
23
Principles of class design
proper
any

tters of

y

 have
 been
roperly
eview
nisms

ich
e
ternal
asy to

 side
 notions
lasses;
 class;

atient
sible to
g at

plied
n of
apter
ula 1
e that
o the
fit all
Experienced software developers know that few issues are more critical than the
design of module interfaces. In a multi-person, or just multi-week software project, m
of the decisions, discussions, disputes and confusions tend to revolve around ma
module interface specification: “Who takes care of making sure that…?”, “But I thought
you only passed me normalized input…”, “Why are you processing this since I alread
took care of it?”.

If there were just one advantage to expect from object technology, this would
to be it. From the outset of this presentation, object-oriented development has
described as an architectural technique for producing systems made of coherent, p
interfaced modules. We have now accumulated enough technical background to r
the design principles through which you can take advantage of the best O-O mecha
to develop modules with attractive interfaces.

In the following pages we will explore a set of class design principles wh
extensive practice has shown to yield quality and durability. Because what determines th
success of a class is how it will look to its clients, the emphasis here is not on the in
implementation of a class but on how to make its interface simple, easy to learn, e
remember, and able to withstand the test of time and change.

We will successively examine: whether functions should be permitted to have
effects; how many arguments a feature should reasonably have, and the associated
of operand and option; whether you should be concerned about the size of your c
making abstract structures active; the role of selective exports; how to document a
how to deal with abnormal cases.

From this discussion will emerge an image of the class designer as a p
craftsman who chisels out and polishes each class to make it as attractive as pos
clients. This spirit of treating classes as carefully engineered products, aimin
perfection from the start and yet always perfectible, is a pervasive quality of well-ap
object technology. For obvious reasons it is particularly visible in the constructio
library classes, and indeed many of the design principles reviewed in this ch
originated in library design; in the same way that successful ideas first tried in Form
racing eventually trickle down to the engineering of cars for the rest of us, a techniqu
has shown its value by surviving the toughest possible test — being applied t
development of a successful library of reusable components — will eventually bene
object-oriented software, whether or not initially intended for reuse.

DESIGNING CLASS INTERFACES§23.1748

signs.
ffect,

s, and
ss the
pes,

ss are
to

query
h run-
to say
o have

g its
ce it is
n only
change

on that

 a
all).

ve no
 to

ul, in
ject

 in the

“Attributes and rou-
tines”, page 173.

“The client’s privi-
leges on an
attribute”, page 206.
23.1 SIDE EFFECTS IN FUNCTIONS

The first question that we must address will have a deep effect on the style of our de
Is it legitimate for functions — routines that return a result — also to produce a side e
that is to say, to change something in their environment?

The gist of the answer is no, but we must first understand the role of side effect
distinguish between good and potentially bad side effects. We must also discu
question in light of all we now know about classes: their filiation from abstract data ty
the notion of abstraction function, and the role of class invariants.

Commands and queries

A few reminders on terminology will be useful. The features that characterize a cla
divided into commands and queries. A command serves to modify objects, a query
return information about objects. A command is implemented as a procedure. A
may be implemented either as an attribute, that is to say by reserving a field in eac
time instance of the class to hold the corresponding value, or as a function, that is
through an algorithm that computes the value when needed. Procedures (which als
an associated algorithm) and functions are together called routines.

The definition of queries does not specify whether in the course of producin
result a query may change objects. For commands, the answer is obviously yes, sin
the role of commands (procedures) to change things. Among queries, the questio
makes sense for functions, since accessing an attribute cannot change anything. A
performed by a function is known as a side effect to indicate that it is ancillary to the
function’s official purpose of answering a query. Should we permit side effects?

Forms of side effect

Let us define precisely what constructs may cause side effects. The basic operati
changes an object is an assignment a := b (or an assignment attempt a ?= b, or a creation
instruction!! a) where the target a is an attribute; execution of this operation will assign
new value to the field of the corresponding object (the target of the current routine c

We only care about such assignments when a is an attribute: if a is a local entity, its
value is only used during an execution of the routine and assignments to it ha
permanent effect; if a is the entity Result denoting the result of the routine, assignments
it help compute that result but have no effect on objects.

Also note that as a result of information hiding principles we have been caref
the design of the object-oriented notation, to avoid any indirect form of ob
modification. In particular, the syntax excludes assignments of the form obj●attr := b,
whose aim has to be achieved through a call obj ● set_attr (b), where the procedure
set_attr(x:…) performs the attribute assignment attr := x.

The attribute assignment that causes a function to produce a side effect may be
function itself, or in another routine that the function calls. Hence the full definition:

§23.1 SIDE EFFECTS IN FUNCTIONS 749

we
es a
tines
t may

oduce
 Such
thing
 to the
ffect

e will
d

s of a
ou
d tell

ature

s, we
ut our
ed the
t talks
 do not
bility

re.

“Introducing a more
imperative view”,
page 145.
(The term “concrete” will be explained below.) In a more fine-tuned definition
would replace the second clause by “A call to a routine that (recursively) produc
concrete side effect”, the definition of side effects being extended to arbitrary rou
rather than just functions. But the above form is preferable in practice even though i
be considered both too strong and too weak:

• The definition seems too strong because any procedure call is considered to pr
a side effect whereas it is possible to write a procedure that changes nothing.
procedures, however, are rarely useful — except if their role is to change some
in the software’s environment, for example printing a page, sending a message
network or moving a robot arm; but then we do want to consider this a side e
even if it does not directly affect an object of the software itself.

• The definition seems too weak because it ignores the case of a function f that calls a
side-effect-producing function g. The convention will simply be that f can still be
considered side-effect-free. This is acceptable because the rule at which w
arrive in this discussion will prohibit all side effects of a certain kind, so we will nee
to certify each function separately.

The advantage of these conventions is that to determine the side-effect statu
function you only need to look at the body of the function itself. It is in fact trivial, if y
have a parser for the language, to write a simple tool that will analyze a function an
you whether it produces a concrete side effect according to the definition.

Referential transparency

Why should we be concerned about side effects in functions? After all it is in the n
of software execution to change things.

The problem is that if we allow functions to change things as well as command
lose many of the simple mathematical properties that enable us to reason abo
software. As noted in the discussion of abstract data types, when we first encounter
distinction between the applicative and the imperative, mathematics is change-free: i
about abstract objects and defines operations on these objects, but the operations
change the objects. (Computing does not change the number two.) This immuta
is the principal difference between the worlds of mathematics and computer softwa

Definition: concrete side effect

A function produces a concrete side effect if its body contains any of the
following:

• An assignment, assignment attempt or creation instruction whose
target is an attribute.

• A procedure call.

2

DESIGNING CLASS INTERFACES§23.1750

ence

g to
ll the

now
or that

me a

ou

us to
alyzed
the

ment)
 able
se of
deeply
longer

sure
rm in
hich

Definition from
“The Free On-Line
Dictionary of Com-
puting”, http://
wombat.

The Swift quotation
was on page 672.

Remember that
Result in an integer
function is initial-
ized to zero.

See [Dijkstra 1968].
Some approaches to programming seek to retain the immutability of mathematics: Lisp
in its so-called “pure” form, “Functional Programming” languages such as Backus’s FP,
and other applicative languages shun change. But they have not caught on for practical
software development, suggesting that change is a fundamental property of software.

The object immutability of mathematics has an important practical consequ
known as referential transparency, a property defined as follows:

If x has value three, we can use x instead of 3, or conversely, in any part of a
referentially transparent expression. (Only Swift’s Laputa academicians were willin
pay the true price of renouncing referential transparency: always carrying around a
things you will ever want to talk about.) As a consequence of the definition, if we k
that x and y have the same value, we can use one interchangeably with the other. F
reason referential transparency is also called “substitutivity of equals for equals”.

With side-effect-producing functions, referential transparency disappears. Assu
class contains the attribute and the function

attr: INTEGER

sneaky: INTEGER is do attr := attr + 1 end

Then the value of sneaky (meaning: of a call to that function) is always 0; but y
cannot use 0 and sneaky interchangeably, since an extract of the form

attr := 0; if attr /= 0 then print ("Something bizarre!") end

will print nothing, but would print Something bizarre! if you replaced 0 by sneaky.

Maintaining referential transparency in expressions is important to enable
reason about our software. One of the central issues of software construction, an
clearly by Dijkstra many years ago, is the difficulty of getting a clear picture of
dynamic behavior (the myriad possible executions of even a simple software ele
from its static description (the text of the element). In this effort it is essential to be
to rely on the proven form of reasoning, provided by mathematics. With the demi
referential transparency, however, we lose basic properties of mathematics, so
rooted in our practice that we may not even be aware of them. For example, it is no
true that n + n is the same thing as 2 ∗ n if n is the sneaky-like function

n: INTEGER is do attr := attr + 1; Result:= attr end

since, with attr initially zero, 2 ∗ n will return 2 whereas n + n will return 3.

By limiting ourselves to functions that do not produce side effects, we will en
that talking about “functions” in software ceases to betray the meaning of this te
ordinary mathematics. We will maintain a clear distinction between commands, w

Definition: referential transparency

An expression e is referentially transparent if it is possible to exchange any
subexpression with its value without changing the value of e.

§23.1 SIDE EFFECTS IN FUNCTIONS 751

ation

n

duce
cts —

le, and
round.

oving
 earlier

 but
uestion
g in the

panel,

The definition of
abstract side effects
appears on page
757.

A list object as
list machine

Object lifecycle pic-
ture: page 366.
change objects but do not directly return results, and queries, which provide inform
about objects but do not change them.

Another way to express this rule informally is to state that asking a question should
not change the answer.

Objects as machines

The following principle expresses the prohibition in more precise terms:

Note that we have only defined concrete side effects so far; for the moment you ca
ignore the difference.

As a result of the principle, only commands (procedures) will be permitted to pro
side effects. (In fact, as noted, we not only permit but expect them to change obje
unlike in applicative, completely side-effect-free approaches.)

The view of objects that emerges from this discussion (a metaphor, to be treated with
care as usual) is that of a machine, with an internal state that is not directly observab
two kinds of button: command buttons, rectangular on the picture, and query buttons,

Pressing a command button is a way to make the machine change state: it starts m
and clicking, then comes back to a new stable state (one of the states shown in the
picture of object lifecycle). You cannot directly see the state — open the machine —
you can press a query button. This does not change the state (remember: asking a q
does not change the answer) but yields a response in the form of a message appearin
display panel at the top; for boolean queries one of the two indicators in the display

Command-Query Separation principle

Functions should not produce abstract side effects.

start forth go put search

item before after index count

DESIGNING CLASS INTERFACES§23.1752

 row,
n the
you get

red in

inted
include

 slot);
tion)
such

of the
ect?

e
 the
tself,

hange
 if we
rom a
times
eation
ing in
eturn

imple
ity.

es of
 C for
just a
 for a
representing true and false, will light up. If you press the button several times in a
without touching the command buttons, you will get the same result each time. If, o
other hand, you push a command button and then a query button, the answer that
will usually be different from what you would have obtained before the command.

Commands as well as queries may take arguments; these are figuratively ente
the slot at the top left.

The figure is based on the example of a list object with the kind of interface h
at in earlier chapters and studied in more detail later in the present one. Commands
start (move the cursor to the first element), forth (advance the cursor one position), search
(move the cursor to the next occurrence of the element entered into the top-left
queries include item (show in the display panel the value of the element at cursor posi
and index (show the current cursor position). Note the difference between a notion
as “cursor”, relative to the internal state and hence not directly visible, and item or index
which provide more abstract, officially exported information about the state.

Functions that create objects

A technical point needs to be clarified before we examine further consequences
Command-Query Separation principle: should we treat object creation as a side eff

The answer is yes, as we have seen, if the target of the creation is an attributa: in
this case, the instruction!! a changes the value of an object’s field. The answer is no if
target is a local entity of the routine. But what if the target is the result of the function i
as in!! Result or the more general form!! Result●make (…)?

Such a creation instruction need not be considered a side effect. It does not c
any existing object and so does not endanger referential transparency (at least
assume that there is enough memory to allocate all the objects we need). F
mathematical perspective we may pretend that all of the objects of interest, for all
past, present and future, are already inscribed in the Great Book of Objects; a cr
instruction is just a way to obtain one of them, but it does not by itself change anyth
the environment. It is common, and legitimate, for a function to create, initialize and r
such an object.

These observations assume that in the second form the creation procedure make does not
produce side effects on any object other than the one being created.

A clean style for class interfaces

From the Command-Query Separation principle follows a style of design that yields s
and readable software, and tremendously helps reliability, reusability and extendibil

As you may have realized, this style is very different from the dominant practic
today, as fostered in particular by the C programming language. The predilection of
side effects — for ignoring the difference between an action and a value — is not
feature of the common C style (it sometimes seems just psychologically impossible
C programmer to resist the temptation, when accessing a value, also to modify it a little in

§23.1 SIDE EFFECTS IN FUNCTIONS 753

read
of the
in the
 was
 some
 the
row
. The
als.

stract
tems,

, find
e its

tion to
sses

the
a
ne
 This
y and

ading

 input
or: a
ly
ntext

chance

s
rt a

about
w of
note.
passing); it is embedded deeply into the language, with such constructs as x++ , meaning:
return the value of x, then increase it by one — saving a few keystrokes in y = x++
compared to y = x; x := x+1, and not to be confused with ++x which increments before
computing the value. A whole civilization, in fact, is built on side effects.

It would be foolish to dismiss this side-effect-full style as thoughtless; its widesp
use shows that many people have found it convenient, and it may even be part
reason for the amazing success of C and its derivatives. But what was attractive
nineteen-seventies and eighties — when the software development population
growing by an order of magnitude every few years, and the emphasis was on getting
kind of job done rather than on long-term quality — may not be appropriate for
software technology of the twenty-first century. There we want software that will g
with us, software that we can understand, explain, maintain, reuse and trust
Command-Query Separation principle is one of the required conditions for these go

Applying a strict separation between commands and queries by prohibiting ab
side effects in functions is particularly appropriate for the development of large sys
where the key to success is to exert full control on every inter-module interaction.

If you have been used to the converse style, you may at first, like many people
the new one too extreme. But after starting to practice it I think you will quickly realiz
benefits.

Quietly, the preceding chapters have already applied Command-Query Separa
its full extent. You may remember for example that the interface for all our stack cla
included a procedure remove describing the operation of popping a stack (removing
top element), and a function or attribute item which yields the top element. The first is
command, the second a query. In other approaches you might have seen a routipop
which both removes the element and returns it — a side-effect-producing function.
example has, I hope, been studied in enough depth to show the gains of clarit
simplicity that we achieve by keeping the two aspects cleanly separated.

Other consequences of the principles may seem more alarming at first. For re
input, many people are used to the style of using functions such as getint — the C name,
but its equivalent exists in many other languages — whose effect is to read a new
element and return its value. This is a side-effect-producing function in all its splend
call to the function, written getint () — with the empty parentheses so unmistakab
characteristic of the C look-and-feel — does not just return a value but affects the co
(“asking a question changes the answer”); as typical consequences, excluding the
case in which the input has two identical consecutive values:

• If you call getint () twice you will get different answers.

• getint () + getint () and 2 ∗ getint () will not yield the same value. (If an overzealou
“optimizing” compiler treats the first expression like the second, you will repo
bug to the compiler vendor, and you will be right.)

