= False

ensure
cartesian_read; not polar_ready

end

and symmetrically fomake pola.

The exported operations are easy to write; we can start for example with the
procedure variants (we will see the function variants sudnfix "+" next):

add (other: COMPLE)) is

-- Add the value oothel.

do
prepare_cartesia; polar_ready:= False
private_x:= x + otherx; private_y=y + othery

ensure
x=old x + other.x; y=old y + other.y
cartesian_read; not polar_ready

end

(Note the importance in the postcondition of usx andy, notprivate > andprivate_y
which might not have been up to date before the call.)

divide(zz. COMPLE)) is

-- Divide by z.
require

z.tho/=0

-- (To be replaced by a numerically more realistic precondition)

do

prepare_pola; cartesian_read:= False

private_rho:=rho/ other.rho

private_thete= (theta — otherthete) \\ Two_ pi

-- Using\\ as remainder operation

ensure

rho=old rho/ other.rho

theta= (old theta — otherthete) \\ Two_ pi

polar_ready, not cartesian_ready
end

and similarly fo subtrac andmultiply. (The precondition and postcondition may need
some adaptation to reflect the realities of floating-point computations on computers.) The
function variants follow the same pattern:
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infix "+" (other: COMPLE>): COMPLEXis
-- Sum of current complex arother
do
Il Resultmake_cartesia(x + other.x, y + other.y)
ensure
Resultx = x + other. x; Resulty =y + other.y
Resultcartesian_ready
end

infix "/" (zz COMPLE)): COMPLEXis
-- Quotient of current complex kz!
require
z.rho /=0
-- (To be replaced by a numerically more realistic condition)
do
Il Resultmake_polai(rho / other.rho, (theta — otherthete) \\ Two_p)
ensure
Resultrho = rho/ other.rho
Resulttheta= (old theta — otherthete) \\ Two_ pi
Resultpolar_ready
end

and similarly forinfix "—" andinfix "[".

Note that for the last postcondition clauses of these functions to becartesian_ready
andpolar_read' must be exported to the class itself, by appearing in a clause of the form
feature { COMPLEX}; they are not exported to any other class.

But where are the side effects? In the last two functions, they are not direc
visible; this is becausx, y, rho andthete, behind their innocent looks, are sneaky little
side-effectors! Computinx or y will cause a secret change of representation (a call tc
prepare_cartesia) if the cartesian representation was not ready, and symmetrically fc
rho andthete. Here for example arx andthete:

x: REAL is
-- Abscissa
do
prepare_cartesia;, Result:= private_x
end

thete: REAL is
-- Angle
do
prepare_pola; Resuli:= private_theta
end
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Functionsy andrho are similar. All these functions call a procedure which may
trigger a change of state. Unliladc and consorts, however, they do not invalidate the
previous representation when a new one is computed. For exanx is called in a state
wherecartesian_read is false, both representations (all four real attributes) will be up to
date afterwards. This is because the functions may produce side effects on the concrete
objects only, not on the associated abstract objects. To express this property more
formally: computingz.x or one of the other functions may change the concrete object
associated witlz, say fromc, to c,, but always with the guarantee that

a(cy) =a(cy)
wherea is the abstraction function. The computer objc; andc, may be different, but
they represent the same mathematical object, a complex number.

Such side effects are harmless, as they only affect secret attributes and hence cannot
be detected by clients.

The object-oriented approach encourages such flexible, self-adapting schemes,
which internally choose the best implementation according to the needs of the moment.
As long as the resulting implementation changes affect the concrete state but not the
abstract state, they can appear in functions without violating the Command-Query
Separation principle or endangering rentiel transparency for clients.

23.2 HOW MANY ARGUMENTS FOR A FEATURE?

In trying to make classes — especially reusable classes — easy to use, you should devote
special attention to the number of arguments of features. As we will see, well-understood
object technology yields a style of feature interface radically different from what you
typically get with traditional approaches; there will, in particular, be far fewer arguments.

The importance of argument counts

When your development relies on a supplier class, features are your day-to-day channel
to it. The simplicity of the feature interfaces fundamentally determines the class’s ease of
use. Various factors influence this, in particular the consistency of the conventions; butin

the end a simple numerical criterion dominates everything else: how many arguments do
features have? The more arguments, the more you have to remember.

This is particularly true of library classes. The criterion for success there is simple:
after a potential library user has taken the (preferably short) time to understand what a
class is about and, if he decides to use it, selected the set of features that he needs for the
moment, he should be able to learn these features quickly and, after as few uses as
possible, remember them without having to go back to the documentation. This will only
work if features — aside from all other qualities of consistency, proper naming
conventions and general quality of the design — have very short argument lists.

If you examine a typical subroutine library you will commonly encounter
subroutines with many arguments. Here for example is an integration routine from a
mathematical library justly renowned for the excellence of its algorithms, but constrained
in its interface by the use of traditional subroutine techniques:
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Warning: this is not nonlinear_ode
an object-oriented (equation_cour: in INTEGEF;
interface!

epsilor: in out DOUBLE;

func: procedure (eq_cour: INTEGEF, a: DOUBLE; eps: DOUBLE;
b: ARRAY[DOUBLE]; cmr: pointer Libtype)

left_coun, coupled_cour: in INTEGEF;

»)

[And so on. Altogether 19 arguments, including:
- 4in out values;
- 3 arrays, used both as input and output;
- 6 functions, each with 6 or 7 arguments of which 2 or 3 are arrays!

Since the purpose of this example is not to criticize one particular numerical library but
to emphasize the difference between O-O and traditional interfaces, the routine and
arguments names have been changed and the syntax (in C in the original) has been
adapted. The resulting notation resembles the notation of this book, which, however,
would of course exclude such non-O-O mechanisrin out arguments, explicpointer
manipulation, and arguments (suctuncand 5 others) that are themselves routines.

Several properties make this scheme particularly complex to use:

* Many arguments arin out, that is to say must be initialized by the caller to pass &
certain value and are updated by the routine to return some information. For exam
epsilonspecifies on input whether continuation is required (yes if less than 0O;

between 0 and 1, continuation is required unepsilon< ./precisicn, etc.). On
output, it provides an estimate of the increment.

* Many arguments, both to the routine itself and to its own routine arguments, &
arrays, which again serve to pass certain values on input and return others on out

¢ Some arguments serve to specify the many possibilities for error processing (s
processing, write message to a file, continue an...).y

Even though high-quality numerical libraries have been in existence for many yee
and, as mentioned in an earlier chapter, provide some of the most concrete evidence of
reuse, they are still not as widely used in scientific computation as they should be. T
complexity of their interfaces, and in particular the large number of arguments illustrat
by nonlinear _od, are clearly a big part of the reason.

On the Math library Part of the complexity comes from the problems handled by these routines. But ¢
and techniques of - can do better. An object-oriented numerical libreMath, offers a completely different
scientific object-ori- h . ith obi hnol d with th inciol f this b
ented computir,;  PProac ,gonsmtgnt vy|t object tec-no ogy concepts and wit -t e principles o this bo
see[Dubois 1997.  An earlier discussion cited the Math library as an example of using object technology to
The _efj{f"efme“t!on architecture older software, and the library indeed uses an existing non-O-O library as
‘é"rf‘ti('jnrggrecﬁi;zg: core engine, since it would have been absurd to duplicate the basic algorithmic work;
turing’, page 44.. it provides a modern, O-O client interface. The basic non-linear ODE routine has the fo
solve

-- Solve the problem, recording the answex andy.
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In other words it takes no argument at all! You simply create an instance of the class
GENERAL BOUNDARY_ VALUE_PROBLEo represent the mathematical problem to
be solved, set its non-default properties through calls to the appropriate procedures, attach
it to a “problem solver” object (an instance of the class in which the above routine appears:
GENERAL BOUNDARY VALUE PROBLEM SOL)Y, and callsolve on that object.
Attributes of the clas«x andy, will provide the handle to the computed answer.

More generally, the thorough application of O-O techniques has a dramatic effeSee[M 1994a for
argument counts. Measures on the ISE libraries, published in more detailed else\détailed library
show an average number of arguments ranging from 0.4 for the Base libraries to (measuremens
the Visior graphical library. For the purposes of comparison with non-O-O libraries
should add 1 to all these figures, since we count two argumerxsf (a, b) versus three
for its non-O-0O counterpaf (x, a, b); but even so these averages are strikingly low when
compared with the counts for non-O-O routines which, even when not reaching 19 as in
the above numerical example, often have 5, 10 or 15 arguments.

These numbers are not a goal by themselves — and of course not by themselves an
indicator of quality. Instead, they are largely the result of a deeper design principle that we
will now examine.

Operands and options

An argument to a routine may be of two different kiroperand: andoption:.

To understand the difference, consider the example of aDOCUMENT and a
procedureprint. Assume — just to make the example more concrete — that printing will
rely on Postscript. A typical call illustrating a possible interfcnot compatible with the
principle stated below) would be

my_documenprint (printer_namy, paper_siz, color_or_no, Warning: this is not

postscript_leve, print_resolutiot) theI recommended
style!
Of the five arguments, which ones are truly indispensable? If you do not proviae a

Postscript level, the routine can use as a default the most commonly available option. The
same applies to paper size: you can use LTR (8.5 by 11 inches) in the US, A4 (21 by 29.7
centimeters) elsewhere. 600 dots per square inch may be a reasonable default for the print
resolution, and most printers are non-color. In all these cases, you might have a
mechanism supporting installation-level or user-level defaults to override the universal
ones (for example if your site has standardized on 1200 dpi resolution). The only argument
that remains is the printer name; but here too you might have defined a default printer.

This example illustrates the difference between operands and options:

Definition: operand and option arguments

An operand argument to a routine represents an object on which the routine
will operate.

An option argument represents a mode of operation.
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This definition is too general to tell us unambiguously whether a proposed argume
is an operand or an option, but here are two directly applicable criteria:

How to distinguish options from operands

* An argumentis an option if, assuming the client had not supplied its value,
it would have been possible to find a reasonable default.

« In the evolution of a class, arguments tend to remain the same, but gptions
may be added and removed.

According to the first criterion, all the argumentsprint are options (with the
possible exception aprinter_nam: if you have not defined a default printer). Note,
however, that the target of the call, an implicit argummy_documerin the example)
is, as all targets should be, an operand: if you do not say what document you want to p
no one is going to choose a default for you.

The second criterion is less obvious since it requires some foresight, but it refle
the software engineering concerns that underlie all our discussions since the first chap
of this book. We know that a class is not an immutable product; like all software, it mz
change over its lifetime. Some properties of a class, however, change more often tl
others. Operands are there for the long term: adding or removing a operand is a me
incompatible change. Options, on the other hand, may come and go. For example one
imagine that support for colors was not part of the first version cprint procedure, a
few years back, and was only added later. This is typical of an option.

