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Using inheritance well

Extracts from “Soft-
ware Engineering”
by lan Sommerville
Fourth edition Add-
ison-Wesley1993

I_ earning all the technical details of inheritance and related mechanisms, as we did
part C, does not automatically mean that we have fully grasped the methodologic:
consequences. Of all issues in object technology, none causes as much discussion as
guestion of when and how to use inheritance; sweeping opinions abound, for example ¢
Internet discussion groups, butthe literature is relatively poor in precise and useful advic

In this chapter we will probe further into the meaning of inheritance, not for the sake
of theory, but to make sure we use it best to benefit our software development project
We will in particular try to understand how inheritance differs from the other inter-module
relation in object-oriented system structures, its sister and rival, the client relation: whe
to use one, when to use the other, when both choices are acceptable. Once we have sel
basic criteria for using inheritance — identifying along the way the typical cases in which
it is wrong to use it — we will be able to devise a classification of the various legitimate
uses, some widely accepted (subtype inheritance), others, such as implementation
facility inheritance, more controversial. Along the way we will try to learn a little from the
experience in taxonomy, systematicsgained from older scientific disciplines.

24.1 HOW NOT TO USE INHERITANCE

To arrive at a methodological principle, it is often useful — as illustrated by so many othe
discussions in this book — to study first howtto do things. Understanding a bad idea

helps find good ones, which we might otherwise miss. In too constantly warm a climate,
pear tree will not flower; it needs the jolt of Winter frost to attain full bloom in the Spring.

Here the jolt is obligingly provided by a widely successful undergraduate textbook,
used throughout the world to teach software engineering to probably more computin
science students than any other. Already in its fourth edition, it introduced some elements
object orientation, including a discussion of multiple inheritance. Here is the beginning:

Multiple inheritance allows several objects to act as base objects and is supported
in object-oriented languages such[de notation of the present bodk] 1988].

The bibliographic reference is to the first edition of the present book. Apart from the
unfortunate use of “objects” for classes, this is an auspicious start. The extract continue

The characteristics of several different object classes

(classes, good!)
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can be combined to make up a new ohject
(no luck). Then comes the example of multiple inheritance:

For exampl, say we have an object cleCARwhich encapsulates information
about cars and an object claPERSOI[ which encapsulates information about
people. We could use both of these to define

(will our worst fears come out true?)

a new object clasCAR-OWNEI which combines the attributes CAR
and PERSOI

(They have.) We are invited to consider that es\CAR-OWNEI object may be viewed
as not only a person but also a car. To anyone who has studied inheritance even at an
elementary level, this will be a surprise.

As you will undoubtedly have figured out, the relation to use in the second case was
client, not inheritance: a car ownis a person, buhas a car. In pictures:

Inheritance

:-} Client

g D,
In formal words:

classCAR_OWNEtFinherit
PERSON

feature
my_ca: CAR

A proper model

end -- clastiCAR_OWNER

In the cited text, both links use the inheritance relation. The most interesting twist
actually comes a little later in the discussion, when the author advises his reader to treat
inheritance with caution:

Adaptation through inheritance tends to lead to extra functionality being
inheritec, which can make components inefficient and kulky

Bulky indeed; think of the poor car owner, loaded with his roof, engine and
carburetor, not to mention four wheels plus a spare. This view might have been influenced
by one of the picturesque phrases of Australian slang, about a car owner who does look as
if he alsais his car:
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“He has ahead
like an Austin
Mini with the
doors open’

Cartoon by Geoff
Hocking; fromThe
Dictionary of
Aussie SlangThe
Five Mile Press,
Melbourne,
Australia, reprinted

with permission. /,___3@
i- 4

Inheritance is a non-trivial concept, so we can forgive the author of this extract «
the grounds that he was perhaps a little far from his home turf. But the example has
important practical benefit apart from helping us feel smarter: it reminds us of the ba:
rule on inheritance.

“Is-a” rule of inheritance

Do not make a clasB inherit from a clasA unless you can somehow make
the argument that one can view every instancB also as an instance A

In other words, we must be able to convince someone — if only ourselves to st
with — that “everyB is anA” (hence the name: “is-a").