In other words, we lose the benefits of referential transparency — of reasoning
software functions as if they were mathematical functions, with a crystal-clear vie
how we can build expressions from them and what values these expressions will de

DESIGNING CLASS INTERFACES§23.1754

e
rsor to

ut the
ects.

s
s
e

udo-
joying

ssive

query
bove

eration
cise,
has not

 is:

dom

wer
ueries;
The Command-Query Separation principle brings referential transparency back. Her
this means that we will distinguish between the procedure that advances the input cu
the next item and the function or attribute that yields the item last read. Assume input is of
type FILE; the instructions to read the next integer from file input will be something like

input● advance
n := input●last_integer

If you call last_integer ten times in a row you will, unlike with getint, get ten times
the same result. If you are new to this style, it may take some getting used to; b
resulting simplicity and clarity will soon remove any temptation to go back to side eff

In this example as in the x++ case seen earlier, the traditional form beats the object-
oriented one if the goal of the game is to minimize keystrokes. This illustrates a general
observation: the productivity gains of object technology will not derive from trying to be
as terse as possible on a microscopic scale (a game at which APL or modern “scripting
languages” such as Perl will always win against a good O-O language). The achievement
are on the global structure of a system: through reuse, through such mechanisms a
genericity and garbage collection, through the use of assertions, you can decrease the siz
of your software by amounts far higher than anything you can achieve by skimping by a
character here or a line there. Keystroke-wise is often system-foolish.

Pseudo-random number generators: a design exercise

An example sometimes quoted in favor of functions with side effects is that of pse
random number generators, which return successive values from a sequence en
adequate statistical properties. The sequence is initialized by a call of the form

random_seed (seed)

where seed is a seed value provided by the client. A common way to get the succe
pseudo-random values is by calling a function:

xx := next_random ()

But here too there is no reason to make an exception to the command/
dichotomy. Before looking at the solution let us just forget that we have seen the a
and restart from scratch by asking the question: how should we handle random gen
in an object-oriented context? This will provide the opportunity of a little design exer
and will enable us, if the need arises, to explain the results to someone whose view
been unduly influenced by pre-O-O approaches.

As always in object technology, the relevant question — often the only one —

What are the data abstractions?

The relevant abstraction here is not “random number generation” or “ran
number generator”, both of them quite functional in nature, focusing on what the system
does rather than what it does it to.

Probing further, we might think “random number”, but that is not the right ans
yet. Remember, a data abstraction is characterized by features — commands and q
it is hard to think of features applicable to “random number”.

§23.1 SIDE EFFECTS IN FUNCTIONS 755

e

ion to

er
 data

nfinite

.

pt

at

n an

ther

ents.

“Discovery and
rejection”, page 725.

An infinite list
as a machine

[M 1994a].
That “random number” leads to a dead end illustrates the Class Elicitation principle
encountered when we studied the general rules for finding the classes: a key step may b
to reject inappropriate candidates. And once again we see that not all promising nouns
yield classes: were a “requirements document” written for this problem, the noun random
number would certainly figure prominently in it.

A random number does not mean much by itself; it must be understood in relat
its predecessors and successors in the sequence.

Wait a minute — here we have it: sequence, more precisely pseudo-random numb
sequence. This is the abstraction we have been looking for; a perfectly legitimate
abstraction, similar to the cursor lists we have seen on a number of occasions, only i
(do not look for an after boolean query!). Features will include:

• Commands: make — initialize with a certain seed; forth — advance to next element

• Queries: item — return the element at cursor position.

To get a new random number sequence rand, clients will use!! rand● make (seed); to
advance to the next value, they will call rand● forth; and they will obtain the current value
by xx := rand● item.

There is really nothing specific to random number sequences in the interface, exce
for the seed argument to the creation procedure. Adding a start procedure which brings
the cursor to the first item (and which make may call for random number sequences), wh
we have is the framework for a deferred class COUNTABLE_SEQUENCE describing
arbitrary infinite sequences. Think for example of how to model prime numbers i
object-oriented way; the answer is the same: define a class PRIMES, an heir to
COUNTABLE_SEQUENCE, whose successive elements are the prime numbers. O
sequences — Fibonacci numbers and the like — will be modeled in the same way.

These examples illustrate in passing that contrary to popular belief it is quite possible, and
even trivial, to represent infinite structures on a computer. Abstract data types provide the
key: a structure is entirely defined by the applicable operations, of which there is of
course a finite number, three in this case — start, forth, item — plus any auxiliary features
we may want to add. The trick, of course, is that any execution will only try to evaluate
a finite number of elements of an infinite structure.

COUNTABLE_SEQUENCE and its heirs such as PRIMES are part of the universal
computing science hierarchy described in the companion guide to reusable compon

forth

item

start

DESIGNING CLASS INTERFACES§23.1756

ncrete
h one
r can
.

the
t
mless

dify
estore
nd the

. The

er in

ect, but
pts in
n of
 by
ory.)

“If it is baroque, fix
it”, page 670.

Pages 376 to 378.
Abstract state, concrete state

From the discussion of referential transparency it would seem desirable to bar all co
side effects from functions. Such a rule would have the advantage that — in line wit
of our methodology precepts — we could build it into the language, since a compile
easily detect concrete side effects (as we saw just after the definition of this notion)

Unfortunately, this would be unacceptably restrictive, explaining why
Command-Query Separation principle only prohibits abstract side effects, a notion tha
will now be defined. The problem is that some concrete side effects are not only har
but necessary. They are of two kinds.

The first category includes functions which, in the course of their execution, mo
the state, sometimes drastically, and affecting very visible features; but then they r
the original state. Consider for example a class describing integer lists with cursor, a
following function for computing the maximum of a list:

max is
-- The highest value of items in the list

require

not empty

local

original_index: INTEGER

do

original_index:= index

from

start; Result:= item

until is_last loop

forth; Result:= Result● max (item)

end

go (original_index)

end

To traverse the list, the algorithm needs to move the cursor over all elements
function, calling such procedures as start, forth and go, is indeed full of concrete side
effects on the cursor position; but it begins by noting the cursor position into original_index
and ends by returning the cursor to that position through a call to go. All is well that ends
well: the function leaves the list in exactly the state in which it found it. But no compil
the world is going to detect that the side effect is only apparent.

Side effects of the second acceptable category may change the state of the obj
only affecting properties that are not visible to clients. To understand the conce
depth, it will be useful to make sure that you are familiar with the discussio
“abstraction function” and “implementation invariants” in the presentation of Design
Contract. (In particular, take a look at the accompanying figures to refresh your mem

§23.1 SIDE EFFECTS IN FUNCTIONS 757

t object.
marker

zes
ct

mless
 same

object
f
 side

e

tions
cenes
nges
al and

f the
t side
face
ss). A
ble to

Figure page 751.
We saw then that an object of our software (a concrete object) is the representation
of an abstract object, and that two concrete objects may represent the same abstrac
For example two different stack representations, each made of an array and a top
count, represent the same stack if they have the same value for count and the same array
elements up to index count. They may differ in other properties, such as the array si
and the values stored at indices above count. In mathematical terms, every concrete obje
belongs to the domain of the abstraction function a, and we can have c1 ≠ c2 even with
a (c1) = a (c2).

What this means for us is that a function that modifies a concrete object is har
if the result of this modification still represents the same abstract object — yields the
a value. For example assume in a function on stacks contains the operation

representation● put (some_value, count + 1)

(with the guarantee that the array’s capacity is at least count + 1). This side effect changes
a value above the stack-significant section of the array; it can do no ill.

More generally, a concrete side effect which changes the concrete state of an
c is an abstract side effect if it also changes its abstract state, that is to say the value o
a (c) (a more directly usable definition of abstract side effects will appear shortly). If a
effect is only concrete — does not affect the abstract state — it is harmless.

In the object-as-machine metaphor, functions producing concrete-only side effects
correspond to query buttons that may produce an internal state change having
absolutely no effect on the answers given by any query button. For example the
machine might save energy by automatically switching off some internal circuits if
nobody presses a button for some time, and turning them on again whenever someon
presses any button, queries included. Such an internal state change is unnoticeable from
the outside and hence legitimate.

The object-oriented approach is particularly favorable to clever implementa
which, when computing a function, may change the concrete state behind the s
without producing any visible side effect. The example of a stack function that cha
array elements above the top is somewhat academic, but we will see below a practic
useful design that relies on this technique.

Since not every class definition is accompanied by a full-fledged specification o
underlying abstract data type, we need a more directly usable definition of “abstrac
effect”. This is not difficult. In practice, the abstract data type is defined by the inter
offered by a class to its clients (expressed for example as the short form of the cla
side effect will affect the abstract object if it changes the result of any query accessi
these clients. Hence the definition:

Definition: abstract side effect

An abstract side effect is a concrete side effect that can change the value of
a non-secret query.

DESIGNING CLASS INTERFACES§23.1758

ciple

s that
to be
 to any
fect,

ncrete
heck
ueries

end
difies

not a

loper
ever
 part
ply the
ls and

e.

ts is
 how
 O-O
 on the

ay. It
t work

 also
ach is
hich

ole set
rs.

he principle
ppears on page 751.
This is the notion used by the Command-Query Separation principle — the prin
that prohibits abstract side effects in functions.

The definition refers to “non-secret” rather than exported queries. The reason i
in-between generally exported and fully secret status, we must permit a query
selectively exported to a set of clients. As soon as a query is non-secret — exported
client other than NONE — we consider that changing its result is an abstract side ef
since the change will be visible to at least some clients.

The policy

As announced at the beginning of this discussion, abstract side effects are (unlike co
side effects) not easily detectable by a compiler. In particular it does not suffice to c
that a function preserves the values of all non-secret attributes: the effect on other q
might be indirect, or (as in the max example) several concrete side effects might in the
cancel out. The most a compiler can do would be to issue a warning if a function mo
an exported attribute.

So the Command-Query Separation principle is a methodological precept,
language constraint. This does not, however, diminish its importance.

Past what for some people will be an initial shock, every object-oriented deve
should apply the principle without exception. I have followed it for years, and would n
write a side-effect-producing function. ISE applies it in all its O-O software (for the C
we have of course to adapt to the dominant style, although even here we try to ap
principle whenever we can). It has helped us produce much better results — too
libraries that we can reuse, explain to others, extend and scale up.

Objections

It is important here two deal with two common objections to the side-effect-free styl

The first has to do with error handling. Sometimes a function with side effec
really a procedure, which in addition to doing its job returns a status code indicating
things went. But there are better ways to do this; roughly speaking, the proper
technique is to enable the client, after an operation on an object, to perform a query
status, represented for example by an attribute of the object, as in

target● some_operation (…)

how_did_it_go:= target● status

Note that the technique of returning a status as function result is lame anyw
transforms a procedure into a function by adding the status as a result; but it does no
if the routine was already a function, which already has a result of its own. It is
problematic if you need more than one status indicator. In such cases the C appro
either to return a “structure” (the equivalent of an object) with several components, w
is getting close to the above scheme, or to use global variables — which raises a wh
of new problems, especially in a large system where many modules can trigger erro

T
a

§23.1 SIDE EFFECTS IN FUNCTIONS 759

and-
 with
of the
e will
Seattle,
.

omic
t

n
eed
ct for
rm

e
ss; for

lusive

e we
, fully
 us

e side
te state,

in an

sy
 counts
ong
e
lar for

Chapter 30.

Chapter 30. See in pa
ticular “Support for
command-query sep
ration”, page 1029.
The second objection is a common misconception: the impression that Comm
Query Separation, for example the list-with-cursor type of interface, is incompatible
concurrent access to objects. That belief is remarkably widespread (this is one
places where I know that, if I am lecturing on these topics, someone in the audienc
raise his hand, and the question will be the same whether we are in Santa Barbara,
Singapore, Sydney, Stockholm or Saint-Petersburg); but it is incorrect nonetheless

The misconception is that in a concurrent context it is essential to have at
access-cum-modification operations, for example get on a buffer — the concurren
equivalent of a first-in, first out queue. Such a get function non-interruptibly performs, in
our terminology, both a call to item (obtain the oldest element) and remove (remove that
element), returning the result of item as the result of get. But using such an example as a
argument for get-style functions with side effects is confusing two notions. What we n
in a concurrent context is a way to offer a client exclusive access to a supplier obje
certain operations. With such a mechanism, we can protect a client extract of the fo

x := buffer●item; buffer●remove

thereby guaranteeing that the buffer element returned by the call to item is indeed the same
one removed by the following call to remove. Whether or not we permit functions to hav
side effects, we will have to provide a mechanism to ensure such exclusive acce
example a client may need to dequeue two elements

buffer●remove; buffer● remove

with the guarantee that the removed elements will be consecutive; this requires exc
access, and is unrelated to the question of side effects in functions.

Later in this book we will have an extensive discussion of concurrency, wher
will study a simple and elegant approach to concurrent and distributed computation
compatible with the Command-Query Separation principle — which in fact will help
arrive at it.

Legitimate side effects: an example

To conclude this discussion of side effects let us examine a typical case of legitimat
effects — functions that do not change the abstract state, but can change the concre
and for good reason. The example is representative of a useful design pattern.

Consider the implementation of complex numbers. As with points, discussed
earlier chapter, two representations are possible: cartesian (by axis coordinates x and y) and
polar (by distance to the origin ρ and angle θ). Which one do we choose? There is no ea
answer. If we take, as usual, the abstract data type approach, we will note that what
is the applicable operations — addition, subtraction, multiplication and division am
others, as well as queries to access x, y, ρ and θ — and that for each of them one of th
representations is definitely better: cartesian for addition, subtraction and such, po
multiplication and division. (Try expressing division in cartesian coordinates!)

r-

a-

DESIGNING CLASS INTERFACES§23.1760

e our
the

his
nt only
t after
on

ch, we

ut we

ey
est
olar,

o

on:

 two
ld be
We could let the client decide what representation to use. But this would mak
classes difficult to use, and violate information hiding: for the client author,
representation should not matter.

Alternatively, we could keep both representations up to date at all times. But t
may cause unnecessary performance penalties. Assume for example that a clie
performs multiplications and divisions. The operations use polar representations, bu
each one of them we must recompute x and y, a useless but expensive computati
involving trigonometric functions.

A better solution is to refuse to choose between the representations a priori, but
update each of them only when we need it. As compared to the preceding approa
do not gain anything in space (since we will still need attributes for each of x, y, ρ and θ,
plus two boolean attributes to tell us which of the representations are up to date); b
avoid wasting computation time.

We may assume the following public operations, among others:

class COMPLEX feature
… Feature declarations for:

infix "+" , infix "–", infix "∗", infix "/" ,

add, subtract, multiply, divide,

x, y, rho, theta, …
end

The queries x, y, rho and theta are exported functions returning real values. Th
are always defined (except theta for the complex number 0) since a client may requ
the x and y of a complex number even if the number is internally represented in p
and its ρ and θ even if it is in cartesian. In addition to the functions "+" etc., we assume
procedures add etc. which modify an object: z1 + z2 is a new complex number equal t
the sum of z1 and z2, whereas the procedure call z1● add (z2) changes z1 to represent that
sum. In practice, we might need only the functions or only the procedures.

Internally, the class includes the following secret attributes for the representati

cartesian_ready: BOOLEAN

polar_ready: BOOLEAN

private_x, private_y, private_rho, private_theta: REAL

Not all of the four real attributes are necessarily up to date at all times; in fact only
need be up to date. More precisely, the following implementation invariant shou
included in the class:

invariant

cartesian_ready or polar_ready

 polar_ready implies (0 <= private_theta and private_theta <= Two_pi)

-- cartesian_ready implies (private_x and private_ y are up to date)

-- polar_ready implies (private_rho and private_theta are up to date)

§23.1 SIDE EFFECTS IN FUNCTIONS 761

ed

n; this
duces

tical
The value of Two_pi is assumed to be 2 π. The last two clauses may only be express
informally, in the form of comments.

At any time at least one of the representations is up to date, although both may be. Any
operation requested by a client will be carried out in the most appropriate representatio
may require computing that representation if it was not up to date. If the operation pro
a (concrete) side effect, the other representation will cease to be up to date.