The principle

The definition of operands and options yields the rule on arguments:

Operand principle

The arguments of a routine should only include operands (no optiors).

Two cases for loosening the rule, not quite qualifying as exceptions, are mentioned
below.

In the style that this principle promotes, options to an operation are set not in calls
the operation but in calls to specific option-setting procedures:

my_documenset_printing_siz("A4")

my_documenset_color

my_documenprint -- No argument at all.

Once set, each option remains in force for the target object until reset by a new ¢

In the absence of any call to the corresponding procedures, and of any explicit setting at
time of object creation, options will have the default values.
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For any type other than boolean, the option-setting procedure will take one argument
of the appropriate type, as illustrated set_printing_siz; the standard name is of the
form set property _nam. Note that the argument to a procedure sucset_printing_size
itself satisfies the Operand principle: the page size, which was an option for the original
print, is an operand fcset printing_siz which by definition operates on page sizes.

For a boolean procedure, the same technique would yield a procedure taking either
True or False as argument; since this is confusing (as users of the procedure may forget
which ones of the two possibilitiTrue represents), it is better to use a pair of procedures,
with conventional names of the forset property _nam andset_n¢ property nam, for
exampleset_colo andset_no_colc, although in this case it is probably just as well to call
the second variaiset_black _and_whi.e

Application of the Operand principle yields several benefits:

« You only specify what differs from the defaults. Any property for which you do not
need any special setting will be handled with the settings that have proved to be most
commonly appropriate.

« Novices need only learn the essentials and can ignore any advanced properties.

* As you get to know the class better and move on to sophisticated uses, you learn
more properties; but you only have to remember what you use.

« Perhaps most importantly, the technique preserves extendibility and the Open-
Closed principle: as you add more options to a certain facility, you do not need to
change the interface of a routine and hence invalidate all existing callers. If the
default value corresponds to the previous implicit setting, existing clients will not
need to be changed.

Against the Operand principle, a possible objection comes to mind: does it not just
trade argument complexity for call complexity (calls will be much simpler, but we will
have more of them since we must include calls to option-setting procedures)? This is,
however, not accurate. The only new calls will be for options that you want to set to values
other than the default. Here the complexity is the same as with option arguments. (You
may have a few more keystrokes to type, but what counts is the number of pieces of
information you have to provide, and it is the same with both approaches.) The big
difference is that you need only pay attention to the options that are relevant for your own
use, whereas option arguments force you to spall options explicitly.

Also note that frequently a certain option will apply to many successive calls. In that
case, using option arguments forces you to specify it each time. With the style
recommended here, you gain even if the value is not the default: you set it the first time
around, and it stays in place until explicitly changed. The gain is particularly significant
in cases such as the numerical library mentioned above veven call must include
arguments indicating the desired error processing mode, the name of the file for error
output and other general properties, which tend to remain applicable through many calls.
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See exercisE23.3,
page 807

Some languages support the notioioptional argumer, achieving some of the benefits of the
Operand principle but not all. The comparison has been left as an exercise, but you may already
that the last point mentioned would not apply: any non-default argument must be specified each ti

Benefiting from the Operand principle

Comments made about the Command-Query Separation principle apply to the Oper
principle too: it goes against today’s dominant practices, and some readers v
undoubtedly balk at it initially; but | can recommend it without any reservation, havin
applied it for many years and greatly benefited from it. It yields a simple, clear and eleg:
style, fostering clarity and extendibility.

That style soon becomes a natural one for developers whc(Predictably, we have
made it part of our standard at I) You create the required objects; set up any of their
properties that differ from the defaults; then apply the operations that you need. This is
scheme sketched above fsolve in the Math library. It certainly beats passing 19
argunents.

Exceptions to the Operand principle?

The Operand principle is of universal applicability. Rather than true exceptions, it requir
adaptation in two specific cases.

First, we can take advantage of the flexibility of multiple creation procedures. Sint
a class can provide more than one way to initialize an object, through creation calls of
form!! x. make specific (argumen, ...) where make specific is any of the creation
procedures, we can relax the Operand principle for such creation procedures, facilitat
the client’s task by offering various ways to set up objects with values other than t
default. Two constraints, however:

< Remember that, as always, every creation procedure must ensure the class invar

» The set of creation procedures must include a minimal procedure (makein the
recommended style) which includes no option arguments and sets all option valt
to their defaults.

The other case for loosening the Operand principle follows from the last observatic
If you have applied the principle, you may find that some operations (other than creati
procedures) are often used with option-setting procedures according to a standard pat
for example

my_documenset_printing_siz("...")
my_documenset_printer_namd("...")
my_documenprint

In such a case, it may be convenient, in the name of encapsulation and reusabi
and in conformity to the Shopping List principle studied next, to provide an extra routir
as a convenience for clients:

print_with_size_and_ printe(printer_nam«: STRINC size: SIZE_SPECIFICATION
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This assumes, of course, that the basic minimal rouprint in the example)
remains available, and that the new routine is just a supplementary facility meant to
simplify client text in cases that have been recognized as truly frequent.

Thisis not really a violation of the principle, since the very nature of the new routine requires
the arguments (printer and size in the example) to be present, making them operands.

A checklist

The Operand principle and its recognition of the need to pay attention to options suggest
a technique that helps get a class right. For each class, list the supported options and
produce a table with one row for each option, illustrated here by one of the rows for the
DOCUMENT class:

Option Initialized Queried | Set
Paper size default:A4 (international) size set_size
make LTI LTR (US) set_Ad4
set LTR

The successive columns list: the role of the option; how it is initialized by the various
creation procedures; how it can be accessed by clients; how it can be set to various values.
This provides a useful checklist for frequent deficiencies:

* Initialized entries help spot a wrong initialization, especially when you rely on the
defaults. (A boolean option, for example, is initialized to false; you should choose
the corresponding attribute accordingly, so that the option for color support is
Black_and_white _on if you wish the default, false, to represent full color sup)ort.

* TheQueried entries help spot the mistake of providing clients ways to set an option
but not to access it. Note in particular that a routine that takes an object in a certain
state may need to change some options for its own purposes, but then restore the
initial state; this is only possible if the routine can query the initial value.

* The Set entries help spot missing option-setting procedures. For example if the
default value for a boolean option is the usual false, and you provide a procedure to
change it to true, you should not forget to provide another to reset it to false.

None of the rules suggested here is absolute; for example some options may never
need to be returned to false. But they do apply in most cases, so it is important to check
that the table’s entries indicate the behavior that you expect from the class. The table, or
extracts from it, can also help document the class.

23.3 CLASS SIZE: THE SHOPPING LIST APPROACH

We have learned to be paranoid about limiting the external size of features, as measured
by the number of arguments, because it fundamentally affects the features’ ease of use and
hence the quality of a class interface. (We care less abointernal size of a feature,
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[Johnson 1994]

measured for example by the number of its instructions, since it simply reflects tl
complexity of the algorithm. But as you will certainly have noted most routine bodies |
good O-O design will remain small anyway.)

Should we be similarly concerned about the size of each class as a whole? Here
answer will be much less drastic.

Class size definition

We must define how to measure the size of a class. It is possible to count the numbe
lines (or, preferably, the number of declarations and instructions, which is less subjec
individual variations of textual layout, and just requires a simple parser). Althoug
interesting for some applications, this is a supplier-side measure. If we are more intere:
in how much functionality a class provides to its clients, the appropriate criterion is tl
number of features.

This still leaves two questions:

 Information hiding: do we count all featureinternal size) or only exported ones
(externa) size?

 Inheritance: do we count only the immediate features, that is to say those introduc
in the class itselfimmediat size), all the features of the class including those
inherited from any proper ancestdlat size, so called in reference to the notion of
flat form of a class), or the immediate features plus those which the class inherits |
somehow modifies through redefinition or effecting, although renaming does n
count incrementg size)?

Various combinations may be interesting. For the present discussion the m
interesting measure will kexterna andincrementa: external size means that we take the
client’s view of the class, regardless of anything that is useful for internal purposes on
and incremental size means that we focus on the class’s added value. With immediate
we would ignore the often important part of the functionality that is inherited; but with fl
size we would be counting the same features again in every class and its descendant:

Maintaining consistency

Some authors, such as Paul Johnson, have argued for strong restraints on class size:

Class designers are often tempted to include lots of feai(in both the
language sense and system design sense of thi). The result is an interface
where the few commonly used features are lost in a long list of strange ruutines
Worse yg, the list of possible features is infir.ite

ISE’s experience suggests a different view. We have found that class size is not
itself a problem. Although most classes remain relatively small (a few features to a cou
dozen), there is occasionally a need for bigger classes (up to 60 or even 80 features),
they do not raise any particular problem if they are otherwise well designed.
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This experience leads to tishopping listapproach: the realization that it does not
hurt to add features to a class if they are conceptually relevant to it. If you hesitate to
include an exported feature because you are not sure it is absolutely necessary, you should
not worry about its effect on class size. The only criteria that matter involve whether the
class fits in with the rest. These criteria can be expressed as a general guideline:

Shopping List advice

When considering the addition of a new exported feature to a class, observe
the following rules:

S1 e+ The feature must be relevant to the data abstraction represented by
the class.

S2 « It must be compatible with the other features of the class.
S3 e It must not address exactly the same goal as another feature of the class.
S4 « It must maintain the invariant of the class.

The first two requirements are related to the Class Consistency principle, wpage73c.
stated that all the features of a class must pertain to a single, well-identified abstri
The counter-example given there was that of a string class (from the original NEXTSTEP
library) which actually covered several abstractions and, as a result, was eventually split
into several classes. What is at issue here, however, is not size per se but design quality.

It is interesting to note that the same example, string, is also one of the larger classes
in ISE’s libraries and has been criticized by Paul Johnson. But in fact the reaction from
library users over the years has been the reverse: asking for more features. The class,
although rich, is not particularly difficult to use because all the features clearly apply to
the same abstraction, character string, and it is in the nature of that abstraction that many
operations are applicable, from substring extraction and replacement to concatenation and
global character substitution.

ClassSTRINC shows that big does not mean complex. Some abstractions are just
naturally endowed with many features. Quoting Waldén and Nerson:

A document handling class that contains 100 separate operations to set various[waldén 1995,
font operations... may in fact only be dealing with one or a few underlying Page 187
concepts which are quite familiar and easy to g. Ease of selecting the right

operation is then reduced to having nicely organized manual jyages

In such a case splitting the class would probably decrease rather than improve its
ease of use.