In spite of what you may think at first, this is a loose rule, not a strict one. Here is wh

* Note the phrase “can somehow make the argument”. This is voluntarily vague: v
do not require eroof that everyB is an A. Many cases will leave room for
discussion. Is it true that “Every savings account is a checking account’? There is
absolute answer; depending on the bank’s policies and your analysis of t
properties of the various kinds of account, you may decide to makeSAVINGS
ACCOUNT an heir toBANK_ACCOUN, or put it elsewhere in the inheritance
structure, gettincsome help from the other criteria discussed in this chapter
Reasonable people might still disagree on the result. But for this to be the case
“is-a” argument must be sustainable. Once again our counter-example helps:
argument that CAR_ OWNE!“is-a” CARIs not sustainable.

e Our view of what “is-a” means will be particularly liberal. It will not, for example,
disallowimplementation inheritani— a form of inheritance that many people view
with suspicion — as long as the “is-a” argument can reasonably be made.
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These observations define both the usefulness and the limitations of the Is-a rule. It
is useful as enegativerule in the Popperian style, enabling you to detect and reject
inappropriate uses of inheritance. But as a positive rule it is not sufficient; not all
suggested uses that pass the rule’s test will be appropriate.

Gratifying as theCAR_OWNERcounter-example may be, then, any feeling of
elation that we may have gained from it will be short-lived. It was both the beginning and
the end of the unmitigated good news — the news that some proposed uses of inheritance
are obviously wrong and easy to spot. The rest of this chapter has to contend with the bad
or at least mixed news: that in just about all other cases the decision is a true design issue,
that is to say hard, although we will fortunately be able to find sgeneral guidelines.

24.2 WOULD YOU RATHER BUY OR INHERIT?

To choose between the two possible inter-module relations, client and inheritance, the basic
rule is deceptively simple: client has, inheritance iis. Why then is the choice not easy?

To have and to be

The reason is that whereas to have is not always to be, in manyto be is also to have

No, this is neither some cheap attempt at existentialist philosophy nor a pitch to make
you buy a house if you are currently renting; rather, simple observations on the difficulty
of system modeling. We have already encountered an illustration of the first property —
to have is not always to be — in the preceding example: a car owner has a car, but by no
twist of reasoning or exposition can we assert that he is a car.

What about the reverse situation? Take a simple statement about two object types
from ordinary life, such as

Every software engineer is an engir.eer [A]

whose truth we accept for its value as an example of the “is-a” relation (whatever our
opinion may be as to the statement’'s accuracy). It seems hard indeed to think of a case
which so clearly expresses “to be” rather than “to have”. But now consider the following
rephrasing of the property:

In every software engineer there is an engineer [B]
which can in turn be restated as
Every software engineer has an “engineer” compo.ent[C]

Twisted, yes, and perhaps a trifle bizarre in its expression; but not fundamentally
different from our premise [A]! So here itis: by changing our perspective slightly we can
rephrase the “is” property as a “has”.
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“COMPOSITE
OBJECTS AND
EXPANDED
TYPES’, 8.7, page

2R/

A “software
engineer”
object as
aggregate

Another
possible view

If we look at the picture through the eyes of a programmer, we may summon
object diagram, in the style of those which served to discuss the dynamic model in
earlier chapter, showing a typical instance of a class and its components:

(ENGINEEF)

(POET)

(PLUMBEF)

(SOFTWARE_ENGINEE)R

This shows an instance (SOFTWARE_ENGINEE with various subobjects,
representing the various posited aspects of a software engineer's personality and te
Rather than subobjects (the expanded view) we might prefer to think in terms of referenc

-

——

(POET)

(SOFTWARE_ENGINEE)R (ENGINEEF)

(PLUMBEF)

Take both of these representations as ways to visualize the situation as seen f
an implementation-oriented mindset, nothing more. Both suggest, however, that a clie
or “has”, interpretation — every software engineer has an engineer as one of his parts
is faithful to the original statement. The same observation can be made for any sim

“is-a” relationship.

So this is why the problem of choosing between client and inheritance is not trivi
when the “is” view is legitimate, one can always take the “has” view instead.
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The reverse is not true: when “has” is legitimate, “is” is not always applicable, as the
CAR_OWNElexample shows so clearly. This observation takes care of the easy mistakes,
obvious to anyone having understood the basic concepts, and perhaps even explainable to
authors of undergraduate texts. But whenever “is” does apply it is not the only contender.
So two reasonable and competent people may disagree, one wanting to use inheritance,
the other preferring client.

Two criteria fortunately exist to help in such discussions. Not surprisingly (since
they address a broad design issue) they may sometimes fail to give a clear, single solution.
But in many practical cases they do tell you, beyond any hesitation, which of the two
relations is the right one.

Conveniently, one of these two criteria favors inheritance,he other favoi client.

The rule of change

The first observation is that the client relation usually permits change, while the
inheritance relation does not. Here we must be careful with our use of the verbs “to be”
and “to have” from ordinary language; so far they have helped us characterize the general
nature of our two software relations, but software rules are, as always, more precise than
their general non-software counterparts.

One of the defining properties of inheritance is that it is a relation betclasse
not objects. We have interpreted the property “CB inherits from clasA” as meaning
“every B object is arA object”, but must remember that it is not in the power of any such
object to change that property: only a change of the class can achieve such a result. The
property characterizes the software, not any particular execution.