Two secret procedures are available for carrying out representation changes:

prepare_cartesian is
-- Make cartesian representation available

do
if not cartesian_ready then

check polar_ready end
-- (Because the invariant requires at least one of the
-- two representations to be up to date)

private_x:= private_rho ∗ cos (private_theta)
private_y:= private_rho ∗ sin (private_theta)
cartesian_ready:= True

-- Here both cartesian_ready and polar_ready are true:
-- Both representations are available

end
ensure

cartesian_ready
end

prepare_polar is
-- Make polar representation available

do
if not polar_ready then

check cartesian_ready end
private_rho:= sqrt (private_x ^ 2 + private_y ^ 2)
private_theta:= atan2 (private_y, private_x)
polar_ready:= True

-- Here both cartesian_ready and polar_ready are true:
-- Both representations are available

end
ensure

polar_ready
end

Functions cos, sin, sqrt and atan2 are assumed to be taken from a standard mathema
library; atan2 (y, x) should compute the arc tangent of y / x.

We will also need creation procedures make_cartesian and make_polar:

DESIGNING CLASS INTERFACES§23.1762

 the

ed
) The
make_cartesian (a, b: REAL) is
-- Initialize with abscissa a, ordinate b.

do
private_x:= a; private_ y:= b
cartesian_ready:= True; polar_ready:= False

ensure
cartesian_ready; not polar_ready

end
and symmetrically for make_polar.

The exported operations are easy to write; we can start for example with
procedure variants (we will see the function variants such as infix "+" next):

add (other: COMPLEX) is
-- Add the value of other.

do
prepare_cartesian; polar_ready:= False
private_x:= x + other● x; private_y = y + other● y

ensure
x = old x + other● x; y = old y + other● y

cartesian_ready; not polar_ready
end

(Note the importance in the postcondition of using x and y, not private_x and private_y
which might not have been up to date before the call.)

divide (z: COMPLEX) is
-- Divide by z.

require
z● rho /= 0

-- (To be replaced by a numerically more realistic precondition)
do

prepare_polar; cartesian_ready:= False
private_rho:= rho / other● rho
private_theta = (theta – other●theta) \\ Two_pi

-- Using \\ as remainder operation

ensure
 rho = old rho / other● rho
 theta = (old theta — other● theta) \\ Two_pi
polar_ready; not cartesian_ready

end

and similarly for subtract and multiply. (The precondition and postcondition may ne
some adaptation to reflect the realities of floating-point computations on computers.
function variants follow the same pattern:

§23.1 SIDE EFFECTS IN FUNCTIONS 763

)

ectly
le
l to
 for
infix "+" (other: COMPLEX): COMPLEX is
-- Sum of current complex and other

do
!! Result●make_cartesian (x + other● x, y + other● y)

ensure
Result●x = x + other● x; Result●y = y + other● y

Result●cartesian_ready

end

infix "/" (z: COMPLEX): COMPLEX is
-- Quotient of current complex by z.

require
z●rho /= 0

-- (To be replaced by a numerically more realistic condition

do
!! Result●make_polar (rho / other● rho, (theta – other● theta) \\ Two_pi)

ensure
Result●rho = rho / other● rho

Result●theta = (old theta — other● theta) \\ Two_pi

Result●polar_ready

end

and similarly for infix "–" and infix "∗" .

Note that for the last postcondition clauses of these functions to be valid, cartesian_ready
and polar_ready must be exported to the class itself, by appearing in a clause of the form
feature { COMPLEX} ; they are not exported to any other class.

But where are the side effects? In the last two functions, they are not dir
visible; this is because x, y, rho and theta, behind their innocent looks, are sneaky litt
side-effectors! Computing x or y will cause a secret change of representation (a cal
prepare_cartesian) if the cartesian representation was not ready, and symmetrically
rho and theta. Here for example are x and theta:

x: REAL is

-- Abscissa

do
prepare_cartesian; Result:= private_x

end

theta: REAL is
-- Angle

do
prepare_polar; Result:= private_theta

end

DESIGNING CLASS INTERFACES§23.2764

ay
he

 to
ncrete

 more
ject

 cannot

emes,
ment.
ot the
uery

 devote
stood
you
nts.

hannel
ase of
but in
nts do

ple:
hat a

s for the
ses as
 only
ing

ter
om a
ined
Functions y and rho are similar. All these functions call a procedure which m
trigger a change of state. Unlike add and consorts, however, they do not invalidate t
previous representation when a new one is computed. For example, if x is called in a state
where cartesian_ready is false, both representations (all four real attributes) will be up
date afterwards. This is because the functions may produce side effects on the co
objects only, not on the associated abstract objects. To express this property
formally: computing z● x or one of the other functions may change the concrete ob
associated with z, say from c1 to c2, but always with the guarantee that

a (c1) = a (c2)

where a is the abstraction function. The computer objects c1 and c2 may be different, but
they represent the same mathematical object, a complex number.

Such side effects are harmless, as they only affect secret attributes and hence
be detected by clients.

The object-oriented approach encourages such flexible, self-adapting sch
which internally choose the best implementation according to the needs of the mo
As long as the resulting implementation changes affect the concrete state but n
abstract state, they can appear in functions without violating the Command-Q
Separation principle or endangering referential transparency for clients.

23.2 HOW MANY ARGUMENTS FOR A FEATURE?

In trying to make classes — especially reusable classes — easy to use, you should
special attention to the number of arguments of features. As we will see, well-under
object technology yields a style of feature interface radically different from what
typically get with traditional approaches; there will, in particular, be far fewer argume

The importance of argument counts

When your development relies on a supplier class, features are your day-to-day c
to it. The simplicity of the feature interfaces fundamentally determines the class’s e
use. Various factors influence this, in particular the consistency of the conventions;
the end a simple numerical criterion dominates everything else: how many argume
features have? The more arguments, the more you have to remember.

This is particularly true of library classes. The criterion for success there is sim
after a potential library user has taken the (preferably short) time to understand w
class is about and, if he decides to use it, selected the set of features that he need
moment, he should be able to learn these features quickly and, after as few u
possible, remember them without having to go back to the documentation. This will
work if features — aside from all other qualities of consistency, proper nam
conventions and general quality of the design — have very short argument lists.

If you examine a typical subroutine library you will commonly encoun
subroutines with many arguments. Here for example is an integration routine fr
mathematical library justly renowned for the excellence of its algorithms, but constra
in its interface by the use of traditional subroutine techniques:

§23.2 HOW MANY ARGUMENTS FOR A FEATURE? 765

ys!]

n

s a
mple

0; if

, are
utput.

 (stop

ears
 of real
. The
rated

t one

book.
 to re-
 as its
k; but
 form

Warning: this is not
an object-oriented
interface!

On the Math library
and techniques of
scientific object-ori-
ented computing,
see [Dubois 1997].
The earlier mention
was in “Object-ori-
ented re-architec-
turing”, page 441.
nonlinear_ode
(equation_count: in INTEGER;

 epsilon: in out DOUBLE;

func: procedure (eq_count: INTEGER; a: DOUBLE; eps: DOUBLE;
 b: ARRAY [DOUBLE]; cm: pointer Libtype)

left_count, coupled_count: in INTEGER;
…)

[And so on. Altogether 19 arguments, including:
- 4 in out values;

- 3 arrays, used both as input and output;

- 6 functions, each with 6 or 7 arguments of which 2 or 3 are arra
Since the purpose of this example is not to criticize one particular numerical library but
to emphasize the difference between O-O and traditional interfaces, the routine and
arguments names have been changed and the syntax (in C in the original) has bee
adapted. The resulting notation resembles the notation of this book, which, however,
would of course exclude such non-O-O mechanisms as in out arguments, explicit pointer
manipulation, and arguments (such as func and 5 others) that are themselves routines.

Several properties make this scheme particularly complex to use:

• Many arguments are in out, that is to say must be initialized by the caller to pas
certain value and are updated by the routine to return some information. For exa
epsilon specifies on input whether continuation is required (yes if less than

between 0 and 1, continuation is required unless epsilon < , etc.). On
output, it provides an estimate of the increment.

• Many arguments, both to the routine itself and to its own routine arguments
arrays, which again serve to pass certain values on input and return others on o

• Some arguments serve to specify the many possibilities for error processing
processing, write message to a file, continue anyway…).

Even though high-quality numerical libraries have been in existence for many y
and, as mentioned in an earlier chapter, provide some of the most concrete evidence
reuse, they are still not as widely used in scientific computation as they should be
complexity of their interfaces, and in particular the large number of arguments illust
by nonlinear_ode, are clearly a big part of the reason.

Part of the complexity comes from the problems handled by these routines. Bu
can do better. An object-oriented numerical library, Math, offers a completely different
approach, consistent with object technology concepts and with the principles of this
An earlier discussion cited the Math library as an example of using object technology
architecture older software, and the library indeed uses an existing non-O-O library
core engine, since it would have been absurd to duplicate the basic algorithmic wor
it provides a modern, O-O client interface. The basic non-linear ODE routine has the

solve

-- Solve the problem, recording the answer in x and y.

precision

DESIGNING CLASS INTERFACES§23.2766

 class
to
 attach
pears:

ct on
here,
.7 for
 we

en
 as in

lves an
at we

 will

ide a
n. The
y 29.7
he print
ve a
ersal
ument
ter.

See [M 1994a] for
detailed library
measurements.

Warning: this is not
the recommended
style!
In other words it takes no argument at all! You simply create an instance of the
GENERAL_BOUNDARY_VALUE_PROBLEM to represent the mathematical problem
be solved, set its non-default properties through calls to the appropriate procedures,
it to a “problem solver” object (an instance of the class in which the above routine ap
GENERAL_BOUNDARY_VALUE_PROBLEM_SOLVER), and call solve on that object.
Attributes of the class, x and y, will provide the handle to the computed answer.

More generally, the thorough application of O-O techniques has a dramatic effe
argument counts. Measures on the ISE libraries, published in more detailed elsew
show an average number of arguments ranging from 0.4 for the Base libraries to 0
the Vision graphical library. For the purposes of comparison with non-O-O libraries
should add 1 to all these figures, since we count two arguments for x●f (a, b) versus three
for its non-O-O counterpart f (x, a, b); but even so these averages are strikingly low wh
compared with the counts for non-O-O routines which, even when not reaching 19
the above numerical example, often have 5, 10 or 15 arguments.

These numbers are not a goal by themselves — and of course not by themse
indicator of quality. Instead, they are largely the result of a deeper design principle th
will now examine.

Operands and options

An argument to a routine may be of two different kinds: operands and options.

To understand the difference, consider the example of a class DOCUMENT and a
procedure print. Assume — just to make the example more concrete — that printing
rely on Postscript. A typical call illustrating a possible interface (not compatible with the
principle stated below) would be

my_document●print (printer_name, paper_size, color_or_not,
 postscript_level, print_resolution)

Of the five arguments, which ones are truly indispensable? If you do not prov
Postscript level, the routine can use as a default the most commonly available optio
same applies to paper size: you can use LTR (8.5 by 11 inches) in the US, A4 (21 b
centimeters) elsewhere. 600 dots per square inch may be a reasonable default for t
resolution, and most printers are non-color. In all these cases, you might ha
mechanism supporting installation-level or user-level defaults to override the univ
ones (for example if your site has standardized on 1200 dpi resolution). The only arg
that remains is the printer name; but here too you might have defined a default prin

This example illustrates the difference between operands and options:

Definition: operand and option arguments

An operand argument to a routine represents an object on which the routine
will operate.

An option argument represents a mode of operation.

§23.2 HOW MANY ARGUMENTS FOR A FEATURE? 767

ment

e,

 print,

flects
apters
may
n than
major,
e may

lls to

 call.
 at the
This definition is too general to tell us unambiguously whether a proposed argu
is an operand or an option, but here are two directly applicable criteria:

According to the first criterion, all the arguments to print are options (with the
possible exception of printer_name if you have not defined a default printer). Not
however, that the target of the call, an implicit argument (my_document in the example)
is, as all targets should be, an operand: if you do not say what document you want to
no one is going to choose a default for you.

The second criterion is less obvious since it requires some foresight, but it re
the software engineering concerns that underlie all our discussions since the first ch
of this book. We know that a class is not an immutable product; like all software, it
change over its lifetime. Some properties of a class, however, change more ofte
others. Operands are there for the long term: adding or removing a operand is a
incompatible change. Options, on the other hand, may come and go. For example on
imagine that support for colors was not part of the first version of the print procedure, a
few years back, and was only added later. This is typical of an option.

The principle

The definition of operands and options yields the rule on arguments:

Two cases for loosening the rule, not quite qualifying as exceptions, are mentioned
below.

In the style that this principle promotes, options to an operation are set not in ca
the operation but in calls to specific option-setting procedures:

my_document● set_printing_size ("A4")

my_document● set_color

my_document● print -- No argument at all.

Once set, each option remains in force for the target object until reset by a new
In the absence of any call to the corresponding procedures, and of any explicit setting
time of object creation, options will have the default values.

How to distinguish options from operands

• An argument is an option if, assuming the client had not supplied its value,
it would have been possible to find a reasonable default.

• In the evolution of a class, arguments tend to remain the same, but options
may be added and removed.

Operand principle

The arguments of a routine should only include operands (no options).

DESIGNING CLASS INTERFACES§23.2768

ment
e

iginal

 either
forget
res,

all

not
 most

s.

 learn

pen-
ed to
f the
 not

t just
will
his is,
alues
 (You
es of

e big
r own

 that
style
t time
cant

 error
 calls.
For any type other than boolean, the option-setting procedure will take one argu
of the appropriate type, as illustrated by set_printing_size; the standard name is of th
form set_property_name. Note that the argument to a procedure such as set_printing_size
itself satisfies the Operand principle: the page size, which was an option for the or
print, is an operand for set_printing_size which by definition operates on page sizes.

For a boolean procedure, the same technique would yield a procedure taking
True or False as argument; since this is confusing (as users of the procedure may
which ones of the two possibilities True represents), it is better to use a pair of procedu
with conventional names of the form set_property_name and set_no_property_name, for
example set_color and set_no_color, although in this case it is probably just as well to c
the second variant set_black_and_white.

Application of the Operand principle yields several benefits:

• You only specify what differs from the defaults. Any property for which you do
need any special setting will be handled with the settings that have proved to be
commonly appropriate.

• Novices need only learn the essentials and can ignore any advanced propertie

• As you get to know the class better and move on to sophisticated uses, you
more properties; but you only have to remember what you use.

• Perhaps most importantly, the technique preserves extendibility and the O
Closed principle: as you add more options to a certain facility, you do not ne
change the interface of a routine and hence invalidate all existing callers. I
default value corresponds to the previous implicit setting, existing clients will
need to be changed.

Against the Operand principle, a possible objection comes to mind: does it no
trade argument complexity for call complexity (calls will be much simpler, but we
have more of them since we must include calls to option-setting procedures)? T
however, not accurate. The only new calls will be for options that you want to set to v
other than the default. Here the complexity is the same as with option arguments.
may have a few more keystrokes to type, but what counts is the number of piec
information you have to provide, and it is the same with both approaches.) Th
difference is that you need only pay attention to the options that are relevant for you
use, whereas option arguments force you to specify all options explicitly.