An extreme “minimalist” view holds that a class should only include atomic feat"Don't call us, we’ll
— those which cannot be expressed in terms of others. This would preclude somecall you”, page 505
fundamental schemes of successful object-oriented software construction, in particular
behavior classe in which an effective feature, for example a routine describing an
iteration on a data structure, relies on other lower-level features of the class, often
including some deferred ones.
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“CLASS EVOLU-
TION: THE OBSO-
LETE CLAUSE",
23.7, page 8C.2

Minimalism would also prohibit including two theoretically redundant but
practically complementary features. Consider a cCOMPLEX to describe complex
numbers, as developed earlier in this chapter. For arithmetic operations, some clients |
need the function versions:

infix "+", infix "=", infix "C", infix "/"
so that evaluating the expressizl + zZ will create a new object representing the sum of
z1andzz, and similarly for the other functions. Other clients, or the same client in othe
contexts, may prefer the procedure versions, where thz1:add(z2) will update thez1
object to represent the result of the addition, and similarlysubtrac, multiply and
divide. In theory, it is redundant to include both the functions and the procedures, a

either set can in fact be expressed in terms of the other. In practice, itis convenientto h
both, for at least three reasons: client convenience; efficiency; and reusability.

Laxity and restrictiveness

In the last example the two sets of features, although theoretically redundant,
practically different. You should not, of course, introduce a feature if another already fil
exactly the same need; this is covered by cliSE of the Shopping List advice. That
clause is more restrictive than it may seem at first. In particular:

« Assume that you want to change the order of arguments of a routine, f
compatibility with others in the same class or different ones. But you are concern
about compatibility with existing software. The solution in this casnot to keep
both features with the same status; this would violate the advice. Instead, use
obsolete library evolution mechanism described later in this chapter.

* The same applies if you want to provide a default for an argument that used to
required for a certain routindDo no! provide two versions, one with the extra
argument for compatibility, the other relying on a default along the lines discuss
earlier in this chapter. Make one interface the official one; the otitidnevcovered
by theobsolete mechanism.

« If you hesitate between two possible names for a feature, you should almost alw:
resist the temptation to provide both as synonyms. The only exceptions in ISE
libraries concern a handful of fundamental features for which it is convenient to ha
both an infix name and an identifier, for example array access which can be usec
my_arrayitem (some_inde) as well asmy_array @ some_ind, each form being
preferable in some contexts. But this is a rare situation. As a general rule the cl
designer should choose a name, rather than passing the buck to client authors
penalizing them with the consequences of his indecision.

As you will have noted, the policy resulting from this discussion is a mix of laxity
and restrictiveness. The policy seems lax because it explicitly encourages you to incli
acceptable features even if they have not yet proved to be essential. But it is in f
systematic and restrictive because it defines strong conditions for a feature to be consid:
acceptable. The features of a class should cover as many needs as possible; but they s
only cover relevant needs and, for each distinct need, there should be just one feature
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The Shopping List policy is only possible because we follow a systematic policy of
keeping thdanguage¢small. A minimalist attitude to language design — ensuring that we
stick to a small number of extremely powerful constructs, and avoid redundancies —
enables us to let class designers be non-minimalists. Every developer needs to learn the
language and, if the language is minimalist enough, will kall of it. Classes, however,

are only used by client authors, and they can skip what they do not use.

You should also relate the Shopping List advice to the preceding discussion of
feature size. What might make a class difficult to use is not the number of its features but
their individual complexity of use. More precisely, class size can only be a significant
problem initially, by facilitating or hampering quick comprehension of the purpose and
scope of a potentially reusable class which an application developer approaches for the
first time. Even there, we have seen that size per se is less relevant than coherence (the
Class Consistency principle). Past that stage, the reuser will, day in and day out, deal with
the features of the class, or more commonly with a subset of these features. Feature size
issues take precedence: a feature with many arguments to remember will make the task
difficult. But class size has by then ceased to be relevant. Were you to rely on some
arbitrary numerical criterion (“no class shall have more im lines orn features”), the
result could have been to split the class into several, in some cases mmore difficult
to use.

The lesson for class developers, embodied in the Shopping List advice, is to worry
about the quality of a class, in particular its conceptual integrity and the size of its features,
but not about its size.

23.4 ACTIVE DATA STRUCTURES

Examples of this chapter and preceding ones have frequently relied on a notion of list or
sequence characterized at any time by a “cursor position” indicating where accesses,
insertions and deletions take place. This view of data structures, although different from
most presentation in “algorithms and data structures” textbooks, is of broad applicability

and deserves a more detailed explanation.

To understand the merits of this approach it will be useful to start with the more
common one and assess its limitations.

Linked list representation

The discussion will be based on the example of lists. Although its results are independent
of the choice of implementation, we need a specific representation to express the
algorithms and illustrate the issues. Let us use a popular choice: linked lists. Our general-
purpose library must have list classes and, among them, eéLINKED_LIST.

Here are a few basics about linked lists, applicable to all the interface styles
discussed next — with and without cursors.
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Linked lists are a useful representation of sequential structures because tt
facilitate operations cinsertior anddeletior. The successive elements will be housed in
individual cells, ollinkables, each containing a value and a reference to another linkable

A linkable

item right

The corresponding clasLINKABLE, should be generic, since we want the structure
to be applicable to linked lists of any type. The cell value will be given by feiter, of
type G, the generic parameter; this will be an iq# value if the actual generic parameter
is expanded, for example for lists of integers or reals, and a reference otherwise. The o
attribute,right, of typeLINKABLE[G], always represents a reference.

The list itself is represented by a separate cell, the header, containing a refere
first_elemento the first linkable, and possibly some bookkeeping information such as tt
number of itemscoun. The figure shows the representation of a list of characters.

; ; Instance of
A linked list LINKED_LIST[G]

\ first_element

Instances of INKABLE[G]

This representation makes insertion or deletion fast if you have a reference to
linkable immediately to the left of the operation’s target: a few reference manipulatiol
will do, as shown here for the deletion of the third element.

Deletion in a
linked list

‘first_element/
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On the other hand, linked representation is not very good for finding an element
known by its value or its position: these operations require sequential list traversal. Array
representations, in contrast, are good for accessing by position, but poor for insertions and
deletions. Many other representations exist, some of which manage to combine some of
the best of both worlds. The basic linked list remains one of the most commonly used
implementations, and is indeed an effective technique for applications that require many
local insertions and deletions but few random accesses.

A technical point: the figure does not detail attributel.INKED LISTother than See‘Uniform
first_elemer, showing simply a shaded area. Although we could do witlfirst_elemer,t Access”, page 5
the classes below will include an attribicoun to record the number of elements of the
list. This query could also be a function, but it would then be inefficient, requiring a traversal
of the list to count its items each time a client asks us how many we have. Of course if you
use an attribute you must make sure that every insertion or deletion updates it. The Uniform
Access principle applies here: you can change the implementation without disturbing
clients, which will in all cases use the same notali<coun, to obtain the item count.

Passive classes

We clearly need two classeLINKED LIST for lists (more precisely, list headers),
LINKABLEfor list elements (linkables). Both are generic.

The notion ofLINKABLE is essential for the implementation, but not relevant to
most clients. We should strive for an interface that provides client modules with list
primitives but does not bother them with such implementation details as the presence of
linkable elements. The attributes, corresponding to the earlier figure, will appear as:

indexing
descriptior: "Linkable cell, for use in connection with linked li"'ts
note: "Partial versior, attributes onl™
class
LINKABLE1[G]
feature {LINKED_LIST}
item: G
-- The cell value
right: LINKABLE[G]
-- The right neighbor
end -- classLINKABLE1

For the type oright we might considelike Curren, but it is preferable at this stage
to keep more redefinition freedom as we do not know yet what may need to be changed
by the possible descendantsLINKABLE.

To have a true class we need to add routines. What should clients be allowed to do
on a linkable? They will need the ability to changeiterm andright fields. Also, we may
expect that most clients creating a linkable will specify its initial value, requiring a
creation procedure. This yields a proper version of the class:
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indexing
descriptior: "Linkable cell, for use in connection with linked lists”
class LINKABLE[G] creation
make
feature { LINKED_LIST}
item: G
-- The cell value

right: LINKABLE[GI
-- The right neighbor
make(initial : G) is
-- Initialize with item valueinitial.
do put(initial) end
put(new: G) is
-- Replace value withew.
do item:= newend

put_right(other: LINKABLEI[G]) is
-- Putothel to the right of current cell.
do right := otherend
end -- classLINKABLE

For brevity the class omits the obvious procedure postconditions (stensure
item= initial for make). There are no preconditions.

So much folLINKABLE. Now consider the linked lists themselves, to be accesse
internally through their headers. Among others we need exported features to: obtain
number of elementscoun); find out whether the list is emptempt); obtain the value
of thei-th element, for any legal inde (item); insert a new element at a certain position
(pui); change the value oftli-th elementreplace); search for an element having a certain
value occurrenc). We will also need a query returning a reference to the first elemer
(void if the list is empty); it does not need to be exported.

Here is a sketch of a first version. Some of the routine bodies have been omitted
indexing
descriptior: "One-way linked lis"s

note: "First versior, passiv"
class

LINKED_LIST1[G]
feature -- Access

coun: G
empt: BOOLEANIs
-- Is list empty?
do

Result:= (count= 0)
ensure

empty if no_eleme: Resuli= (count= 0)
end
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item(i: INTEGEF): Gis
-- Value ofi-th list element

require
1<=i;i<=count
local
elenm: LINKABLE[G]; j: INTEGER
do
from
j =1, elem:= first_element
invariant j <= i; elem/= Voidvariant i — juntil
j=i
loop
j =]+ 1; elem:= elemright
end
Result:= elemitem
end

occurrence(v: G): INTEGERIs
-- Position of first element of valw in list (0 if none)
do... end
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feature -- Element change
put(v: G; i: INTEGEF) is
-- Insert a new element of valve
-- so that it becomes t i-th element
require
1<=iji<=count+1
local
previous, new: LINKABLE[G]; j: INTEGER
do
-- Create new cell
Il new make(v)
if i =1then
-- Insert at head of list
new. put (first_elemer); first_elemen:= new
else
from
j :=1; previous:=first_element
invariant
j>=1;j<=i— 1 previous/= Void
-- previousis thej-th list element
variant
i—j—1
until j=i— 1loop
j :=] + 1; previous:= previousright
end
-- Insert afte previous
previous put_right(new)
new. put_right(previousright)

previous

end
count:=count + 1
ensure
one_mor: count=old count + 1
not_empt: not empty
insertec item(i) = v
-- For 1 <:=j <i, the element of indej has not changed its value
-- Fori <j <=coun,
-- the element of indej has the value
-- that the element of indg — 1 had before the call

new

end
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replace(i: INTEGERV: G) is
-- Replace by the value of-th list element.
require
1<=i;i<=count
do

ensure
replaced item(i) = v
end
feature -- Removal
prune(i: INTEGER is
-- Removei-th list element
require
1<=i;i<=count
do

ensure
one_lesscount=old count — 1
end

... Other features..
feature { LINKED_LIST} -- Implementation

first_elementLINKABLE[G]
invariant
empty_definitionempty= (count= 0)
empty_iff_no_first_elementmpty= (first_element Void)
end --classLINKED_LIST1

It is a good idea to try to completecurrencereplaceandprunefor yourself in this
first version. (Make sure to maintain the class invariant.)