With the client relation, the constraints are looser. If an object of B has a
component of typA (either a subobject or an object reference), it is quite possible to change
that component; the only restrictions are those of the type system, ensuring provably reliable
execution (and governed, through an interesting twist, by the inheritance structure).

So even though a given inter-object relationship can result from either inheritance or
client relationships between the corresponding classes, the effect will be different as to
what can be changed and what cannot. For example our fictitious object structure

Object and
subobject

(ENGINEEP)

pod

(SOFTWARE_ENGINEE)R

(Other components omitted)
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could result from an inheritance relationship between the corresponding classes:

classSOFTWARE_ENGINEER itherit @
ENGINEER

feature

end-- classSOFTWARE_ENGINEER_1 SOFTWARE_ENGINEER

but it could just as well have been obtained through the client relation:

classSOFTWARE_ENGINEER feature

the_engineer_in_m&NGINEER

end -- classSOFTWARE_ENGINEER_2

which could in fact be

classSOFTWARE_ENGINEER f8ature

SOFTWARE_ENGINEER
the_truly_important_part_of m& OCATION

provided we satisfy the type rules by making cl&$GINEERa descendant of
classVOCATION

end-- classSOFTWARE_ENGINEER_3

Strictly speaking the last two variants represent a slightly different situation from the first

if we assume that none of the given classes is expanded: instead of subobjects, the
“software engineer” objects will in the last two cases contefarencedo “engineer”
objects, as in the second figure of p&j& The introduction of references, however,
does not fundamentally affect this discussion.

With the first class definition, because the inheritance relationship holds between f
generating classes, it is not possible to modify the object relationship dynamically: on
an engineer, always an engineer.

But with the other two definitions such a modification is possible: a procedure of tt
“software engineer” class can assign a new value to the corresponding object field (
field for the_engineer_in_mer the_truly important_part_of meln the case of class
SOFTWARE_ENGINEER the new value must be of tyge@\NGINEERor compatible;
but with classSOFTWARE_ENGINEER_it may be of any type compatible with
VOCATION So our software can model the idea of a software engineer who, after ma
years of pretending to be an engineer, finally sheds that part of his personality in favor
something that he deems more representative of his work, such as poet or plumber.
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This yields our first criterion:

Rule of change

Do not use inheritance to describe a perceived “is-a” relation iff the
corresponding object components may have to be changed at run time.

17

Only use inheritance if the corresponding inter-object relation is permanent. In other
cases, use the client relation.

The really interesting case is the one illustratedSlyFTWARE_ENGINEER. With
SOFTWARE_ENGINEER you can only replace the engineer component with another
of exactly same type. But in tiEOFTWARE _ENGINEER sgéhemeyOCATIONshould

be a high-level class, most likely deferred; so the attribute can (through polymorphism)
represent objects of many possible types, all conformingtcATION

This also means that even though this solution uses client as the primary relation, in
practice its final form will often use inheritance as a complement. This will be particularly
clear when we come to the notion of handle.

The polymorphism rule

Now for a criterion that will require inheritance and exclude client. That criterion is
simple: polymorphic uses. In our study of inheritance we have seen that with a declaration
of the form

x: C

x denotes at run time (assuming clasds not expanded) a potentially polymorphic
reference; that is to saymay become attached to direct instances not justuit of any
proper descendants 6f This property is of course a key contribution to the power and
flexibility of the object-oriented method, especially through its corollary, the possibility
of defining polymorphic data structures, such &$sar[C] which may contains instances
of any ofC’s descendants.

In our example, this means that with i@ FTWARE_ENGINEER sblution — the
form of the class which inherits froBNGINEER— a client can declare an entity

eng ENGINEER

which may become attached at run time to an object of 3ypeTWARE ENGINEER. 1
Or we can have a list of engineers, or a database of engineers, which includes a few
mechanical engineers, a few chemical engineers, and a few software engineers as well.

A reminder on methodology: the use of non-software words is a good help for
understanding the concepts, but we should not let ourselves get carried away by such
anthropomorphic examples; the objects of interest are software objects. So although we
may loosely understand the words “a software engineer” for what they say, they actually
denote an instance ;SOFTWARE_ENGINEER, that is to say, a software object
somehow modeling a real person.
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Such polymorphic effects require inheritance: wSOFTWARE_ENGINEER or
SOFTWARE_ENGINEER there is no way an entity or data structure of ENGINEER
can directly denote “software engineer” objects.

Generalizing these observations — which are not, of course, specific to the exam
— yields the complement of the rule of change:

Polymorphism rule

Inheritance is appropriate to describe a perceived “is-a” relation if entities or
data structure components of the more general type may need to become
attached to objects of the more specialized type.