Also note that frequently a certain option will apply to many successive calls. In
case, using option arguments forces you to specify it each time. With the
recommended here, you gain even if the value is not the default: you set it the firs
around, and it stays in place until explicitly changed. The gain is particularly signifi
in cases such as the numerical library mentioned above where every call must include
arguments indicating the desired error processing mode, the name of the file for
output and other general properties, which tend to remain applicable through many

§23.2 HOW MANY ARGUMENTS FOR A FEATURE? 769

e
dy note
h time.

erand
 will
ing

egant

eir
 is the
9

uires

ince
of the

itating
n the

ariant.

alues

tion.
ation
attern;

bility,
tine

See exercise E23.3,
page 807.
Some languages support the notion of optional argument, achieving some of the benefits of th
Operand principle but not all. The comparison has been left as an exercise, but you may alrea
that the last point mentioned would not apply: any non-default argument must be specified eac

Benefiting from the Operand principle

Comments made about the Command-Query Separation principle apply to the Op
principle too: it goes against today’s dominant practices, and some readers
undoubtedly balk at it initially; but I can recommend it without any reservation, hav
applied it for many years and greatly benefited from it. It yields a simple, clear and el
style, fostering clarity and extendibility.

That style soon becomes a natural one for developers who try it. (Predictably, we have
made it part of our standard at ISE.) You create the required objects; set up any of th
properties that differ from the defaults; then apply the operations that you need. This
scheme sketched above for solve in the Math library. It certainly beats passing 1
arguments.

Exceptions to the Operand principle?

The Operand principle is of universal applicability. Rather than true exceptions, it req
adaptation in two specific cases.

First, we can take advantage of the flexibility of multiple creation procedures. S
a class can provide more than one way to initialize an object, through creation calls
form !! x● make_specific (argument, …) where make_specific is any of the creation
procedures, we can relax the Operand principle for such creation procedures, facil
the client’s task by offering various ways to set up objects with values other tha
default. Two constraints, however:

• Remember that, as always, every creation procedure must ensure the class inv

• The set of creation procedures must include a minimal procedure (called make in the
recommended style) which includes no option arguments and sets all option v
to their defaults.

The other case for loosening the Operand principle follows from the last observa
If you have applied the principle, you may find that some operations (other than cre
procedures) are often used with option-setting procedures according to a standard p
for example

my_document● set_printing_size ("…")
my_document● set_printer_name ("…")
my_document● print

In such a case, it may be convenient, in the name of encapsulation and reusa
and in conformity to the Shopping List principle studied next, to provide an extra rou
as a convenience for clients:

print_with_size_and_printer (printer_name: STRING; size: SIZE_SPECIFICATION)

DESIGNING CLASS INTERFACES§23.3770

nt to

ggest
ns and
r the

ious
values.

 the
ose
rt is

rt.

tion
ertain
re the

f the
ure to

 never
 check
ble, or

asured
se and
This assumes, of course, that the basic minimal routine (print in the example)
remains available, and that the new routine is just a supplementary facility mea
simplify client text in cases that have been recognized as truly frequent.

This is not really a violation of the principle, since the very nature of the new routine requires
the arguments (printer and size in the example) to be present, making them operands.

A checklist

The Operand principle and its recognition of the need to pay attention to options su
a technique that helps get a class right. For each class, list the supported optio
produce a table with one row for each option, illustrated here by one of the rows fo
DOCUMENT class:

The successive columns list: the role of the option; how it is initialized by the var
creation procedures; how it can be accessed by clients; how it can be set to various
This provides a useful checklist for frequent deficiencies:

• Initialized entries help spot a wrong initialization, especially when you rely on
defaults. (A boolean option, for example, is initialized to false; you should cho
the corresponding attribute accordingly, so that the option for color suppo
Black_and_white_only if you wish the default, false, to represent full color suppo)

• The Queried entries help spot the mistake of providing clients ways to set an op
but not to access it. Note in particular that a routine that takes an object in a c
state may need to change some options for its own purposes, but then resto
initial state; this is only possible if the routine can query the initial value.

• The Set entries help spot missing option-setting procedures. For example i
default value for a boolean option is the usual false, and you provide a proced
change it to true, you should not forget to provide another to reset it to false.

None of the rules suggested here is absolute; for example some options may
need to be returned to false. But they do apply in most cases, so it is important to
that the table’s entries indicate the behavior that you expect from the class. The ta
extracts from it, can also help document the class.

23.3 CLASS SIZE: THE SHOPPING LIST APPROACH

We have learned to be paranoid about limiting the external size of features, as me
by the number of arguments, because it fundamentally affects the features’ ease of u
hence the quality of a class interface. (We care less about the internal size of a feature,

Option Initialized Queried Set

Paper size default:A4 (international)

make_LTR: LTR (US)

size set_size
set_A4
set_LTR

§23.3 CLASS SIZE: THE SHOPPING LIST APPROACH 771

 the
s in

re the

ber of
ect to
ugh
rested
 the

uced
se
of
ts but
 not

most
e
only;
te size
 flat
nts.

ze:

ot by
ouple
s), and

[Johnson 1995].
measured for example by the number of its instructions, since it simply reflects
complexity of the algorithm. But as you will certainly have noted most routine bodie
good O-O design will remain small anyway.)

Should we be similarly concerned about the size of each class as a whole? He
answer will be much less drastic.

Class size definition

We must define how to measure the size of a class. It is possible to count the num
lines (or, preferably, the number of declarations and instructions, which is less subj
individual variations of textual layout, and just requires a simple parser). Altho
interesting for some applications, this is a supplier-side measure. If we are more inte
in how much functionality a class provides to its clients, the appropriate criterion is
number of features.

This still leaves two questions:

• Information hiding: do we count all features (internal size) or only exported ones
(external) size?

• Inheritance: do we count only the immediate features, that is to say those introd
in the class itself (immediate size), all the features of the class including tho
inherited from any proper ancestor (flat size, so called in reference to the notion
flat form of a class), or the immediate features plus those which the class inheri
somehow modifies through redefinition or effecting, although renaming does
count (incremental size)?

Various combinations may be interesting. For the present discussion the
interesting measure will be external and incremental: external size means that we take th
client’s view of the class, regardless of anything that is useful for internal purposes
and incremental size means that we focus on the class’s added value. With immedia
we would ignore the often important part of the functionality that is inherited; but with
size we would be counting the same features again in every class and its descenda

Maintaining consistency

Some authors, such as Paul Johnson, have argued for strong restraints on class si

Class designers are often tempted to include lots of features (in both the
language sense and system design sense of the word). The result is an interface
where the few commonly used features are lost in a long list of strange routines.
Worse yet, the list of possible features is infinite.

ISE’s experience suggests a different view. We have found that class size is n
itself a problem. Although most classes remain relatively small (a few features to a c
dozen), there is occasionally a need for bigger classes (up to 60 or even 80 feature
they do not raise any particular problem if they are otherwise well designed.

DESIGNING CLASS INTERFACES§23.3772

ot
ate to
 should
r the

hich
action
TEP

y split
uality.

lasses
 from
 class,
ly to
t many
on and

 just

ve its

ures
 of the
ticular
 an
often

Page 730.

[Waldén 1995],
page 187.

“Don’t call us, we’ll
call you”, page 505.
This experience leads to the shopping list approach: the realization that it does n
hurt to add features to a class if they are conceptually relevant to it. If you hesit
include an exported feature because you are not sure it is absolutely necessary, you
not worry about its effect on class size. The only criteria that matter involve whethe
class fits in with the rest. These criteria can be expressed as a general guideline:

The first two requirements are related to the Class Consistency principle, w
stated that all the features of a class must pertain to a single, well-identified abstr
The counter-example given there was that of a string class (from the original NEXTS
library) which actually covered several abstractions and, as a result, was eventuall
into several classes. What is at issue here, however, is not size per se but design q

It is interesting to note that the same example, string, is also one of the larger c
in ISE’s libraries and has been criticized by Paul Johnson. But in fact the reaction
library users over the years has been the reverse: asking for more features. The
although rich, is not particularly difficult to use because all the features clearly app
the same abstraction, character string, and it is in the nature of that abstraction tha
operations are applicable, from substring extraction and replacement to concatenati
global character substitution.

Class STRING shows that big does not mean complex. Some abstractions are
naturally endowed with many features. Quoting Waldén and Nerson:

A document handling class that contains 100 separate operations to set various
font operations … may in fact only be dealing with one or a few underlying
concepts which are quite familiar and easy to grasp. Ease of selecting the right
operation is then reduced to having nicely organized manual pages.

In such a case splitting the class would probably decrease rather than impro
ease of use.

An extreme “minimalist” view holds that a class should only include atomic feat
— those which cannot be expressed in terms of others. This would preclude some
fundamental schemes of successful object-oriented software construction, in par
behavior classes in which an effective feature, for example a routine describing
iteration on a data structure, relies on other lower-level features of the class,
including some deferred ones.

Shopping List advice

When considering the addition of a new exported feature to a class, observe
the following rules:

S1 • The feature must be relevant to the data abstraction represented by
the class.

S2 • It must be compatible with the other features of the class.

S3 • It must not address exactly the same goal as another feature of the class.

S4 • It must maintain the invariant of the class.

§23.3 CLASS SIZE: THE SHOPPING LIST APPROACH 773

ut

ts may

 of
ther

, and
o have

t, are
 fills

t

, for
rned

e the

to be
a
ssed

lways
SE’s
have
ed as

 class
ors —

ity
clude

n fact
idered

y should
ure.

“CLASS EVOLU-
TION: THE OBSO-
LETE CLAUSE”,
23.7, page 802.
Minimalism would also prohibit including two theoretically redundant b
practically complementary features. Consider a class COMPLEX to describe complex
numbers, as developed earlier in this chapter. For arithmetic operations, some clien
need the function versions:

infix "+", infix "–", infix "∗", infix "/"

so that evaluating the expression z1 + z2 will create a new object representing the sum
z1 and z2, and similarly for the other functions. Other clients, or the same client in o
contexts, may prefer the procedure versions, where the call z1● add (z2) will update the z1
object to represent the result of the addition, and similarly for subtract, multiply and
divide. In theory, it is redundant to include both the functions and the procedures
either set can in fact be expressed in terms of the other. In practice, it is convenient t
both, for at least three reasons: client convenience; efficiency; and reusability.

Laxity and restrictiveness

In the last example the two sets of features, although theoretically redundan
practically different. You should not, of course, introduce a feature if another already
exactly the same need; this is covered by clause S3 of the Shopping List advice. Tha
clause is more restrictive than it may seem at first. In particular:

• Assume that you want to change the order of arguments of a routine
compatibility with others in the same class or different ones. But you are conce
about compatibility with existing software. The solution in this case is not to keep
both features with the same status; this would violate the advice. Instead, us
obsolete library evolution mechanism described later in this chapter.

• The same applies if you want to provide a default for an argument that used
required for a certain routine. Do not provide two versions, one with the extr
argument for compatibility, the other relying on a default along the lines discu
earlier in this chapter. Make one interface the official one; the other will be covered
by the obsolete mechanism.

• If you hesitate between two possible names for a feature, you should almost a
resist the temptation to provide both as synonyms. The only exceptions in I
libraries concern a handful of fundamental features for which it is convenient to
both an infix name and an identifier, for example array access which can be us
my_array●item (some_index) as well as my_array @ some_index, each form being
preferable in some contexts. But this is a rare situation. As a general rule the
designer should choose a name, rather than passing the buck to client auth
penalizing them with the consequences of his indecision.

As you will have noted, the policy resulting from this discussion is a mix of lax
and restrictiveness. The policy seems lax because it explicitly encourages you to in
acceptable features even if they have not yet proved to be essential. But it is i
systematic and restrictive because it defines strong conditions for a feature to be cons
acceptable. The features of a class should cover as many needs as possible; but the
only cover relevant needs and, for each distinct need, there should be just one feat

DESIGNING CLASS INTERFACES§23.4774

e

n of
es but
icant
 and
for the
ce (the
al with
re size
e task
some

worry
tures,

 list or
esses,
 from
bility

ore

ndent
s the
neral-

tyles
The Shopping List policy is only possible because we follow a systematic policy of
keeping the language small. A minimalist attitude to language design — ensuring that we
stick to a small number of extremely powerful constructs, and avoid redundancies —
enables us to let class designers be non-minimalists. Every developer needs to learn th
language and, if the language is minimalist enough, will know all of it. Classes, however,
are only used by client authors, and they can skip what they do not use.

You should also relate the Shopping List advice to the preceding discussio
feature size. What might make a class difficult to use is not the number of its featur
their individual complexity of use. More precisely, class size can only be a signif
problem initially, by facilitating or hampering quick comprehension of the purpose
scope of a potentially reusable class which an application developer approaches
first time. Even there, we have seen that size per se is less relevant than coheren
Class Consistency principle). Past that stage, the reuser will, day in and day out, de
the features of the class, or more commonly with a subset of these features. Featu
issues take precedence: a feature with many arguments to remember will make th
difficult. But class size has by then ceased to be relevant. Were you to rely on
arbitrary numerical criterion (“no class shall have more than m lines or n features”), the
result could have been to split the class into several, in some cases making it more difficult
to use.

The lesson for class developers, embodied in the Shopping List advice, is to
about the quality of a class, in particular its conceptual integrity and the size of its fea
but not about its size.

23.4 ACTIVE DATA STRUCTURES

Examples of this chapter and preceding ones have frequently relied on a notion of
sequence characterized at any time by a “cursor position” indicating where acc
insertions and deletions take place. This view of data structures, although different
most presentation in “algorithms and data structures” textbooks, is of broad applica
and deserves a more detailed explanation.

To understand the merits of this approach it will be useful to start with the m
common one and assess its limitations.

Linked list representation

The discussion will be based on the example of lists. Although its results are indepe
of the choice of implementation, we need a specific representation to expres
algorithms and illustrate the issues. Let us use a popular choice: linked lists. Our ge
purpose library must have list classes and, among them, a class LINKED_LIST.

Here are a few basics about linked lists, applicable to all the interface s
discussed next — with and without cursors.

§23.4 ACTIVE DATA STRUCTURES 775

 they
 in
ble:

re

er
e other

rence
 the

to the
tions

A linkable

A linked list

Deletion in a
linked list
Linked lists are a useful representation of sequential structures because
facilitate operations of insertion and deletion. The successive elements will be housed
individual cells, or linkables, each containing a value and a reference to another linka

The corresponding class, LINKABLE, should be generic, since we want the structu
to be applicable to linked lists of any type. The cell value will be given by feature item, of
type G, the generic parameter; this will be an in-place value if the actual generic paramet
is expanded, for example for lists of integers or reals, and a reference otherwise. Th
attribute, right, of type LINKABLE [G], always represents a reference.

The list itself is represented by a separate cell, the header, containing a refe
first_element to the first linkable, and possibly some bookkeeping information such as
number of items, count. The figure shows the representation of a list of characters.

This representation makes insertion or deletion fast if you have a reference
linkable immediately to the left of the operation’s target: a few reference manipula
will do, as shown here for the deletion of the third element.

item right

first_element

Instance of
LINKED_LIST [G]

Instances of LINKABLE [G]

B C D EA

B C D EA

first_element

DESIGNING CLASS INTERFACES§23.4776

ment
Array
ns and
me of

 used
many

e
ersal
 if you
niform
rbing

),

 to
 list

nce of
:

e
anged

 to do

g a

See “Uniform
Access”, page 55.
On the other hand, linked representation is not very good for finding an ele
known by its value or its position: these operations require sequential list traversal.
representations, in contrast, are good for accessing by position, but poor for insertio
deletions. Many other representations exist, some of which manage to combine so
the best of both worlds. The basic linked list remains one of the most commonly
implementations, and is indeed an effective technique for applications that require
local insertions and deletions but few random accesses.

A technical point: the figure does not detail attributes of LINKED_LIST other than
first_element, showing simply a shaded area. Although we could do with just first_element,
the classes below will include an attribute count to record the number of elements of th
list. This query could also be a function, but it would then be inefficient, requiring a trav
of the list to count its items each time a client asks us how many we have. Of course
use an attribute you must make sure that every insertion or deletion updates it. The U
Access principle applies here: you can change the implementation without distu
clients, which will in all cases use the same notation, l ● count, to obtain the item count.