Encapsulation and assertions

Before we consider better versions, a few comments are in order on this first attempt.

Class LINKED LIST1 shows that even on fairly simple structures reference
manipulations are tricky, especially when combined with loops. The use of assertions
helps get them right (see procedpre and the invariant); but the sheer difficulty of this
type of operations is a strong argument for encapsulating them once and for all in reusable
modules, as promoted by the object-oriented approach.

Also note the application of the Uniform Access principle: althooghntis an
attribute andempty a function, clients do not need to know these details. They are
protected against any later reversal of these implementation decisions.
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The assertions fcput are complete, but, because of the limitations of the assertio
language, not completely formal. Similarly extensive preconditions should be added to
other routines.

A critique of the class interface

How usable iiLINKED_LISTZ? Let us evaluate its design.

A worrying aspect is the presence of significant redundaritem andput contain
almost identical loops, and similar ones will need to be included in the routines who
code has been left to the readoccurrenc, replace, remove). Yet it does not seem
possible to factor out the common part. Not a promising start.

This is an implementation problem, internal to the class: lack of reusability of th
internal code. But it points to a more serious flaw — a poorly designed class interface

Consider routinioccurrence. It returns the index at which a given element has beer
found in the list, or zero if the element is not present. One drawback is that this only giv
the first occurrence; what if the client wants to obtain the successive occurrences c
value? But there is a more serious difficulty. A client that has performed a success
search may, among other typical needs, want to change the value of the element foun
delete that element, or to insert a new one next to it. But any one of these operati
requires traversing the list again! For examput (v, i) goes through the firi elements,
even ifi is the result ooccurrenci— obtained by a similar traversal.

In the design of a general-purpose library component that will get used over and ov
one cannot treat such inefficiencies lightly. Any performance overhead due to tl
increased generality of a reusable solution must remain negligible; otherwise develog
will not accept paying the price, dooming any reuse policy. Here the price is n
acceptable.

Simple-minded solutions

How can we remove the inefficiency? Two possible solutions come to mind:

« We could makioccurrencereturn, instead of an integer, tLINKABLE reference to
the cell where the requested value appears, or void for an unsuccessful search. T
the client has a direct handle on the actual linkable cell and may perform the neec
operations without retraversal; it can for example LINKABLE's pui procedure to
change the value, and put_righ- procedure to insert a new element. (Deletion is
more delicate since the client would need the previous element too.)

* We could try to provide enough primitives to deal with various combinations o
operations: search and replace, search and insert, search and delete and so on.

The first solution, however, defeats the whole idea of encapsulating data structu
in classes: clients would directly manipulate the representations, with all the dang
involved. The notion of linkable is internal; we want client programmers to think in term
of lists and list values, not of list cells and pointers. Otherwise we lose data abstractior
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The second solution was attempted in an early version of ISE’s libraries, which made
an effort to provide routines covering common combinations of operations. To insert an
element just before the occurrence of a known value, a client would use, rather than a call
to searct followed by a call tcput, a single call to

insert_before_by valu(v: G; v1: G) is
-- Insert a new element of val in front of first occurrence
-- of vlin list, or at end of list if no such occurrence

do

end

This solution keeps the internal representation hidden from clients, while avoiding
the inefficiencies of the initial version.

But we soon realized we were in for a long journey. Consider all the potentially
useful variants:search_and replaq, insert_before by vali, insert_after by valie
insert_after_by positic, insert_after_by_positic, delete_before_by val, insert_at_
end_if absel, and more.

This raises troubling questions about the viability of the approach, forcing a
reflection on library design. Writing general-purpose reusable software is a difficult task,
and there is no guarantee that you will get everything right the first time — with a design
that would follow the horizontal line in the figure below. You should be prepared to extend
classes with new features as the library’s usage reaches new users and new application
domains. As represented by the colored line of the picture, however, the process must
converge: after an initial tune-up period, the design shaaddtr a stable state.

Number A Failure Evolution of a
of features Lo*! library class
Perfect oo’
_—=""___ Desirable
0"’
0"..

-
Number of (re)uses

If not — that is to say, if almost every new use brings in the need for extension or
modification, as represented by the dotted line in the figure — the approach to reusability
is obviously flawed. This appeared to be the case with the list class we had at that point:
it looked as if every time we put the list class to a new use the need would arise for yet
another routine, representing a new combination of the basic operations.

To make matters worse, all such routines are rather complex, with loops similar to
the one foput; they have much in common but all differ from each other by small details.
The prospect of a robust, reusable linked list class seems to be receding.
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List with
cursor

Introducing a state

Fortunately, there is a way out. To find it requires taking a different view of the underlyir
abstract data type.

So far a list has been treated as a passive repository of information. To provide
clients with a better service, the list should become more active by “remembering” whe
the last operation was performed.

As noted earlier in this chapter, we should not hesitate to look at objects as machi
with an internal state, and introduce both commands that change the state and querie
the state. In the first solution a list object already had a state, defined by its contents
modifiable by commands such put andremovs; but by adding more components to the
state we will obtain a better interface, making the class both simpler and more efficien

Besides the list contents, the state will include the notion of currently active positio
or cursor; the interface will allow clients to move the cursor eitjlic

Instance of
LINKED_LIST[G]

. first_element

# Instances of INKABLE[G]
(A L

Cursor
before
-—

—>
back ¥ forth

We permit the cursor to be on a list element (if any), or one position to the left of tl
first, in which case the boolean québefore will return true, or one position to the right
of the last, making@fter true.

An example of a command that may move the cursor is the procsearcl,
replacing the functioioccurrence. A call tol.search(v) will move the cursor to the first
element of valuev to the right of the current cursor position, or movafter if there is
none. Note that in passing this solves the problem of finding multiple occurrenv:as of
just callsearcl as many times as needed. (For symmetry we could alssearch _bac.)

The basic commands to manipulate the cursor are:
« stariandfinish to move the cursor to the first and last position if any.
« forth andbackto move the cursor to the next and previous position.
* go(i) to move it to a stated positii .

Besidesbefore and after, queries on the cursor position incluindey, its integer
index (starting at 1 for the first element) as well as the boolis_first andis_las.



784 DESIGNING CLASS INTERFACES823.4

The procedures to build and modify a list — insertion, deletion, replacement —
become simpler because they do not have to worry about positions: they will simply act
on elements at the current cursor position. All the loops disappear! For exremove
will not be called ali.remove(i) any more, but simply ésremove, to delete the element
at the current cursor position. We need to establish precise and consistent conventions
about what happens to the cursor after each operation:

« remove, with no argument, deletes the element at cursor position and puts the cursor
under its right neighbor (so that the valudndexdoes not change in the end).

e put_right(v: G) inserts an element of valw to the right of the cursor and does not
move the cursorinde» is unchanged).

e put_left(v: G) inserts an element of valv to the left of the cursor and does not move
the cursor (increasing the valueindexby 1).

* replace(v: G) changes the value of the element at cursor position. The value of this
element is given by the query functiiterm, which now has no argument (and so
could be implemented as an attribute).

Maintaining consistency: the implementation invariant

In building the class for such a fundamental data structure we must be careful to get
everything right. Here assertions are indispensable. Without them we would be almost
sure to miss some details. For example:

« Is a call tostart permitted if the list is empty and, if so, what is its effect?

* What happens to the cursor afteremoviif the cursor was on the last element? In
other cases the cursor should go to the element immediately to the right of the
deleted one, but here there is none. This is one of the reasons for the convention that
was stated informally — allowing the cursor to move one position off to the right or
to the left — but we need a more precise statement of this property, addressing all
cases unambiguously.

Answers to questions of the first kind will be described by preconditions and
postconditions.

For such properties as the permitted cursor positions, we should use the inviSee implementation
more precisely the clauses constituting the implementation invariant. Remember tfnvanants’, page 377
implementation invariant expresses the consistency of a representation, given by a
vis-a-vis the underlying abstract data type. Here it will include the property

0 <=indey; index<=count + 1

What about an empty list? We need to respect the symmetry between left and right.
One solution, adopted in an earlier version of the library, is to consider that an empty list
is bothbefore andafter, and constitutes the only case in which both of these properties
may be true together. This works but leads, in the routines’ algorithms, to frequent tests of
the formif afterand notempt... to distinguish between true case«after and accidental
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ones resulting frorempt. It turns out to be preferable to take the view that, conceptually
a list always has two extisentine elements, shown gz a<e1  in the figure:

List with
sentinels
not after, not before
before‘ ¢ after
~ ~
iz (A) (B) () (o) (&) =u
0 1 count count+1
A /

1 <= index index<= count

Valid cursor positions

The sentinel elements help us reason about the structure, but we will not necesse
store them in the representation. The implementation discussed next stores the left sen
but not the right one; it is also possible to use an implementation that stores neither
still conforms to the conceptual model represented by the above figure.

Since we often want to state, for example as the precondition for an operation on
element given by its index, that the index indeed marks a position where the list has
element, we need a query to express this condition:

on_item(i: INTEGEF): BOOLEANis

-- Is there an element at positiih
do
Result:= ((index>= 1) and (index<= coun))
ensure
within_bound: Resuli= ((index>= 1) and (index<= coun))
no_elements_if_emp: Resultimplies (not empt)
end

To state that there is an element at the cursor position, we may define que
readable, whose value is that con_item (index). This is a good example of the
Shopping List principle: becausreadable is conceptually redundant, a minimalist
policy would get rid of it; by including it we provide our clients with a better abstraction

freeing them from having to remember what exactly constitutes a valid item index at t
implementation level.

The invariant will state thaot (afterand before). In the boundary case of an empty
list, the picture becomes:
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before* *after Empty list with
sentinels
15y 1
0 count+1=1

Valid cursor positions

So an empty list will have two possible statesptyand beforeandemptyand after,
corresponding to the two cursor positions in the figure. This seems strange at first but has
no unpleasant consequence, and is in practice preferable to the earlier convention that
empty= (beforeand after), now replaced bgmptyimplies (beforeor after).

