
24
Using inheritance well
did in
gical

n as the
ple on
dvice.

sake
jects.

dule
when
e set the
hich
ate

tion or
the

other
a

ate, a
ing.

ook,
uting
nts of

g:

 the
inues:

Extracts from “Sof
ware Engineering”
by Ian Sommervill,
Fourth edition, Add
ison-Wesley, 1993.
L earning all the technical details of inheritance and related mechanisms, as we
part C, does not automatically mean that we have fully grasped the methodolo
consequences. Of all issues in object technology, none causes as much discussio
question of when and how to use inheritance; sweeping opinions abound, for exam
Internet discussion groups, but the literature is relatively poor in precise and useful a

In this chapter we will probe further into the meaning of inheritance, not for the
of theory, but to make sure we use it best to benefit our software development pro
We will in particular try to understand how inheritance differs from the other inter-mo
relation in object-oriented system structures, its sister and rival, the client relation:
to use one, when to use the other, when both choices are acceptable. Once we hav
basic criteria for using inheritance — identifying along the way the typical cases in w
it is wrong to use it — we will be able to devise a classification of the various legitim
uses, some widely accepted (subtype inheritance), others, such as implementa
facility inheritance, more controversial. Along the way we will try to learn a little from
experience in taxonomy, or systematics, gained from older scientific disciplines.

24.1 HOW NOT TO USE INHERITANCE

To arrive at a methodological principle, it is often useful — as illustrated by so many
discussions in this book — to study first how not to do things. Understanding a bad ide
helps find good ones, which we might otherwise miss. In too constantly warm a clim
pear tree will not flower; it needs the jolt of Winter frost to attain full bloom in the Spr

Here the jolt is obligingly provided by a widely successful undergraduate textb
used throughout the world to teach software engineering to probably more comp
science students than any other. Already in its fourth edition, it introduced some eleme
object orientation, including a discussion of multiple inheritance. Here is the beginnin

Multiple inheritance allows several objects to act as base objects and is supported
in object-oriented languages such as [the notation of the present book] [M 1988].

The bibliographic reference is to the first edition of the present book. Apart from
unfortunate use of “objects” for classes, this is an auspicious start. The extract cont

The characteristics of several different object classes

(classes, good!)

t-

e
-

USING INHERITANCE PROPERLY§24.1810

n at an

e was

twist
o treat

and
enced
look as

 proper model
can be combined to make up a new object.

(no luck). Then comes the example of multiple inheritance:

For example, say we have an object class CAR which encapsulates information
about cars and an object class PERSON which encapsulates information about
people. We could use both of these to define

(will our worst fears come out true?)

a new object class CAR-OWNER which combines the attributes of CAR
and PERSON.

(They have.) We are invited to consider that every CAR-OWNER object may be viewed
as not only a person but also a car. To anyone who has studied inheritance eve
elementary level, this will be a surprise.

As you will undoubtedly have figured out, the relation to use in the second cas
client, not inheritance: a car owner is a person, but has a car. In pictures:

In formal words:

class CAR_OWNER inherit
PERSON

feature
my_car: CAR
…

end -- class CAR_OWNER

In the cited text, both links use the inheritance relation. The most interesting
actually comes a little later in the discussion, when the author advises his reader t
inheritance with caution:

Adaptation through inheritance tends to lead to extra functionality being
inherited, which can make components inefficient and bulky.

Bulky indeed; think of the poor car owner, loaded with his roof, engine
carburetor, not to mention four wheels plus a spare. This view might have been influ
by one of the picturesque phrases of Australian slang, about a car owner who does
if he also is his car:

A

PERSON

CAR_
OWNER

CAR

Inheritance

Client

§24.1 HOW NOT TO USE INHERITANCE 811

ct on
as an

basic

 start

why:

: we

 is no
f the

e
ter.
se the
s: the

e,
w

“He has a head
like an Austin
Mini with the
doors open”.

Cartoon by Geoff
Hocking; from The
Dictionary of
Aussie Slang, The
Five Mile Press,
Melbourne,
Australia, reprinted
with permission.
Inheritance is a non-trivial concept, so we can forgive the author of this extra
the grounds that he was perhaps a little far from his home turf. But the example h
important practical benefit apart from helping us feel smarter: it reminds us of the
rule on inheritance.

In other words, we must be able to convince someone — if only ourselves to
with — that “every B is an A” (hence the name: “is-a”).

In spite of what you may think at first, this is a loose rule, not a strict one. Here is

• Note the phrase ‘‘can somehow make the argument”. This is voluntarily vague
do not require a proof that every B is an A. Many cases will leave room for
discussion. Is it true that “Every savings account is a checking account”? There
absolute answer; depending on the bank’s policies and your analysis o
properties of the various kinds of account, you may decide to make class SAVINGS_
ACCOUNT an heir to BANK_ACCOUNT, or put it elsewhere in the inheritanc
structure, getting some help from the other criteria discussed in this chap
Reasonable people might still disagree on the result. But for this to be the ca
“ is-a” argument must be sustainable. Once again our counter-example help
argument that a CAR_OWNER “is-a” CAR is not sustainable.

• Our view of what “is-a” means will be particularly liberal. It will not, for exampl
disallow implementation inheritance — a form of inheritance that many people vie
with suspicion — as long as the “is-a” argument can reasonably be made.

“Is-a” rule of inheritance

Do not make a class B inherit from a class A unless you can somehow make
the argument that one can view every instance of B also as an instance of A.

USING INHERITANCE PROPERLY§24.2812

ule. It
ject
t all

of
 and
ritance
he bad
 issue,

e basic
?

make
iculty
rty —
t by no

 types

r our
a case
wing

ntally
 can
These observations define both the usefulness and the limitations of the Is-a r
is useful as a negative rule in the Popperian style, enabling you to detect and re
inappropriate uses of inheritance. But as a positive rule it is not sufficient; no
suggested uses that pass the rule’s test will be appropriate.

Gratifying as the CAR_OWNER counter-example may be, then, any feeling
elation that we may have gained from it will be short-lived. It was both the beginning
the end of the unmitigated good news — the news that some proposed uses of inhe
are obviously wrong and easy to spot. The rest of this chapter has to contend with t
or at least mixed news: that in just about all other cases the decision is a true design
that is to say hard, although we will fortunately be able to find some general guidelines.

24.2 WOULD YOU RATHER BUY OR INHERIT?

To choose between the two possible inter-module relations, client and inheritance, th
rule is deceptively simple: client is has, inheritance isis. Why then is the choice not easy

To have and to be

The reason is that whereas to have is not always to be, in many cases to be is also to have.

No, this is neither some cheap attempt at existentialist philosophy nor a pitch to
you buy a house if you are currently renting; rather, simple observations on the diff
of system modeling. We have already encountered an illustration of the first prope
to have is not always to be — in the preceding example: a car owner has a car, bu
twist of reasoning or exposition can we assert that he is a car.

What about the reverse situation? Take a simple statement about two object
from ordinary life, such as

Every software engineer is an engineer. [A]

whose truth we accept for its value as an example of the “is-a” relation (whateve
opinion may be as to the statement’s accuracy). It seems hard indeed to think of
which so clearly expresses “to be” rather than “to have”. But now consider the follo
rephrasing of the property:

In every software engineer there is an engineer [B]

which can in turn be restated as

Every software engineer has an “engineer” component. [C]

Twisted, yes, and perhaps a trifle bizarre in its expression; but not fundame
different from our premise [A]! So here it is: by changing our perspective slightly we
rephrase the “is” property as a “has”.

§24.2 WOULD YOU RATHER BUY OR INHERIT? 813

n an
 in an

 tasks.
nces:

n from
client,
rts —

imilar

ivial:

“COMPOSITE
OBJECTS AND
EXPANDED
TYPES”, 8.7, page
254

A “software
engineer”
object as
aggregate

Another
possible view
If we look at the picture through the eyes of a programmer, we may summo
object diagram, in the style of those which served to discuss the dynamic model
earlier chapter, showing a typical instance of a class and its components:

This shows an instance of SOFTWARE_ENGINEER with various subobjects,
representing the various posited aspects of a software engineer’s personality and
Rather than subobjects (the expanded view) we might prefer to think in terms of refere

Take both of these representations as ways to visualize the situation as see
an implementation-oriented mindset, nothing more. Both suggest, however, that a
or “has”, interpretation — every software engineer has an engineer as one of his pa
is faithful to the original statement. The same observation can be made for any s
“ is-a” relationship.

So this is why the problem of choosing between client and inheritance is not tr
when the “is” view is legitimate, one can always take the “has” view instead.

(SOFTWARE_ENGINEER)

(ENGINEER)

(POET)

(PLUMBER)

(SOFTWARE_ENGINEER) (ENGINEER)

(POET)

(PLUMBER)

USING INHERITANCE PROPERLY§24.2814

s the
takes,
able to
nder.

ritance,

ince
lution.
 two

 the
o be”
eneral
e than

uch
lt. The

ange
eliable

ce or
 as to

Object and
subobject
The reverse is not true: when “has” is legitimate, “is” is not always applicable, a
CAR_OWNER example shows so clearly. This observation takes care of the easy mis
obvious to anyone having understood the basic concepts, and perhaps even explain
authors of undergraduate texts. But whenever “is” does apply it is not the only conte
So two reasonable and competent people may disagree, one wanting to use inhe
the other preferring client.

Two criteria fortunately exist to help in such discussions. Not surprisingly (s
they address a broad design issue) they may sometimes fail to give a clear, single so
But in many practical cases they do tell you, beyond any hesitation, which of the
relations is the right one.

Conveniently, one of these two criteria favors inheritance, and the other favors client.

The rule of change

The first observation is that the client relation usually permits change, while
inheritance relation does not. Here we must be careful with our use of the verbs “t
and “to have” from ordinary language; so far they have helped us characterize the g
nature of our two software relations, but software rules are, as always, more precis
their general non-software counterparts.

One of the defining properties of inheritance is that it is a relation between classes,
not objects. We have interpreted the property “Class B inherits from class A” as meaning
“every B object is an A object”, but must remember that it is not in the power of any s
object to change that property: only a change of the class can achieve such a resu
property characterizes the software, not any particular execution.

With the client relation, the constraints are looser. If an object of type B has a
component of type A (either a subobject or an object reference), it is quite possible to ch
that component; the only restrictions are those of the type system, ensuring provably r
execution (and governed, through an interesting twist, by the inheritance structure).

So even though a given inter-object relationship can result from either inheritan
client relationships between the corresponding classes, the effect will be different
what can be changed and what cannot. For example our fictitious object structure

(SOFTWARE_ENGINEER)

(ENGINEER) (Other components omitted)

§24.2 WOULD YOU RATHER BUY OR INHERIT? 815

e

n the
 once

f the
d (the

any
vor of
.

could result from an inheritance relationship between the corresponding classes:

class SOFTWARE_ENGINEER_1 inherit

ENGINEER

feature

…

end -- class SOFTWARE_ENGINEER_1

but it could just as well have been obtained through the client relation:

class SOFTWARE_ENGINEER_2 feature

the_engineer_in_me: ENGINEER

…

end -- class SOFTWARE_ENGINEER_2

which could in fact be

class SOFTWARE_ENGINEER_3 feature

the_truly_important_part_of_me: VOCATION

…

end -- class SOFTWARE_ENGINEER_3

provided we satisfy the type rules by making class ENGINEER a descendant of
class VOCATION.

Strictly speaking the last two variants represent a slightly different situation from the first
if we assume that none of the given classes is expanded: instead of subobjects, th
“software engineer” objects will in the last two cases contain references to “engineer”
objects, as in the second figure of page 813. The introduction of references, however,
does not fundamentally affect this discussion.

With the first class definition, because the inheritance relationship holds betwee
generating classes, it is not possible to modify the object relationship dynamically:
an engineer, always an engineer.

But with the other two definitions such a modification is possible: a procedure o
“software engineer” class can assign a new value to the corresponding object fiel
field for the_engineer_in_me or the_truly_important_part_of_me). In the case of class
SOFTWARE_ENGINEER_2 the new value must be of type ENGINEER or compatible;
but with class SOFTWARE_ENGINEER_3 it may be of any type compatible with
VOCATION. So our software can model the idea of a software engineer who, after m
years of pretending to be an engineer, finally sheds that part of his personality in fa
something that he deems more representative of his work, such as poet or plumber

ENGINEER

SOFTWARE_ENGINEER_1

SOFTWARE_ENGINEER_3

VOCATION

USING INHERITANCE PROPERLY §24.2816

other

n is
ration

ic

nd
ility
s

 a few
 well.

h

This yields our first criterion:

Only use inheritance if the corresponding inter-object relation is permanent. In
cases, use the client relation.

The really interesting case is the one illustrated by SOFTWARE_ENGINEER_3. With
SOFTWARE_ENGINEER_2 you can only replace the engineer component with another
of exactly same type. But in the SOFTWARE_ENGINEER_3 scheme, VOCATION should
be a high-level class, most likely deferred; so the attribute can (through polymorphism)
represent objects of many possible types, all conforming to VOCATION.

This also means that even though this solution uses client as the primary relation, in
practice its final form will often use inheritance as a complement. This will be particularly
clear when we come to the notion of handle.

The polymorphism rule

Now for a criterion that will require inheritance and exclude client. That criterio
simple: polymorphic uses. In our study of inheritance we have seen that with a decla
of the form

x: C

x denotes at run time (assuming class C is not expanded) a potentially polymorph
reference; that is to say, x may become attached to direct instances not just of C but of any
proper descendants of C. This property is of course a key contribution to the power a
flexibility of the object-oriented method, especially through its corollary, the possib
of defining polymorphic data structures, such as a LIST [C] which may contains instance
of any of C’s descendants.

In our example, this means that with the SOFTWARE_ENGINEER_1 solution — the
form of the class which inherits from ENGINEER — a client can declare an entity

eng: ENGINEER

which may become attached at run time to an object of type SOFTWARE_ENGINEER_1.
Or we can have a list of engineers, or a database of engineers, which includes
mechanical engineers, a few chemical engineers, and a few software engineers as

A reminder on methodology: the use of non-software words is a good help for
understanding the concepts, but we should not let ourselves get carried away by suc
anthropomorphic examples; the objects of interest are software objects. So although we
may loosely understand the words “a software engineer” for what they say, they actually
denote an instance of SOFTWARE_ENGINEER_1, that is to say, a software object
somehow modeling a real person.

Rule of change

Do not use inheritance to describe a perceived “is-a” relation if the
corresponding object components may have to be changed at run time.

§24.3 AN APPLICATION: THE HANDLE TECHNIQUE 817

mple

ry of

wide

ed
used

ibing
f the
Such polymorphic effects require inheritance: with SOFTWARE_ENGINEER_2 or
SOFTWARE_ENGINEER_3 there is no way an entity or data structure of type ENGINEER
can directly denote “software engineer” objects.

Generalizing these observations — which are not, of course, specific to the exa
— yields the complement of the rule of change:

Summary

Although it brings no new concept, the following rule will be convenient as a summa
this discussion of criteria for and against inheritance.

24.3 AN APPLICATION: THE HANDLE TECHNIQUE

Here is an example using the preceding rule. It yields a design pattern of
applicability: handles.

The first design of the Vision library for platform-independent graphics encounter
a general problem: how to account for platform dependencies. The first solution
multiple inheritance in the following way: a typical class, such as the one descr
windows, would have a parent describing the platform-independent properties o
corresponding abstraction, and another providing the platform-specific elements.

class WINDOW inherit
GENERAL_WINDOW
PLATFORM_WINDOW

feature
…

end -- class WINDOW

Polymorphism rule

Inheritance is appropriate to describe a perceived “is-a” relation if entities or
data structure components of the more general type may need to become
attached to objects of the more specialized type.

Choosing between client and inheritance

In deciding how to express the dependency of a class B on a class A, apply
the following criteria:

CI1 • If every instance of B initially has a component of type A, but that
component may need to be replaced at run time by an object of a
different type, make B a client of A.

CI2 • If there is a need for entities of type A to denote objects of type B,
or for polymorphic structures containing objects of type A of which
some may be of type B, make B an heir of A.