Passive classes

We clearly need two classes: LINKED_LIST for lists (more precisely, list headers
LINKABLE for list elements (linkables). Both are generic.

The notion of LINKABLE is essential for the implementation, but not relevant
most clients. We should strive for an interface that provides client modules with
primitives but does not bother them with such implementation details as the prese
linkable elements. The attributes, corresponding to the earlier figure, will appear as

indexing

description: "Linkable cells, for use in connection with linked lists"

note: "Partial version, attributes only"
class

LINKABLE1 [G]
feature { LINKED_LIST}

item: G
-- The cell value

right: LINKABLE [G]
-- The right neighbor

end -- class LINKABLE1

For the type of right we might consider like Current, but it is preferable at this stag
to keep more redefinition freedom as we do not know yet what may need to be ch
by the possible descendants of LINKABLE.

To have a true class we need to add routines. What should clients be allowed
on a linkable? They will need the ability to change the item and right fields. Also, we may
expect that most clients creating a linkable will specify its initial value, requirin
creation procedure. This yields a proper version of the class:

§23.4 ACTIVE DATA STRUCTURES 777

sed
in the

n
in
ent

ed.
indexing
description: "Linkable cells, for use in connection with linked lists”

class LINKABLE [G] creation
make

feature { LINKED_LIST}
item: G

-- The cell value
right: LINKABLE [G]

-- The right neighbor
make (initial : G) is

-- Initialize with item value initial.
do put (initial) end

put (new: G) is
-- Replace value with new.

do item:= new end
put_right (other: LINKABLE [G]) is

-- Put other to the right of current cell.
do right := other end

end -- class LINKABLE

For brevity the class omits the obvious procedure postconditions (such as ensure
item = initial for make). There are no preconditions.

So much for LINKABLE. Now consider the linked lists themselves, to be acces
internally through their headers. Among others we need exported features to: obta
number of elements (count); find out whether the list is empty (empty); obtain the value
of the i-th element, for any legal index i (item); insert a new element at a certain positio
(put); change the value of the i-th element (replace); search for an element having a certa
value (occurrence). We will also need a query returning a reference to the first elem
(void if the list is empty); it does not need to be exported.

Here is a sketch of a first version. Some of the routine bodies have been omitt

indexing

description: "One-way linked lists"

note: "First version, passive"
class

LINKED_LIST1 [G]
feature -- Access

count: G

empty: BOOLEAN is
-- Is list empty?

do

Result:= (count = 0)
ensure

empty_if_no_element: Result = (count = 0)
end

DESIGNING CLASS INTERFACES§23.4778
item (i: INTEGER): G is
-- Value of i-th list element

require
1 <= i; i <= count

local
elem: LINKABLE [G]; j: INTEGER

do
from

j := 1; elem:= first_element
invariant j <= i; elem /= Void variant i — j until

j = i
loop

j := j + 1; elem:= elem● right
end
Result:= elem● item

end

occurrence (v: G): INTEGER is
-- Position of first element of value v in list (0 if none)

do … end

§23.4 ACTIVE DATA STRUCTURES 779
feature -- Element change

put (v: G; i: INTEGER) is
-- Insert a new element of value v

-- so that it becomes the i-th element

require

1 <= i; i <= count + 1

local
previous, new: LINKABLE [G]; j: INTEGER

do
-- Create new cell

!! new● make (v)

if i = 1 then
-- Insert at head of list

new● put (first_element); first_element:= new

else
from

j := 1; previous:= first_element

invariant
j >= 1; j <= i — 1; previous /= Void

-- previous is the j-th list element

variant

i — j — 1

until j = i — 1 loop
j := j + 1; previous:= previous● right

end
-- Insert after previous

previous● put_right (new)

new● put_right (previous● right)

end

count:= count + 1

ensure
one_more: count = old count + 1

not_empty: not empty

inserted: item (i) = v

-- For 1 <= j < i, the element of index j has not changed its value

-- For i < j <= count,

-- the element of index j has the value

-- that the element of index j — 1 had before the call

end

previous

new

DESIGNING CLASS INTERFACES §23.4780

pt.

ce
rtions
is
usable

are
replace (i: INTEGER; v: G) is
-- Replace by v the value of i-th list element.

require
1 <= i; i <= count

do
…

ensure
replaced: item (i) = v

end

feature -- Removal

prune (i: INTEGER) is
-- Remove i-th list element

require
1 <= i; i <= count

do
…

ensure
one_less: count = old count — 1

end

… Other features …
feature { LINKED_LIST} -- Implementation

first_element: LINKABLE [G]

invariant
empty_definition: empty = (count = 0)

empty_iff_no_first_element: empty = (first_element = Void)

end -- class LINKED_LIST1

It is a good idea to try to complete occurrence, replace and prune for yourself in this
first version. (Make sure to maintain the class invariant.)

Encapsulation and assertions

Before we consider better versions, a few comments are in order on this first attem

Class LINKED_LIST1 shows that even on fairly simple structures referen
manipulations are tricky, especially when combined with loops. The use of asse
helps get them right (see procedure put and the invariant); but the sheer difficulty of th
type of operations is a strong argument for encapsulating them once and for all in re
modules, as promoted by the object-oriented approach.

Also note the application of the Uniform Access principle: although count is an
attribute and empty a function, clients do not need to know these details. They
protected against any later reversal of these implementation decisions.

§23.4 ACTIVE DATA STRUCTURES 781

tion
to the

hose

 the
ce.

en
 gives
s of a
ssful
und, to
ations

 over,
 the

lopers
 not

. Then
eeded

 is

 of
n.

tures
ngers
rms
tion.
The assertions for put are complete, but, because of the limitations of the asser
language, not completely formal. Similarly extensive preconditions should be added
other routines.

A critique of the class interface

How usable is LINKED_LIST1? Let us evaluate its design.

A worrying aspect is the presence of significant redundancies: item and put contain
almost identical loops, and similar ones will need to be included in the routines w
code has been left to the reader (occurrence, replace, remove). Yet it does not seem
possible to factor out the common part. Not a promising start.

This is an implementation problem, internal to the class: lack of reusability of
internal code. But it points to a more serious flaw — a poorly designed class interfa

Consider routine occurrence. It returns the index at which a given element has be
found in the list, or zero if the element is not present. One drawback is that this only
the first occurrence; what if the client wants to obtain the successive occurrence
value? But there is a more serious difficulty. A client that has performed a succe
search may, among other typical needs, want to change the value of the element fo
delete that element, or to insert a new one next to it. But any one of these oper
requires traversing the list again! For example, put (v, i) goes through the first i elements,
even if i is the result of occurrence — obtained by a similar traversal.

In the design of a general-purpose library component that will get used over and
one cannot treat such inefficiencies lightly. Any performance overhead due to
increased generality of a reusable solution must remain negligible; otherwise deve
will not accept paying the price, dooming any reuse policy. Here the price is
acceptable.

Simple-minded solutions

How can we remove the inefficiency? Two possible solutions come to mind:

• We could make occurrence return, instead of an integer, the LINKABLE reference to
the cell where the requested value appears, or void for an unsuccessful search
the client has a direct handle on the actual linkable cell and may perform the n
operations without retraversal; it can for example use LINKABLE’s put procedure to
change the value, and its put_right procedure to insert a new element. (Deletion
more delicate since the client would need the previous element too.)

• We could try to provide enough primitives to deal with various combinations
operations: search and replace, search and insert, search and delete and so o

The first solution, however, defeats the whole idea of encapsulating data struc
in classes: clients would directly manipulate the representations, with all the da
involved. The notion of linkable is internal; we want client programmers to think in te
of lists and list values, not of list cells and pointers. Otherwise we lose data abstrac

DESIGNING CLASS INTERFACES§23.4782

made
rt an
 a call

iding

ially

g a
task,
sign
tend
lication
 must

n or
ability
 point:
or yet

lar to
ails.

Evolution of a
library class
The second solution was attempted in an early version of ISE’s libraries, which
an effort to provide routines covering common combinations of operations. To inse
element just before the occurrence of a known value, a client would use, rather than
to search followed by a call to put, a single call to

insert_before_by_value (v: G; v1: G) is
-- Insert a new element of value v in front of first occurrence
-- of v1 in list, or at end of list if no such occurrence

do
…

end

This solution keeps the internal representation hidden from clients, while avo
the inefficiencies of the initial version.

But we soon realized we were in for a long journey. Consider all the potent
useful variants: search_and_replace, insert_before_by_value, insert_after_by_value,
insert_after_by_position, insert_after_by_position, delete_before_by_value, insert_at_
end_if_absent, and more.

This raises troubling questions about the viability of the approach, forcin
reflection on library design. Writing general-purpose reusable software is a difficult
and there is no guarantee that you will get everything right the first time — with a de
that would follow the horizontal line in the figure below. You should be prepared to ex
classes with new features as the library’s usage reaches new users and new app
domains. As represented by the colored line of the picture, however, the process
converge: after an initial tune-up period, the design should reach a stable state.

If not — that is to say, if almost every new use brings in the need for extensio
modification, as represented by the dotted line in the figure — the approach to reus
is obviously flawed. This appeared to be the case with the list class we had at that
it looked as if every time we put the list class to a new use the need would arise f
another routine, representing a new combination of the basic operations.

To make matters worse, all such routines are rather complex, with loops simi
the one for put; they have much in common but all differ from each other by small det
The prospect of a robust, reusable linked list class seems to be receding.

Number of (re)uses

Number

Desirable

Perfect
of features

Failure

§23.4 ACTIVE DATA STRUCTURES 783

ying

de its
here

hines
ries on
ts and
e

ient.

ition,

f the
t

 of

List with
cursor
Introducing a state

Fortunately, there is a way out. To find it requires taking a different view of the underl
abstract data type.

So far a list has been treated as a passive repository of information. To provi
clients with a better service, the list should become more active by “remembering” w
the last operation was performed.

As noted earlier in this chapter, we should not hesitate to look at objects as mac
with an internal state, and introduce both commands that change the state and que
the state. In the first solution a list object already had a state, defined by its conten
modifiable by commands such as put and remove; but by adding more components to th
state we will obtain a better interface, making the class both simpler and more effic

Besides the list contents, the state will include the notion of currently active pos
or cursor; the interface will allow clients to move the cursor explicitly.

We permit the cursor to be on a list element (if any), or one position to the left o
first, in which case the boolean query before will return true, or one position to the righ
of the last, making after true.

An example of a command that may move the cursor is the procedure search,
replacing the function occurrence. A call to l ● search (v) will move the cursor to the first
element of value v to the right of the current cursor position, or move it after if there is
none. Note that in passing this solves the problem of finding multiple occurrencesv:
just call search as many times as needed. (For symmetry we could also have search_back.)

The basic commands to manipulate the cursor are:

• start and finish to move the cursor to the first and last position if any.

• forth and back to move the cursor to the next and previous position.

• go (i) to move it to a stated position i.

Besides before and after, queries on the cursor position include index, its integer
index (starting at 1 for the first element) as well as the booleans is_ first and is_last.

first_element

Instance of
LINKED_LIST [G]

Instances of LINKABLE [G]

B C D EA

Cursor
before after

forthback

DESIGNING CLASS INTERFACES§23.4784

t —
ly act

t
ntions

ursor

ot

ve

f this
o

to get
lmost

In
f the

on that
t or

ing all

and

ariant,
at an
 class,

 right.
ty list
rties
sts of

See “Implementation
invariants”, page 377.
The procedures to build and modify a list — insertion, deletion, replacemen
become simpler because they do not have to worry about positions: they will simp
on elements at the current cursor position. All the loops disappear! For example, remove
will not be called as l ● remove (i) any more, but simply as l ●remove, to delete the elemen
at the current cursor position. We need to establish precise and consistent conve
about what happens to the cursor after each operation:

• remove, with no argument, deletes the element at cursor position and puts the c
under its right neighbor (so that the value of index does not change in the end).

• put_right (v: G) inserts an element of value v to the right of the cursor and does n
move the cursor (index is unchanged).

• put_left (v: G) inserts an element of value v to the left of the cursor and does not mo
the cursor (increasing the value of index by 1).

• replace (v: G) changes the value of the element at cursor position. The value o
element is given by the query function item, which now has no argument (and s
could be implemented as an attribute).

Maintaining consistency: the implementation invariant

In building the class for such a fundamental data structure we must be careful
everything right. Here assertions are indispensable. Without them we would be a
sure to miss some details. For example:

• Is a call to start permitted if the list is empty and, if so, what is its effect?

• What happens to the cursor after a remove if the cursor was on the last element?
other cases the cursor should go to the element immediately to the right o
deleted one, but here there is none. This is one of the reasons for the conventi
was stated informally — allowing the cursor to move one position off to the righ
to the left — but we need a more precise statement of this property, address
cases unambiguously.

Answers to questions of the first kind will be described by preconditions
postconditions.

For such properties as the permitted cursor positions, we should use the inv
more precisely the clauses constituting the implementation invariant. Remember th
implementation invariant expresses the consistency of a representation, given by a
vis-à-vis the underlying abstract data type. Here it will include the property

0 <= index; index <= count + 1

What about an empty list? We need to respect the symmetry between left and
One solution, adopted in an earlier version of the library, is to consider that an emp
is both before and after, and constitutes the only case in which both of these prope
may be true together. This works but leads, in the routines’ algorithms, to frequent te
the form if after and not empty… to distinguish between true cases of after and accidental

§23.4 ACTIVE DATA STRUCTURES 785

lly,

ssarily
entinel
er but

on an
as an

uery

t
ion,
t the

y

List with
sentinels
ones resulting from empty. It turns out to be preferable to take the view that, conceptua
a list always has two extra sentinel elements, shown as and in the figure:

The sentinel elements help us reason about the structure, but we will not nece
store them in the representation. The implementation discussed next stores the left s
but not the right one; it is also possible to use an implementation that stores neith
still conforms to the conceptual model represented by the above figure.

Since we often want to state, for example as the precondition for an operation
element given by its index, that the index indeed marks a position where the list h
element, we need a query to express this condition:

on_item (i: INTEGER): BOOLEAN is

-- Is there an element at position i?

do

Result:= ((index >= 1) and (index <= count))

ensure

within_bounds: Result = ((index >= 1) and (index <= count))

no_elements_if_empty: Result implies (not empty)

end

To state that there is an element at the cursor position, we may define q
readable, whose value is that of on_item (index). This is a good example of the
Shopping List principle: because readable is conceptually redundant, a minimalis
policy would get rid of it; by including it we provide our clients with a better abstract
freeing them from having to remember what exactly constitutes a valid item index a
implementation level.

The invariant will state that not (after and before). In the boundary case of an empt
list, the picture becomes:

B C D EA

afterbefore
not after; not before

1 <= index; index <= count

0 1 count count+1

Valid cursor positions

DESIGNING CLASS INTERFACES §23.4786

ut has
n that

hysics
nd the
ere are

s):

 best
r apply
 by a

em!).
 such
 study
— here
ry; but

s

 lists.
ith no

Empty list with
sentinels

For more clauses
see page 791.

Exercise E23.6,
page 807.
So an empty list will have two possible states: empty and before and emptyand after,
corresponding to the two cursor positions in the figure. This seems strange at first b
no unpleasant consequence, and is in practice preferable to the earlier conventio
empty= (before and after), now replaced by empty implies (before or after).

Note two general lessons here: the usefulness, as in many mathematics or p
problems, of checking boundary cases to verify that a general solution is sound; a
importance of relying on assertions to express the precise properties of a design. H
some of the principal clauses of the invariant:

0 <= index; index <= count
before = (index = 0); after = (index = count + 1)
is_first = ((not empty) and (index = 1)); is_last = ((not empty) and (index = count+1))
empty = (count = 0)

-- The next three clauses are theorems (deducible from the previous one
empty implies (before or after)
not (before and after)
empty implies ((not is_first) and (not is_last))

This example illustrates the general observation that writing the invariant is the
way to get a real understanding of what a class is about. The clauses seen so fa
equally to all implementations of sequential lists; they will shortly be complemented
few others which are specific to the choice of a linked representation.