Note two general lessons here: the usefulness, as in many mathematics or physics
problems, of checking boundary cases to verify that a general solution is sound; and the
importance of relying on assertions to express the precise properties of a design. Here are
some of the principal clauses of the invariant:

0 <=index index<= count
before= (index= 0); after= (index= count + J
is_first= ((not empty and (index= 1)); is_last= ((not empty and (index= count+1))
empty= (count= 0)
-- The next three clauses are theorems (deducible from the previous ones):
emptyimplies (beforeor after)
not (beforeand after)
emptyimplies ((not is_firs) and (not is_las))

This example illustrates the general observation that writing the invariant is theFor more clauses
way to get a real understanding of what a class is about. The clauses seen so fase€ Paged 9l
equally to all implementations of sequential lists; they will shortly be complemented
few others which are specific to the choice of a linked representation.

The last three clauses, as noted, are deducible from the others (prove ttExerciseE23.6,
Invariants are not required to be minimal; it is often useful to list additional clauses P29¢€ 807
as these if they state important, non-trivial properties of the class. As we saw in the study
of abstract data types, an ADT, and hence its implementation as a class, is a theory — here
the theory of linked lists. The basic invariant clauses express the axioms of the theory; but
any useful theory has interesting theorems too.

Of course if you intend to monitor invariants at run time — meaning that you are not quite
sure yet that the theory is sound! — you should also consider the effect of added clauses
on execution time. But this only matters for development and debugging. In a usual
production context there is no reason for monitoring the invariants.

The client’s view

This design provides a simple and elegant interface to the implementation of linked lists.
Operations such as “search and then insert” use two successive calls, although with no
significant loss of efficiency:
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[: LINKED_LIST[INTEGEF]; m, n: INTEGER

|.search(m)
if not afterthen |.put_right(n) end
The callsearch(m) moves the cursor to the next occurrencim after the current

cursor position, oafter if there is none. (The extract assumes that the cursor is initiall
known to be on the first element; if not, the client should exelcstart first.)

To delete the third occurrence of a certain value, a client will execute:

|.start; I.search(m); I.search(m); I.search(m)
if not afterthen I.removeend

To insert a value at positic:
[.go(i); I.put_left(i)

and so on. We have obtained a clear and easy to use interface by making the internal
explicit, and providing clients with the appropriate commands and queries on this state

The internal view

The new solution simplifies the implementation just as it improves the interface. Mo
importantly, by giving each routine a simpler specification, concentrated on just one ta
it removes unjustified redundancies, in particular all the unneeded loops. Insertion &
deletion procedures no longer have to traverse the list; they just carry out a lof
modification. The responsibility of positioning the cursor now lies with other routine
(bacl, forth, go, searcl), only some of whichgc andsearcl) need loops.

Cursor list count [~ Instance ofLINKED_LIST[G]
representation index [3
(first variant) active

previous

first_element
_ Instances of INKABLE[G]
item

Cursor

Along with first_elemer it will be useful to keep two references in the list header,
enabling us to perform insertions and deletions efficielactive, attached to the cursor
item at cursor position, arpreviousattached to the previous one.
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Clients may know the state of the list by accessing public integer attrcoun and
index and boolean queriebefore, after, is_firsi, is_las, item. Here are two typical
functions:

after. BOOLEANIs You should complete
-- Is there no valid position to right of cursor? before andis_las
) based on this moc.el
do Result:= (index= count + 1) end

is_firstt BOOLEANIs
-- Is cursor on first item?
do Result:= (index= 1) end

Note the phrasing of the header comments.after, “Is cursor to the right of lastsee'Routine header
element” would not be quite correct, sin@fter may be true even if there is no eleme comments: anexercise

at all. Writing header comments so that they are clear, terse and accurate is an art :Egc,,og’;gritgg?”ns'z'

The quenyiterr returns the element at cursor position, if any:
item: Gis
-- Element at cursor position
require
readable readable
do
Result:= active item
end

Remember thareadable indicates whether the cursor is on an elemindex
between 1 anccoun). Also note thatiterr in active item refers to the attribute in
LINKABLE, not to the function cLINKED LISTitself.

Here now are the basic cursor manipulation commands; they are fairly delicate to get
right but, as a consolation, you may note that only a handful of routines, sstari, forth,
put_right, put_leftandremov¢, must perform non-trivial operations on references. Let us
try startandforth. Procedurestart must work for an empty list as well as a non-empty one;
for an empty list the convention is ttstartbrings the cursor to the second sentinel.

startlis

-- Move cursor to first position.
-- (Provisional version; see next.)

do ind 1 first_element
index:=
previous:= Void previous | active
active:= first_element

ensure
moved_to_fire index=1

to_firé index=1 = (-

empty_conventic emptyimplies after

end
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forthlis
-- Move cursor to next position.
-- (Provisional version; see next.)
require
not_after not after
do
index:= index + 1
if beforethen
active:= first_elementprevious.= Void
else previous act

checkactive/= Void end s
previous:= active active:= activeright ) \
ensure

moved_by oneéndex=old index + 1
end

Here we stop! This is becoming too complicated and too inefficient. Th
performance of procedur®rth is crucial, since a typical use of a list by a client is
from startuntil afterloop ...; forth end. Can we get rid of the test?

We can, by taking the left sentinel seriously and always creating it when we crez:
a list; the creation proceduneakeof LINKED_LISTis left as an exercise. We replace
first_elemenby a referenceeroth_elemerto the sentinel:

Cursor list _ count 5
representation index 3
(revised variank active
previous —]
zeroth_elemert

before after

The propertieszeroth_element= Void and previous/= Void will be part of the
invariant (you must of course make sure that the creation procedure ensures them). T
are precious since they will save many repeated tests.

Procedurédorth, given here after the newvart, is simpler and faster (no test!):
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startis
-- Move cursor to first position.
do
) zeroth_element
index:=1 _ _
previous:= zeroth_element previous active
active:= previousright ¢ ¢
ensure right
moved_to_firs index=1 . -‘
empty_conventic emptyimplies after
previous_is_zero: previous= zeroth_element
end
forthis
-- Move cursor to next position.
-- (Version revised for efficiency; no test!)
require
not_afte: not after . .
o - previous active

index:= index + 1 RR
previous:= active right
active:= active right m

ensure
moved_by or: index=old index + 1
end

It is convenient to defingo_beforewhich paositions the cursor on the left sentinel:

go_beforeis

-- Move cursolbefore. .
g previous
0 zeroth_element

index:=0 ‘/ active
previous:= zeroth_element right
active:= zeroth_element ‘ -‘

ensure
before: before
previous_is_zero: previous= zeroth_element
previous_is_activ: active= previous

end

Procedurego is entirely defined in terms go_beforeandforth:
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ExerciseE23.7,
page 807

go(i: INTEGER s
-- Move cursor to-th position.
require
not_offlefti >=0
not_offright i <= count + 1

do
from
if i <indexthen go_beforeend
invariant index<=i variant i — indexuntil index=i loop
forth
end
ensure
moved_thereindex=i
end

Note the care exercised in avoiding useless traversal steps the only one of
procedures seen so far that needs a loop. For symmetry we shotildsidavhich brings
the cursor to the last position and can be implemented agdésbunt + 1).

Although not really indispensable, it is convenient (Shopping List principle!) tc
exportgo_before Then for symmetry we should also include and exporafte; which
doesgo (count + 1), and export it.

Also for symmetry i$ack usinggo's loop:

backis
-- Move cursor to previous position.

require

not_beforenot before
do

checkindex — 1>=0end

go (index — 1
ensure

index=old index — 1
end

However pleasing, the symmetry betwéentkandforth is not without danger, since
it may lead client authors to use both procedures freely even thmughwhich has to
restart from the beginning of the list and perfarrdex — literations offorth, is much
more expensive. If you perform anything more than a few occadien&lthe one-way
linked list is inappropriate; you can for example use two-way linked lists. Th
corresponding class may be built as an helrlldKED _LIST(a valid use of inheritance,
since a list linked both ways is also linked one way) and is left as an exercise. Make s
to do this exercise at some stage if you want to reach a full mastery of the concepts.

The earlier invariant clauses, as noted, were implementation-independent. Here
a few more clauses capturing some of what we have learned about our implementatio
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empt = (zeroth_elemenright = Void) The first set of clauses
was on pag78t.

zeroth_elemer/= Void; previous/= Void

(active= Voic) = after; (active= previou: = before
(not before) implies (previousright = active)

(previous= zeroth_eleme) = (beforeor is_firsi)
is_last= ((active/= Void) and then (activeright = Void))
Most of the queries are straightforwabeforeshould return the boolean value of
(index= 0) andafter that of(index= count + 1). The element at cursor position is given by
item: Gis
-- Value of element at cursor position
require
readable¢ readable
do
Result:= activeitem
end

Proceduresearct is similar togo and left to the reader. You should also write the
procedurd_th (i: INTEGEF) which returns the value of the element at posii; although
concrete side effects are acceptable, be sure not to introduce any abstract side effect.

The last category of features includes procedures for insertion and deletion. The
basic deletion operation is:

remove is
-- Delete element at cursor position and move cursor to its right neighbor.
-- (If no right neighbor, list becomaatfter).
require
readable readable previous  active

do
active:= active right i
previousput_right(active)

count:=count— 1

ensure
same_inde: index= old index
one_less_eleme: count=old count — 1
empty_implies_aftc emptyimplies after

end

The routine looks trivial; but this is only thanks to the technique of keeping the left
sentinel around as a physical object, avoiding constant tests of thprevious/= Void
andfirst_elemen/= Void. It is worth considering the more complicated and less efficient
routine body that we would have obtained without this simplification:
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Warning: rejected
version!

ExerciseE23.9,
page 808

Skip to“SELEC-
TIVE EXPORTS”,
23.5, page 796

active:= activeright
if previous/= Voidthen previousput_right(active end
count:=count — 1
if count= 0then
first_element= Void
elseifindex= 1then
first_element= active
-- elsefirst_elemendoes not change
end

In either case, the more you can express in assertions, the better you will underst
what is going on and avoid mistakes.

You should exercise your understanding of these techniques by writing the inserti
procedureput_leftandput_right

Abstract data types and abstract machines

The notion of active data structure is widely applicable and in line with earlier principle
of this chapter, Command-Query Separation in particular. Giving data structures
explicit state often yields simple, easy to document interfaces.

One might fear that the resulting structures would become less abstract, but thi:
not the case. Abstract does not mean passive. What the theory of abstract data types
us is that our objects should be known through abstract descriptions of the applica
operations and their properties; but this does not imply treating them as mere reposito
of data. By introducing a state and operations on that state, we actually make the abst
data type specification richer as it has more functions and more properties. The state it
is a pure abstraction, always accessed indirectly through commands and queries.