Summary

Although it brings no new concept, the following rule will be convenient as a summary
this discussionf criteriafor and against inheritance.

Choosing between client and inheritance

In deciding how to express the dependency of a B on a clasA, apply
the following criteria:

Cl1 « If every instance oB initially has a component of tyfA, but that
component may need to be replaced at run time by an object of a
different type, makB a client ofA.

Cl2 « If there is a need for entities of ty|A to denote objects of ty[B,
or for polymorphic structures containing objects of tA of which
some may be of typB, makeB an heir olA.

24.3 AN APPLICATION: THE HANDLE TECHNIQUE

Here is an example using the preceding rule. It yields a design pattern of wi
applicability: handle:

The first design of thVisior library for platform-independent graphics encountered
a general problem: how to account for platform dependencies. The first solution us
multiple inheritance in the following way: a typical class, such as the one describir
windows, would have a parent describing the platform-independent properties of t
corresponding abstraction, and another providing the platform-specific elements.

classWINDOWinherit
GENERAL_WINDOW
PLATFORM_WINDOW
feature

end -- classWINDOW
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Platform
GENERAL _ PLATFORM_ adaptation
inheritance

Class GENERAL_WINDO\ and similar ones such ¢GENERAL_BUTTO are On the platform-
deferred: they express all that can be said about the corresponding graphical objespecific libraries
. . . . . WEL and MEL see
the applicable operations without reference to a particular graphical platform. Cl"‘Object-oriented re-
such asPLATFORM_WINDO\ provide the link to a graphical platform such éarchitecturing’,
Windows, OS/2-Presentation-Manager or Unix-Motif; they give access to the platfipage 441

specific mechanisms (encapsulated through a library such as WEL or MEL).

A class such aWINDOW will then combine its two parents through features which
effect (implement) the deferred features GENERAL WINDO\ by using the
implementation mechanisms providedPLATFORM_WINDOW/

PLATFORM_WINDO\ (like all other similar classes) needs several variants, ©On the notion of Ace
for each platform. These identically named classes will be stored in different directe€"/Assembling a
the Ace for a compilation (the control file) will select the appropriate one. system’, page 198

This solution works, but it has the drawback of tying the noticV/INDOW closely
to the chosen platform. To transpose an earlier comment about inheritance: once a Matif
window, always a Motif window. This may not be too bad, as it is hard to imagine a Unix
window which, suddenly seized by middle-age anxiety, decides to become an 0OS/2
window. The picture becomes less absurd if we expand our definition of “platform” to
include formats such as Postscript or HTML; then a graphical object could change
representation for purposes of printing or inclusion in a Web document.

The observation that we might need a looser connection between GUI objects such
as a window and the underlying toolkit suggests trying the client relation. An inheritance
link will remain, betweenWINDOW and GENERAL_WINDOY;, but the platform
dependency will be represented by a client link to a cTOOLKIT representing the
underlying “toolkit” (graphical platform). The figure at the top of the facing page
illustrates the resulting structure, involving both client and inheritance.

An interesting aspect of this solution is that it recognizes the notion of toolkit as a full-
fledged abstraction, represented by a deferred TOOLKIT. Each specific toolkit is then
represented by an effective descendaTOOLKIT such aMOTIF orMS_WINDOW.3

Here is how it works. Each class describing graphical objects, s\WINDOW, has
an attribute providing access to the underlying platform:

handle TOOLKIT
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Platform
adaptation
through a
handle

window_display
handle

handle window_displayCurren)

window_display A

window_display

This will yield a field in each instance of the class. It is possible to change the hand

set_handl¢(new: TOOLKIT) is
-- Makenew the new handle for this object.
do
handle:= new
end

A typical operation inherited frorGENERAL_WINDO) in deferred form will be
effected through a call to the platform’s mechanism:

displayis
-- Display window on screen.
do
handle window_displayCurreni)
end

Through the handle, the graphical object asks the platform to perform the requir
operation. A feature such window_displa is deferred in clasTOOLKIT and effected
variously for its various descendants suclMOTIF.

Note that it would be inappropriate to draw from this example the conclusion “Ah¢
Another case in which inheritance was overused, and the final version stays away from
The initial version was not wrong; in fact it works quite well, but is less flexible than th
second one. And that second version fundamentally relies on inheritance and
consequent techniques of polymorphism and dynamic binding, which it combines with t
client relation. Without theTOOLKIT-rooted inheritance hierarchy, the polymorphic
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entity handle, and dynamic binding on features suchwindow_displa, it would not
work. Far from being a rejection of inheritance, then, this technique illustrates a more
sophisticated form of inheritance.