USING INHERITANCE PROPERLY§24.3818

cts and
asses
s

orm-

ch

one
ories;

 Motif
Unix
OS/2
” to
ange

 such
ance

ge

 full-

On the platform-
specific libraries
WEL and MEL see
“Object-oriented re-
architecturing”,
page 441

Platform
adaptation
through
inheritance

On the notion of Ace
see “Assembling a
system”, page 198
Class GENERAL_WINDOW and similar ones such as GENERAL_BUTTON are
deferred: they express all that can be said about the corresponding graphical obje
the applicable operations without reference to a particular graphical platform. Cl
such as PLATFORM_WINDOW provide the link to a graphical platform such a
Windows, OS/2-Presentation-Manager or Unix-Motif; they give access to the platf
specific mechanisms (encapsulated through a library such as WEL or MEL).

A class such as WINDOW will then combine its two parents through features whi
effect (implement) the deferred features of GENERAL_WINDOW by using the
implementation mechanisms provided by PLATFORM_WINDOW.

PLATFORM_WINDOW (like all other similar classes) needs several variants,
for each platform. These identically named classes will be stored in different direct
the Ace for a compilation (the control file) will select the appropriate one.

This solution works, but it has the drawback of tying the notion of WINDOW closely
to the chosen platform. To transpose an earlier comment about inheritance: once a
window, always a Motif window. This may not be too bad, as it is hard to imagine a
window which, suddenly seized by middle-age anxiety, decides to become an
window. The picture becomes less absurd if we expand our definition of “platform
include formats such as Postscript or HTML; then a graphical object could ch
representation for purposes of printing or inclusion in a Web document.

The observation that we might need a looser connection between GUI objects
as a window and the underlying toolkit suggests trying the client relation. An inherit
link will remain, between WINDOW and GENERAL_WINDOW; but the platform
dependency will be represented by a client link to a class TOOLKIT representing the
underlying “toolkit” (graphical platform). The figure at the top of the facing pa
illustrates the resulting structure, involving both client and inheritance.

An interesting aspect of this solution is that it recognizes the notion of toolkit as a
fledged abstraction, represented by a deferred class TOOLKIT. Each specific toolkit is then
represented by an effective descendant of TOOLKIT such as MOTIF or MS_WINDOWS.

Here is how it works. Each class describing graphical objects, such as WINDOW, has
an attribute providing access to the underlying platform:

handle: TOOLKIT

WINDOW

PLATFORM_
WINDOW

∗
GENERAL_
WINDOW

§24.3 AN APPLICATION: THE HANDLE TECHNIQUE 819

ndle:

uired

ha!
m it.”

 the
d the
th the
ic

Platform
adaptation
through a
handle
This will yield a field in each instance of the class. It is possible to change the ha

set_handle (new: TOOLKIT) is
-- Make new the new handle for this object.

do
handle:= new

end

A typical operation inherited from GENERAL_WINDOW in deferred form will be
effected through a call to the platform’s mechanism:

display is
-- Display window on screen.

do
handle● window_display (Current)

end

Through the handle, the graphical object asks the platform to perform the req
operation. A feature such as window_display is deferred in class TOOLKIT and effected
variously for its various descendants such as MOTIF.

Note that it would be inappropriate to draw from this example the conclusion “A
Another case in which inheritance was overused, and the final version stays away fro
The initial version was not wrong; in fact it works quite well, but is less flexible than
second one. And that second version fundamentally relies on inheritance an
consequent techniques of polymorphism and dynamic binding, which it combines wi
client relation. Without the TOOLKIT-rooted inheritance hierarchy, the polymorph

WINDOW TOOLKIT

MOTIF
MS_

WINDOWS

…

handle●window_display (Current)

window_display*

*
handle

GENERAL_
WINDOW

window_display+

window_display+

USING INHERITANCE PROPERLY§24.4820

more

rting

ased

 heir
ts own,
ce is:

 been
sions
sult is

vels

g the
is the
ular a
tirely

ass by
ture or
ion by
use (as

bring
class

ou are
res,
cture
hould
 unless

This is actually a
consequence of the
Inheritance rule
seen later in this
chapter, page 822.
entity handle, and dynamic binding on features such as window_display, it would not
work. Far from being a rejection of inheritance, then, this technique illustrates a
sophisticated form of inheritance.

The handle technique is widely applicable to the development of libraries suppo
multi-platform compatibility. Besides the Vision graphical library, we have applied it to
the Store database library, where the notion of platform covers various SQL-b
relational database interfaces such as Oracle, Ingres, Sybase and ODBC.

24.4 TAXOMANIA

For every one of the inheritance categories introduced later in this chapter, the
redeclares (redefines or effects) some inherited features, or introduces features of i
or adds to the invariant. (It may of course do several of these things.) A consequen

What this rule addresses is a foible sometimes found in newcomers who have
won over to the O-O method, and enthusiastically start seeing taxonomical divi
everywhere (hence the name of the rule, a shortcut for “taxonomy mania”). The re
over-complicated inheritance hierarchies. Taxonomy and inheritance are meant tohelp
us master complexity, not to introduce complexity. Adding useless classification le
is self-defeating.

As is so often the case, you can gain the proper perspective — and brin
neophytes back to reason — by keeping in mind the ADT view at all times. A class
implementation, partial or total, of an abstract data type. Different classes, in partic
parent and an heir, should describe different ADTs. Then, because an ADT is en
characterized by the applicable features and their properties (captured in the cl
assertions), a new class should change an inherited feature, introduce a new fea
change some assertion. Since you can only change a precondition or postcondit
redefining the enclosing feature, the last case means the addition of an invariant cla
in restriction inheritance, one of the categories in our taxonomy).

You may occasionally justify a case of taxomania — a class that does not
anything new of its own, apart from its existence — on the grounds that the heir
describes an important variant of the notion described by the parent, and that y
introducing it now to pave the way for future introduction or redeclaration of featu
even if none has occurred so far. This may be valid when the inheritance stru
corresponds to a generally accepted classification in the problem domain. But you s
always be wary of such cases, and resist the introduction of new featureless classes
you can find compelling arguments.

Taxomania rule

Every heir must introduce a feature, redeclare an inherited feature, or add an
invariant clause.

§24.4 TAXOMANIA 821

pecific
asses
 no

er of

 later
t you

d to

riant
 cases
iants.

 this
es do

— in
ure —
d cure.
ion
tify a
her
visory
general
ed
Here is an example. Assume a certain system or library includes a class PERSON and
that you are considering adding heirs MALE and FEMALE. Is this justified? You will have
to take a closer look. A personnel management system that includes gender-s
features, pertaining for example to maternity leave, may benefit from having heir cl
MALE and FEMALE. But in many other cases the variants, if present, would have
specific features; for example statistical software that just records the gend
individuals may be better off with a single class PERSON and a boolean attribute

female: BOOLEAN

or perhaps

Female: INTEGER is unique
Male: INTEGER is unique

rather than new heirs. Yet if there is any chance that specific features will be added
on, the corresponding classification is so clearly known in the problem domain tha
may prefer to introduce these heirs anyway.

One guideline to keep in mind is the Single Choice principle. We have learne
distrust the use of explicit variant lists, as implemented by unique constants, for fear of
finding our software polluted with conditional instructions of the form

if female then
…

else
…

or inspect instructions. This is, however, not too much of a concern here:

• One of the principal criticisms against this style was that any addition of a va
would cause a chain reaction of changes throughout the software, but in certain
— such as the above example — we can be confident there will be no new var

• Even with a fixed set of variants, the explicit if … style is less effective than relying
on dynamic binding through calls such as this_ person● some_operation where
MALE and FEMALE have different redeclarations of some_operation. But then if we
do need to discriminate on a person’s gender we violate the premise of
discussion — that there are no features specific to the variants. If such featur
exist, inheritance is justified.

The last comment alerts us to the real difficulty. Simple cases of taxomania
which the patient needlessly adds intermediate nodes all over the inheritance struct
are relatively easy to diagnose (by noticing classes that have no specific features) an
But what if the variants do have specific features, although the resulting classificat
conflicts with other criteria? A personnel management system for which we can jus
class FEMALE_EMPLOYEE because of a few specific features might have ot
distinctions as well, such as permanent versus temporary employees, or super
versus non-supervisory ones. Then we do not have taxomania any more, but face a
and delicate problem, multi-criteria classification, whose possible solutions are discuss
later in this chapter.

USING INHERITANCE PROPERLY§24.5822

imes,
nding
asional

der all

 will

hine

cific

that
hich

nd not
s a

n and
ust

pted
ul uses
24.5 USING INHERITANCE: A TAXONOMY OF TAXONOMY

The power of inheritance comes from its versatility. True, this also makes it scary at t
causing many authors to impose restrictions on the mechanism. While understa
these fears and even sometimes sharing them — do the boldest not harbor the occ
doubt and anxiety? — we should overcome them and learn to enjoy inheritance un
of its legitimate variants, which will now be explored.

After recalling some commonly encountered wrong uses of inheritance we
individually review the valid uses:

• Subtype inheritance.

• View inheritance.

• Restriction inheritance.

• Extension inheritance.

• Functional variation inheritance

• Type variation inheritance.

• Reification inheritance.

• Structure inheritance.

• Implementation inheritance.

• Facility inheritance (with two special variants: constant inheritance and mac
inheritance).

Some of these categories (subtype, view, implementation, facility) raise spe
issues and will be discussed in more detail in separate sections.

Scope of the rules

The relatively broad view of inheritance taken in this book in no way means
“anything goes”. We accept and in fact encourage certain forms of inheritance on w
some authors frown; but of course there are many ways to misuse inheritance, a
just CAR_OWNER. So the inevitable complement of our broad-mindedness i
particularly strict constraint:

This rule is stern indeed: it states that the types of use of inheritance are know
that if you encounter a case that is not covered by one of these types you should jnot
use inheritance.

What are “the accepted categories”? The implicit meaning is “the acce
categories, as discussed in the rest of this section”. I indeed hope that all meaningf

Inheritance rule

Every use of inheritance should belong to one of the accepted categories.

§24.5 USING INHERITANCE: A TAXONOMY OF TAXONOMY 823

 need
eful

ou see
, you
se; if
u are
u may

s
It

isory
y: if
plicit
iants
, hard-

rule
r two

nce.
uman
 few

r ones,

Page 820.

See “Advisories”,
page 667.
are covered. But the phrasing is a little more careful because the taxonomy may
further thinking. I found precious little in the literature about this topic; the most us
reference is an unpublished Ph. D. thesis [Girod 1991]. So it is quite possible that this
attempt at classification has missed some categories. But the rule indicates that if y
a possible use of inheritance that does not fall into one of the following categories
should give it serious thought. Most likely you should not use inheritance in that ca
after further reflection you are still convinced that inheritance is appropriate, and yo
still unable to attach your example to one of the categories of this chapter, then yo
have a new contribution to the literature.

We already saw a consequence of the Inheritance rule: the Taxomania rule, which state
that every heir class should redeclare or introduce a feature, or change some assertion.
follows directly from the observation that every legitimate form of inheritance detailed
below requires the heir to perform at least one of these operations.

The Inheritance rule does not prohibit inheritance links that belong to more than one
of the inheritance categories. Such practice is, however, not recommended:

This is not an absolute rule but what an earlier discussion called an “adv
positive”. The rationale for the rule is once again the desire for simplicity and clarit
whenever you introduce an inheritance link between two classes you apply ex
methodological principles, and in particular decide which one of the approved var
you will be using, you are less likely to make a design mistake or to produce a messy
to-use and hard-to-maintain system structure.

A compelling argument does not seem to exist, however, for making the
absolute, and once in a while it may be convenient to use a single inheritance link fo
of the goals captured by the classification. Such cases remain a minority.

Unfortunately I do not know of a simple criterion that would unambiguously tell us when
it is all right to collapse several inheritance categories into one link. Hence the advisory
nature of the Inheritance Simplicity rule. The reader’s judgment, based on a clear
understanding of the methodology of inheritance, should decide any questionable case.

Wrong uses

The preceding two rules confirm the obvious: that it is possible to misuse inherita
Here is a list of typical mistakes, most of which have already been mentioned. H
ability for mischief being what it is, we can in no way hope for completeness, but a
common mistakes are easy to identify.

The first is “has” relation with no “is” relation . CAR_OWNER served as an
example — extreme but not unique. Over the years I have heard or seen a few simila
often as purported examples of multiple inheritance, such as APPLE_PIE inheriting from

Inheritance Simplicity rule

A use of inheritance should preferably belong to just one of the accepted
categories.

USING INHERITANCE PROPERLY§24.5824

as
 light)
d on it.

s
atures.

 nor
ance

te

ries,

Classification
of the valid
categories of
inheritance
APPLE and from PIE, or (this one reported by Adele Goldberg) ROSE_TREE inheriting
from ROSE and from TREE.

Another is a typical case of taxomania in which a simple boolean property, such
a person’s gender (or a property with a few fixed values, such as the color of a traffic
is used as an inheritance criterion even though no significant feature variants depen

A third typical mistake is convenience inheritance, in which the developer see
some useful features in a class and inherits from that class simply to reuse these fe
What is wrong here is neither the act of “using inheritance for implementation”,
“inheriting a class for its features”, both of which are acceptable forms of inherit
studied later in this chapter, but the use of a class as a parent without the proper is-a
relationship between the corresponding abstractions — or in some cases without adequa
abstractions at all.

General taxonomy

On now to the valid uses of inheritance. The list will include twelve different catego
conveniently grouped into three broad families:

Valid use of inheritance

Software
inheritance

Model
inheritance

Subtype
inheritance

Restriction
inheritance

Extension
inheritance

Variation
inheritance

Functional
variation
inheritance

Type
variation
inheritance

View
inheritance

Reification
inheritance

Structure
inheritance

Implementation
inheritance

Facility
inheritance

Constant
inheritance

Machine
inheritanceUneffecting

inheritance

§24.5 USING INHERITANCE: A TAXONOMY OF TAXONOMY 825

cts a
are’s

l.

ious

 or to
lass.

ortant
ure).

h
 each

ome
sjoint
d you
mally:

tware,
ight be
ht be

Exercise E24.2,
page 869.

Naming
convention for
definitions of
inheritance
categories
The classification is based on the observation that any software system refle
certain external model, itself connected with some outside reality in the softw
application domain. Then we may distinguish:

• Model inheritance, reflecting “is-a” relations between abstractions in the mode

• Software inheritance, expressing relations within the software, with no obv
counterpart in the model.

• Variation inheritance — a special case that may pertain either to the software
the model — serving to describe a class through its differences with another c

These three general categories facilitate understanding, but the most imp
properties are captured by the final categories (the tree leaves on the preceding fig

Since the classification is itself a taxonomy, you may want to ask yourself, out of
curiosity, how the identified categories apply to it. This is the topic of an exercise.

The definitions which follow all use the names A for the parent class and B for the heir.

Each definition will state which of A and B is permitted to be deferred, and whic
effective. A table at the end of the discussion recalls the applicable categories for
deferred-effective combination.

Subtype inheritance

We start with the most obvious form of model inheritance. You are modeling s
external system where a category of (external) objects can be partitioned into di
subcategories — as with closed figures, partitioned into polygons, ellipses etc. — an
use inheritance to organize the corresponding classes in the software. A bit more for

A' could be the set of closed figures, B' the set of polygons, A and B the
corresponding classes. In most practical cases the “external system” will be non-sof
for example some aspect of a company’s business (where the external objects m
checking and savings accounts) or some part of the physical world (where they mig
planets and stars).

Definition: subtype inheritance

Subtype inheritance applies if A and B represent certain sets A' and B' of
external objects such that B' is a subset of A' and the set modeled by any other
subtype heir of A is disjoint from B'. A must be deferred.

B

A

USING INHERITANCE PROPERLY§24.5826

hical

s) is
n-
d.

s as

s

f their
cal

ith
e heir.
 that

ance
 class,
e

e

later

“SUBTYPE INHER-
ITANCE AND
DESCENDANT
HIDING”, 24.7,
page 835.
Subtype inheritance is the form of inheritance that is closest to the hierarc
taxonomies of botany, zoology and other natural sciences (VERTEBRATE MAMMAL
and the like). A typical software example (other than closed figures and polygon
DEVICE FILE. We insist that the parent, A, be deferred, so that it describes a no
completely specified set of objects. B, the heir, may be effective, or it may still be deferre
The next two categories cover the case in which A may be effective.

A later section will explore in more detail this inheritance category, not alway
straightforward as it would seem at first.