The view of objects as state machines reflects abstract data types which are m
imperative not less abstract.

Separating the state

Itis possible to take the preceding techniques further. So far the cursor was just a conc
implemented indirectly through attributpsevious activeandindexrather than directly
through one of the classes of the software. We can define a ClaBSORwith
descendants for various kinds of cursor structure. Then we can separate, for a struc
such as a list, the attributes that describe the list contentstli elementoun) from the
traversal-related attributes, which will be stored in cursor objects.

Although we do not need to pursue this idea here, it is useful to note its possil
application to a concurrent context. If a number of clients need to access a shared struc
they can each have their own cursors.

Merging the list and the sentinels

(This section describes an advanced optimization and may be skipped on first readinc
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The example of linked lists with the sentinels can benefit from one more
optimization, which has indeed been applied to the latest versions of the ISE libraries. We
will only take a peek at it because it is of a specialized nature and not relevant to normal
application development. Such delicate optimizations should only be considered for
widely used reusable components. (In other words: do not try this at home.)

Can we get the benefit of sentinels without wasting the corresponding space? As
noted upon the introduction of the sentinel concept, we could treat the sentinels as
fictitious; but then we would lose the crucial optimization which has enabled us to write
the body offorth as just

index:= index + 1
previous:= active
active:= active right

without the expensive tests of the earlier versions. We avoid these tests by making sure
that, for a list in norafter state active is never void (the corresponding invariant clause is
(active= Voic) = after); this is because we always have a real cell, the sentinel, available
to serve as initialization fcactive, even for an empty list.

For a routine other thaforth, the optimization would not be such a big deal. But
forth, as noted, is the bread and butter of list processing by clients, resulting from the
sequential nature of the lists; typical usage is of the form

from your_list.startuntil your_list.afterloop ...; your_list.forth end

and it is not uncommon, if you use a profiler tool to measure what happens during
execution, to discover that the computation spends a good part of its tforth. So it

pays to optimize it, and the test-free form above indeed provides a dramatic improvement
over the test-full one.

To get this time improvement, however, we pay a space penalty: each list now has
an extra element, with no actual information. This would seem to cause a problem only if
we have many short lists. But the problem can become more serious:

* In many cases, as hinted earlier, you will need two-way linked lists, fully symmetric,
with BI_LINKABLE elements chained both ways. CLTWO_WAY_LIS (which,
by the way, may be written as inheriting twice fr(LINKED_LIST, relying on
repeated inheritance techniques) will need both a left and a right sentinel elements.

TWO_WAY _ TRE, providing a convenient doubly-linked representation of treelements’, page 5.5
Building on ideas developed in the presentation of multiple inheritance, this class

merges the notion of node and tree; it inherits from ITWO_WAY_LISand

Bl LINKABLE. But then every node is a list, a two-way one at that, and may have

to carry both sentinels.

Although there are other ways to solve the second case — such as renouncing the
inheritance structure — let us see if we can get the best of all worlds.
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first_element
appeared among
others in the figures
of page786

Header as
sentinel (non-
empty list)

Header as
sentinel
(empty list)

To find a solution let us ask an impertinent question. In the structure

List header
(Instance ofLINKED_LIST)

zeroth_elemer |

Sentinel { _
(Instance of right

LINKABLE) @D-» .. Useful list elements..

do we really neetwo bookkeeping-only objects? The truly useful information is in the
part not shown on the figure, the actual list elements; to manage them we have added
a list header and a sentinel — two sentinels in the case of a two-way list. For long lists
are able to ignore this bloated bookkeeping structure, like a large company that |
accumulated many layers of middle management in times of economic prosperity; |
when the going gets tough it is time to take a closer look and see if we cannot merge a
of these management functions.

Can we indeed make the list heaitseli play the role of sentinel? It turns out we
can. All that sLINKABLE needs is aiiterr field and aright field. For a sentinel, in fact,
only theright field. That field denotes the first of the list elements; so if we put it in the
list header it will play the same role as what used to be cfirst_elemer in the first
variant of the sentinel implementation. The problem, of course, wasfirst_element
could be void, for an empty list, polluting all our algorithms with tests of the if before
then... We certainly do not want to go back to that situation. But we can keep tf
representation of the figure at the top of this page as the conceptual model, while get
rid of the sentinel object in the implementation. The concrete picture becomes

List header and sentinel
first el t (Instance ofLINKED LISTandLINKABLE)
irst_elemen N

(also plays the role ofght) \
... Useful list elements..

The key to understanding this solution and getting things right is to remember tt
this solution is exactly the same conceptually as the last one, but rezeroth_element
by a reference to the list header itsCurrentin classLINKED _LIST), usingdfirst_element
to represent what used tozeroth_elemenright (possibly void, but always defined since
zeroth_eleme was never void). We still need a convention for the empty list, with nc
“Useful list elements”; in that case the last figure becomes

first_element \Q

(No useful list elements)
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with a simple convention: attachinfgst elementback to the list header itself. This
way first_elemenwill never be void — our crucial goal for keeping everything simple;
we must just remember to replace, everywhere in dldsEED LIST, any test of the
form zeroth_elementight by first_element Current

We keep all the desirable invariant clauses of the previous sentinel versions:

previous/= Void

(active= Void) = after, (active= previou$ = before

(not beforg implies (previousright = active

is_last= ((active/= Void) and then (activeright = Void))

The clauses involvingeroth _elemenwhich used to be

zeroth_element Void
empty= (zeroth_elementight = Void)
(previous= zeroth_elemeht (beforeor is_first)

now vyield:

first_elemen{= Void
empty= (first_element Curren
(previous= Curreni) = (beforeor is_ first)

All this is obtained simply (fasten your seat belts) by making<KED LISTinherit
from LINKABLE

classLINKED_LIST[G] inherit
LINKABLE[G]
renameright asfirst_elementput_rightasset_first_elemergnd
... Rest of class as before, with the removatebth_elemeras shown above.

Is it a kludge to leLINKED LISTinherit fromLINKABLE? Not at all! The whole
idea was to merge the notions of list header and sentinel, that is to say, to consider a list
header (an instance bfNKED _LIST) as a linkable too; so we have a perfect example of
the “is-a” relation of inheritance. We have decided to treat e&fKED LISTas a
LINKABLE, so inheritance is the proper way to go. Here the client relation is not even in
the race: not only would it not yield what we want, the removal of extra fat from our
structures; it woulcadd even more fields to our objects!

Make sure your seat belts are still securely fastened as we start considering what
happens lower in the inheritance structuf@l LINKABLE inherits twice from
LINKABLE. ClassTWO_WAY _LISinherits fromLINKED_LIST(once, or possibly twice
depending on the implementation technique that we choose) and, in line with the
technique just seen, froll_LINKABLE With all the repeated inheritance involved one
might think that things would get out of hand and that our structures would start getting
all kinds of unnecessary fields; but no, the rules on sharing and replication in repeated
inheritance enable us to get exactly what we want.
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“SELECTIVE
EXPORTS AND
INFORMATION HID-
ING”, 7.8, page 191

The last step isTWO_WAY_TRE which, for good measure, inherits from both
TWO_WAY LIS andBI_LINKABLE. Enough, one might think, for a few heart attacks,
but no; everything falls nicely into place. We get all the features we want, none of t
features we do notwant; all the sentinels are in place — conceptually — forth, back
and all the consequent loops can be as fast as they need to be; and the sentinels do nc
up any space at all.

This is indeed the scheme now applied to the affected classes in the Base librar
Before we recover from the flight, a few observations are in order:

e Under no circumstance should this kind of work, involving tricky data structure
manipulation, be undertaken without the full benefit of assertions. It is simpl
impossible to get them right without stating the invariant precisely, and checking th
everything remains compatible with it.

« The machinery of repeated inheritance is essential. Without the techniqu
introduced by the notation of this book to enable a repeated descendant to obt
sharing or replication on a feature-by-feature basis, based on the simple criterion
feature names, it is impossible to handle effectively any situation involving seriot
use of repeated inheritance.

* To repeat the most important comment: such delicate optimizations are only wol
considering in heavily used libraries of general-purpose reusable components.
normal application development, they are just too hairy to be worthwhile. Th
discussion has been included here to give the reader a glimpse of what it takes to ¢
professional components all the way to the end; but most developments w
happily, never have to undertake such efforts.

23.5 SELECTIVE EXPORTS

The relationship between classelINKABLE and LINKED_LIST illustrates the
importance, for a satisfactory application of the rule of Information Hiding, of supportin
more than just two export modes, secret and generally available, for a feature.

ClassLINKABLEshould not make its features item, right, make, put, put_right—
generally available, since most clients have no business peeking into linkables, and she
only use linked lists. But it cannot make them secret, for that would hide them fro
LINKED_LIST, their intended beneficiary. Such calls active right, essential to the
operation offorth and othe LINKED LISTroutines, would not be possible.

Selective exports provide the solution by enablLINKABLE to select a set of
classes to which, and to which only, it will export its features:

class
LINKABLE[G]
feature {LINKED_LIST}
item: G
right: LINKABLE[G]
etc.
end -- classLINKABLE
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Remember that this makes the features available to all descendd INKED _
LIST, as is indispensable if they need to redefine some inherited routines or add their own.

Sometimes, as we saw in an earlier chapter, a class must export a feature seleExporting to your-
to itself. For example the heBI LINKABLE of LINKABLE, describing two-way linked self”, page 19:3
lists with a fieldleft, includes an invariant clause of the form

(left /= Voic) implies (left.right = Curren)

requiringright to be declared in a claufeature {... Other classe..., Bl_LINKABLE};
otherwise the caleft.right would be invalid.

Selective export clauses are essential when a group of related clal. INKABLE
andLINKED_LIST here, need some of each other’s features for their implementations,
although these features remain private to the group and should not be made available to
other classes.

A reminder: in a discussion of an earlier chapter we saw that selective exports are a key The architectural

requirement for the decentralized architectures of object-oriented software construction. role of selective
exports”, page 209

23.6 DEALING WITH ABNORMAL CASES

Our next interface design topic is a problem that affects every software development: how
to handle cases that deviate from the normal, desired schemes.

Whether due to errors made by the system’s users, to abnormal conditions in the
operating environment, to irregular input data, to hardware malfunction, to operating
system bugs or to incorrect behavior of other modules, special cases are the scourge of
developers. The necessity to account for all possible situations, erroneous user input,
failures of the hardware or of the operating system, and other modules’ possibly improper
processing, is a powerful impediment in the constant battle against software complexity.