The handle technique is widely applicable to the development of libraries supporting
multi-platform compatibility. Besides ttVisior graphical library, we have applied it to
the Store database library, where the notion of platform covers various SQL-based
relational database interfaces such as Oracle, Ingres, Sybase and ODBC.

24.4 TAXOMANIA

For every one of the inheritance categories introduced later in this chapter, the heir
redeclares (redefines or effects) some inherited features, or introduces features of its own,
or adds to the invariant. (It may of course do several of these things.) A consequence is:

; This is actually a
Taxomania rule consequence of the

Every heir must introduce a feature, redeclare an inherited feature, or add an 'nheritance rule
seen later in this

invariant clause. chapte, pages22.

What this rule addresses is a foible sometimes found in newcomers who have been
won over to the O-O method, and enthusiastically start seeing taxonomical divisions
everywhere (hence the name of the rule, a shortcut for “taxonomy mania”). The result is
over-complicated inheritance hierarchies. Taxonomy and inheritance are mhelp to
us master complexity, not to introduce complexity. Adding useless classification levels
is self-defeating.

As is so often the case, you can gain the proper perspective — and bring the
neophytes back to reason — by keeping in mind the ADT view at all times. A class is the
implementation, partial or total, of an abstract data type. Different classes, in particular a
parent and an heir, should describe different ADTs. Then, because an ADT is entirely
characterized by the applicable features and their properties (captured in the class by
assertions), a new class should change an inherited feature, introduce a new feature or
change some assertion. Since you can only change a precondition or postcondition by
redefining the enclosing feature, the last case means the addition of an invariant clause (as
in restriction inheritanc, one of the categories in our taxonomy).

You may occasionally justify a case of taxomania — a class that does not bring
anything new of its own, apart from its existence — on the grounds that the heir class
describes an important variant of the notion described by the parent, and that you are
introducing it now to pave the way for future introduction or redeclaration of features,
even if none has occurred so far. This may be valid when the inheritance structure
corresponds to a generally accepted classification in the problem domain. But you should
always be wary of such cases, and resist the introduction of new featureless classes unless
you can find compelling arguments.
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Here is an example. Assume a certain system or library includes PERSOI and
that you are considering adding heMALE andFEMALE. Is this justified? You will have
to take a closer look. A personnel management system that includes gender-spe
features, pertaining for example to maternity leave, may benefit from having heir clas:
MALE and FEMALE. But in many other cases the variants, if present, would have n
specific features; for example statistical software that just records the gender
individuals may be better off with a single clPERSOI and a boolean attribute

female BOOLEAN
or perhaps

Female INTEGERIs unique
Male: INTEGEF is unique

rather than new heirs. Yet if there is any chance that specific features will be added I
on, the corresponding classification is so clearly known in the problem domain that y
may prefer to introduce these heirs anyway.

One guideline to keep in mind is the Single Choice principle. We have learned
distrust the use of explicit variant lists, as implementeunique constants, for fear of
finding our software polluted with conditional instructions of the form

if femalethen

else

or inspectinstructions. This is, however, not too much of a concern here:

* One of the principal criticisms against this style was that any addition of a varia
would cause a chain reaction of changes throughout the software, but in certain ce
— such as the above example — we can be confident there will be no new variar

« Even with a fixed set of variants, the explif ... style is less effective than relying
on dynamic binding through calls such this personsome operatiorwhere
MALE andFEMALE have different redeclarationssome_operaticiBut then if we
do need to discriminate on a person’'s gender we violate the premise of tt
discussion — that there are no features specific to the variants. If such features
exist, inheritance is justified.

The last comment alerts us to the real difficulty. Simple cases of taxomania —
which the patient needlessly adds intermediate nodes all over the inheritance structure
are relatively easy to diagnose (by noticing classes that have no specific features) and ¢
But what if the variantdc have specific features, although the resulting classificatior
conflicts with other criteria? A personnel management system for which we can justify
class FEMALE_EMPLOYE because of a few specific features might have other
distinctions as well, such as permanent versus temporary employees, or supervis
versus non-supervisory ones. Then we do not have taxomania any more, but face a gel
and delicate problenmulti-criteria classificatiol, whose possible solutions are discussed
later in this chapter.
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24.5 USING INHERITANCE: A TAXONOMY OF TAXONOMY

The power of inheritance comes from its versatility. True, this also makes it scary at times,
causing many authors to impose restrictions on the mechanism. While understanding
these fears and even sometimes sharing them — do the boldest not harbor the occasional
doubt and anxiety? — we should overcome them and learn to enjoy inheritance under all
of its legitimate variants, which will now be explored.

After recalling some commonly encountered wrong uses of inheritance we will
individually review the valid uses:

e Subtype inheritance.