Restriction inheritance

Typical examples are RECTANGLE SQUARE, where the extra constraint i
side1= side2 (included in the invariant of SQUARE), and ELLIPSE CIRCLE, where
the extra constraint is that the two focuses (or foci) of an ellipse are the same point
for a circle ; in the general case an ellipse is the set of points such that the sum o
distances to the two focuses is equal to a certain constant. Many mathemati
examples indeed fall into this category.

The last part of the definition is meant to avoid mixing this form of inheritance w
others, such as extension inheritance, which may add completely new features in th
Here to keep things simple it is preferable to limit new features, if any, to those
directly follow from the added constraint. For example class CIRCLE will have a new
feature radius which satisfies this property: in a circle, all points have the same dist
from the merged center, and this distance deserves the status of a feature of the
whereas the corresponding notion in class ELLIPSE (the average of the distances to th
two focuses) was probably not considered significant enough to yield a feature.

Because the only conceptual change from A to B is to add some constraints, th
classes should be both deferred or both effective.

Restriction inheritance is conceptually close to subtype inheritance; the
discussion of subtyping will for the most part apply to both categories.

Extension inheritance

Definition: restriction inheritance

Restriction inheritance applies if the instances of B are those instances of A
that satisfy a certain constraint, expressed if possible as part of the invariant
of B and not included in the invariant of A. Any feature introduced by B
should be a logical consequence of the added constraint. A and B should be
both deferred or both effective.

Definition: extension inheritance

Extension inheritance applies when B introduces features not present in A
and not applicable to direct instances of A. Class A must be effective.

§24.5 USING INHERITANCE: A TAXONOMY OF TAXONOMY 827

xes of
tures

s does

 take
then it

set
h

tween

make
d O-O

ed.

ct its
letely
ple is
y

lly

s, of

s a
t will

Non-mathematical
readers may skip th
one paragraph.
The presence of both the restriction and extension variants is one of the parado
inheritance. As noted in the discussion of inheritance, extension applies to fea
whereas restriction (and more generally specialization) applies to instances, but thi
not completely eliminate the paradox.

The problem is that the added features will usually include attributes. So if we
the naïve interpretation of a type (as given by a class) as the set of its instances,
seems the subset relation is the wrong way around! Assume for example

class A feature a1: INTEGER end

class B inherit
A

feature
b1: REAL

end

Then if we view each instance of A as representing a singleton, that is to say a
containing one integer (which we can write as <n> where n is the chosen integer) and eac
instance of B as a pair containing an integer and a real (such as the pair <1, –-2.5>), the
set of pairs MB is not a subset of the set of singletons MA. In fact, if we absolutely want a
subset relation, it will be in the reverse direction: there is a one-to-one mapping be
MA and the set of all pairs having a given second element, for example 0.0.

This discovery that the subset relation seems to be the wrong way may
extension inheritance look suspicious. For example an early version of a respecte
library (not from ISE) had RECTANGLE inheriting from SQUARE, not the other way
around as we have learned. The reasoning was simple: SQUARE has a side attribute;
RECTANGLE inherits from SQUARE and adds a new feature, other_side, so here is an
inheritance link for you! Several people criticized the design and it was soon revers

But we cannot dismiss the general category of extension inheritance. In fa
equivalent in mathematics, where you specialize a certain notion by adding comp
new operations, is frequently used and considered quite necessary. A typical exam
the notion of ring, specializing the notion of group. A group has a certain operation, sa
+, with certain properties. A ring is a group, so it also has + with these properties, but it
adds a new operation, say ∗, with extra properties of its own. This is not fundamenta
different from introducing a new attribute in an heir software class.

The corresponding scheme is frequent in O-O software too. In most application
course, SQUARE should inherit from RECTANGLE, not the reverse; but it is not difficult
to think of legitimate examples. A class MOVING_POINT (for kinematics applications)
might inherit from a purely graphical class POINT and add a feature speed describing the
speed’s magnitude and direction; or, in a text processing application, a class CHAPTER
might inherit from DOCUMENT, adding the specific features of a document which i
chapter in a book, such as its current position in the book and a procedure tha
reposition it.

is

USING INHERITANCE PROPERLY§24.5828

covery
een
ase of

rtesian

el

set of

hat a

etails
d, see

 three

The functions of
interest are not only
partial but finite.
A proper mathematical model

(Non-mathematically-inclined readers should skip this section.)

For peace of mind we must resolve the apparent paradox noted earlier (the dis
that MB is not a subset of MA) since we do want some subset relation to hold betw
instances of an heir and instances of the parent. That relation does exist in the c
extension inheritance; what the paradox shows is that it is inappropriate to use ca
product of the attribute types to model a class. Given a class

class C feature

c1: T1

c2: T2

c3: T3

end

we should not take, as a mathematical model C' for the set of instances of C, the cartesian
product T'1 × T'2 × T'3, where the prime signs ' indicate that we recursively use the mod
sets; this would lead to the paradox (among other disadvantages).

Instead, we should consider any instance as being a partial function from the
possible attribute names ATTRIBUTE to the set of all possible values VALUE, with the
following properties:

A1 • The function is defined for c1, c2 and c3.

A2 • The set VALUE (the target set of the function) is a superset of T'1 ∪ T'2 ∪ T'3.

A3 • The function’s value for c1 is in T'1, and so on.

Then if we remember that a function is a special case of a relation, and t
relation is a set of pairs (for example an instance of class A may be modeled by the
function {< a1, 25>} , and the instance of B cited on the preceding page by {< a1, 1>, <b1,
–2.5>}), then we do have the expected property that B' is a subset of A.

Note that it is essential to state the property A1 as “The function is defined for…”, not
“The function’s domain is…” which would limit the domain to the set { c1, c2 c3} ,
preventing descendants from adding their own attributes. As a result of this approach,
every software object is modeled by an infinity of (finite) mathematical objects.

This discussion has only given a sketch of the mathematical model. For more d
on using partial functions to model tuples, and the general mathematical backgroun
[M 1990].

Variation inheritance

(Non-mathematical readers, welcome back!) We now move to the second of our
broad groups of inheritance categories: variation inheritance.

§24.5 USING INHERITANCE: A TAXONOMY OF TAXONOMY 829

imilar
some

r both
sform
 next,

pt as
itance

esult
a sign
nsion
tion

used

es

.

prefer
ients.
s not
hen the

s is
 their
Variation inheritance is applicable when an existing class A, describing a certain
abstraction, is already useful by itself, but you discover the need to represent a s
although not identical abstraction, which essentially has the same features with
different signatures or implementations.

The definition requires that both classes be effective (the more common case) o
deferred: variation inheritance does not cover the case of an effecting, where we tran
a notion from abstract to concrete. A closely related category is uneffecting, studied
in which some effective features are made deferred.

The definition stipulates that the heir should introduce no new features, exce
directly needed by the redefined features. This clause distinguishes variation inher
from extension inheritance.

In type variation inheritance you only change the signatures (argument and r
types and number) of some features. This form of inheritance is suspect; it is often
of taxomania. In legitimate cases, however, it may be a preparation for exte
inheritance or implementation variation inheritance. An example of type varia
inheritance might be the heirs MALE_EMPLOYEE and FEMALE_EMPLOYEE.

Type variation inheritance is not necessary when the original signature
anchored (like …) declarations. For example in the SEGMENT class of an interactive
drawing package you may have introduced a function

perpendicular: SEGMENT is
-- Segment of same length and same middle point, rotated 90 degre

…

and then want to define an heir DOTTED_SEGMENT to provide a graphical
representation with a dotted line rather than a continuous one. In that class, perpendicular
should return a result of type DOTTED_SEGMENT, so you will need to redefine the type
None of this would be needed if the original returned a result of type like Current, and if
you have access to the source of the original and the authority to modify it you may
to update that type declaration, normally without any adverse effect on existing cl
But if for some reason you cannot modify the original, or if an anchored declaration i
appropriate in that original (perhaps because of the needs of other descendants), t
ability to redefine the type can save the day.

In functional variation inheritance we change some of the features’ bodies; if, a
usually the case, the features were already effective, this means changing

Definition: functional and type variation inheritance

Variation inheritance applies if B redefines some features of A; A and B are
either both deferred or both effective, and B must not introduce any features
except for the direct needs of the redefined features. There are two cases:

• Functional variation inheritance: some of the redefinitions affect
feature bodies, rather than just their signatures.

• Type variation inheritance: all redefinitions are signature redefinitions.

USING INHERITANCE PROPERLY§24.5830

e. It is
n two

n some
atures
s.

sed
 we

may be
. At
g

if you
er it is

t class
r

ormal

g. But

rent
cally:
ersion

ne

e
anted
rable
 of the
e, for
.

See “The Open-
Closed principle”,
page 57.

See “Rules on
names”, page 562.
implementation. The features’ specification, as given by assertions, may also chang
also possible, although less common, to have functional variation inheritance betwee
deferred classes; in that case the assertions will change. This may imply changes i
functions, deferred or effective, used by the assertions, or even the addition of new fe
as long as this is for the “direct needs of the redefined features” as the definition state

Functional variation inheritance is the direct application of the Open-Clo
principle: we want to adapt an existing class without affecting the original (of which
may not even have the source code) and its clients. It is subject to abuses since it
a form of hacking: twisting an existing class so as to fit a slightly different purpose
least this will be organized hacking, which avoids the dangers of directly modifyin
existing software, as analyzed in the discussion of the Open-Closed principle. But
do have access to the source code of the original class, you should examine wheth
not preferable to reorganize the inheritance hierarchy by introducing a more abstrac
of which both A (the existing variant) and B (the new one) will both be heirs, or prope
descendants with peer status.

Uneffecting

Uneffecting is not common, and should not be. Its basic idea goes against the n
direction of inheritance, since we usually expect B to be more concrete and A more
abstract (as with the next category, reification, for which A is deferred and B effective or
at least less deferred). For that reason beginners should stay away from uneffectin
it may be justified in the following two cases:

• In multiple inheritance, you may want to merge features inherited from two diffe
parents. If one is deferred and the other is effective, this will happen automati
as soon as they have the same name (possibly after renaming), the effective v
will serve as implementation. But if both are effective, you will need to uneffect o
of them; the other’s implementation will take precedence.

• You may find a reusable class that is too concrete for your purposes, although th
abstraction it describes serves your needs. Uneffecting will remove the unw
implementations. Before using this solution, consider the alternatives: it is prefe
to reorganize the inheritance hierarchy to make the more concrete class an heir
new deferred class, rather than the reverse. But this is not always possibl
example if you do not have the authority to modify A and its inheritance hierarchy
Uneffecting may, in such cases, provide a useful form of generalization.

For a link of the uneffecting category, B will be deferred; A will normally be
effective, but might be partially deferred.

Definition: uneffecting inheritance

Uneffecting inheritance applies if B redefines some of the effective features
of A into deferred features.

§24.5 USING INHERITANCE: A TAXONOMY OF TAXONOMY 831

ss; for

lass

 class

g.)

With

rations.

imilar
 as

ugh a

See “Numeric and
comparable val-
ues”, page 522.
Reification inheritance

We now come to the third and last general group, software inheritance.

An example, used several times in earlier chapters, is a deferred class TABLE
describing tables of a very general nature. Reification leads to heirs SEQUENTIAL_
TABLE and HASH_TABLE, still deferred. Final reification of SEQUENTIAL_TABLE
leads to effective classes ARRAYED_TABLE, LINKED_TABLE, FILE_TABLE.

The term “reification”, from Latin words meaning “making into a thing”, comes from the
literary criticism of Georg Lukács. In computing science it is used as part of the VDM
specification and development method.

Structure inheritance

Usually A represents a mathematical property that a certain set of objects may posse
example A may be the class COMPARABLE, equipped with such operations as infix "<"
and infix ">=", representing objects to which a total order relation is applicable. A c
that needs an order relation of its own, such as STRING, will inherit from COMPARABLE.

It is common for a class to inherit from several parents in this way. For example
INTEGER in the Kernel Library inherits from COMPARABLE as well as from a class
NUMERIC (with features such as infix "+ " and infix "∗") representing its arithmetic
properties. (Class NUMERIC more precisely represents the mathematical notion of rin

What is the difference between the structure and reification categories?
reification inheritance B represents the same notion as A, with more implementation
commitment; with structure inheritance B represents an abstraction of its own, of whichA
covers only one aspect, such as the presence of an order relation or of arithmetic ope

Waldén and Nerson note that novices sometimes believe they are using a s
form of inheritance when they are in fact mistaking a “contains” relation for “is” —
with AIRPLANE inheriting from VENTILATION_SYSTEM, a variant of the “car-owner”
scheme, and just as wrong. They point out that it is easy to avoid this mistake thro
criterion of the “absolute” kind, leaving no room for hesitation or ambiguity:

Definition: reification inheritance

Reification inheritance applies if A represents a general kind of data structure,
and B represents a partial or complete choice of implementation for data
structures of that kind. A is deferred; B may still be deferred, leaving room for
further reification through its own heirs, or it may be effective.

Definition: structure inheritance

Structure inheritance applies if A, a deferred class, represents a general
structural property and B, which may be deferred or effective, represents a
certain type of objects possessing that property.

USING INHERITANCE PROPERLY§24.5832

f

ase is
s

ation

ariant.

tures

nism.

 kind
h as

 code

Cited (with change
of example) from
[Waldén 1995],
pages 193-194.

“IMPLEMENTA-
TION INHERIT-
ANCE”, 24.8, page
844.

See “ADVANCED
EXCEPTION HAN-
DLING”, 12.6, page
431.
With the inheritance scheme, although the inherited properties are
secondary, they are still properties of the whole objects described by the
class. If we make AIRPLANE inherit COMPARABLE to take account of an
ordering relation on planes, the inherited features apply to each airplane as
a whole; but the features of VENTILATION_SYSTEM do not. Feature stop of
VENTILATION_SYSTEM is not supposed to stop the plane.

The conclusion in this example is clear: AIRPLANE must be a client, not an heir, o
VENTILATION_SYSTEM.

Implementation inheritance

Implementation inheritance is discussed in detail later in this chapter. A common c
the “marriage of convenience”, based on multiple inheritance, where one parent provide
the specification (reification inheritance) and the other provides the implement
(implementation inheritance).

The case of inheriting constant attributes or once functions is covered by the next v

Facility inheritance

Facility inheritance is the scheme in which the parent is a collection of useful fea
meant only for use by descendants:

An example of facility inheritance was provided by class EXCEPTIONS, a utility
class providing a set of facilities for detailed access to the exception handling mecha

Sometimes, as in the examples given later in this chapter, a link of the facility
uses only one of the two variants, constant or machine; but in others, suc
EXCEPTIONS, the parent class provides both constants (such as the exception

Definition: implementation inheritance

Structural inheritance applies if B obtains from A a set of features (other than
constant attributes and once functions) necessary to the implementation of the
abstraction associated with B. Both A and B must be effective.

Definition: facility inheritance

Facility inheritance applies if A exists solely for the purpose of providing a
set of logically related features for the benefit of heirs such as B. Two
common variants are:

• Constant inheritance in which the features of A are all constants or once
functions describing shared objects.

• Machine inheritance in which the features of A are routines, which may
be viewed as operations on an abstract machine.

§24.6 ONE MECHANISM, OR MORE? 833

).
d treat

,

 heir
ble
ms

ning of
 of
ble.)

y lead
er the
tween

d

“FACILITY
INHERITANCE”,
24.9, page 847.

Deferred and
effective heir
and parent

“The dual perspec-
tive”, page 494;
“The two styles”,
page 609.
Incorrect_inspect_value) and routines (such as trigger to raise a developer exception
Since this discussion is meant to introduce disjoint inheritance categories, we shoul
facility inheritance as a single category — with two (non-disjoint) variants.

With constant inheritance, both A and B are effective. With machine inheritance
there is more flexibility, but B should be at least as effective as A.

Facility inheritance is discussed in detail later in this chapter.

Using inheritance with deferred and effective classes

Each of the various categories reviewed places some requirements on which of the
and the parent may be deferred and which may be effective. The following ta
summarizes the rules. “Variation” covers type variation and functional variation. Ite
marked ● appear in more than one entry.

24.6 ONE MECHANISM, OR MORE?

(Note: this discussion assumes as background the earlier presentation of “The mea
inheritance”, especially its section entitled “The dual perspective”, and the presentation
descendant hiding, especially its section entitled “The two styles” with its summary ta

The variety of uses of inheritance, evidenced by the preceding discussion, ma
to the impression that we should have several language mechanisms to cov
underlying notions. In particular, a number of authors have suggested separating be
module inheritance, essentially a tool to reuse existing features in a new module, antype
inheritance, essentially a type classification mechanism.