The last three clauses, as noted, are deducible from the others (prove th
Invariants are not required to be minimal; it is often useful to list additional clauses
as these if they state important, non-trivial properties of the class. As we saw in the
of abstract data types, an ADT, and hence its implementation as a class, is a theory
the theory of linked lists. The basic invariant clauses express the axioms of the theo
any useful theory has interesting theorems too.

Of course if you intend to monitor invariants at run time — meaning that you are not quite
sure yet that the theory is sound! — you should also consider the effect of added clause
on execution time. But this only matters for development and debugging. In a usual
production context there is no reason for monitoring the invariants.

The client’s view

This design provides a simple and elegant interface to the implementation of linked
Operations such as “search and then insert” use two successive calls, although w
significant loss of efficiency:

afterbefore

0 count+1 = 1

Valid cursor positions

§23.4 ACTIVE DATA STRUCTURES 787

ally

al state
tate.

ost
 task,
n and
local

nes

er,

Cursor list
representation
(first variant)
l: LINKED_LIST [INTEGER]; m, n: INTEGER

…
l ●search (m)

if not after then l ●put_right (n) end

The call search (m) moves the cursor to the next occurrence of m after the current
cursor position, or after if there is none. (The extract assumes that the cursor is initi
known to be on the first element; if not, the client should execute l ● start first.)

To delete the third occurrence of a certain value, a client will execute:

l ●start; l ● search (m); l ● search (m); l ● search (m)

if not after then l ●remove end

To insert a value at position i:

l ●go (i); l ●put_left (i)

and so on. We have obtained a clear and easy to use interface by making the intern
explicit, and providing clients with the appropriate commands and queries on this s

The internal view

The new solution simplifies the implementation just as it improves the interface. M
importantly, by giving each routine a simpler specification, concentrated on just one
it removes unjustified redundancies, in particular all the unneeded loops. Insertio
deletion procedures no longer have to traverse the list; they just carry out a
modification. The responsibility of positioning the cursor now lies with other routi
(back, forth, go, search), only some of which (go and search) need loops.

Along with first_element it will be useful to keep two references in the list head
enabling us to perform insertions and deletions efficiently: active, attached to the cursor
item at cursor position, and previous attached to the previous one.

first_element

Instance ofLINKED_LIST [G]

Instances of LINKABLE [G]

B C D EA

Cursor
before after

previous

index
active

3

item

count 5

DESIGNING CLASS INTERFACES§23.4788

nt
form.

to get

 us
ne;

You should complete
before and is_last
based on this model.

See “Routine header
comments: an exercise
in corporate downsiz-
ing”, page 886.
Clients may know the state of the list by accessing public integer attributes count and
index and boolean queries before, after, is_ first, is_last, item. Here are two typical
functions:

after: BOOLEAN is
-- Is there no valid position to right of cursor?

do Result:= (index = count + 1) end

is_first: BOOLEAN is

-- Is cursor on first item?

do Result:= (index = 1) end

Note the phrasing of the header comments. For after, “Is cursor to the right of last
element?” would not be quite correct, since after may be true even if there is no eleme
at all. Writing header comments so that they are clear, terse and accurate is an art

The query item returns the element at cursor position, if any:

item: G is
-- Element at cursor position

require
readable: readable

do
Result:= active● item

end

Remember that readable indicates whether the cursor is on an element (index
between 1 and count). Also note that item in active● item refers to the attribute in
LINKABLE, not to the function of LINKED_LIST itself.

Here now are the basic cursor manipulation commands; they are fairly delicate
right but, as a consolation, you may note that only a handful of routines, such as start, forth,
put_right, put_left and remove, must perform non-trivial operations on references. Let
try start and forth. Procedure start must work for an empty list as well as a non-empty o
for an empty list the convention is that start brings the cursor to the second sentinel.

start1 is
-- Move cursor to first position.
-- (Provisional version; see next.)

do
index:= 1
previous:= Void
active:= first_element

ensure
moved_to_first: index = 1
empty_convention: empty implies after

end

previous active

first_element

§23.4 ACTIVE DATA STRUCTURES 789

The
is

reate
e

. They

ctive

Cursor list
representation
(revised variant)
forth1 is

-- Move cursor to next position.

-- (Provisional version; see next.)

require

not_after: not after

do

index:= index + 1

if before then

active:= first_element; previous:= Void

else

check active /= Void end

previous:= active; active:= active● right

end

ensure

moved_by_one: index = old index + 1

end

Here we stop! This is becoming too complicated and too inefficient.
performance of procedure forth is crucial, since a typical use of a list by a client
from start until after loop …; forth end. Can we get rid of the test?

We can, by taking the left sentinel seriously and always creating it when we c
a list; the creation procedure make of LINKED_LIST is left as an exercise. We replac
first_element by a reference zeroth_element to the sentinel:

The properties zeroth_element /= Void and previous /= Void will be part of the
invariant (you must of course make sure that the creation procedure ensures them)
are precious since they will save many repeated tests.

Procedure forth, given here after the new start, is simpler and faster (no test!):

previous a

right

zeroth_element

B C D EA

before after

previous

index
active

3

item

count 5

☞

DESIGNING CLASS INTERFACES§23.4790
start is

-- Move cursor to first position.

do

index:= 1

previous:= zeroth_element

active:= previous● right

ensure

moved_to_first: index = 1

empty_convention: empty implies after

previous_is_zeroth: previous = zeroth_element

end

forth is

-- Move cursor to next position.

-- (Version revised for efficiency; no test!)

require

not_after: not after

do

index:= index + 1

previous:= active

active:= active● right

ensure

moved_by_one: index = old index + 1

end

It is convenient to define go_before which positions the cursor on the left sentinel:

go_before is

-- Move cursor before.

do

index:= 0

previous:= zeroth_element

active:= zeroth_element

ensure

before: before

previous_is_zeroth: previous = zeroth_element

previous_is_active: active = previous

end

Procedure go is entirely defined in terms of go_before and forth:

previous active

zeroth_element

right

previous active

right

previous

active
zeroth_element,

right

§23.4 ACTIVE DATA STRUCTURES 791

 to

The

e sure
.

re are
tion:

Exercise E23.7,
page 807.
go (i: INTEGER) is
-- Move cursor to i-th position.

require
not_offleft: i >= 0
not_offright: i <= count + 1

do
from

if i < index then go_before end
invariant index <= i variant i – index until index = i loop

forth
end

ensure
moved_there: index = i

end

Note the care exercised in avoiding useless traversal steps in go, the only one of
procedures seen so far that needs a loop. For symmetry we should add finish, which brings
the cursor to the last position and can be implemented as just go (count + 1).

Although not really indispensable, it is convenient (Shopping List principle!)
export go_before. Then for symmetry we should also include and export go_after, which
does go (count + 1), and export it.

Also for symmetry is back, using go’s loop:

back is
-- Move cursor to previous position.

require
not_before: not before

do
check index – 1 >= 0 end

go (index – 1)
ensure

index = old index – 1
end

However pleasing, the symmetry between back and forth is not without danger, since
it may lead client authors to use both procedures freely even though back, which has to
restart from the beginning of the list and perform index – 1 iterations of forth, is much
more expensive. If you perform anything more than a few occasional back, the one-way
linked list is inappropriate; you can for example use two-way linked lists.
corresponding class may be built as an heir to LINKED_LIST (a valid use of inheritance,
since a list linked both ways is also linked one way) and is left as an exercise. Mak
to do this exercise at some stage if you want to reach a full mastery of the concepts

The earlier invariant clauses, as noted, were implementation-independent. He
a few more clauses capturing some of what we have learned about our implementa

DESIGNING CLASS INTERFACES§23.4792

f
y

he

ct.

. The

bor.

The first set of clauses
was on page 785.
empty = (zeroth_element● right = Void)

zeroth_element /= Void; previous /= Void

(active = Void) = after; (active = previous) = before
(not before) implies (previous● right = active)

(previous = zeroth_element) = (before or is_first)
is_last = ((active /= Void) and then (active●right = Void))

Most of the queries are straightforward. before should return the boolean value o
(index = 0) and after that of (index = count + 1). The element at cursor position is given b

item: G is
-- Value of element at cursor position

require
readable: readable

do
Result:= active●item

end

Procedure search is similar to go and left to the reader. You should also write t
procedure i_th (i: INTEGER) which returns the value of the element at position i; although
concrete side effects are acceptable, be sure not to introduce any abstract side effe

The last category of features includes procedures for insertion and deletion
basic deletion operation is:

remove is
-- Delete element at cursor position and move cursor to its right neigh
-- (If no right neighbor, list becomes after).

require
readable: readable

do
active:= active● right
previous● put_right (active)
count:= count — 1

ensure
same_index: index = old index
one_less_element: count = old count – 1
empty_implies_after: empty implies after

end

The routine looks trivial; but this is only thanks to the technique of keeping the left
sentinel around as a physical object, avoiding constant tests of the form previous /= Void
and first_element /= Void. It is worth considering the more complicated and less efficient
routine body that we would have obtained without this simplification:

previous active

§23.4 ACTIVE DATA STRUCTURES 793

rstand

rtion

ples
s an

this is
es tells
icable
itories
bstract
e itself

 more

ncept,

ructure

sible
ucture,

ing.)

Warning: rejected
version!

Exercise E23.9,
page 808.

Skip to “SELEC-
TIVE EXPORTS”,
23.5, page 796.
active:= active●right

if previous /= Void then previous●put_right (active) end
count:= count — 1
if count = 0 then

first_element:= Void
elseif index = 1 then

first_element:= active

-- else first_element does not change
end

In either case, the more you can express in assertions, the better you will unde
what is going on and avoid mistakes.

You should exercise your understanding of these techniques by writing the inse
procedures put_left and put_right.

Abstract data types and abstract machines

The notion of active data structure is widely applicable and in line with earlier princi
of this chapter, Command-Query Separation in particular. Giving data structure
explicit state often yields simple, easy to document interfaces.

One might fear that the resulting structures would become less abstract, but
not the case. Abstract does not mean passive. What the theory of abstract data typ
us is that our objects should be known through abstract descriptions of the appl
operations and their properties; but this does not imply treating them as mere repos
of data. By introducing a state and operations on that state, we actually make the a
data type specification richer as it has more functions and more properties. The stat
is a pure abstraction, always accessed indirectly through commands and queries.

The view of objects as state machines reflects abstract data types which are
imperative, not less abstract.

Separating the state

It is possible to take the preceding techniques further. So far the cursor was just a co
implemented indirectly through attributes previous, active and index rather than directly
through one of the classes of the software. We can define a class CURSOR with
descendants for various kinds of cursor structure. Then we can separate, for a st
such as a list, the attributes that describe the list contents (zeroth_element, count) from the
traversal-related attributes, which will be stored in cursor objects.

Although we do not need to pursue this idea here, it is useful to note its pos
application to a concurrent context. If a number of clients need to access a shared str
they can each have their own cursors.

Merging the list and the sentinels

(This section describes an advanced optimization and may be skipped on first read

DESIGNING CLASS INTERFACES§23.4794

ore
s. We
ormal
d for

e? As
ls as

write

g sure
 is
lable

ut
 the

uring

ement

w has
nly if

tric,

ents.

ass is
es.
class

ave

ing the

“Trees are lists and list
elements”, page 525.
The example of linked lists with the sentinels can benefit from one m
optimization, which has indeed been applied to the latest versions of the ISE librarie
will only take a peek at it because it is of a specialized nature and not relevant to n
application development. Such delicate optimizations should only be considere
widely used reusable components. (In other words: do not try this at home.)

Can we get the benefit of sentinels without wasting the corresponding spac
noted upon the introduction of the sentinel concept, we could treat the sentine
fictitious; but then we would lose the crucial optimization which has enabled us to
the body of forth as just

index:= index + 1

previous:= active

active:= active● right

without the expensive tests of the earlier versions. We avoid these tests by makin
that, for a list in non-after state, active is never void (the corresponding invariant clause
(active = Void) = after); this is because we always have a real cell, the sentinel, avai
to serve as initialization for active, even for an empty list.

For a routine other than forth, the optimization would not be such a big deal. B
forth, as noted, is the bread and butter of list processing by clients, resulting from
sequential nature of the lists; typical usage is of the form

from your_list● start until your_list●after loop …; your_list● forth end

and it is not uncommon, if you use a profiler tool to measure what happens d
execution, to discover that the computation spends a good part of its time in forth. So it
pays to optimize it, and the test-free form above indeed provides a dramatic improv
over the test-full one.

To get this time improvement, however, we pay a space penalty: each list no
an extra element, with no actual information. This would seem to cause a problem o
we have many short lists. But the problem can become more serious:

• In many cases, as hinted earlier, you will need two-way linked lists, fully symme
with BI_LINKABLE elements chained both ways. Class TWO_WAY_LIST (which,
by the way, may be written as inheriting twice from LINKED_LIST, relying on
repeated inheritance techniques) will need both a left and a right sentinel elem

• Linked trees present an even more serious problem. An important practical cl
TWO_WAY_TREE, providing a convenient doubly-linked representation of tre
Building on ideas developed in the presentation of multiple inheritance, this
merges the notion of node and tree; it inherits from both TWO_WAY_LIST and
BI_LINKABLE. But then every node is a list, a two-way one at that, and may h
to carry both sentinels.

Although there are other ways to solve the second case — such as renounc
inheritance structure — let us see if we can get the best of all worlds.

§23.4 ACTIVE DATA STRUCTURES 795

he
d both
ts we
t has
; but
 a few

e

the

 the
etting

r that

e
 no

first_element
appeared among
others in the figures
of page 786.

Header as
sentinel (non-
empty list)

Header as
sentinel
(empty list)
To find a solution let us ask an impertinent question. In the structure

do we really need two bookkeeping-only objects? The truly useful information is in t
part not shown on the figure, the actual list elements; to manage them we have adde
a list header and a sentinel — two sentinels in the case of a two-way list. For long lis
are able to ignore this bloated bookkeeping structure, like a large company tha
accumulated many layers of middle management in times of economic prosperity
when the going gets tough it is time to take a closer look and see if we cannot merge
of these management functions.

Can we indeed make the list header itself play the role of sentinel? It turns out w
can. All that a LINKABLE needs is an item field and a right field. For a sentinel, in fact,
only the right field. That field denotes the first of the list elements; so if we put it in
list header it will play the same role as what used to be called first_element in the first
variant of the sentinel implementation. The problem, of course, was that first_element
could be void, for an empty list, polluting all our algorithms with tests of the form if before
then… We certainly do not want to go back to that situation. But we can keep
representation of the figure at the top of this page as the conceptual model, while g
rid of the sentinel object in the implementation. The concrete picture becomes

The key to understanding this solution and getting things right is to remembe
this solution is exactly the same conceptually as the last one, but replaces zeroth_element
by a reference to the list header itself (Current in class LINKED_LIST), using first_element
to represent what used to be zeroth_element● right (possibly void, but always defined sinc
zeroth_element was never void). We still need a convention for the empty list, with
“Useful list elements”; in that case the last figure becomes

zeroth_element

☞

(Instance ofLINKED_LIST)

… Useful list elements …

List header

(Instance of
LINKABLE)

Sentinel
right

(Instance ofLINKED_LIST and LINKABLE)

… Useful list elements …

List header and sentinel

first_element
(also plays the role of right)

(No useful list elements)
first_element

DESIGNING CLASS INTERFACES §23.4796

le;

r a list
 of

en in
 our

 what

 the
e
tting
eated
with a simple convention: attaching first_element back to the list header itself. This
way first_element will never be void — our crucial goal for keeping everything simp
we must just remember to replace, everywhere in class LINKED_LIST, any test of the
form zeroth_element● right by first_element = Current.