* View inheritance.

 Restriction inheritance.

< Extension inheritance.

¢ Functional variation inheritance
e Type variation inheritance.

» Reification inheritance.
 Structure inheritance.

« Implementation inheritance.

» Facility inheritance (with two special variants: constant inheritance and machine
inheritance).

Some of these categories (subtype, view, implementation, facility) raise specific
issues and will be discussed in more detail in separate sections.

Scope of the rules

The relatively broad view of inheritance taken in this book in no way means that
“anything goes”. We accept and in fact encourage certain forms of inheritance on which
some authors frown; but of course there are many ways to misuse inheritance, and not
just CAR_OWNE. So the inevitable complement of our broad-mindedness is a
particularly strict constraint:

Inheritance rule

Every use of inheritance should belong to one of the accepted categories.

This rule is stern indeed: it states that the types of use of inheritance are known and
that if you encounter a case that is not covered by one of these types you shcnotl just
use inheritance.

What are “the accepted categories”? The implicit meaning is “the accepted
categories, as discussed in the rest of this section”. | indeed hope that all meaningful uses
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Page82C.

See'Advisories”,
page 66.

are covered. But the phrasing is a little more careful because the taxonomy may n
further thinking. | found precious little in the literature about this topic; the most usefi
reference is an unpublished Ph. D. ts [Girod 1991. So it is quite possible that this
attempt at classification has missed some categories. But the rule indicates that if you
a possible use of inheritance that does not fall into one of the following categories, y
should give it serious thought. Most likely you should not use inheritance in that case
after further reflection you are still convinced that inheritance is appropriate, and you ¢
still unable to attach your example to one of the categories of this chapter, then you n
have a new contribution to the literature.

We already saw a consequence of the Inheritance rule: the Taxomania rule, which states
that every heir class should redeclare or introduce a feature, or change some assertion. It
follows directly from the observation that every legitimate form of inheritance detailed
below requires the heir to perform at least one of these operations.

The Inheritance rule does not prohibit inheritance links that belomore than one
of the inheritance categories. Such practice is, however, not recommended:

Inheritance Simplicity rule

A use of inheritance should preferably belong to just one of the accepted
categories.

This is not an absolute rule but what an earlier discussion called an “adviso
positive”. The rationale for the rule is once again the desire for simplicity and clarity:
whenever you introduce an inheritance link between two classes you apply expli
methodological principles, and in particular decide which one of the approved variar
you will be using, you are less likely to make a design mistake or to produce a messy, h:
to-use and hard-to-maintain system structure.

A compelling argument does not seem to exist, however, for making the ru
absolute, and once in a while it may be convenient to use a single inheritance link for t
of the goals captured by the classification. Such cases remain a minority.

Unfortunately | do not know of a simple criterion that would unambiguously tell us when

it is all right to collapse several inheritance categories into one link. Hence the advisory
nature of the Inheritance Simplicity rule. The reader’'s judgment, based on a clear
understanding of the methodology of inheritance, should decide any questionable case.

Wrong uses

The preceding two rules confirm the obvious: that it is possible to misuse inheritanc
Here is a list of typical mistakes, most of which have already been mentioned. Hum
ability for mischief being what it is, we can in no way hope for completeness, but a fe
common mistakes are easy to identify.

The first is “has” relation with no “is” relation . CAR_OWNEFRserved as an
example — extreme but not unique. Over the years | have heard or seen a few similar o
often as purported examples of multiple inheritance, sWAPPLE_PIE inheriting from
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APPLE and fromPIE, or (this one reported by Adele GoldbeROSE_TRE inheriting
from ROSE and fromTREE.

Another is a typical case taxomania in which a simple boolean property, such as
a person’s gender (or a property with a few fixed values, such as the color of a traffic light)
is used as an inheritance criterion even though no significant feature variants depend on it.

A third typical mistake isconvenience inheritanc, in which the developer sees
some useful features in a class and inherits from that class simply to reuse these features.
What is wrong here is neither the act of “using inheritance for implementation”, nor
“inheriting a class for its features”, both of which are acceptable forms of inheritance
studied later in this chapter, but the use of a class as a without the propeis-a
relationship between the corresponding abstraci— or in some cases without adequate
abstractionst all.

General taxonomy

On now to the valid uses of inheritance. The list will include twelve different categories,
conveniently grouped into three brofamilies:

Valid use of inheritance o
Classification

of the valid
categories of
Model inheritance
inheritance Variation
. . Software
inheritance : :
inheritance
Subtype
inheritance .
A Facility
Reification inheritance
) inheritance
View
inheritance /| Extension
inheritance Structure |~ Cont
inheritance . .
inheritance
Restriction
inheritance Implementation
_ inheritance Machine
Functional Type inheritance

Uneffecting

variation variation ) .
inheritance

inheritance inheritance
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ExerciseE24.2,
page 861

Naming
convention for
definitions of
inheritance
categories

The classification is based on the observation that any software system reflect
certain external model, itself connected with some outside reality in the software
application domain. Then we may distinguish:

* Model inheritance, reflecting “is-a” relations between abstractions in the model.