Such a division seems to cause more harm than good, for several reasons.

Parent →
Heir↓

Deferred Effective

Deferred

Constant●
Restriction●

Structure●
Subtype●
Uneffecting●

Variation●

View

Extension●
Uneffecting●

Effective

Constant●

Reification
Structure●

Subtype●

Constant●

Extension●

Implementation
Restriction●

Variation●

USING INHERITANCE PROPERLY§24.6834

es of
cate

sume

nswer.
isms;
your

t

e on
liary

le
at is
uld

iate
al
 it is

class
l

at

le-
of

hare

t with
 and
ave a
whole
 etc.

Exercise E24.8, page
870.
First, recognizing only two categories is not representative of the variety of us
inheritance, reflected by the preceding classification. Since no one will advo
introducing ten different language mechanisms, the result would be too restrictive.

The practical effect would be to raise useless methodological discussions: as
you want to inherit from an iterator class such as LINEAR_ITERATOR; should you use
module inheritance or type inheritance? One can find arguments to support either a
You will waste your time trying to decide between two competing language mechan
the contribution of such reflections to the only goals that count — the quality of
software and the speed at which you produce it — is exactly zero.

An exercise asks you to analyze our categories to try to see for each of them whether i
relates more to the “module” or “type” kind.

It is also interesting to think of the consequences that such a division will hav
the complexity of the language. Inheritance comes with a number of auxi
mechanisms. Most of them will be needed on both sides:

• Redefinition is useful both for subtyping (think of RECTANGLE redefining
perimeter from POLYGON) and for module extension (the Open-Closed princip
demands that when we inherit a module we keep the flexibility of changing wh
not adapted any more to our new context — a flexibility without which we wo
lose one of the main attractions of the object-oriented method).

• Renaming is definitely useful for module inheritance. To present it as inappropr
for type inheritance (see [Breu 1995]) seems too restrictive. In the modeled extern
system, variants of a certain notion may introduce specific terminology, which
often desirable for the software to respect. A class STATE_INSTITUTIONS in a
geographical or electoral information system might have a descendant
LOUISIANA_INSTITUTIONS reflecting the peculiarities of Louisiana’s politica
structures; it is not unreasonable to expect that the feature counties, giving the list of
counties in a state, would be renamed parishes in the descendant, since parish is wh
Louisianians call what the rest of the US knows as a county.

• Repeated inheritance may occur with either form. Since we may expect that modu
only inheritance will preclude polymorphic substitution, the problem
disambiguating dynamic binding, and hence the need for a select clause, will only
arise for type inheritance; but all the other questions, in particular when to s
repeatedly inherited features and when to replicate them, still arise.

• As always when we introduce new mechanisms into a language, they interac
the rest, and with each other. Do we prohibit a class from both module-inheriting
type-inheriting the same class? If so, we may be just vexing developers who h
good reason to use the same class in two different ways; if not, we open up a
Pandora’s box of new language issues — name conflicts, redefinition conflicts

§24.7 SUBTYPE INHERITANCE AND DESCENDANT HIDING 835

nd
; but
at is to
iginal
the
nd

se, no
use a

itance
e extra

te the

tance
arate

ult of
ule
les and
ing.

 least

ipal
ed.

omes
se of
n of
from
 such
 easy.

tural
ebrate;
g is a
ters,

On Dijkstra’s advice
see “The need for
methodology guide
lines”, page 664.
All this for the benefit of a purist’s view of inheritance — restrictive a
controversial. Not that there is anything wrong with defending controversial views
one should be careful before imposing their consequences on language users — th
say, on everyone. When in doubt, abstain. Once again, the contrast with Dijkstra’s or
goto excommunication is striking: Dijkstra took great care to explain in detail
drawbacks of the goto instruction, based on a theory of software construction a
execution, and to explain what replacements were available. In the present ca
compelling argument — at least none that I have seen — shows why it is “bad” to
single mechanism to cover both module and type inheritance.

Aside from blanket condemnations based on preconceived ideas of what inher
should be, there is only one serious objection to the use of a single mechanism: th
complication that this approach imposes on the task of static type checking. This issue
was discussed at length in chapter 17; it places an extra burden on compilers, which is
always justifiable (when the burden is reasonable, as here) if the effect is to facilita
developer’s task.

In the end what all this discussion shows is that the ability to use only one inheri
mechanism for both module and type inheritance is not — as partisans of sep
mechanisms implicitly consider — the result of a confusion of genres. It is the res
the very first decision of object-oriented software construction: the unification of mod
and type concepts into a single notion, the class. If we accept classes as both modu
types, then we should accept inheritance as both module accumulation and subtyp

24.7 SUBTYPE INHERITANCE AND DESCENDANT
HIDING

The first category on our list is probably the only form on which everyone agrees, at
everyone who accepts inheritance: what we may call pure subtype inheritance.

Most of the discussion will also apply to restriction inheritance, whose princ
difference with subtype inheritance is that it does not require the parent to be deferr

Defining a subtype

As was pointed out in the introduction of inheritance, part of the power of the idea c
from its fusion of a type mechanism, the definition of a new type as a special ca
existing types, with a module mechanism, the definition of a module as extensio
existing modules. Many of the controversial questions about inheritance come
perceived conflicts between these two views. With subtype inheritance there is no
question — although, as we shall see, this does not mean that everything becomes

Subtype inheritance is closely patterned after the taxonomical principles of na
and mathematical sciences. Every vertebrate is an animal; every mammal is a vert
every elephant is a mammal. Every group (in mathematics) is a monoid; every rin
group; every field is a ring. Similar examples, of which we saw many in earlier chap
abound in object-oriented software:

-

USING INHERITANCE PROPERLY§24.7836

bjects
cterized
t. For
ce of
ossess.

esent
llipse.

riants
uch a
we use

ed as

licable
itions,
r to be
 any

the
tances

f the
f the
es of
• FIGURE CLOSED_FIGURE POLYGON QUADRANGLE
RECTANGLE SQUARE

• DEVICE FILE TEXT_FILE

• SHIP LEISURE_SHIP SAILBOAT

• ACCOUNT SAVINGS_ACCOUNT FIXED_RATE_ACCOUNT

and so on. In any one of these subtype links, we have clearly identified the set of o
that the parent type describes; and we have spotted a subset of these objects, chara
by some properties which do not necessarily apply to all instances of the paren
example a text file is a file, but it has the extra property of being made of a sequen
characters — a property that some other files, such as executable binaries, do not p

A general rule of subtype inheritance is that the various heirs of a class repr
disjoint sets of instances. No closed figure, for example, is both a polygon and an e

Several of the examples, such as RECTANGLE SQUARE, will most likely involve
an effective parent, and so are cases of restriction inheritance.

Multiple views

Subtype inheritance is straightforward when a clear criterion exists to classify the va
of a certain notion. But sometimes several qualities vie for our attention. Even in s
seemingly easy example as the classification of polygons, doubt may arise: should
the number of sides, leading to heirs such as TRIANGLE, QUADRANGLE etc., or should
we divide our objects into regular polygons (EQUILATERAL_POLYGON, SQUARE and
so on) and irregular ones?

Several strategies are available to address such conflicts. They will be review
part of the study of view inheritance later in this chapter.

Enforcing the subtype view

A type is not just as a set of objects, of course: it is also characterized by the app
operations (the features), and their semantic properties (the assertions: precond
postconditions, invariants). We expect the fate of features and assertions in the hei
compatible with the concept of subtype — meaning that it must allow us to view
instance of the heir also as an instance of the parent.

The rules on assertions indeed support the subtype view:

• The parent’s invariant is automatically part of the heir’s invariant; so all
constraints that have been specified for instances of the parent also apply to ins
of the heir.

• A routine precondition applies, possibly weakened, to any redeclaration o
routine: so any call which satisfies the requirement specified for instances o
parent will also satisfy the (equal or weaker) requirement specified for instanc
the heir.

§24.7 SUBTYPE INHERITANCE AND DESCENDANT HIDING 837

f the
 for

onger)

t all
nce of

,
itrary
e this

by that

, it is

in the
ten by
s may
ifferent

n of

se of
able to
ients’

bject

s of
y, the
m.

ss to
se of
y and
• A routine postcondition applies, possibly strengthened, to any redeclaration o
routine: so any property of the routine’s outcome that has been specified
instances of the parent will be guaranteed to hold as a result of the (equal or str
properties specified for instances of the heir.

For features, the situation is a little more subtle. The subtype view implies tha
operations applicable to an instance of the parent should be applicable to an insta
the heir. Internally, this is always true: even in the inheritance of ARRAYED_STACK from
ARRAY, which seems far from subtype inheritance, the features of ARRAY were still
available to the heir, and indeed were essential to the implementation of its STACK
features. But in that case we had hidden all these ARRAY features from the heir’s clients
and for good reason (we do not want a client of a stack class to perform arb
operations on the representation, such as directly modifying an array element, sinc
would be a violation of the class interface).

For pure subtype inheritance we might expect a much stronger rule: that every
feature that a client can apply to instances of the parent class also be applicable,
same client, to instances of the heir. In other words, no descendant hiding: if B inherits f
from A, then the export status of f in B is at least as generous as in A. (That is to say: if f
was generally exported, it still is; and if it was selectively exported to some classes
still exported to them, although it may be exported to more.)

The need for descendant hiding

In a perfect world we could indeed enforce the no-descendant-hiding rule; but not
real world of software development. Inheritance must be usable even for classes writ
people who do not have perfect foresight; some of the features they include in a clas
not make sense in a descendant written by someone else, later and in a completely d
context. We may call such cases taxonomy exceptions. (In a different context the word
“exception” would suffice, but we do not want any confusion with the software notio
exception handling as studied in earlier chapters.)

Should we renounce inheriting from an attractive and useful class simply becau
a taxonomy exception, that is to say because one or two of its features are inapplic
our own clients? This would be unreasonable. We just hide the features from our cl
view, and proceed with our work.

The alternatives have been studied as part of one of the founding principles of o
technology — Open-Closed principle — and they are not attractive:

• We might modify the original class. This means we may invalidate myriad
existing systems that relied on it — no, thanks. In most practical cases, anywa
class will not be ours to modify; we may not even have access to its source for

• We might write a new version of the class (or, if we are lucky and do have acce
its source code, make a copy), and modify it. This approach is the rever
everything that object technology promotes; it defeats any attempt at reusabilit
at an organized software process.

USING INHERITANCE PROPERLY§24.7838

to note
resort.
sign
.

an

 — so
 focus
 same.)

tion at
e

An ellipse and
its focus line

A circle and its
center
Avoiding descendant hiding

Before probing further why and when we may need descendant hiding, it is essential
that most of the time we do not. Descendant hiding should remain a technique of last
When you have a full grasp of the inheritance structure sufficiently early in the de
process, preconditions are a better technique to handle apparent taxonomy exceptions

Consider class ELLIPSE. An ellipse has two focuses through which you c
normally draw a line:

Class ELLIPSE might correspondingly have a feature focus_line.

It is quite normal to define class CIRCLE as an heir to ELLIPSE: every circle is also
an ellipse. But for a circle the two focuses are the same point — the circle’s center
there is no focus line. (It is perhaps more accurate to say that there is an infinity of
lines, including any line that passes through the center, but in practice the effect is the

Is this a good example of descendant hiding? In other words, should class CIRCLE
make feature focus_line secret, as in

class CIRCLE inherit
ELLIPSE

export { NONE} focus_line end
…

Probably not. In this case, the designer of the parent class has all the informa
his disposal to determine that focus_line is not applicable to all ellipses. Assuming th
feature is a routine, it should have a precondition:

focus_line is
-- The line through the two focuses

require
not equal (focus_1, focus_2)

do
…

end

Focuses

Focus line

Center

§24.7 SUBTYPE INHERITANCE AND DESCENDANT HIDING 839

lysis

uld be
ion of
dants.

ins
tions,

use a

en by
oresee

anized
versus
t this

r than

re of
hose
. We

ot be
ion
ed.)

ten not

s and
rve the

See page 61.
(The precondition could also be abstract, using a function distinct_ focuses; this has
the advantage that CIRCLE can redefine that function once and for all to yield false.)

Here the need to support ellipses without a focus line follows from a proper ana
of the problem. Writing an ellipse class with a function focus_line that has no precondition
would be a design error; addressing such an error through descendant hiding wo
attempting to cover up for that error. As was pointed out at the end of the presentat
the Open-Closed principle, erroneous designs must be fixed, not patched in descen

Applications of descendant hiding

The focus_line example is typical of taxonomy exceptions arising in application doma
such as mathematics which can boast a solid theory with associated classifica
patiently refined over a long period. In such a context, the proper answer is to
precondition, concrete or abstract, at the place where the original feature appears.

But that technique is not always applicable, especially in domains that are driv
human processes, with their attendant capriciousness that often makes it hard to f
all possible exceptions.

Consider as an example a class hierarchy, rooted in a class MORTGAGE, in a
software system for managing mortgages. The descendants have been org
according to various criteria, such as fixed rate versus variable rate, business
personal or any other that was found appropriate; we may assume for simplicity tha
is a taxonomy of the pure subtype kind. Class MORTGAGE has a procedure redeem,
which handles the mechanisms for paying off a mortgage at a certain time earlie
maturation.

Now assume that Congress, in a fit of generosity (or under the pressu
construction lobbies), introduces a new form of government-backed mortgage w
otherwise advantageous conditions carry a provision barring any early redemption
have found a proper place in the hierarchy for the corresponding class NEW_MORTGAGE;
but what about procedure redeem?

We could use the technique illustrated with focus_line: a precondition. But what if
there has never before in banker’s memory existed a mortgage that could n
redeemed? Then procedure redeem probably does not have a precondition. (The situat
is the same if the precondition existed but was concrete, so that it cannot be redefin

So if we decide to use a precondition we must modify class MORTGAGE. As usual,
this assumes that we have access to its source code and the right to modify it — of
true. Suppose, however, that this is not a problem. We will add to MORTGAGE a boolean-
valued function redeemable and to redeem a clause

require
redeemable

But now we have changed the interface of the class. All the clients of the clas
of its numerous descendants have instantly been made potentially incorrect; to obse
specification all calls m● redeem (…) should now be rewritten as

USING INHERITANCE PROPERLY§24.7840

sting
.
ition-
clever

rect,
 every

e
n

rd to
 and
 apply

lass
rphic
so

y the

“BEWARE OF
POLYMORPHIC
CATCALLS!”, 17.7,
page 637.
if m● redeemable then

m●redeem (…)

else

… (What in the world do we say here?) …
end

Initially this change is not urgent, since the incorrectness is only potential: exi
software will only use the existing descendants of MORTGAGE, so no harm can result
But not fixing them means leaving a time bomb — unprotected calls to a precond
equipped routine — ticking in our software. As soon as a client developer has the
idea of using a polymorphic attachment with a source of type NEW_MORTGAGE but
forgets the test we have a bug. And the compiler will not produce any diagnostic.

The absence of a precondition in the original version of redeem was not a design
mistake on the part of the original designers: in their view of the world, until now cor
no precondition was needed. Every mortgage was redeemable. We cannot require
feature to have a precondition; imagine a world in which for every useful f there would be
an accompanying boolean-valued function f_ feasible serving as its bodyguard; then w
would never be able to write a simple x● f for the rest of our lives; each call would be in a
if … or equivalent as illustrated above for m● redeem. Not fun.

The redeem example is typical of taxonomy exceptions which, unlike focus_line and
other cases of perfect-foresight classification, cannot be addressed through careful a priori
precondition design. The observation made earlier fully applies: it would be absu
renounce inheritance — the reuse of a rich class structure, lovingly developed
carefully validated — because a feature or two, out of dozens of useful ones, do not
to our goal of the moment. We should just use descendant hiding:

class NEW_MORTGAGE inherit

MORTGAGE

export { NONE} redeem end

…

No error or anomaly will be introduced in existing software — the existing c
structure or its clients. If someone modifies a client class to include a polymo
attachment with source type NEW_MORTGAGE, and the target of that attachment is al
used with redeem, as in

m: MORTGAGE; nm: NEW_MORTGAGE

…
m := nm

…
m● redeem (…)

then the call becomes a catcall, and the potential error will be caught statically b
extended mechanism described in our discussion of typing.