This problem strongly affects the design of module interfaces What software
developer has not wished that it would just go away? Then we could write clear, elegant
algorithms for normal cases, and rely on external mechanisms to take care of all the others.
Much of the hope placed in exception mechanisms results from this dream. In Ada, for
example, you may deal with an abnormal case by writing something like

if some_abnormal_situation_detec then
raise some_excepticn

end;

“Go on with normal processing”

where execution of thraise instruction stops the execution of the current routine or block
and transfers control to an “exception handler” written in one of the direct or indirect
callers. But this is a control structure, not a method for dealing with abnormal cases. In the
end you still have to decide what to do in these cases: is it possible to correct the situation?
If so, how, and what should the system do next? If not, how quickly and gracefully can
you terminate the execution?
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Chapter1Z. We saw in an earlier chapter that a disciplined exception mechanism fits well wi
the rest of the object-oriented approach and in particular with the notion of Design |
Contract. But not all special cases justify resorting to exceptions. The design techniqt
that we will now examine are perhaps less impressive at first — “low-tech” might be
good characterization — but they are remarkably powerful and address many of 1
possible practical situations. After studying them we will review the cases in whic
exceptions remain indispensable.

The a priori scheme

Perhaps the most important criterion in dealing with abnormal cases at the mod
interface level is specification. If you know exactly what inputs each software element
prepared to accept, and what guarantees it ensures in return, half the battle is won.

“Zen and the art of soft- This idea was developed in depth as part of the study of Design by Contract. We s
ware reliabilty:guar- jn particular that, contrary to conventional wisdom, one does not obtain reliability b
anteeing more by includi ibl dund hecks. but b _ .

checking less”, page  INcluding many possible redun antc ecks, ut y assigning every consistency constr
nar to the responsibility of just one class, either the client or the supplier.

Including the constraint in a routine precondition means assigning it to the client
The precondition expresses what is required to make the routine’s operation possible:

operation(x: ...) is
require
precondition(x)
do
... Code that will only work if precondition is m...
end

The precondition should, whenever possible, be complete, in the sense
guaranteeing that any call satisfying will succeed. If so, there are two ways to write t
corresponding client extracts. One is to test explicitly:

if precondition(y) then

operation(y)
else

... Appropriate alternate actic...
end

(For brevity this example uses an unqualified call, but of course most calls will be of t
qualified form z.operation (y).) The other possibility avoids thif...then...else by
ensuring that the context leading to the call ensures the precondition:
... Some instructions that, among other possible effects, eprecondition(y) ...
check precondition(y) end

Oncheck see'AN operation(y)
ASSERTION _ _ o _
INSTRUCTION”, As shown here and in many other examples throughout this book, it is desirable

11.11, page 3.9 this case to include check instruction, with two benefits: making it immediately clear,
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for the reader of the software text, that you did not forget the precondition but instead
checked that it would hold; and, in case your deduction was wrong, facilitating debugging
when the software is executed with assertion monitoring on. (If you do not remember the
details of thecheck instruction, make sure to re-read the corresponding section now.)

Such use of a precondition, which the client has to ensure beforehand — either by
testing for it as irif precondition(y) ..., or by relying on other instructions —, may be
called the a priori scheme: the client is asked to take advance measures to avoid any error.

With the a priori scheme, any remaining run-time failure signals a design error — a
client not abiding by the rules. Then the only long-term solution is to correct the error,
although we have seen that for mission-critical systemsiitis possible to devise software-fault-
tolerant solutions which, on assertion violation, will attempt partial recovery thretry .

Obstacles to the a priori scheme

Because of its simplicity and clarity, the a priori scheme is ideal in principle. Three
reasons, however, prevent it from being universally applicable:

Al « Efficiency considerations make it impractical in some cases to test for the
precondition before a call.

A2 « Limitations of practical assertion languages imply that some of the assertions of
interest cannot be expressed formally.

A3 « Finally, some of the conditions required for the successful execution of a routine
depend on external events and are not assertions at all.

An example of casAl, from numerical computation, is a linear equation solver. A
function for solving an equation of the foa x= b, wherea is a matrix, an (the unknown)
andb are vectors, might take the following form in an appropriately desMATRIXclass:

inverse(b: VECTOR: VECTOR

so that a particular equation will be solvedx:= a.inverse(b). A unique solution only
exists if the matrix is not “singular”. (Singularity mans that one of the rows is a linear
combination of others or, equivalently, that the determinant is zero.) We could make non-
singularity the precondition dnverse, requiring client calls to be of the form

if a.singularthen

... Appropriate error actio...
else

X := a.inverse(b)
end

This technique works but is very inefficient: determining whether a matrix is
singular is essentially the same operation as solving the associated linear equation.
Standard algorithms (Gaussian elimination) will at each step compute a divisor, called the
pivot; if the pivot found at some step is zero or below a certain threshold, this shows that
the matrix was singular. This result is obtained as a byproduct of the equation-solving
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algorithm; to obtain it separately would take almost as much computation time as
execute the entire algorithm. So doing the job in two steps — first finding out whether t
matrix is singular, and then, if it is not, computing the solution — is a waste of effort.

Examples 0A2 include cases in which the precondition is a global property of a dat
structure and would need to be expressed with quantifiers, for example the requirem
that a graph contain no cycles or that a list be sorted. Our notation does not support |
As noted, we can usually rely on such assertions using functions; but then we might
back in castAl, as the precondition can be too costly to check before every call.

Finally, limitation A3 arises when it is impossible to test the applicability of the
operation without attempting to execute it, because interaction with the outside world
a human user, a communication line, a file system — is involved.

The a posteriori scheme

When the a priori scheme does not work, a sina posterior scheme is sometimes
possible. The idea is to try the operation first and then find out how it went; this will wor
if a failed attempt has no irrecoverable consequences.

The matrix equation problem provides a good example. With an a posteriori schen
client code will now be of the form

a.invert(b)
if a.invertedthen
X = a.inverse
else
... Appropriate error actio...
end

Functioninverse has been replaced by a procecinveri, for which a more accurate
name might battempt_to_inve. A call to this procedure sets the attribinvertecto true
or false to indicate whether a solution was found; if it was, the procedure makes t
solution itself available through attribLinverse. (An invariant clause in the matrix class
may state theinverted= (inverse/= Void).)

With this method, any function that may produce an error condition is transforme
into a procedure, the result being accessible, if it exists, through an attribute set by
procedure. To save space you may use a once function rather than an attribute if at 1
one answer is needed at any time.

This also works for input operations. For example a “read” function that may fail i
better expressed as a procedure that attempts to read, and two attributes, one boc
indicating whether the operation succeeded and the other yielding the value read if ar

This technique, as you will have noted, is in line with the Command-Quer
Separation principle. A function that may fail to compute its intended result is not sid
effect-free, and so is better decomposed into a procedure that attempts to compute
value and two queries (functions or attributes), one to ascertain success and the oth
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yield the value in case of success. The technique is also consistent with the idea of objects
as machines, whose state can be changed by commands and accessed by queries.

The example of input functions is typical of cases that can benefit from this scheme.
Most of the read functions provided by programming languages or the associated libraries
are of the form “next integer”, “next string” etc., requiring the client to state in advance
the type of the element to be read. Inevitably, they will fail when the actual input does not
match the expectation. A read procedure, on the other hand, can attempt to read the next
input item without any preconception of what it will be, and then return information about
its type through one of the queries available to clients.

This example highlights one of the constant rules for dealing with failure: whenever
available, a method for engineering out failures is preferable to methods for recovering
from failures.

The role of an exception mechanism

The preceding discussion has shown that in most cases methods based on standard control
structures, principally essentially conditional instructions, are adequate for dealing with
abnormal cases. Although the a priori scheme is not always practical, it is often possible
to check success after attempting an operation.

There remain, however, cases in which both a priori and a posteriori techniques are
inadequate. The above discussion leaves only three categories of such cases:

« Some abnormal events such as numerical failure or memory exhaustion can lead to
preemptive action by the hardware or operating system, such as raising an exception
and, unless the software catches the exception, terminating execution abruptly. This
is often intolerable, especially in systems with continuous availability requirements
(think of telephone switches and many medical systems).

« Some abnormal situations, although not detectable through a precondition, must be
diagnosed at the earliest possible time; the operation must not be allowed to run to
completion (for a posteriori checking) because it could lead to disastrous
consequences, such as destroying the integrity of a database or even endanger human
lives, as in a robot control system.

« Finally, the developer may wish to include some form of protection against the <y wn-time moni-
catastrophic consequences of any remaining errors in the software; this is the toring?”, page 39
exceptions for software fault tolerance.

In such cases, exception-based techniques appear necessary. The orderly exchapiernz.
mechanism presented in an earlier chapter provides the appropriate tools.



§23.7 CLASS EVOLUTION: THE OBSOLETE CLAUSE 803

23.7 CLASS EVOLUTION: THE OBSOLETE CLAUSE

We try to make our classes perfect. All the techniques accumulated in this discussion t
towards that goal — unreachable, of course, but useful as an ever present ideal.

Unfortunately (with no intention of offending the reader) we are not ourselve
perfect. What happens if, after a few months or a few years, we realize that some of
interface of a class could have been designed better? The dilemma is not pleasant:

TherealHugo quote  « Favor the current users: this will mean continuing to live with an obsolete desic
is about Libert/ whose unpleasant effects will be felt more and more sorely as time passes. Thi
known in the computer industry upward compatibilit. Compatibility, how many
crimes have been committed in thy name! (as Victor Hugo almost wrote).
According to Unix folklore, one of the less pleasant conventions of the Make
tool, which has bothered quite a few novice users, was detected not too long
after the first release. Since it implied a language change and the
inconvenience was not a show-stopper, the decision was made to let things
stand so as not to disturb the user community. The Make user community, at
that time, must have included a dozen or two people at Bell Laboratories.
« Favor the future users: you cause trouble to the current ones, whose only sin wa
trust you too early.

Sometimes — but sometimes only — there is a way out. We introduce into ol
notation the concept wbsolete featuresanc obsolete classt. Here is an example of
obsolete routine:

enter(i: INTEGEF; v: G) is

obsolete"Use put (value, indey) instead”
require
correct_index(i)
do
put (v, i)
ensure
entry (i) = v
end

This is a real example, although no longer current. Here is the context. Early in t
evolution of the Base libraries, we realized that the names and conventions were
systematic enough; this is when the principles of style developed in c 2€ of this book
were codified. They entailed in particular using the ngut rather tharente for the
procedure that replaces an array element itemrather tharentry for the corresponding
query) and, to make things worse, reversing the order of arguments, for compatibility w
features of other classes in the library.

The above declaration smoothes out the evolution. Note how the old feente,,
has a new implementation, relying on the new feaiput; you should normally use this
scheme when making a feature obsolete, to avoid carrying along two competi
implementations with the resulting reliability and extendibility risks.