We keep all the desirable invariant clauses of the previous sentinel versions:

previous /= Void

(active = Void) = after; (active = previous) = before

(not before) implies (previous● right = active)

is_last = ((active /= Void) and then (active●right = Void))

The clauses involving zeroth_element, which used to be

zeroth_element /= Void

empty = (zeroth_element● right = Void)

(previous = zeroth_element) = (before or is_first)

now yield:

first_element /= Void

empty = (first_element = Current)

(previous = Current) = (before or is_ first)

All this is obtained simply (fasten your seat belts) by making LINKED_LIST inherit
from LINKABLE:

class LINKED_LIST [G] inherit

LINKABLE [G]

rename right as first_element, put_right as set_first_element end

… Rest of class as before, with the removal of zeroth_element as shown above …

Is it a kludge to let LINKED_LIST inherit from LINKABLE? Not at all! The whole
idea was to merge the notions of list header and sentinel, that is to say, to conside
header (an instance of LINKED_LIST) as a linkable too; so we have a perfect example
the “is-a” relation of inheritance. We have decided to treat every LINKED_LIST as a
LINKABLE, so inheritance is the proper way to go. Here the client relation is not ev
the race: not only would it not yield what we want, the removal of extra fat from
structures; it would add even more fields to our objects!

Make sure your seat belts are still securely fastened as we start considering
happens lower in the inheritance structure. BI_LINKABLE inherits twice from
LINKABLE. Class TWO_WAY_LIST inherits from LINKED_LIST (once, or possibly twice
depending on the implementation technique that we choose) and, in line with
technique just seen, from BI_LINKABLE. With all the repeated inheritance involved on
might think that things would get out of hand and that our structures would start ge
all kinds of unnecessary fields; but no, the rules on sharing and replication in rep
inheritance enable us to get exactly what we want.

§23.5 SELECTIVE EXPORTS 797

h
s,
f the

 not take

raries.

ure
ply
 that

ques
obtain
ion of
ious

orth
ts. In
The
o craft
will,

ting

should
from

“SELECTIVE
EXPORTS AND
INFORMATION HID-
ING”, 7.8, page 191.
The last step is TWO_WAY_TREE which, for good measure, inherits from bot
TWO_WAY_LIST and BI_LINKABLE. Enough, one might think, for a few heart attack
but no; everything falls nicely into place. We get all the features we want, none o
features we do not want; all the sentinels are in place — conceptually — so that forth, back
and all the consequent loops can be as fast as they need to be; and the sentinels do
up any space at all.

This is indeed the scheme now applied to the affected classes in the Base lib
Before we recover from the flight, a few observations are in order:

• Under no circumstance should this kind of work, involving tricky data struct
manipulation, be undertaken without the full benefit of assertions. It is sim
impossible to get them right without stating the invariant precisely, and checking
everything remains compatible with it.

• The machinery of repeated inheritance is essential. Without the techni
introduced by the notation of this book to enable a repeated descendant to
sharing or replication on a feature-by-feature basis, based on the simple criter
feature names, it is impossible to handle effectively any situation involving ser
use of repeated inheritance.

• To repeat the most important comment: such delicate optimizations are only w
considering in heavily used libraries of general-purpose reusable componen
normal application development, they are just too hairy to be worthwhile.
discussion has been included here to give the reader a glimpse of what it takes t
professional components all the way to the end; but most developments
happily, never have to undertake such efforts.

23.5 SELECTIVE EXPORTS

The relationship between classes LINKABLE and LINKED_LIST illustrates the
importance, for a satisfactory application of the rule of Information Hiding, of suppor
more than just two export modes, secret and generally available, for a feature.

Class LINKABLE should not make its features — item, right, make, put, put_right—
generally available, since most clients have no business peeking into linkables, and
only use linked lists. But it cannot make them secret, for that would hide them
LINKED_LIST, their intended beneficiary. Such calls as active● right, essential to the
operation of forth and other LINKED_LIST routines, would not be possible.

Selective exports provide the solution by enabling LINKABLE to select a set of
classes to which, and to which only, it will export its features:

class
LINKABLE [G]

feature { LINKED_LIST}
item: G
right: LINKABLE [G]
etc.

end -- class LINKABLE

DESIGNING CLASS INTERFACES§23.6798

r own.

ctively

ions,
able to

t: how

in the
ating
urge of
 input,
roper

exity.

are
egant
others.
a, for

ck
irect
 In the
ation?
 can

“Exporting to your-
self”, page 193.

“The architectural
role of selective
exports”, page 209.
Remember that this makes the features available to all descendants of LINKED_
LIST, as is indispensable if they need to redefine some inherited routines or add thei

Sometimes, as we saw in an earlier chapter, a class must export a feature sele
to itself. For example the heir BI_LINKABLE of LINKABLE, describing two-way linked
lists with a field left, includes an invariant clause of the form

(left /= Void) implies (left● right = Current)

requiring right to be declared in a clause feature { … Other classes …, BI_LINKABLE} ;
otherwise the call left● right would be invalid.

Selective export clauses are essential when a group of related classes, as LINKABLE
and LINKED_LIST here, need some of each other’s features for their implementat
although these features remain private to the group and should not be made avail
other classes.

A reminder: in a discussion of an earlier chapter we saw that selective exports are a key
requirement for the decentralized architectures of object-oriented software construction.

23.6 DEALING WITH ABNORMAL CASES

Our next interface design topic is a problem that affects every software developmen
to handle cases that deviate from the normal, desired schemes.

Whether due to errors made by the system’s users, to abnormal conditions
operating environment, to irregular input data, to hardware malfunction, to oper
system bugs or to incorrect behavior of other modules, special cases are the sco
developers. The necessity to account for all possible situations, erroneous user
failures of the hardware or of the operating system, and other modules’ possibly imp
processing, is a powerful impediment in the constant battle against software compl

This problem strongly affects the design of module interfaces What softw
developer has not wished that it would just go away? Then we could write clear, el
algorithms for normal cases, and rely on external mechanisms to take care of all the
Much of the hope placed in exception mechanisms results from this dream. In Ad
example, you may deal with an abnormal case by writing something like

if some_abnormal_situation_detected then

raise some_exception;

end;

“Go on with normal processing”

where execution of the raise instruction stops the execution of the current routine or blo
and transfers control to an “exception handler” written in one of the direct or ind
callers. But this is a control structure, not a method for dealing with abnormal cases.
end you still have to decide what to do in these cases: is it possible to correct the situ
If so, how, and what should the system do next? If not, how quickly and gracefully
you terminate the execution?

§23.6 DEALING WITH ABNORMAL CASES 799

 with
n by
iques

be a
f the

hich

odule
nt is

e saw
 by

straint

ents.
le:

e of
e the

f the

ble in
r,

Chapter 12.

“Zen and the art of sof
ware reliability: guar-
anteeing more by
checking less”, page
343

On check see “AN
ASSERTION
INSTRUCTION”,
11.11, page 379.
We saw in an earlier chapter that a disciplined exception mechanism fits well
the rest of the object-oriented approach and in particular with the notion of Desig
Contract. But not all special cases justify resorting to exceptions. The design techn
that we will now examine are perhaps less impressive at first — “low-tech” might
good characterization — but they are remarkably powerful and address many o
possible practical situations. After studying them we will review the cases in w
exceptions remain indispensable.

The a priori scheme

Perhaps the most important criterion in dealing with abnormal cases at the m
interface level is specification. If you know exactly what inputs each software eleme
prepared to accept, and what guarantees it ensures in return, half the battle is won.

This idea was developed in depth as part of the study of Design by Contract. W
in particular that, contrary to conventional wisdom, one does not obtain reliability
including many possible redundant checks, but by assigning every consistency con
to the responsibility of just one class, either the client or the supplier.

Including the constraint in a routine precondition means assigning it to the cli
The precondition expresses what is required to make the routine’s operation possib

operation (x: …) is
require

precondition (x)
do

… Code that will only work if precondition is met …
end

The precondition should, whenever possible, be complete, in the sens
guaranteeing that any call satisfying will succeed. If so, there are two ways to writ
corresponding client extracts. One is to test explicitly:

if precondition (y) then
operation (y)

else
… Appropriate alternate action …

end

(For brevity this example uses an unqualified call, but of course most calls will be o
qualified form z● operation (y).) The other possibility avoids the if…then…else by
ensuring that the context leading to the call ensures the precondition:

… Some instructions that, among other possible effects, ensure precondition (y) …
check precondition (y) end

operation (y)

As shown here and in many other examples throughout this book, it is desira
this case to include a check instruction, with two benefits: making it immediately clea

t-

DESIGNING CLASS INTERFACES§23.6800

stead
gging
er the
)

er by
e
y error.

 — a
rror,
-fault-

hree

the

s of

tine

. A

ear
 non-

 is
uation.
d the

s that
lving
for the reader of the software text, that you did not forget the precondition but in
checked that it would hold; and, in case your deduction was wrong, facilitating debu
when the software is executed with assertion monitoring on. (If you do not rememb
details of the check instruction, make sure to re-read the corresponding section now.

Such use of a precondition, which the client has to ensure beforehand — eith
testing for it as in if precondition (y) …, or by relying on other instructions —, may b
called the a priori scheme: the client is asked to take advance measures to avoid an

With the a priori scheme, any remaining run-time failure signals a design error
client not abiding by the rules. Then the only long-term solution is to correct the e
although we have seen that for mission-critical systems it is possible to devise software
tolerant solutions which, on assertion violation, will attempt partial recovery through retry .

Obstacles to the a priori scheme

Because of its simplicity and clarity, the a priori scheme is ideal in principle. T
reasons, however, prevent it from being universally applicable:

A1 • Efficiency considerations make it impractical in some cases to test for
precondition before a call.

A2 • Limitations of practical assertion languages imply that some of the assertion
interest cannot be expressed formally.

A3 • Finally, some of the conditions required for the successful execution of a rou
depend on external events and are not assertions at all.

An example of case A1, from numerical computation, is a linear equation solver
function for solving an equation of the form a x = b, where a is a matrix, and x (the unknown)
and b are vectors, might take the following form in an appropriately designed MATRIX class:

inverse (b: VECTOR): VECTOR

so that a particular equation will be solved by x := a● inverse (b). A unique solution only
exists if the matrix is not “singular”. (Singularity mans that one of the rows is a lin
combination of others or, equivalently, that the determinant is zero.) We could make
singularity the precondition of inverse, requiring client calls to be of the form

if a● singular then

… Appropriate error action …
else

x := a● inverse (b)

end

This technique works but is very inefficient: determining whether a matrix
singular is essentially the same operation as solving the associated linear eq
Standard algorithms (Gaussian elimination) will at each step compute a divisor, calle
pivot; if the pivot found at some step is zero or below a certain threshold, this show
the matrix was singular. This result is obtained as a byproduct of the equation-so

§23.6 DEALING WITH ABNORMAL CASES 801

as to
r the
.

ata
ement
rt this.
ht be

he
ld —

ork

eme,

s the
s

med
y the
t most

il is
oolean

 any.

ery
side-
ute the
ther to
algorithm; to obtain it separately would take almost as much computation time
execute the entire algorithm. So doing the job in two steps — first finding out whethe
matrix is singular, and then, if it is not, computing the solution — is a waste of effort

Examples of A2 include cases in which the precondition is a global property of a d
structure and would need to be expressed with quantifiers, for example the requir
that a graph contain no cycles or that a list be sorted. Our notation does not suppo
As noted, we can usually rely on such assertions using functions; but then we mig
back in case A1, as the precondition can be too costly to check before every call.

Finally, limitation A3 arises when it is impossible to test the applicability of t
operation without attempting to execute it, because interaction with the outside wor
a human user, a communication line, a file system — is involved.

The a posteriori scheme

When the a priori scheme does not work, a simple a posteriori scheme is sometimes
possible. The idea is to try the operation first and then find out how it went; this will w
if a failed attempt has no irrecoverable consequences.

The matrix equation problem provides a good example. With an a posteriori sch
client code will now be of the form

a● invert (b)

if a● inverted then
x := a● inverse

else
… Appropriate error action …

end

Function inverse has been replaced by a procedure invert, for which a more accurate
name might be attempt_to_invert. A call to this procedure sets the attribute inverted to true
or false to indicate whether a solution was found; if it was, the procedure make
solution itself available through attribute inverse. (An invariant clause in the matrix clas
may state that inverted = (inverse /= Void).)

With this method, any function that may produce an error condition is transfor
into a procedure, the result being accessible, if it exists, through an attribute set b
procedure. To save space you may use a once function rather than an attribute if a
one answer is needed at any time.

This also works for input operations. For example a “read” function that may fa
better expressed as a procedure that attempts to read, and two attributes, one b
indicating whether the operation succeeded and the other yielding the value read if

This technique, as you will have noted, is in line with the Command-Qu
Separation principle. A function that may fail to compute its intended result is not
effect-free, and so is better decomposed into a procedure that attempts to comp
value and two queries (functions or attributes), one to ascertain success and the o

DESIGNING CLASS INTERFACES§23.6802

objects

.

eme.

raries

nce

s not

he next

bout

ever

ering

 control

 with

ssible

s are

ead to

eption

. This

ents

ust be
run to

rous

r human

most

use of

ception

“Why run-time moni-
toring?”, page 399.

Chapter 12.
yield the value in case of success. The technique is also consistent with the idea of

as machines, whose state can be changed by commands and accessed by queries

The example of input functions is typical of cases that can benefit from this sch

Most of the read functions provided by programming languages or the associated lib

are of the form “next integer”, “next string” etc., requiring the client to state in adva

the type of the element to be read. Inevitably, they will fail when the actual input doe

match the expectation. A read procedure, on the other hand, can attempt to read t

input item without any preconception of what it will be, and then return information a

its type through one of the queries available to clients.

This example highlights one of the constant rules for dealing with failure: when

available, a method for engineering out failures is preferable to methods for recov

from failures.

The role of an exception mechanism

The preceding discussion has shown that in most cases methods based on standard

structures, principally essentially conditional instructions, are adequate for dealing

abnormal cases. Although the a priori scheme is not always practical, it is often po

to check success after attempting an operation.

There remain, however, cases in which both a priori and a posteriori technique

inadequate. The above discussion leaves only three categories of such cases:

• Some abnormal events such as numerical failure or memory exhaustion can l

preemptive action by the hardware or operating system, such as raising an exc

and, unless the software catches the exception, terminating execution abruptly

is often intolerable, especially in systems with continuous availability requirem

(think of telephone switches and many medical systems).

• Some abnormal situations, although not detectable through a precondition, m
diagnosed at the earliest possible time; the operation must not be allowed to

completion (for a posteriori checking) because it could lead to disast

consequences, such as destroying the integrity of a database or even endange

lives, as in a robot control system.

• Finally, the developer may wish to include some form of protection against the

catastrophic consequences of any remaining errors in the software; this is the

exceptions for software fault tolerance.

In such cases, exception-based techniques appear necessary. The orderly ex

mechanism presented in an earlier chapter provides the appropriate tools.

§23.7 CLASS EVOLUTION: THE OBSOLETE CLAUSE 803

n tend

lves
of the

sign
his is

as to

 our

n the
re not

 with

eting

e. The
nding

The real Hugo quot
is about Liberty.
23.7 CLASS EVOLUTION: THE OBSOLETE CLAUSE
We try to make our classes perfect. All the techniques accumulated in this discussio
towards that goal — unreachable, of course, but useful as an ever present ideal.