§24.7 SUBTYPE INHERITANCE AND DESCENDANT HIDING 841

rhaps
seems

,
to be

oms

tural,
orical

ave
ber,

ve
strated

the

his
nly

From: the New York
Public Library Sci-
ence Desk Refer-
ence, ed. Patricia
Barnes-Svarney,
1995.
Taxonomies and their limitations

Taxonomy exceptions are not specific to software examples. Even — or pe
especially — in the most established areas of natural science, it sometimes
impossible to find a statement of the form “members of the ABC phylum [or genus, species
etc.] are characterized by property XYZ” that is not prefaced by “most”, qualified by
“usually” or followed by “except in a few cases”.This is true at all levels of the hierarchy
even the most fundamental categories, which a layman might naïvely believe
established on indisputable criteria!

If you think for example that the distinction between the animal and plant kingd
is simple, just ponder its definition in a popular reference text (italics added):

DISTINGUISHING PLANTS FROM ANIMALS

There are several general factors that distinguish plants from animals, though there are
numerous exceptions.

Locomotion Most animals move about freely, while it is rare to find plants that can move
around in their surrounding environments. Most plants are rooted in the soil, or attached
to rocks, wood or other materials.

Food Green plants that contain chlorophyll manufacture food themselves, but most
animals obtain nutrients by eating plants or other animals. […]

Growth Plants usually grow from the tips of their branches and roots, and at the outer
layer of their stems, for their entire life. Animals usually grow in all parts of their bodies
and stop growing after maturity.

Chemical regulation Though both plants and animals generally have hormones and
other chemicals that regulate certain reactions within the organism, the chemical
composition of these hormones differ[s] in the two kingdoms.

The same comments apply to another area of study, cultural rather than na
which has also contributed to the development of systematic taxonomy: the hist
classification of human languages.

In zoology a common example, so famous in Artificial Intelligence circles as to h
become a cliché, still provides a good illustration of taxonomy exceptions. (Remem
however, that this is only an analogy, not a software example, and so cannot pro
anything; it can only help us understand ideas whose relevance has been demon
otherwise.) Birds fly; in software terms class BIRD would have a procedure fly. Yet if we
wanted a class OSTRICH we would have to admit that ostriches, although among
birdest of birds, do not fly.

We could think of classifying birds into flying and non-flying categories. But t
would conflict with other possible criteria including, most importantly, the commo
retained one, shown on the next page.

USING INHERITANCE PROPERLY§24.7842
Kingdom: Animalia — multicellular organisms without chlorophyll General
classification
of birds

(Data from Ed
Everham, at
www.runet.edu/
~eeverham.)
Reproduced with
the author’s
permission.
Associated
comments are
reproduced in
“The arbitrariness
of classifications”,
page 859.

Phylum: Chordata —coelemic cavity, 3 germ layers, a notocord,
an endoskeleton and a closed circulatory system

Class: Aves birds (there are 30

Order: Anseriformes — waterfowl

Order: Apodiformes — swifts and hummingbirds

Order: Casuariiformes cassowaries and emu

Order: Chardriiformes — shorebirds

Order: Ciconiiformes — long-legged wading birds

Order: Coliiformes — mousebirds

Order: Columbiformes — pigeons and doves

Order: Cuciliformes — cuckoos

Order: Dinornithiformes — kiwis and moas

Order: Falconiformes — raptors

Order: Galliformes — gallinaceous birds (chickens, grouse, quail
and pheasant)

Order: Musophagiformes — turacos

Order: Passeriformes — perching birds, songbirds and passerines

Order: Pelecaniformes — waterbirds with webbed feet

Order: Phoenicopteriformes — flamingos

Order: Piciformes — woodpeckers

Order: Podicipediformes — grebes

Order: Procellariiformes — tube-nosed seabirds

Order: Psittaciformes — parrots, macaws

Order: Pteroclidiformes — sandgrouse

Order: Rheiformes — rheas, nandus

Order: Strigiformes — owls

Order: Struthioniformes — ostrich

Order: Tinamiformes — tinamous

Order: Trogoniformes — trogons and quetzals

Order: Coraciiformes — kingfishers

Order: Sphenisciformes — penguins

Order: Gaviiformes — loons

Order: Gruiformes — terrestrial and marsh birds

Order: Caprimulgiformes — nightjars, potoos, frogmouths,
owlet- frogmouths and oilbirds

§24.7 SUBTYPE INHERITANCE AND DESCENDANT HIDING 843

em
t this

 have
e job

 his
ying

s

r

s
s,

gies,
Hiding
y
 that

ctual
al
 be
tury,

rrence.
not

sive
hiding
The OSTRICH example has an interesting twist. Although regrettably most of th
do not seem to be aware of it, ostriches really should fly. Younger generations los
ancestral skill through an accident of evolutionary history, but anatomically ostriches
retained most of the aeronautical machinery of birds. This property, which makes th
of the professional taxonomist a little harder (although it may facilitate that of
colleague, the professional taxidermist), will not in the end prevent him from classif
ostriches among birds.

In software terms OSTRICH will simply inherit from BIRD and hide the inherited
fly feature.

Using descendant hiding

All our efforts [at classification] are powerless against the multiple relation
which from everywhere affect the living beings around us. This is the fight,
described by the great botanist Goethe, between Man and Nature in he
infinity. One can be sure that Man will always be defeated.

Henri Baillon, General Study of the Euphorbiaceou
Family (1850). Quoted (in French) in Peter F. Steven
The Development of Biological Systematics: Antoine-
Laurent de Jussieu, Nature, and the Natural System,
Columbia University Press, New York, 1994.

The preceding evidence, from both software practice and non-software analo
suggests that even with a careful design some taxonomy exceptions may remain.
redeem from NEW_MORTGAGE or fly from OSTRICH is not necessarily a sign of slopp
design or insufficient foresight; it is the recognition that other inheritance hierarchies
would not require descendant hiding could be more complex and less useful.

Such taxonomy exceptions have the precedent of centuries of effort by intelle
giants (including Aristotle, Linné, Buffon, Jussieu and Darwin). They may even sign
some intrinsic limitation of the human ability to comprehend the world. Could they
related to the indeterminacy results that shook scientific thought in the twentieth cen
uncertainty in physics and undecidability in mathematics?

All this assumes that descendant hiding remains, as already noted, a rare occu
If you design a taxonomy with taxonomy exceptions all over — well, they are
exceptions any more, so you do not really have much of a taxonomy.

In software, for those few cases in which conflicting classification criteria or mas
previous work precludes the production of a perfect subtype hierarchy, descendant
is more than a convenient facility: it will save your neck.

USING INHERITANCE PROPERLY§24.8844

 and
ertain
ation.

e of
ent it.

s
t any
ent of

 is
tion-

on-

t them
e of an

tures

ck;

“The marriage of
convenience”, page
530.

STACK2 appeared
on page 350.
24.8 IMPLEMENTATION INHERITANCE

A form of inheritance that has often been criticized but is in fact both convenient
conceptually valid is the use of an inheritance link between a class describing a c
implementation of an abstract data structure and the class providing the implement

The marriage of convenience

In the discussion of multiple inheritance we saw an example of the “marriag
convenience” kind, which combines a deferred class with a mechanism to implem
The example was ARRAYED_STACK, of the general form

class ARRAYED_STACK [G] inherit
STACK [G]

redefine change_top end
ARRAY [G]

rename
count as capacity, put as array_put

export
{NONE} all

end
feature

… Implementation of the deferred routines of STACK, such as put, count, full,
and redefinition of change_top, in terms of ARRAY operations…

end

It is interesting to compare ARRAYED_STACK, as sketched here, with the clas
STACK2 of an earlier discussion — an array implementation of stacks defined withou
use of inheritance. Note in particular how avoiding the need for the class to be a cli
ARRAY simplifies the notation (the previous version had to use implementation● put where
we can now just write put).

In the above inheritance part for ARRAY all features have been made secret. This
typical of marriage-of-convenience inheritance: all the features from the specifica
providing parent, here STACK, are exported; all the features from the implementati
providing parent, here ARRAY, are hidden. This forces clients of class ARRAY_STACK to
use the corresponding instances through stack features only; we do not want to le
perform arbitrary array operations on the representation, such as changing the valu
element other than the top one.

It feels so good, but is it wrong?

Implementation inheritance is not without its critics. That we hide many inherited fea
seems to some people a violation of the “is-a” principle of inheritance.

It is not. There are different forms of “is-a”. By its behavior, an arrayed stack is a sta
but internally it is an array. In fact the representation of an instance of ARRAYED_STACK
is exactly the same as that of an instance of ARRAY, enriched with one attribute (count).

§24.8 IMPLEMENTATION INHERITANCE 845

 the

nce.
ter is
ith

xport

y is

tion

(the

ll the
l be
 lists,

tition”
es, the
, and
at has

Page 350.
Being made in the same way is a rather strong form of “is-a”. And it is not just
representation: all the features of ARRAY, such as put (renamed array_put), infix "@" and
count (renamed capacity) are available to ARRAYED_STACK, although not exported to its
clients; the class needs them to implement the STACK features.

So there is nothing conceptually wrong with such implementation-only inherita
The comparison with the counter-example studied at the beginning of this chap
striking: for CAR_OWNER we had a gross misunderstanding of the concept; w
ARRAYED_STACK we have a well-identified form of the “is-a” relationship.

There is one drawback: permitting the inheritance mechanism to restrict the e
availability of an inherited feature — that is to say, permitting the export clause — makes
static type checking more difficult, as we have studied in detail. But this difficult
largely for the compiler writer, not for the software developer.

Doing without inheritance

Let us probe further and see what it would take to work without implementa
inheritance in our example case. This has been seen already: class STACK2 of an earlier
chapter. It has an attribute representation of type ARRAY [G] and stack procedures
implemented in the following style (assertions omitted):

put (x: G) is
-- Add x on top.

require
…

do
count:= count + 1
representation● put (count, x)

ensure
…

end

Every manipulation of the representation requires a call to a feature of ARRAY with
representation as the target. There is a performance penalty: minor for space
representation attribute), more serious for time (going through representation, that is to
say adding an indirection, for each operation).

Assume we can ignore the efficiency issue. Tediousness is another, with a
“ representation● ” prefixes that you must add before every array operation. This wil
true in all the classes that implement various data structures — stacks, but also
queues and others — through arrays.

The object-oriented designer hates tedious, repetitive tasks. “Encapsulate repe
is our motto. If we see such a pattern occurring repeatedly throughout a set of class
natural and healthy reaction is to try to understand the common abstraction
encapsulate it in a class. The abstraction here is something like “data structure th
access to an array and its operations”. The class could be:

USING INHERITANCE PROPERLY§24.8846

o

ch as

 we
ke
re
e just
indexing
description: "Objects that have access to an array and its operations"

class
ARRAYED [G]

feature -- Access
item (i: INTEGER): G is

-- The representation’s element at index i
require

…
do

Result:= representation● item (i)
ensure

…
end

feature -- Element change
put (x: G; i: INTEGER) is

-- Replace by x the representation’s element at index i.
require

…
do

representation● put (x, i)
ensure

…
end

feature {NONE} -- Implementation

representation: ARRAY [G]

end -- class ARRAYED

The features item and put have been exported. Since ARRAYED only describes internal
properties of a data structure, it does not really need exported features. So someone wh
disagrees with the very idea of letting a descendant hide some of its parents’ exported
features may prefer to make all the features of ARRAYED secret. They will then by default
remain secret in descendants.

With this class definition it becomes quite uncontroversial to make classes su
ARRAYED_STACK or ARRAYED_LIST inherit from ARRAYED: they indeed describe
“arrayed” structures. These classes can now use item instead of representation● item and
so on; we have rid ourselves of the tediousness.

But wait a minute! If it is right to inherit from ARRAYED, why can we not inherit
directly from ARRAY? We gain nothing from the further layer or encapsulation that
have thrown over ARRAY — a form of encapsulation that starts looking more li
obfuscation. By going through ARRAYED we are just pretending to ourselves that we a
not using implementation inheritance, but for all practical purposes we are. We hav
made the software more complex and less efficient.

There is indeed no reason in this example for class ARRAYED. Direct implementation
inheritance from classes such as ARRAY is simpler and legitimate.

§24.9 FACILITY INHERITANCE 847

bout
geous
 has no

s

ibing
e

stem

teger
, say
s into
24.9 FACILITY INHERITANCE

With facility inheritance we are even less coy than with implementation inheritance a
why we want the marriage: pure, greedy self-interest. We see a class with advanta
features and we want to use them. But there is nothing to be ashamed of: the class
other raison d’être.

Using character codes

The Base Libraries include a class ASCII:

indexing
description:

"The ASCII character set. %
%This class may be used as ancestor by classes needing its facilitie."

class ASCII feature -- Access
Character_set_size: INTEGER is 128; Last_ascii: INTEGER is 127
First_printable: INTEGER is 32; Last_printable: INTEGER is 126
Letter_layout: INTEGER is 70
Case_diff: INTEGER is 32

-- Lower_a – Upper_a

…
Ctrl_a: INTEGER is 1; Soh: INTEGER is 1
Ctrl_b: INTEGER is 2; Stx: INTEGER is 2
…
Blank: INTEGER is 32; Sp: INTEGER is 32
Exclamation: INTEGER is 33; Doublequote: INTEGER is 34
…
…
Upper_a: INTEGER is 65; Upper_b: INTEGER is 66
…
Lower_a: INTEGER is 97; Lower_b: INTEGER is 98
… etc. …

end -- class ASCII

This class is a repertoire of constant attributes (142 features in all) descr
properties of the ASCII character set. As the description entry states, it is meant to b
inherited by classes needing access to such properties.

Consider for example a lexical analyzer — the part of a language analysis sy
that is responsible for identifying the basic elements, or tokens, of an input text; these
tokens may be (assuming the input is a text in some programming language) in
constants, identifiers, symbols and so on. One of the classes of the system
TOKENIZER, will need access to the character codes, to classify the input character
digits, letters etc. Such a class will inherit these codes from ASCII:

USING INHERITANCE PROPERLY§24.9848

into
e, we

nstant

ctures
ming
tial
lying
rion
e
tem

cture
o
arate

:

Exercise E24.7,
page 870.
class TOKENIZER inherit ASCII feature

… Routines here may use such features as Blank, Case_diff etc. …

end

Classes such as ASCII have been known to raise a few eyebrows; before going
the methodological discussion of whether they are a proper application of inheritanc
will look at another example of facility inheritance.

Iterators

The second example will show a case in which the inherited features are not just co
attributes (as with ASCII) but routines of the most general kind.

Assume that we want to provide a general mechanism to iterate over data stru
of a certain kind, for example linear structures such as lists. “Iterating” means perfor
a certain procedure, say action, on elements of such a structure, taken in their sequen
order. We are asked to provide a number of iteration mechanisms, including: app
action to all the elements; applying it to all the elements that satisfy a certain crite
given by a boolean-valued function test; applying it to all the elements up to the first on
that satisfies test, or the first one that does not satisfy this condition; and so on. A sys
that uses the mechanism must be able to apply it to any action and test of its choice.

At first it might seem that the iterating features should belong to the data stru
classes themselves, such as LIST or SEQUENCE; but as an exercise invites you t
determine for yourself this is not the right solution. It is preferable to introduce a sep
hierarchy for iterators:

Class LINEAR_ITERATOR, the one of interest for this discussion, looks like this

ITERATOR
*

LINEAR_
ITERATOR

*

BILINEAR_
ITERATOR

*

TREE_
ITERATOR

*

§24.9 FACILITY INHERITANCE 849

ements
ystem
raphs
indexing
description:

"Objects that are able to iterate over linear structures"
names: iterators, iteration, linear_iterators, linear_iteration

deferred class LINEAR_ITERATOR [G] inherit
ITERATOR [G]

redefine target end
feature -- Access

invariant_value: BOOLEAN is
-- The property to be maintained by an iteration (default: true).

do
Result := True

end

target: LINEAR [G]
-- The structure to which iteration features will apply

test: BOOLEAN is
-- The boolean condition used to select applicable elements

deferred
end

feature -- Basic operations

action is
-- The action to be applied to selected elements.

deferred
end

do_if is
-- Apply action in sequence to every item of target that satisfies test.

do
from start invariant invariant_value until exhausted loop

if test then action end

forth
end

ensure then
exhausted

end

… And so on: do_all, do_while, do_until etc. …

end -- class LINEAR_ITERATOR

Now assume a class that needs to perform a certain operation on selected el
of a list of some specific type; for example a command class in a text processing s
may need to justify all paragraphs in a document, excepted for preformated parag
(such as program texts and other display paragraphs). Then:

USING INHERITANCE PROPERLY§24.9850

 need

rom
 that

f

n their

s

and

ingle

orm of

“Don’t call us, we’ll
call you”, page 505.
class JUSTIFIER inherit
LINEAR_ITERATOR [PARAGRAPH]

rename
action as justify,
test as justifiable,
do_all as justify_all

end
feature

justify is
do … end

justifiable is
-- Is paragraph subject to justification?

do
Result:= not preformated

end
…

end -- class JUSTIFIER

The renaming was not indispensable but helps for clarity. Note that there is no
to declare or redeclare the procedure justify_all (the former do_all): as inherited, it does
the expected job based on the effected versions of action and test.