« Software inheritance, expressing relations within the software, with no obviot
counterpart in the model.

< Variation inheritance — a special case that may pertain either to the software or
the model — serving to describe a class through its differences with another clas

These three general categories facilitate understanding, but the most import
properties are captured by the final categories (the tree leaves on the preceding figure

Since the classification is itself a taxonomy, you may want to ask yourself, out of
curiosity, how the identified categories apply to it. This is the topic of an exercise.

The definitions which follow all use the nanA for the parent class aiB for the teir.

Each definition will state which cA andB is permitted to be deferred, and which
effective. A table at the end of the discussion recalls the applicable categories for e
deferred-effective combination.

Subtype inheritance

We start with the most obvious form of model inheritance. You are modeling son
external system where a category of (external) objects can be partitioned into disjc
subcategories — as with closed figures, partitioned into polygons, ellipses etc. — and y
use inheritance to organize the corresponding classes in the software. A bit more forme

Definition: subtype inheritance

Subtype inheritance applies A and B represent certain seA' and B' of
external objects such tFB'is a subset cA' and the set modeled by any other
subtype heir 0A is disjoint fromB'. A must be deferred.

A' could be the set of closed figureB' the set of polygonsA and B the
corresponding classes. In most practical cases the “external system” will be non-softw:
for example some aspect of a company’s business (where the external objects migh
checking and savings accounts) or some part of the physical world (where they might
planets and stars).
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Subtype inheritance is the form of inheritance that is closest to the hierarchical
taxonomies of botany, zoology and other natural scietlVERTEBRATE#— MAMMAL
and the like). A typical software example (other than closed figures and polygons) is
DEVICE -#— FILE. We insist that the parerA, be deferred, so that it describes a non-
completely specified set of objecB, the heir, may be effective, or it may still be deferred.
The next two categories cover the case in wA may be effective.

A later section will explore in more detail this inheritance category, not alway“suBTYPE INHER-

straightforward as it would seem at first. ITANCE AND
DESCENDANT
o . HIDING”, 24.7,
Restriction inheritance page 835

Definition: restriction inheritance

Restriction inheritance applies if the instanceB are those instances Af
that satisfy a certain constraint, expressed if possible as part of the inyariant
of B and not included in the invariant A. Any feature introduced bB
should be a logical consequence of the added consiA anc B should be
both deferred or both effective.

Typical examples arcRECTANGLE-— SQUAF, where the extra constraint is
side1= side: (included in the invariant (SQUARE), andELLIPSE-&— CIRCLI, where

the extra constraint is that the two focusesfoci) of an ellipsec_—=> are the same point

for a circle®; in the general case an ellipse is the set of points such that the sum of their
distances to the two focusex—s> is equal to a certain constant. Many mathematical
examples indeed fall into this category.

The last part of the definition is meant to avoid mixing this form of inheritance with
others, such as extension inheritance, which may add completely new features in the heir.
Here to keep things simple it is preferable to limit new features, if any, to those that
directly follow from the added constraint. For example cCIRCLE will have a new
featureradius which satisfies this property: in a circle, all points have the same distance
from the merged center, and this distance deserves the status of a feature of the class,
whereas the corresponding notion in clELLIPSE (the average of the distances to the
two focuses) was probably not considered significant enough to yield a feature.

Because the only conceptual change fiA to B is to add some constraints, the
classes should be both deferred or both effective.

Restriction inheritance is conceptually close to subtype inheritance; the later
discussion of subtyping will for the most part apply to both categories.

Extension inheritance

Definition: extension inheritance

Extension inheritance applies whB introduces features not presentAn
and not applicable to direct instancesA. ClassA must be effective.
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Non-mathematical

The presence of both the restriction and extension variants is one of the paradoxe
inheritance. As noted in the discussion of inheritance, extension applies to featu
whereas restriction (and more generally specialization) applies to instances, but this d
not completely eliminate the paradox.