Unfortunately (with no intention of offending the reader) we are not ourse
perfect. What happens if, after a few months or a few years, we realize that some
interface of a class could have been designed better? The dilemma is not pleasant:

• Favor the current users: this will mean continuing to live with an obsolete de
whose unpleasant effects will be felt more and more sorely as time passes. T
known in the computer industry as upward compatibility. Compatibility, how many
crimes have been committed in thy name! (as Victor Hugo almost wrote).

According to Unix folklore, one of the less pleasant conventions of the Make
tool, which has bothered quite a few novice users, was detected not too long
after the first release. Since it implied a language change and the
inconvenience was not a show-stopper, the decision was made to let things
stand so as not to disturb the user community. The Make user community, at
that time, must have included a dozen or two people at Bell Laboratories.

• Favor the future users: you cause trouble to the current ones, whose only sin w
trust you too early.

Sometimes — but sometimes only — there is a way out. We introduce into
notation the concept of obsolete features and obsolete classes. Here is an example of
obsolete routine:

enter (i: INTEGER; v: G) is
obsolete "Use put (value, index) instead"

require
correct_index (i)

do
put (v, i)

ensure
entry (i) = v

end

This is a real example, although no longer current. Here is the context. Early i
evolution of the Base libraries, we realized that the names and conventions we
systematic enough; this is when the principles of style developed in chapter 26 of this book
were codified. They entailed in particular using the name put rather than enter for the
procedure that replaces an array element (and item rather than entry for the corresponding
query) and, to make things worse, reversing the order of arguments, for compatibility
features of other classes in the library.

The above declaration smoothes out the evolution. Note how the old feature, enter,
has a new implementation, relying on the new feature, put; you should normally use this
scheme when making a feature obsolete, to avoid carrying along two comp
implementations with the resulting reliability and extendibility risks.

What are the consequences of making a feature obsolete? Not much in practic
tools of the environment must recognize this property, and output the correspo

e

DESIGNING CLASS INTERFACES§23.8804

put a

se

lling
ut you
users

 time,

 — a
classes
y the

 happy.

t made
 adapt

ign is
 help
cence
ecious
 your
 what
 old

of the
ases,
stment

ld a set
terface
variant
anism

 as
form
n the
-short

See “The module
view”, page 495.

See “Using asser-
tions for documenta-
tion: the short form
of a class”, page
390, and “The flat-
short form”, page
543.
warnings when a client system uses the class. The compiler, in particular, will out
message, which includes the string that has been included after the keyword obsolete,
such as Useput (value, index) instead in our example. That is all. The feature otherwi
continues to be normally usable.

Similar syntax enables you to declare an entire class as obsolete.

What you are providing your client developers, then, is a migration path. By te
them that a feature will be removed, you encourage them to adapt their software; b
are not putting a knife to their throat. If the change is justified — as it should be —
of the class will not resent having to update their part; what is unacceptable is, when they
receive a new version, to be forced to do all the changes immediately. Given a little
they will readily comply.

In practice, the migration period should be bounded. At the next major release
few months later, a year at most — you should remove the obsolete features and
for good. Otherwise no one will take obsolescence warnings seriously. This is wh
example was mentioned above as “no longer current”: enter and entry were removed
several years ago. But in their short lives they helped keep more than one developer

Feature and class obsolescence only solve a specific problem. The commen
when we discussed the Open-Closed principle and how inheritance enables you to
a parent’s design without disturbing the original is fully applicable here: when a des
flawed, the only reasonable approach is to correct it, while making your best efforts to
current users make the transition. Neither inheritance-cum-redefinition nor obsoles
should serve as cover-ups for bugs in existing software. But obsolescence is pr
when the original design, while satisfactory in other respects, does not conform to
current views; it typically resulted from a narrower and less clear perspective than
you have gained now. Although there was nothing fundamentally wrong with the
design, you can do better: simpler interfaces, better consistency with the rest
software, interoperability with other products, better naming conventions. In such c
making a few features and classes obsolete is a remarkable way to protect the inve
of your current users while moving ahead to an ever brighter future.

23.8 DOCUMENTING A CLASS AND A SYSTEM

Having mastered the most advanced techniques of class interface design, you bui
of great classes. To achieve the success they deserve, they will need good in
documentation. We have seen the basic documentation tool: the short form and its
the flat-short form. Let us summarize their use and examine a complementary mech
that works on entire systems rather than just classes.

Mentions of the short form in this discussion will encompass the flat-short form
well. The difference between the two, as you will remember, is that the flat-short
takes inherited features into account, whereas the plain short form only relies o
immediate features introduced in the class itself. In most practical cases, the flat
form is what client authors will need.

§23.8 DOCUMENTING A CLASS AND A SYSTEM 805

cret

use

lient
t they

Ada,
s this

reeds
ols to

ake
rtions
cting

mind

o a

See the “common
misunderstanding”
cited on page 52.

“Self-Documenta-
tion”, page 54.

Chapter 26.
Showing the interface

The short form directly applies the rule of Information Hiding by removing all se
information from client view. Secret information includes:

• Any non-exported feature and anything having to do with it (for example, a cla
of an assertion which refers to the feature).

• Any routine implementation, as given by the do … clause.

What remains is abstract information about the class, providing authors of c
classes, current or prospective, with the implementation-independent description tha
need to use it effectively.

Remember that the purpose is abstraction, not protection. We do not necessarily wish to
prevent client authors from accessing secret class elements; we wish to relieve them from
having to do so. By separating function from implementation, information hiding
decreases the amount of information to be mastered; client authors should view it as help
rather than hindrance.

The short form avoids the technique (supported, without assertions, by
Modula-2 and Java) of writing separate and partially redundant module interfaces, a
can mean trouble for evolution; as always in software engineering, repetition b
inconsistency. Instead it puts everything into the class and relies on computer to
extract abstract information.

The underlying principle was introduced at the beginning of this book: try to m
the software as self-documenting as possible. In this effort, judiciously chosen asse
will play a fundamental part. Examining the examples of this chapter and constru
their short forms (at least mentally) should provide clear enough evidence.

To help the short form deliver the best possible results, you should keep it in
when writing your classes, and apply the following principle:

This simply translates the more general Self-Documentation principle int
practical rule to be applied day to day by developers. Particularly important will be:

• Well-designed preconditions, postconditions and invariants.

• Careful choice of names for both classes and features.

• Informative indexing clauses.

The chapter on style will give precise guidelines on the last two points.

Documentation principle

Try to write the software so that it includes all the elements needed for its
documentation, recognizable by the tools that are available to extract
documentation elements automatically at various levels of abstraction.

DESIGNING CLASS INTERFACES§23.8806

ules
 and
tation
n —
same

p the

cepts,
verse-

 that
 other
e of its
ntial to
 the

s the
lp of
n.

A system
architecture
diagram

See [M 1995c].
System-level documentation

The short and flat-short tools, when applied to software developed according to the r
developed in this book (assertions, Design by Contract, information hiding, clear
systematic naming conventions, header comments etc.) apply the Documen
principle at the module level. There is also a need for higher-level documentatio
documentation on an entire system, or one of its subsystems — applying the
principle. But here textual output, although necessary, is not sufficient. To gras
organization of a possibly complex system, you will want graphical descriptions.

The Case tool of ISE’s environment, based on Business Object Notation con
provides such system views, as illustrated below for a session devoted to re
engineering of the Base libraries.

Although further details fall beyond the scope of this discussion, we may note
the tool supports the exploration of large systems through zooming, unzooming and
abstraction mechanisms such as the ability to focus on a cluster (subsystem) or on
subclusters as well as the entire system; also, it combines graphical views, esse
provide a general glimpse of an architecture, with textual information about
components of a system, dictionaries of abstractions etc.

All these tools are applications of the Documentation principle, tending toward
production of software which, thanks to carefully designed notations and with the he
advanced environments, should get us ever closer to the ideal of self-documentatio

§23.9 KEY CONCEPTS INTRODUCED IN THIS CHAPTER 807

ered

d, and

t the
 the

 it

ernal

ial for

ither
tion,
mines
ary in

on.

e

ages
r with
ent of
scribes
 list

 in the
n
rather

from
23.9 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

• A class should be known by its interface, which specifies the services off
independently of their implementation.

• Class designers should strive for simple, coherent interfaces.

• One of the key issues in designing modules is which features should be exporte
which should remain secret.

• The design of reusable modules is not necessarily right the first time, bu
interface should stabilize after some use. If not, there is a flaw in the way
interface was designed. The mechanism of obsolete features and classes makes
possible to smooth over the transition to a better design.

• It is often fruitful to treat some data structures as active machines, with an int
state remembered from one feature call to the next.

• Proper use of assertions (preconditions, postconditions, invariants) is essent
documenting interfaces.

• Abnormal situations are best dealt with through standard control structures, e
through the a priori scheme, which checks applicability before calling an opera
or through the a posteriori scheme, which attempts the operation and then exa
whether it has succeeded. A disciplined exception mechanism remains necess
cases when execution must immediately cancel a potential dangerous operati

23.10 BIBLIOGRAPHICAL NOTES

The work of Parnas [Parnas 1972] [Parnas 1972a] introduced many seminal ideas on th
design of interfaces.

The operand-option distinction, and the resulting principle, come from [M 1982a].

The notion of “active data structure” is supported in some programming langu
by control abstractions called iterators. An iterator is a mechanism defined togethe
a data structure, which describes how to apply an arbitrary operation to every elem
an instance of the data structure. For example, an iterator associated with a list de
a looping mechanism for traversing the list, applying a given operation to every
element; a tree iterator specifies a tree traversal strategy. Iterators are available
programming language CLU [Liskov 1981]; [Liskov 1986] contains a detailed discussio
of the concept. In object technology, we can implement iterators through classes
than predefine them as language constructs; see [M 1994a], which applies to library design
a number of ideas from the present chapter.

The example of the self-adaptive complex number implementation comes
[M 1979], where it was expressed in Simula.

DESIGNING CLASS INTERFACES§E23.1808

s
 those
es.

ction
data

es to
.

ional
d, the
erand

ant for

Function fresh
appeared on page
299.

Page 785.
Literate programming [Knuth 1984] emphasizes, like this chapter, that program
should contain their own documentation. Its concepts, however, are quite different from
of object technology; one of the exercises below invites you to compare the approach

Articles by James McKim and Richard Bielak [Bielak 1993], [McKim 1992a]
[McKim 1995] present useful advice on class interface design based on the notion of
Design by Contract.

EXERCISES

E23.1 A function with side effects

The example of component-level memory management for linked lists had a fun
fresh that calls a procedure, remove for stacks, and hence produces a side effect on the
structure. Discuss whether this is acceptable.

E23.2 Operands and options

Examine a class or routine library to which you have access and study its routin
determine, for each of them, which arguments are operands and which are options

E23.3 Optional arguments

Some languages, such as Ada, offer the possibility for a routine of having opt
arguments, each with an associated argument keyword; if the keyword is not include
argument may be set to a default. Discuss which of the advantages of the Op
principle this technique retains, and which it fails to ensure.

E23.4 Number of elements as function

Adapt the definition of class LINKED_LIST [G] so that count is a function rather than an
attribute, the interface of the class being unchanged.

E23.5 Searching in a linked list

Write the LINKED_LIST procedure search (x: G), searching for the next occurrence of x.

E23.6 Invariant theorems

Prove the three assertion clauses listed as theorems in the first part of the invari
LINKED_LIST.

E23.7 Two-way lists

Write a class describing two-way linked lists, with the same interface as LINKED_LIST,
but more efficient implementations of some operations such as back, go and finish.

§E23.8 EXERCISES 809

list is
is

at

fect-

uired.

rious
 and

and at

asizes
nuth’s
iting
nd its
: top-
 his
nents.

See [M 1988], sections
9.1 and A.5.

remove is on page 791.

For references on liter
ate programming see
the bibliographic notes
to this chapter.
E23.8 Alternative linked list class design

Devise a variant of the linked list class design using the convention that an empty
considered both after and before. (This was the technique used in the first edition of th
book.) Assess it against the approach developed in the present chapter.

E23.9 Insertion in a linked list

Drawing inspiration from remove, write the procedures put_left and put_right to insert an
element to the left and right of the cursor position.

E23.10 Circular lists

Explain why the LINKED_LIST class may not be used for circular lists. (Hint: show wh
assertions would be violated.) Write a class CIRCULAR_LINKED that implements
circular lists.

E23.11 Side-effect-free input functions

Design a class describing input files, with input operations, without any side-ef
producing functions. Only the class interface (without the do clause describing the routine
implementations, but with the routine headers and any appropriate assertions) is req

E23.12 Documentation

Discuss, expand and refine the Self-Documentation principle and its va
developments in this book, considering various kinds of documentation in software
examining what styles of documentation are appropriate in various circumstances
various levels of abstraction.

E23.13 Self-documenting software

The approach to self-documenting software advocated in this chapter emph
terseness and does not readily support long explanations of design decisions. K
“Literate programming” style of design combines techniques from programming, wr
and text processing to integrate a program, its complete design documentation a
design history within a single document. The method relies on a classical paradigm
down development of a single program. Starting from Knuth’s work, discuss how
method could be transposed to the object-oriented development of reusable compo

-

DESIGNING CLASS INTERFACES§E23.13810

	23 23 Principles of class design
	23.1 SIDE EFFECTS IN FUNCTIONS
	Commands and queries
	Forms of side effect
	Definition: concrete side effect

	Referential transparency
	Definition: referential transparency

	Objects as machines
	Command-Query Separation principle
	A list object as list machine

	Functions that create objects
	A clean style for class interfaces
	Pseudo-random number generators: a design exercise...
	An infinite list as a machine

	Abstract state, concrete state
	Definition: abstract side effect

	The policy
	Objections
	Legitimate side effects: an example

	23.2 HOW MANY ARGUMENTS FOR A FEATURE?
	The importance of argument counts
	Operands and options
	Definition: operand and option arguments
	How to distinguish options from operands

	The principle
	Operand principle

	Benefiting from the Operand principle
	Exceptions to the Operand principle?
	A checklist

	23.3 CLASS SIZE: THE SHOPPING LIST APPROACH
	Class size definition
	Maintaining consistency
	Shopping List advice

	Laxity and restrictiveness

	23.4 ACTIVE DATA STRUCTURES
	Linked list representation
	A linkable
	A linked list
	Deletion in a linked list

	Passive classes
	Encapsulation and assertions
	A critique of the class interface
	Simple-minded solutions
	Evolution of a library class

	Introducing a state
	List with cursor

	Maintaining consistency: the implementation invari...
	List with sentinels
	Empty list with sentinels

	The client’s view
	The internal view
	Cursor list representation (first variant)
	Cursor list representation (revised variant)

	Abstract data types and abstract machines
	Separating the state
	Merging the list and the sentinels
	Header as sentinel (non- empty list)
	Header as sentinel (empty list)

	23.5 SELECTIVE EXPORTS
	23.6 DEALING WITH ABNORMAL CASES
	The a priori scheme
	Obstacles to the a priori scheme
	The a posteriori scheme
	The role of an exception mechanism

	23.7 CLASS EVOLUTION: THE OBSOLETE CLAUSE
	23.8 DOCUMENTING A CLASS AND A SYSTEM
	Showing the interface
	Documentation principle

	System-level documentation
	A system architecture diagram

	23.9 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
	23.10 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E23.1 A function with side effects
	E23.2 Operands and options
	E23.3 Optional arguments
	E23.4 Number of elements as function
	E23.5 Searching in a linked list
	E23.6 Invariant theorems
	E23.7 Two-way lists
	E23.8 Alternative linked list class design
	E23.9 Insertion in a linked list
	E23.10 Circular lists
	E23.11 Side-effect-free input functions
	E23.12 Documentation
	E23.13 Self-documenting software