Procedure justify, instead of being described in the class, could be inherited f
another parent. In this case multiple inheritance would perform a “join” operation
effects the deferred action, inherited from one parent under the name justify (here the
renaming is essential), with the effective justify inherited from the other parent. A form o
marriage of convenience, in fact.

LINEAR_ITERATOR is a remarkable example of behavior class, capturing common
behaviors while leaving specific components open so that descendants can plug i
specific variants.

Forms of facility inheritance

The two examples, ASCII and LINEAR_ITERATOR, are typical of the two main variant
of facility inheritance:

• Constant inheritance, in which the parent principally yields constant attributes
shared objects.

• Operation inheritance, in which it yields routines.

As noted earlier, it is possible to combine both of these variants in a s
inheritance link. That is why facility inheritance is one of our categories, not two.

Understanding facility inheritance

To some people facility inheritance appears to be an abuse of the mechanism — a f
hacking. But that is not necessarily the case.

§24.10 MULTIPLE CRITERIA AND VIEW INHERITANCE 851

 about

ningful

erties

the
to be

ise any
CII
al
 links
rent.

ced by
er than

everal
ion of

 is no

ia are

sibly
newed
chies,
ture is
ke a

“Objects as
machines”, page
751.

On iterator objects
see exercise E15.4,
page 567.
The main question to consider in these examples is not about inheritance but
the classes that have been defined, ASCII and LINEAR_ITERATOR. As always when
looking at a class design, we must ask ourselves: “Does this indeed describe a mea
data abstraction?” — a set of objects characterized by their abstract properties.

With the examples the answer is less obvious than with a class RECTANGLE,
BANK_ACCOUNT or LINKED_LIST, but it exists all the same:

• Class ASCII represents the abstraction: “any object that has access to the prop
of the ASCII character set”.

• Class LINEAR_ITERATOR represents the abstraction: “any object that has
ability to perform sequential iterations on a linear structure”. Such objects tend
of the “machine” kind described in the preceding chapter.

Once these abstractions have been accepted, the inheritance links do not ra
problem: an instance of TOKENIZER does need “access to the properties of the AS
character set”, and an instance of JUSTIFIER does need “the ability to perform sequenti
iterations on a linear structure”. In fact, we could classify such examples of inheritance
under the subtype kind. What distinguishes facility inheritance is the nature of the pa

That the classes themselves are the issue, not the use of inheritance, is reinfor
the observation that an application class could rely on these classes as a client rath
heir. This would make things heavier, especially for ASCII: with

charset: ASCII
…
!! charset

every use of a character code would have to be written charset● Lower_a and the like. The
object attached with ASCII does not play any useful role. With LINEAR_ITERATOR the
same comments apply as long as a given class needs only one kind of iteration. If s
are required, it becomes interesting to create iterator objects, each with its own vers
action and test; then you can have as many iteration schemes as you need.

If it is appropriate to have iterator objects, we need iterator classes, and there
reason to deny such classes the right to join the inheritance club.

24.10 MULTIPLE CRITERIA AND VIEW INHERITANCE

Perhaps the most difficult problem of using inheritance arises when alternative criter
available to classify the abstractions of a certain application area.

Classifying through multiple criteria

The traditional classifications of the natural sciences use a single criterion (pos
involving several qualities) at each level: vertebrate versus invertebrate, leaves re
each year or not, and so on. The result is what we would call single inheritance hierar
whose main advantage is their great simplicity. But there are problems too, since na
definitely not single-criterion. This will be obvious to anyone who has ever tried to ta

USING INHERITANCE PROPERLY§24.10852

h the
; how

u are
t of
ou dig?

l the
master
t
s:

lasses;
 have

other

n
l

 are

A messy
classification
nature walk armed with a botanical book meant to enable plant recognition throug
official Linnaean criteria. Species A is deciduous and species B is not, the book says
long can you afford to wait, if this is July, to find out whether the leaves remain? Yo
told that June will bring bright purple flowers, but how can you tell in the mids
January? The roots of A are at most 7 meters deep, versus at least 9 for B — must y

In software, when a single criterion seems too restrictive, we can use al
techniques of multiple and especially repeated inheritance that we have learned to
in earlier chapters. Assume for example a class EMPLOYEE in a personnel managemen
system. Assume further that we have two separate criteria for classifying employee

• By contract type, such as permanent vs. temporary.

• By job type, such as engineering, administrative, managerial.

and that both of these criteria have been recognized to lead to valid descendant c
in other words you are not engaging in taxomania, since the classes that you
identified, such as TEMPORARY_EMPLOYEE for the first criterion and MANAGER for
the second, are truly characterized by specific features not applicable to the
categories. What do you do?

A first attempt might introduce all the variants at the same level:

To keep this sketched example small and the figure simple, the class names have bee
abbreviated. To go from this example to a real system we would have to apply the usua
naming guidelines, which suggest longer and more accurate names such as
PERMANENT_EMPLOYEE, ENGINEERING_EMPLOYEE and so on.

This inheritance hierarchy is not satisfactory since widely different concepts
represented by classes at the same level.

EMPLOYEE

PERMANENT

TEMPORARY

SUPERVISORY

ADMINISTRATIVE

ENGINEER

*

§24.10 MULTIPLE CRITERIA AND VIEW INHERITANCE 853

under
eting

 a
e as
loyee

of this
ts of
es not
s that
 of the

ng
nts

Classification
through views
View inheritance

If you retain the idea of using inheritance for the classification used in the example
discussion, you should introduce an intermediate level to describe the comp
classification criteria:

Note that the name CONTRACT_EMPLOYEE does not mean “employee that has
contract” (as opposed to employees who might not have one!), but “employe
characterized by his contract”. The name of the sibling class similarly means “emp
as characterized by his specialty”.

That these names seem far-fetched reflects a certain uneasiness, typical
kind of inheritance. In subtype inheritance we encountered the rule that the se
instances represented by the various heirs to a class be disjoint. Here the rule do
apply: a permanent employee, for example, may be an engineer too. This mean
such a classification is meant for repeated inheritance: some proper descendants
classes shown in the figure will have both CONTRACT_EMPLOYEE and
SPECIALTY_EMPLOYEE as ancestors — not directly, but for example by inheriti
from both PERMANENT and ENGINEER. Such classes will be repeated descenda
of EMPLOYEE.

SPECIALTY_
EMPLOYEE

CONTRACT_
EMPLOYEE

EMPLOYEE

PERMANENT
TEMPORARY

SUPERVISORY

ADMINISTRATIVE

ENGINEER

*

* *

USING INHERITANCE PROPERLY§24.10854

rtain
s ways

parent
es rather

isfies it.

bject
 any

iew
or
rience

e.

ia as
ss the
dern
s the
at we
tware

 type
. As a

 better

an stay
This form of inheritance may be called view inheritance: various heirs of a ce
class represent not disjoint subsets of instances (as in the subtype case) but variou
of classifying instances of the parent. Note that this only makes sense if both the
and the heirs are deferred classes, that is to say, classes describing general categori
than fully specified objects. Our first attempt at EMPLOYEE classification by views (the
one that had all descendants at the same level) violated that rule; the second one sat

Is view inheritance appropriate?

View inheritance is relatively far from the more common uses of inheritance and is su
to criticism. The reader will be judge of whether to use it for his own purposes, but in
case we should examine the pros and cons.

It should be clear that — like repeated inheritance, which it requires — v
inheritance is not a beginner’s mechanism. The rule of prudence that was introduced f
repeated inheritance holds here: if you have less than a few months’ hands-on expe
with O-O development of significant projects, better stay away from view inheritanc

The alternative to view inheritance is to choose one of the classification criter
primary, and use it as the sole guide for devising the inheritance hierarchy; to addre
other criteria, you will use specific features. It is interesting to note that many mo
zoologists and botanists use this approach: their basic classification criterion i
reconstructed evolutionary history of the genera and species involved. Would it th
always had such a single, indisputable standard to guide us in devising sof
taxonomies.

To stick to a single primary criterion in our example we could decide that the job
is the factor of principal interest, and represent the employment status by a feature
first attempt, the feature (in class EMPLOYEE) could be

is_permanent: BOOLEAN

but this is dangerously constraining; to extend the possibilities, we could have

Permanent: INTEGER is unique

Temporary: INTEGER is unique

Contractor: INTEGER is unique

…

but then we have learned to be wary, for good reasons, of explicit enumerations. A
approach is to introduce a class WORK_CONTRACT, most likely deferred, with as many
descendants as necessary to account for specific kinds of work contract. Then we c
away from loathed explicit discriminations of the form

if is_permanent then … else … end

or

§24.10 MULTIPLE CRITERIA AND VIEW INHERITANCE 855

ust
d, we
e-
st of
o

te the

erarchy
tance
m the

Multi-criteria
classification
through
separate,
client-related
hierarchies

See “AN APPLICA-
TION: THE HAN-
DLE TECHNIQUE”,
24.3, page 817.
inspect

contract_type

when Permanent then

…

when …

…

end

with their contingent of future extendibility troubles (stemming from their violation of j
about every modularity principle: continuity, single choice, open-closedness); instea
will equip class WORK_CONTRACT with deferred features representing contract-typ
dependent operations, which will then be effected differently in descendants. Mo
these features will need an argument of type EMPLOYEE, representing the employee t
which the operation is being applied; examples might include hire and terminate.

The resulting structure will look like this:

This scheme, as you may have noted, is almost identical to the handle-based design
pattern described earlier in this chapter.

Such a technique may be used in place of view inheritance. It does complica
structure by introducing a separate hierarchy, a new attribute (here contract) and the
corresponding client relations. It has the advantage that the abstractions in such a hi
are beyond question (work contract, permanent work contract); with the view inheri
solution, the abstractions are clear too but a little trickier to explain (“employee seen fro
perspective of his work contract”, “employee seen from the perspective of his specialty”).

EMPLOYEE

SUPERVISORY

ADMINISTRATIVE

ENGINEER

* WORK_
CONTRACT

PERMANENT_
CONTRACT

*contract

hire*
terminate*

hire+

terminate+
hire+

terminate+

TEMPORARY_
CONTRACT

USING INHERITANCE PROPERLY§24.10856

ain,
veral
our
rts to

tance
should

ary

rvisor,

ificant
n the

Base
ulting

asic
iner”

A view-based
classification
of fundamental
computing
structures
Criteria for view inheritance

It is not uncommon to think of view inheritance early in the analysis of a problem dom
while you are still struggling with the fundamental concepts and considering se
possible classification criteria, all of which vie for your attention. As you improve y
understanding of the application area, it will often happen that one of the criteria sta
dominate the others, imposing itself as the primary guide for devising the inheri
structure. In such cases, the preceding discussion strongly suggests that you
renounce view inheritance in favor of more straightforward techniques.

I still find view inheritance useful when the following three conditions are met:

• The various classification criteria are equally important, so any choice of a prim
one would be arbitrary.

• Many possible combinations (such as, in the earlier example, permanent supe
temporary engineer, permanent engineer and so on) are needed.

• The classes under consideration are so important as to justify spending sign
time to get the best possible inheritance structure. This applies in particular whe
classes are part of a reusable library with large reuse potential.

An example of application of these criteria is the uppermost structure of the
libraries, in the environment described in the last chapter of this book. The res
classes followed from an effort, described in detail in the book [M 1994a], of applying
taxonomical principles to the systematic classification of computing science’s b
structures, in the tradition of the natural scientists. The highest part of the “conta
structure looks like this:

CONTAINER
*

* * *

**

BOX COLLECTION TRAVERSABLE

FINITE INFINITE BAG SET

LINEAR HIERARCHI
CAL

*

§24.10 MULTIPLE CRITERIA AND VIEW INHERITANCE 857

tion.

e
ccess

.
 fixed

. The
,
ructure
 parts.
essed

r a
e a

joint

Building a data
structure class
by combination
of abstractions
through
multiple
inheritance
The first-level classification (BOX, COLLECTION, TRAVERSABLE) is view-based;
the level below it (and many of those further below, not shown) is a subtype classifica
A container structure is characterized through three criteria:

• How items will be accessed: COLLECTION. A SET makes it possible to find out
whether an item is present, whereas a BAG also enables the client to find out th
number of occurrences of a given element. Further refinements include such a
abstractions as SEQUENCE (items are accessed sequentially), STACK (items are
accessed in the reverse order of their insertion) and so on.

• How items will be represented: BOX. Variants include finite and infinite structures
A finite structure can be bounded or unbounded; a bounded structured can be
or resizable.

• How the structure can be traversed: TRAVERSABLE.

It is interesting to note that the hierarchy did not start out as view inheritance
initial idea was to define BOX, COLLECTION and TRAVERSABLE as unrelated classes
each at the top of a separate hierarchy; then, when describing any particular data st
implementation, to use multiple inheritance to pick one parent from each of the three
For example a linked list is finite and unbounded (representation), sequentially acc
(access), and linearly traversable (traversal):

But then we realized that it was inappropriate to keep BOX, COLLECTION and
TRAVERSABLE separate: they all needed a few common features, in particularhas
(membership test) and empty (test for no elements). This clearly indicated the need fo
common ancestor — CONTAINER, where these common features now appear. Henc
structure that was initially designed as pure multiple inheritance, with three dis

* * *BOX COLLECTION TRAVERSABLE

Representation
hierarchy

Access
hierarchy

Traversal
hierarchy

USING INHERITANCE PROPERLY §24.11858

erable

ful,
view
le for
 in a

n you
 been
 then

n that
 to the

o the
escribe

 the
and so
eneral

notion
d its
arlier
sible:

re the

s here

Some of the material
in this section is from
[M 1995].

See “Production
and description”,
page 114.
hierarchies at the top, turned out to be a view inheritance hierarchy with a consid
amount of repeated inheritance.

Although initially difficult to get right, this structure has turned out to be use
flexible and stable, confirming both of the conclusions of this discussion: that
inheritance is not for the faint of heart; and that when applicable it can play a key ro
complex problem domains where many criteria interact — if the effort is justified, as
fundamental library of reusable components, which simply has to be done right.

24.11 HOW TO DEVELOP INHERITANCE STRUCTURES

When you read a book or pedagogical article on the object-oriented method, or whe
discover a class library, the inheritance hierarchies that you see have already
designed, and the author does not always tell you how they got to be that way. How
do you go about designing your own structures?

Specialization and abstraction

Voluntarily or not, many pedagogical presentations tend to create the impressio
inheritance structures should be designed from the most general (the upper part)
most specific (the leaves). This is in part because this is often the best way to describe a
good structure once it exists: from the general to the particular; from the figures t
closed figures to the polygons to the rectangles to the squares. But the best way to d
a structure is not necessarily the best way to produce it.

A similar comment, due to Michael Jackson, was mentioned in the discussion of top-
down design.

In an ideal world populated with perfect people, we would always recognize
proper abstractions right away, and then draw the categories, their subcategories
on. In the real world, however, we often see a specific case before we discover the g
abstraction of which it is but a variant.

In many cases the abstraction is not unique; how best to generalize a certain
depends on what you or your clients will most likely want to do with the notion an
variants. Consider for example a notion that we have often encountered in e
discussion: points in a two-dimensional space. At least four generalizations are pos

• Points in arbitrary-dimension space — leading to an inheritance structure whe
sisters of class POINT will be classes POINT_3D and so on.

• Geometrical figures — the other classes in the structure being the likes of FIGURE,
RECTANGLE, CIRCLE and so on.

• Polygons — with other classes such as QUADRANGLE (four vertices), TRIANGLE
(three vertices) and SEGMENT (two vertices), POINT being the special polygon
with just one vertex.