What are the consequences of making a feature obsolete? Not much in practice.
tools of the environment must recognize this property, and output the correspondi
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warnings when a client system uses the class. The compiler, in particular, will output a
message, which includes the string that has been included after the keobsolete,

such asUseput (value, indey) insteacin our example. That is all. The feature otherwise
continues to be normally usable.

Similar syntax enables you to declare an entire class as obsolete.

What you are providing your client developers, then, is a migration path. By telling
them that a feature will be removed, you encourage them to adapt their software; but you
are not putting a knife to their throat. If the change is justified — as it should be — users
of the class will not resent having to update their part; whatasagptable is, when they
receive a new version, to be forced to do all the changes immediately. Given a little time,
they will readily comply.

In practice, the migration period should be bounded. At the next major release — a
few months later, a year at most — you should remove the obsolete features and classes
for good. Otherwise no one will take obsolescence warnings seriously. This is why the
example was mentioned above as “no longer curreentel and entry were removed
several years ago. But in their short lives they helped keep more than one developer happy.

Feature and class obsolescence only solve a specific problem. The commentSeeThe module
when we discussed the Open-Closed principle and how inheritance enables you tcV€W'. page 49,
a parent’s design without disturbing the original is fully applicable here: when a desiy.. ..
flawec, the only reasonable approach is to correct it, while making your best efforts to help
current users make the transition. Neither inheritance-cum-redefinition nor obsolescence
should serve as cover-ups for bugs in existing software. But obsolescence is precious
when the original design, while satisfactory in other respects, does not conform to your
current views; it typically resulted from a narrower and less clear perspective than what
you have gained now. Although there was nothing fundamentally wrong with the old
design, you can do better: simpler interfaces, better consistency with the rest of the
software, interoperability with other products, better naming conventions. In such cases,
making a few features and classes obsolete is a remarkable way to protect the investment
of your current users while moving ahead to an ever brighter future.

23.8 DOCUMENTING A CLASS AND A SYSTEM

Having mastered the most advanced techniques of class interface design, you build a set
of great classes. To achieve the success they deserve, they will need good interface
documentation. We have seen the basic documentation tool: the short form and its variant
the flat-short form. Let us summarize their use and examine a complementary mechanism

that works on entire systems rather than just classes. _
See‘Using asser-

Mentions of the short form in this discussion will encompass the flat-short forr?on_stfr?rdﬁcutf?ema'
well. The difference between the two, as you will remember, is that the flat-short ()I(f)g.claesss" %rag%rm
takes inherited features into account, whereas the plain short form only relies c39¢, and“The flat-
immediate features introduced in the class itself. In most practical cases, the flatzf)l?rt form”, page

form is what client authors will need. <
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See the “common

misunderstanding”

cited on pag2.

“Self-Documenta-
tion”, page 5«

Chapter26.

Showing the interface

The short form directly applies the rule of Information Hiding by removing all secre
information from client view. Secret information includes:

< Any non-exported feature and anything having to do with it (for example, a clau:
of an assertion which refers to the feature).

¢ Any routine implementation, as given by ido ... clause.

What remains is abstract information about the class, providing authors of clie
classes, current or prospective, with the implementation-independent description that tl
need to use it effectively.

Remember that the purpose is abstraction, not protection. We do not necessarily wish to
prevent client authors from accessing secret class elements; we wish to relieve them from
having to do so. By separating function from implementation, information hiding
decreases the amount of information to be mastered; client authors should view it as help
rather than hindrance.

The short form avoids the technique (supported, without assertions, by Ad
Modula-2 and Java) of writing separate and partially redundant module interfaces, as
can mean trouble for evolution; as always in software engineering, repetition bree
inconsistency. Instead it puts everything into the class and relies on computer tools
extract abstract information.

The underlying principle was introduced at the beginning of this book: try to mak
the software as self-documenting as possible. In this effort, judiciously chosen asserti
will play a fundamental part. Examining the examples of this chapter and constructi
their short forms (at least mentally) should provide clear enough evidence.

To help the short form deliver the best possible results, you should keep it in mi
when writing your classes, and apply the following principle:

Documentation principle

Try to write the software so that it includes all the elements needed for its
documentation, recognizable by the tools that are available to extract
documentation elements automatically at various levels of abstraction

This simply translates the more general Self-Documentation principle into
practical rule to be applied day to day by developers. Particularly important will be:

* Well-designed preconditions, postconditions and invariants.
e Careful choice of names for both classes and features.
 Informative indexing clauses.

The chapter on style will give precise guidelines on the last two points.
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System-level documentation

Theshort andflat-short tools, when applied to software developed according to the rules

developed in this book (assertions, Design by Contract, information hiding, clear and
systematic naming conventions, header comments etc.) apply the Documentation
principle at the module level. There is also a need for higher-level documentation —
documentation on an entire system, or one of its subsystems — applying the same
principle. But here textual output, although necessary, is not sufficient. To grasp the
organization of a possibly complex system, you will want graphical descriptions.

The Case tool of ISE’'s environment, based on Business Object Notation concepts,
provides such system views, as illustrated below for a session devoted to reverse-
engineering of the Base libraries.
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Although further details fall beyond the scope of this discussion, we may not

A system
architecture
diagram

€SeeM 1995c]

the tool supports the exploration of large systems through zooming, unzooming and
abstraction mechanisms such as the ability to focus on a cluster (subsystem) or one of its
subclusters as well as the entire system; also, it combines graphical views, essential to
provide a general glimpse of an architecture, with textual information about the
components of a system, dictionaries of abstractions etc.

All these tools are applications of the Documentation principle, tending towards the
production of software which, thanks to carefully designed notations and with the help of
advanced environments, should get us ever closer to the ideal of self-documentation.
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23.9 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

¢ A class should be known by its interface, which specifies the services offer
independently of their implementation.

e Class designers should strive for simple, coherent interfaces.

* One of the key issues in designing modules is which features should be exported,
which should remain secret.

e The design of reusable modules is not necessarily right the first time, but tl
interface should stabilize after some use. If not, there is a flaw in the way tt
interface was designed. The mechanisnobsolete features and classes makes it
possible to smooth over the transition to a better design.

* |t is often fruitful to treat some data structures as active machines, with an interr
state remembered from one feature call to the next.

* Proper use of assertions (preconditions, postconditions, invariants) is essential
documenting interfaces.

« Abnormal situations are best dealt with through standard control structures, eitt
through the a priori scheme, which checks applicability before calling an operatio
or through the a posteriori scheme, which attempts the operation and then exami
whether it has succeeded. A disciplined exception mechanism remains necessar
cases when execution must immediately cancel a potential dangerous operation.

23.10 BIBLIOGRAPHICAL NOTES

The work of Parna[Parnas 197:[Parnas 1972:introduced many seminal ideas on the
design of interfaces.

The operand-option distinction, and the resulting principle, come [M 1982a.

The notion of “active data structure” is supported in some programming languag
by control abstractions called iterators. An iterator is a mechanism defined together w
a data structure, which describes how to apply an arbitrary operation to every elemen
an instance of the data structure. For example, an iterator associated with a list descr
a looping mechanism for traversing the list, applying a given operation to every li
element; a tree iterator specifies a tree traversal strategy. Iterators are available in
programmin(languag CLU [Liskov 1981 [Liskov 1986 contains a detailed discussion
of the concept. In object technology, we can implement iterators through classes rat
than predefine them as language constructg{M 1994a, whichapplies to library design
a number of ideas from the present chapter.

The example of the self-adaptive complex number implementation comes fro
[M 1979], where it was expressed in Simula.
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Literate programmin j[Knuth 1984 emphasizes, like this chapter, that programs
should contain their own documentation. Its concepts, however, are quite different from those
of object technology; one of the exercises below invites you to compare the approaches.

Articles by James McKim and Richard Bieli{Bielak 1993, [McKim 1992a]
[McKim 1995] present useful advice on class interface de¢ based on the notion of
Design by Contract.

EXERCISES

E23.1 A function with side effects

The example of component-level memory management for linked lists had a funfunctionfrest
frest that calls a procedurremovefor stacks, and hence produces a side effect on the 'appeared on page
structure. Discuss whether this is acceptable.

E23.2 Operands and options

Examine a class or routine library to which you have access and study its routines to
determine, for each of them, which arguments are operands and which are options.

E23.3 Optional arguments

Some languages, such as Ada, offer the possibility for a routine of having optional
arguments, each with an associated argument keyword; if the keyword is not included, the
argument may be set to a default. Discuss which of the advantages of the Operand
principle this technique retains, and which it fails to ensure.

E23.4 Number ofelements as function

Adapt the definition of clasLINKED_LIST[G] so thaicounis a function rather than an
attribute, the interface of the class being unchanged.

E23.5 Searching in a linked list
Write theLINKED_LISTproceduresearch(x: G), searching for the next occurrencex.f

E23.6 Invariant theorems

Prove the three assertion clauses listed as theorems in the first part of the invariiPage78:.
LINKED_LIST.

E23.7 Two-way lists

Write a class describing two-way linked lists, with the same interfaLINKED LIS,
but more efficient implementations of some operations subac}, go andfinish.
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E23.8 Alternative linked list class design

See[M 1988], sections Devise a variant of the linked list class design using the convention that an empty lis

9.1 and A&.

removeis on page791.

considered botlafter andbefore. (This was the technique used in the first edition of this
book.) Assess it against the approach developed in the present chapter.

E23.9 Insertion in a linked list

Drawing inspiration fronremove, write the procedureput lef andput_righ to insert an
element to the left and right of the cursor position.

E23.10 Grcular lists

Explain why theLINKED LIST class may not be used for circular lists. (Hint: show what
assertions would be violated.) Write a cleCIRCULAR_LINKEIL that implements
circular lists.

E23.11 Side-effect-free input functions

Design a class describing input files, with input operations, without any side-effec
producing functions. Only the class interface (withouido clause describing the routine
implementations, but with the routine headers and any appropriate assertions) is requit

E23.12 Documentation

Discuss, expand and refine the Self-Documentation principle and its variol
developments in this book, considering various kinds of documentation in software a
examining what styles of documentation are appropriate in various circumstances an
various levels of abstraction.

E23.13 Self-documenting software

For references on liter- The approach to self-documenting software advocated in this chapter emphasi
ate programming see terseness and does not readily support long explanations of design decisions. Knu

the bibliographic notes

to this chapte.

Literate programming” style of design combines techniques from programming, writin
and text processing to integrate a program, its complete design documentation anc
design history within a single document. The method relies on a classical paradigm: t
down development of a single program. Starting from Knuth's work, discuss how h
method could be transposed to the object-oriented development of reusable compone
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