• Objects that are entirely determined by two coordinates — the other contender
being COMPLEX and VECTOR_2D.

§24.11 HOW TO DEVELOP INHERITANCE STRUCTURES 859

than
nswer
ocess
re that
which

of a
tional
tain

 the
. The
 the
ever
ird

d on
 lead

o does
icial

ve and
n first
d then

See page 842. Bib-
liographic refer-
ences removed.

More on competing
classification meth-
ods at the end of thi
chapter.
Although some of these generalizations may intuitively be more appealing
others, it is impossible to say in the absolute which one of them is the best. The a
will depend on how your software base evolves and what it will need. So a prudent pr
in which you sometimes abstract a bit too late, because you waited until you were su
you had found the most useful path of generalization, may be preferable to one in
you might get too much untested abstraction too soon.

The arbitrariness of classifications

The POINT example is typical. When presented with two competing classifications
certain set of abstractions, you will often be able to determine, based on ra
arguments, which one is better; but seldom is one in a position to determine that a cer
inheritance structure is the best possible one.

This situation is not specific to software. Do not believe, for example that
Linnaean classifications of natural science are universally accepted or eternal
maintainers of the “Tree of Life” Internet archive mentioned earlier (see also
bibliographical notes) state at the outset that the project’s classification — how
collaborative and interdisciplinary — is controversial. And this is not just for we
smallish creatures too viscous to be discussed at lunch; Dr. Everham’s Web classification
of birds cited earlier comes with the comment

There are 174 Families, 2044 Genera and 9021 species of birds in the world! The
most abundant species are in the order Passeriformes with 5276 species. The least
number of species in an order is 1: the Ostrich in Struthioniformes. (I would have
thought the Ostrich would be in an order with the Emus, Kiwis and Moas, all
extinct, because they all are flightless with stout legs and longish necks.) The
Linnaeus system groups organisms based on morphological similarities. Another
classification of animals is based on DNA-DNA hybridization. This is highly
complex; for example an American Cuckoo would be classified as: Kingdom,
Animalia; Phylum, Chordata; Class, Aves; Subclass, Neornithes; Infraclass,
Neoaves; Parvclass, Passerae; Superorder, Cuculimorphae; Order,
Cuculiformes; Infraorder, Cuculides; Parvorder, Coccyzida; Family, Coccyzidae.

This shows the competition between two systems: the traditional one, base
morphology (and evolution); and a more inductive one based on DNA analysis. They
to radically different results. Also note, as an aside, that here we see a zoologist wh
think that flightlessness should be a significant taxonomical criterion — but the off
classification disagrees.

Induction and deduction

To design software hierarchies, the proper process is a combination of the deducti
the inductive, of specialization and generalization: sometimes you see the abstractio
and then infer the special cases; sometimes you first build or find a useful class an
realize that there is a more abstract underlying concept.

s

USING INHERITANCE PROPERLY§24.11860

hile

rrect)

all

s
tually

he need

 you
the

Abstraction

Factoring
If you find yourself not always using the first scheme, but once in a w
discovering the abstract only after you have seen the concrete, maybe there is nothing
wrong with you. You are simply using a normal “yoyo” approach to classification.

As you accumulate experience and insight, you should find that the share of (co
a priori decisions grows. But an a posteriori component will always remain.

Varieties of class abstraction

This principle of Reversion is the most wonderful of
the attributes of inheritance.

Charles Darwin

Two forms of a posteriori parent construction are common and useful.

Abstracting is the late recognition of a higher-level concept. You find a clasB
which covers a useful notion, but whose developer did not recognize that it was ac
a special case of a more general notion A, justifying an inheritance link:

That this insight was initially missed — that is to say, that B was built without A —
is not a reason to renounce the use of inheritance in this case. Once you recognize t
for A, you can, and in most cases should, write this class and adapt B to become one of its
heirs. It is not as good as having written A earlier, but better than not writing it at all.

Factoring is the case in which you detect that two classes E and F actually represent
variants of the same general notion:

If you recognize this commonality belatedly, the generalization step will enable
to add a common parent class D. Here again it would have been preferable to get
hierarchy right the first time around, but late is better than never.

A

B

D

E F

§24.11 HOW TO DEVELOP INHERITANCE STRUCTURES 861

n the

gain

s
nts if

pe. In

 that
n my
g that
 given

f the
ible

Abstraction,
factoring and
clients
Client independence

Abstracting and factoring may in many cases proceed without negative effects o
existing clients (an application of the Open-Closed principle).

This property results from the method’s use of information hiding. Consider a
the preceding schematic cases, but with a typical client class X added to the picture:

When B gets abstracted into A, or the features of E get factored with those of F into
D, a class X that is a client of B or E (in the figure it is a client of both) will in many case
not feel any effect from the change. The ancestry of a class does not affect its clie
they are simply applying the features of the class on entities of the corresponding ty
other words, if X uses B and E as suppliers under the scheme

b1: B; e1: E

…

b1● some_feature_of_B

…

e1●some_feature_of_E

then X is unaffected by any re-parenting of B or E arising from abstracting or factoring.

Elevating the level of abstraction

Abstracting and factoring are typical of the process of continuous improvement
characterizes a successful object-oriented software construction process. I
experience this is one of the most elating aspects of practicing the method: knowin
even though you are not expected to reach perfection the first time around, you are
the opportunity to improve your design continually, until it satisfies everyone.

In a development group that applies the method well, this regular elevation o
level of abstraction of the software, and as a corollary of its quality, is clearly percept
to the project members, and serves as constant incentive and motivation.

D

E F

A

B X

USING INHERITANCE PROPERLY§24.12862

an use

nce.
 hurt

r
ware

lace.

e the
are:

s (such
ember,
 object-

tware
 in the

. This
mental

iness-
tion of
idual

.

 and
 if you

vering
ill be

of

ion of
nce

 their
 the
24.12 A SUMMARY VIEW: USING INHERITANCE WELL

Inheritance will never cease to surprise us with its power and versatility. In this chapter
we have tried to get a better handle at what inheritance really means and how we c

it to our best advantage. A few central conclusions have emerged.

First, we should not be afraid of the variety of ways in which we can use inherita
Prohibiting multiple inheritance or facility inheritance achieves no other aim than to
ourselves. The mechanisms are there to help you: use them well, but use them.

Next, inheritance is for the most part a supplier’s technique. It is one weapon in ou
arsenal of techniques for fighting our adversaries (in particular complexity, the soft
developer’s relentless foe). Inheritance may matter to client software as well, especially

in the case of libraries, but its main goal is to help us building the thing in the first p

Of course, all software is designed for its clients, and the clients’ needs driv
process. A set of classes is good if it will offer excellent service to client softw

interfaces and associated implementations that are complete, free from bad surprise
as unexpected performance penalties), simple to use, easy to learn, easy to rem
extendible. To achieve these goals, the designer is free to use inheritance and other

oriented techniques in any way he pleases.The end justifies the means.

Also remember, when designing an inheritance structure, that the goal is sof
construction, not philosophy. Seldom is there a single solution, or even a best one

absolute. “Best” means best for the purposes of a certain class of client applications
is particularly true as we move away from areas such as mathematics and funda

computing science, where a widely accepted body of theory exists, towards bus
driven application domains. To find out what class hierarchy best addresses the no
company share, you probably need to know whether the software caters to indiv

investors, to a publicly traded company, to a stock broker, or to the Stock Exchange

In a way, this is comforting. The naturalist who classifies a certain set of plants
animals must devise absolute categories. In software the equivalent only happens

are in the business of producing general-purpose libraries (such as those co
fundamental data structures, graphics, databases). Most of the time, your aims w

more modest. You will need to design a good hierarchy, one that will satisfy the needs
a certain kind of client software.

The final lesson of this chapter generalizes a comment made in the discuss
facility inheritance: the principal difficulty of building class structures is not inherita

per se; it is the search for abstractions. If you have identified valid abstractions,
inheritance structure will follow. To find the abstractions, the guide you will use is

guide that we follow throughout this book: the theory of abstract data types.

§24.13 KEY CONCEPTS INTRODUCED IN THIS CHAPTER 863

two
self.

 the

the
rphic

well-

hree
deled
and

nd a
erent

erful

lows
ional

nce

ul
s and

per

gists
ular:

rom
24.13 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

• Every use of inheritance should reflect some form of “is” relation between
categories of object, either in an external modeled domain or in the software it

• Do not use inheritance to model a “has this kind of component” relation; this is
province of the client relation. (Remember CAR_OWNER.)

• When inheritance is applicable, client is often potentially applicable too. If
corresponding view can change, use the client relation; if you foresee polymo
uses, use inheritance.

• Do not introduce intermediate inheritance nodes unless they describe a
identified abstraction, characterized by specific features.

• A classification of inheritance was defined, based on twelve kinds divided into t
general categories: model inheritance (describing relations existing in the mo
domain), software inheritance (describing relations in the software itself),
variation inheritance (for class adaptation in either the model or the software).

• The power of inheritance comes from its combination of a type specialization a
module extension mechanism. It seems neither wise nor useful to use diff
language mechanisms.

• Implementation and facility inheritance require some care but can be pow
supplier-side techniques.

• View inheritance, a delicate technique involving repeated inheritance, al
classifying object types along several competing criteria. It is useful for profess
libraries. In many cases a simpler handle technique is preferable.

• Although not theoretically ideal, the actual process of designing inherita
hierarchies is often yoyo-like — from the abstract to the concrete and back.

• Inheritance is primarily a supplier technique.

24.14 BIBLIOGRAPHICAL NOTES

The principal reference on the taxonomy of inheritance is [Girod 1991]. A book on O-O
methodology [Page-Jones 1995], one of a very small number that provide usef
methodological advice on object-oriented design, includes precious advice on use
misuses of inheritance. Another useful reference is [McGregor 1992]; John McGregor has
particularly explored the technique called view inheritance in this chapter.

[Breu 1995] also provides interesting concepts, based on a view of pro
inheritance usage more restrictive than the one in this chapter.

A technique similar to this chapter’s “handles” is described in [Gil 1994].

The preparation of this chapter benefited from the comments of several biolo
who maintain Web-accessible resources on the taxonomy of living beings, in partic
the “tree of life” at the University of Arizona (phylogeny.arizona.edu/tree/life.html),
courtesy of Professors David Maddison and, for birds, Michel Laurin (the latter f
Berkeley). Professor Edwin Everham from Radford University was also very helpful.

General references on the theory of classification, or systematics, appear at the end
of the next section.

USING INHERITANCE PROPERLY§24.15864

dy of
ware
 inter-

whose

finitive
duce
as we
 than to
anical
of the
e

es

ch
1st

onrad

aspar

ailing
n just
dicots
ziness

f seven
s
 list

e fast
racter
ew six
ted over
ton’s
e
gories

odern

y the
 of all
eering
24.15 APPENDIX: A HISTORY OF TAXONOMY

This Appendix is supplementary material, not used in the rest of this book. The stu
taxonomic efforts in other disciplines is full of potential lessons for us object-oriented soft
developers. I hope to spur further interest in this fascinating area — possibly a topic for an
disciplinary Master’s or Ph. D. thesis.

From Aristotle to Darwin

The classification of species began at least as early as Aristotle (384-322 B.C.E.),
taxonomy of animals, Historia Animalium, continued for plants under the title Historia
Plantarum by his student Theophrastus of Eresos (ca. 370-288 B.C.E.), was accepted as de
for many centuries. Aristotle’s criteria for classifying animals include both how they repro
and where they live; from a modern viewpoint, only the first would be considered relevant,
have come to accept that regardless of habitat considerations a dolphin is closer to a llama
a shark. Theophrastus’s classification was more systematically structural. Modern bot
terminology comes largely from Aristotle and Theophrastus through the Latin translation
latter’s terms in the Natural History of Pliny the Elder (23-79 C.E.) (Pliny was well aware of th
need to avoid being misled by appearances: “It was the plan [of some Greek naturalists] to
delineate the various plants in colors, and then to add in writing a description of the properti
which they possessed. Pictures, however, are very apt to mislead; … besides, it is not sufficient
to delineate a plant as it appears at one period only, as it presents a different appearance at ea
of the four seasons of the year.”) A later important contributor was Dioscorides of Anazarbus (
century C.E.), Nero’s doctor, who classified plants according to their medicinal properties.

Several scholars took up the work at the time of the Renaissance, in particular C
Gessner, who was to influence Linné and Cuvier through his Opera Botanica and Historia
Plantarum (1541-1571), distinguishing genus from species and order from class, and C
Bauhin, who devised a binomial system for the classification of plants in his Pinax (1596). In the
next century, John Ray (1628-1705) removed some of the arbitrariness of prev
classifications by taking into account several properties of plants’ morphology, rather tha
one feature. He established the basic division of flowering plants into monocots and
(foreseen by Theophrastus). That division, still in use today, is another example of the fuz
of even some of the fundamental classification criteria of biology; the UC Berkeley Museum of
Paleontology (see the bibliographical references at the end of this section) gives a list o
factors distinguishing monocots from dicots — one vs. two cotyledons in the embryo, flower part
in multiples of three vs. multiples of four or five, etc. — but adds that no single factor in that
will infallibly identify a given flowering plant as a monocot or dicot.

Only in the eighteenth century, with the development of biology as a science and th
growth in known species, did the problem of biological classification start to acquire a cha
of urgency. Whereas Theophrastus had identified five hundred plant species, Bauhin kn
thousand, and Linnaeus catalogued eighteen thousand; less than a century later Cuvier lis
fifty thousand! The philosopher-scientists of the Age of Enlightenment, aroused by New
classification of heavenly bodies in his Principia Mathematica (1687), were not content any mor
to list the species, but started to look for meaningful principles of grouping them into cate
— for the proper abstraction mechanisms, as we software people would say. The roots of m
taxonomy can be traced to that collective effort of the early modern era.

The key contributor was the Swedish botanist Carl Linné (1701-1778), also known b
Latin name Carolus Linnaeus, who in 1737 published his taxonomic system, still the basis
taxonomic systems used today. One of his major innovations, was — using software engin

§24.15 APPENDIX: A HISTORY OF TAXONOMY 865

ho
or of a
 that
es and

ideal

ion of

nsive
llow
s are
n part

in’s,
he

s. He
. He

rsary

r
 other
ns
he
ng

hose
 The

 than
al truth,
né’s
ate, let
terminology again — to discard the top-down approach used by previous taxonomists (w
posited basic abstract categories and successively divided them into smaller groups) in fav
bottom-up approach, well in line with the emphasis on pragmatism and experimentation
marked the beginnings of the scientific method; he started from the species themselv
grouped them into categories.

Both Ray and Linné were in search of a “natural system”, that is to say an
classification that would reveal divine intentions.

Progress between Linné and Darwin was largely due to an astonishing success
naturalists at the Paris Jardin des Plantes:

• Georges-Louis de Buffon (1707-1788) wrote the magnificent 44-volume Histoire
Naturelle, bold enough to suggest a common ancestry for humans and apes.

• Antoine-Laurent de Jussieu (1748-1836) looked for a more natural and comprehe
system of plant classification than Linné’s. Modern taxonomies of plants actually fo
from Jussieu’s work, itself based on Ray’s. (Although modern classification system
based on Linné’s ideas, his actual taxonomy has largely been discarded — initially i
because of moral reasons, since he gave such importance to sexual features.)

• Jean-Baptiste Lamarck (1744-1829), whose theory of evolution announced Darw
published his Flore française in 1778 and almost single-handedly originated t
classification of “invertebrates”, a term he coined. In his Histoire naturelle des Animaux
sans Vertèbres he was the first to separate the crustaceans from the insects.

• Georges Cuvier (1769-1832) did for vertebrates what Lamarck did for invertebrate
was famous for his ability to reconstruct complete organisms from fossil fragments
classified animals into four branches.

• Étienne Geoffroy Saint-Hilaire (1772-1844), another great taxonomist, was the adve
of Cuvier (whom he had brought to Paris) in a famous public debate about unity vs. diversity
of life forms. The dispute reflected deeper questions: evolutionary vs. fixed views of
species, and the issue, still open today, of formalism vs. functionalism. When we see Cuvie
writing “If there are resemblances between the organs of fishes and those of the
vertebrate classes, it is only insofar as there are resemblances between their functio” in
1828, and Geoffroy responding “Animals have no habits but those that result from t
structure of their organs” in 1829, it is hard for a software professional to avoid thinki
“abstract data type” and “implementation”.

The next revolution in taxonomical thought came with Charles Darwin (1809-1882), w
Origin of Species (1859) suggested a simple basis for taxonomy: use evolutionary history.
classification of organisms according to their origin in evolution is known as cladistics. For some
biologists, this is the only criterion. The Berkeley Museum of Paleontology again:

For many years, since even before Darwin, it has been popular to tell “stories” about
how certain traits of organisms came to be. With cladistics, it is possible to determine
whether these stories have merit, or whether they should be abandoned in favor of a
competing hypothesis. For instance, it was long said that the orb-weaving spiders, with
their intricate and orderly webs, had evolved from spiders with cobweb-like webs. The
cladistic analysis of these spiders showed that, in fact, orb-weaving was the primitive
state, and that cobweb-weaving had evolved from spiders with more orderly webs.

Biologists who use to this single, unimpeachable criterion, are in a way more fortunate
us poor software modelers: they can assume, or pretend, that there is a single taxonomic
and that the only problem is to reconstruct it. (In other words they have fulfilled Ray’s, Lin
and Jussieu’s quest for a single Natural System.) In software modeling we cannot postul
alone discover, such an underlying truth.

USING INHERITANCE PROPERLY§24.15866

otle
versy
roughly
ming

inning

s’
sly on
. Sokal

cted
man

’s
ng

 in the
artial
s.

ntage
and their
ctors;

from
istinct
ce). So
species
t into
s.

y then
 reason
er two
. The
cord,

is not
nisms
The modern scene

You would think that biological taxonomy, with its long and prestigious history, from Arist
to Darwin and Huxley, would by now be a sedate field. Think again. Since the sixties, contro
has been raging. There are three main schools, the ardor of whose debates will seem tho
familiar to anyone who has heard software engineers debate their favorite program
languages. Here is — after the taxonomy of taxonomy which occupied our efforts at the beg
of this chapter — the taxonomy of taxonomists:

• The numerical pheneticists draw their classifications from the study of organism
individual characters, using numerical measures of distance (and relying generou
computer algorithms) to group organisms that have the most characters in common
and Sneath are recognized as the founders of this approach.

• The cladists use evolutionary history as the sole criterion. The Berkeley extract refle
this view (more details below). Cladistics draws its inspiration from work by the Ger
scientist Willi Hennig, first published in German in 1950 and in English in 1965.

• The evolutionary taxonomists, led by G.G. Simpson and Ernst Mayr, who claim Darwin
direct heritage, “base [their] classifications on observed similarities and differences amo
groups of organisms, evaluated in the light of their inferred evolutionary history” (as stated
by Mayr, 1981, reference below).

It is next to impossible to find neutral accounts of the arguments for each approach
literature. (Perhaps this sounds familiar.) It falls on the outsider to try to develop an imp
view. In this brief survey we will try to remain as close as possible to the software analogie

Numerical phenetics — what we would call the bottom-up approach — has the adva
of being based on precise, repeatable measures. But the choice of measured characters
weighting is subjective. And a purely external measure risks being influenced by chance fa
it is well known since Darwin that evolution involves not only divergence (species evolving
a common ancestor by developing different characters) but convergence (completely d
species developing similar features to adapt to similar environments or by sheer coinciden
there is a great danger of arbitrariness. One can also fear instability: the discovery of new
— which occurs all the time in biology — could, more than with the other approaches, pu
question classifications drawn from the statistical analysis of the previously known specie

On the surface the other two schools would seem to be very close to each other. Wh
do they keep arguing with each other from their respective journals and conferences? The
is that the cladists are particularly rigorous, as they would see it, or dogmatic, as the oth
schools might put it. They take evolution, and evolution only, as the classification criterion
method is particularly strict: it examines the evolutionary history, as given by the fossil re
and decides which characters are synapomorhic and which ones plesiomorphic. A feature is
plesiomorphic if it was already present in a common ancestor; then for the cladist it
interesting at all! The useful features as the synapomorphic ones, which hold for two orga
but not their ancestors. Synapomorphies are the primary tool for positing new groups (taxa, the
plural of taxon).

In the following situation, then, the cladists will see only two taxa:

§24.15 APPENDIX: A HISTORY OF TAXONOMY 867

tory.

on’s
 a

both
ysis of

al: an
s the
 view)
 that a
tation

gy will
 the
 other

g our
iring a
red
sis of
ell as

ongs
 on a
ical,

ike the

A cladogram

After Mayr, 1961.
This is a cladogram, or record of the appearance of characters in the evolutionary his
The marks indicate new characters. B and C have a synapomorphy, character b, which was not in
the ancestor and is not in A; so for a cladist B and C will form a taxon, and A another. For an
evolutionary taxonomist, there would be three taxa, since C differs from B in many other
characters (c to h). In its pure form cladistics is even more restrictive: like Roman Jakobs
phonology, it only considers binary characters; and it posits that when taxa evolve from
common ancestor the ancestor disappears.

Evolutionary taxonomy seems a more moderate approach, trying to draw from
cladistics and phenetics: evolution is the classification basis, but complemented by anal
other characters, not necessarily synapomorphic.

Why then the restrictiveness of cladistics? The principal argument is epistemologic
attempt to satisfy Karl Popper’s rules of falsifiability. Cladists argue that their approach i
only non-circular one; whereas the other two more or less assume (according to this
what they are trying to deduce, a cladistic hypothesis can be refuted, in the same way
single experiment can disprove a theory of physics, although no amount of experimen
will prove a theory.

The debate between these approaches is not closed. The progress of molecular biolo
certainly affect it; in particular, by providing a link between observed characters and
evolutionary record, it may help achieve some reconciliation between phenetics and the
two methods.

We will stop here, with regret (more mundane software engineering topics are claimin
attention). For an O-O software developer, reading the taxonomy literature, although requ
fair deal of attention in some cases (“A phylogenetic definition of homology may be conside
more falsifiable than a phenetic definition and therefore preferable if it leads to a hypothe
homology which includes all the potential falsifiers provided by phenetic comparisons as w
the potential falsifiers provided by phylogeny…”) is rich in rewards. Our own work constantly
subjects us, like our friends from the Biology department or the Herbarium, to two siren s
from opposite sides: the a priori form of classification, top-down, deductive and based
“natural” order of things, coming to us through the cladists from Linné; and the empir
inductive, bottom-up view of the pheneticists, telling us to observe and gather. Perhaps, l
evolutionary taxonomists, we will want a bit of both.

b
c

d
e

f
g

h

b

a

i
A

B

C

Evolutionary time

USING INHERITANCE PROPERLY§24.15868

 book
of

logy

tation

Prof.

 of the

g

tation

y
d

,

ther

other

f

evised
Bibliography on taxonomy

The following references — which have been separated from the main bibliography of this
to avoid too much mélange des genres — will be useful as a starting point on the subject

taxonomy history:

• The on-line material on evolution at the University of California Museum of Paleonto

in Berkeley: http://www.ucmp.berkeley.edu/clad/clad4.html (authors: Allen G. Collins,
Robert Guralnick, Brian R. Speer). Resolutely cladist. Some of the above presen

draws from the UCMP pages and from suggestions by their authors.

• A biography of Jussieu: Antoine-Laurent de Jussieu, Nature and the Natural System by

Peter F. Stevens, Columbia University Press, New York, 1994. (I am grateful to

Stevens for several important suggestions.)

• A collection of papers on cladistics: Cladistic Theory and Methodology, edited by Thomas

Duncan and Tod F. Stuessy, Van Nostrand Reinhold, 1985. Quite cladist, but the end
volume adds some interesting critical articles, one in particular by Ernst Mayr (Cladistic

analysis or cladistic classifications?, pages 304-308, originally in Zeitung Zool. Syst.

Evolut.-Forsch., 19:94-128, 1974).

• Another volume of contributions: Prospects in Systematics, ed. D.L. Hawksworth,

Systematics Association, Clarendon Press, Oxford, 1988.

• A textbook: Biological Systematics by Herbert H. Ross, Addison-Wesley, Readin

(Mass.), 1973.

• The founding book of cladistics: Phylogenetic Systematics by Willi Hennig, English

translation, University of Illinois Press, Urbana (Ill.), 1966. See also a shorter presen
by Hennig (adapted from his original 1950 article) in Duncan and Stuessy.

• A cladistic treatise, starting with the picture of Hennig: Phylogenetics — The Theor
and Practice of Phylogenetic Systematics by E.O. Wiley, published by John Wiley an

Sons, New York, 1981. By the same author, a Popperian argument for cladisticsKarl

R. Popper, Systematics, and Classification: A Reply to Walter Bock and O
Evolutionary Taxonomists, pages 37-47 of Duncan and Stuessy, originally in Syst. Zool

24:233-243, 1975.

• A clear article by Ernst Mayr, leaning to evolutionary taxonomy but discussing the

approaches with some sympathy: Biological Classification: Towards a Synthesis o

Opposing Methodologies, in Science, vol. 214, 1961, pages 510-516.

• The foundational text of the pheneticists: Principles of Numerical Taxonomy, by Robert

P. Sokal and Peter H.A. Sneath, Freeman Publishing, San Francisco, 1963, r
edition 1973.

• A short and more recent book advocating Transformed Cladistics (subtitle: Taxonomy and
Evolution) by N.R. Scott-Ram, Cambridge University Press, 1990.

§E24.1 EXERCISES 869

,

ance

GUE

e

may

cked

ir

pros
ice.

hem,
mples

:

m

See “General taxon-
omy”, page 824.

The Towers of Han
problem, used in
many computing sc
ence texts as an exa
ple of recursive
procedure, comes
from Édouard Luca,
“Récréations Mathé
matiques”, Paris,
1883, reprinted by
Albert Blanchard,
Paris, 1975.

“POLYGONS AND
RECTANGLES”,
14.1, page 460.

“ADVANCED
EXCEPTION HAN-
DLING”, 12.6, page
431
EXERCISES

E24.1 Arrayed stacks

Write in full the STACK class and its heir ARRAYED_STACK sketched in this chapter
using the “marriage of convenience” technique.

E24.2 Meta-taxonomy

Imagine this chapter’s classification of the forms of inheritance were an inherit
hierarchy. What kind or kinds would it involve?

E24.3 The stacks of Hanoï

(This exercise comes from an example used by Philippe Drix on the French
electronic mailing list, late 1995 and early 1996.)

Assume a deferred class STACK with a procedure put to push an element onto th
top, with a precondition involving the boolean-valued function full (which could also be
called extendible; as you study the exercise you will note that the choice of name
affect the appeal of various possible solutions).

Now consider the famous problem of the Towers of Hanoï, where disks are sta
on piles — the towers — with the rule that a disk may only be put on a larger disk.

Is it appropriate to define the class HANOÏ_STACK, representing such piles, as an he
to STACK? If so, how should the class be written? If not, can HANOÏ_STACK still make
use of STACK? Write the class in full for the various possible solutions; discuss the
and cons of each, state which one you prefer, and explain the rationale for your cho

E24.4 Are polygons lists?

The implementation of our first inheritance example, class POLYGON, uses a linked list
attribute vertices to represent the vertices of a polygon. Should POLYGON instead inherit
from LINKED_LIST [POINT]?

E24.5 Functional variation inheritance

Provide one or more examples of functional variation inheritance. For each of t
discuss whether they are legitimate applications of the Open-Closed principle or exa
of what the discussion called “organized hacking”.

E24.6 Classification examples

For each of the following cases, indicate which one of the inheritance kinds applies

• SEGMENT from OPEN_FIGURE.

• COMPARABLE (objects equipped with a total order relation) inheriting fro
PART_COMPARABLE (objects with a partial order relation).

• Some class from EXCEPTIONS.

oï

i-
m-

s
-

USING INHERITANCE PROPERLY§E24.7870

that
tions.

 and

to say
E24.7 Where do iterators belong?

Would it be a good idea to have iterator features (while_do and the like) included in
classes describing the data structures on which they iterate, such as LIST? Consider the
following points:

• The ease of applying iterations to arbitrary action and test routines, chosen by the
application.

• Extendibility: the possibility of adding new iteration schemes to the library.

• More generally, respect of object-oriented principles, in particular the idea
operations do not exist by themselves but only in relation to certain data abstrac

E24.8 Module and type inheritance

Assume we devise a language with two kinds of inheritance: module extension
subtyping. Where would each of the inheritance kinds identified in this chapter fit?

E24.9 Inheritance and polymorphism

Of the kinds of inheritance reviewed in this chapter between a parent A and an heir B,
which ones do you expect in practice to be used for polymorphic attachment, that is
assignments x := y or the corresponding argument passing with x of type A and y of type B?

	24 24 Using inheritance well
	24.1 HOW NOT TO USE INHERITANCE
	A proper model
	“He has a head like an Austin Mini with the doors ...
	Cartoon by Geoff Hocking; from The Dictionary of A...
	“Is-a” rule of inheritance

	24.2 WOULD YOU RATHER BUY OR INHERIT?
	To have and to be
	A “software engineer” object as aggregate
	Another possible view

	The rule of change
	Object and subobject
	Rule of change

	The polymorphism rule
	Polymorphism rule

	Summary
	Choosing between client and inheritance

	24.3 AN APPLICATION: THE HANDLE TECHNIQUE
	Platform adaptation through inheritance
	Platform adaptation through a handle

	24.4 TAXOMANIA
	Taxomania rule

	24.5 USING INHERITANCE: A TAXONOMY OF TAXONOMY
	Scope of the rules
	Inheritance rule
	Inheritance Simplicity rule

	Wrong uses
	General taxonomy
	Classification of the valid categories of inherita...
	Naming convention for definitions of inheritance c...

	Subtype inheritance
	Definition: subtype inheritance

	Restriction inheritance
	Definition: restriction inheritance

	Extension inheritance
	Definition: extension inheritance

	A proper mathematical model
	Variation inheritance
	Definition: functional and type variation inherita...

	Uneffecting
	Definition: uneffecting inheritance

	Reification inheritance
	Definition: reification inheritance

	Structure inheritance
	Definition: structure inheritance

	Implementation inheritance
	Definition: implementation inheritance

	Facility inheritance
	Definition: facility inheritance

	Using inheritance with deferred and effective clas...
	Deferred and effective heir and parent

	24.6 ONE MECHANISM, OR MORE?
	24.7 SUBTYPE INHERITANCE AND DESCENDANT HIDING
	Defining a subtype
	Multiple views
	Enforcing the subtype view
	The need for descendant hiding
	Avoiding descendant hiding
	An ellipse and its focus line
	A circle and its center

	Applications of descendant hiding
	Taxonomies and their limitations
	General classification of birds
	(Data from Ed Everham, at www.runet.edu/ ~eeverham...
	Reproduced with the author’s permission. Associate...

	Using descendant hiding

	24.8 IMPLEMENTATION INHERITANCE
	The marriage of convenience
	It feels so good, but is it wrong?
	Doing without inheritance

	24.9 FACILITY INHERITANCE
	Using character codes
	Iterators
	Forms of facility inheritance
	Understanding facility inheritance

	24.10 MULTIPLE CRITERIA AND VIEW INHERITANCE
	Classifying through multiple criteria
	A messy classification

	View inheritance
	Classification through views

	Is view inheritance appropriate?
	Multi-criteria classification through separate, cl...

	Criteria for view inheritance
	A view-based classification of fundamental computi...
	Building a data structure class by combination of ...

	24.11 HOW TO DEVELOP INHERITANCE STRUCTURES
	Specialization and abstraction
	The arbitrariness of classifications
	Induction and deduction
	Varieties of class abstraction
	Abstraction
	Factoring

	Client independence
	Abstraction, factoring and clients

	Elevating the level of abstraction

	24.12 A SUMMARY VIEW: USING INHERITANCE WELL
	24.13 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
	24.14 BIBLIOGRAPHICAL NOTES
	24.15 APPENDIX: A HISTORY OF TAXONOMY
	From Aristotle to Darwin
	The modern scene
	A cladogram
	After Mayr, 1961.

	Bibliography on taxonomy

	EXERCISES
	E24.1 Arrayed stacks
	E24.2 Meta-taxonomy
	E24.3 The stacks of Hanoï
	E24.4 Are polygons lists?
	E24.5 Functional variation inheritance
	E24.6 Classification examples
	E24.7 Where do iterators belong?
	E24.8 Module and type inheritance
	E24.9 Inheritance and polymorphism