The problem is that the added features will usually include attributes. So if we ta
the naive interpretation of a type (as given by a class) as the set of its instances, th
seems the subset relation is the wrong way around! Assume for example

class Afeatureal: INTEGERend

classB inherit
A
feature
bl: REAL
end

Then if we view each instance A as representing a singleton, that is to say a se

readers may skip thiggontaining one integer (which we can write<n> wheren is the chosen integer) and each

one paragrap .

instance 0B as a pair containing an integer and a real (such as th<1, —2.5>), the

set of pairsMB is not a subset of the set of singletiMA. In fact, if we absolutely want a
subset relation, it will be in the reverse direction: there is a one-to-one mapping betwe
MA and the set of all pairs having a given second element, for exi0.0.1le

This discovery that the subset relation seems to be the wrong way may ma
extension inheritance look suspicious. For example an early version of a respected (
library (not from ISE) hacRECTANGLLI inheriting from SQUARI, not the other way
around as we have learned. The reasoning was siiISQUAREhas aside attribute;
RECTANGLI inherits fromSQUARE and adds a new featurother_sidi, so here is an
inheritance link for you! Several people criticized the design and it was soon reversed

But we cannot dismiss the general category of extension inheritance. In fact
equivalent in mathematics, where you specialize a certain notion by adding complet
new operations, is frequently used and considered quite necessary. A typical exampl
the notion ofring, specializing the notion cgroup. A group has a certain operation, say
+, with certain properties. A ring is a group, so it also + with these properties, but it
adds a new operation, s, with extra properties of its own. This is not fundamentally
different from introducing a new attribute in an heir software class.

The corresponding scheme is frequent in O-O software too. In most applications,
course SQUARE should inherit fron RECTANGLI, not the reverse; but it is not difficult
to think of legitimate examples. A claMOVING POIN (for kinematics applications)
might inherit from a purely graphical claPOINT and add a featuispee(describing the
speed’s magnitude and direction; or, in a text processing application, {CHAPTER
might inherit fromDOCUMENT, adding the specific features of a document which is a
chapter in a book, such as its current position in the book and a procedure that \
repodtion it.
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A proper mathematical model

(Non-mathematically-inclined readers should skip this section.)

For peace of mind we must resolve the apparent paradox noted earlier (the discovery
that MB is not a subset (MA) since we do want some subset relation to hold between
instances of an heir and instances of the parent. That relation does exist in the case of
extension inheritance; what the paradox shows is that it is inappropriate to use cartesian
product of the attribute types to model a class. Given a class

classC feature
cl:T1
c2:T2
c3 T3
end
we shoulcnot take, as a mathematical moC' for the set of instances C, the cartesian

productT'l x T'2 % T'3, where the prime sigr' indicate that we recursively use the model
sets; this would lead to the paradox (among other disadvantages).

Instead, we should consider any instance as being a partial function from the The functions of
possible attribute nameATTRIBUTEto the set of all possible valu\VALUE, with the interest are not only
following properties: partial but finite.

Al ¢ The function is defined fccl, c2 andc3.
A2 « The selVALUE (the target set of the function) is a superseT'1 [1 T'2 [] T'3.
A3 ¢ The function’s value foclis inT'1l, and so on.

Then if we remember that a function is a special case of a relation, and that a
relation is a set of pairs (for example an instance of ¢A may be modeled by the
function{<al, 25>}, and the instance B cited on the preceding page{<al, 1>, <b1l,
—2.5>}), then we do have the expected property B' is a subset cA.

Note that it is essential to state the prop/Al as “The function is defined {1...”, not

“The function’s domain I...” which would limit the domain to the s{cl, c2 cg},
preventing descendants from adding their own attributes. As a result of this approach,
every software object is modeled by an infinity of (finite) mathematical objects.

This discussion has only given a sketch of the mathematical model. For more details
on using partial functions to model tuples, and the general mathematical background, see
[M 1990].

Variation inheritance

(Non-mathematical readers, welcome back!) We now move to the second of our three
broad groups of inheritance categories: variation inheritance.
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Definition: functional and type variation inheritance

Variation inheritance applies B redefines some features A; A andB are
either both deferred or both effective, éB must not introduce any features
except for the direct needs of the redefined features. There are two cagses:

* Functional variation inheritance: some of the redefinitions affect
feature bodies, rather than just their signatures.

* Type variation inheritance: all redefinitions are signature redefinitions.

Variation inheritance is applicable when an existing cA, describing a certain
abstraction, is already useful by itself, but you discover the need to represent a sim
although not identical abstraction, which essentially has the same features with so
different signatures or implementations.

The definition requires that both classes be effective (the more common case) or b
deferred: variation inheritance does not cover the case of an effecting, where we transfi
a notion from abstract to concrete. A closely related category is uneffecting, studied ne
in which some effective features are made deferred.

The definition stipulates that the heir should introduce no new features, except
directly needed by the redefined features. This clause distinguishes variation inherital
from extension inheritance.

In type variation inheritance you only change the signatures (argument and res
types and number) of some features. This form of inheritance is suspect; it is often a <
of taxomania. In legitimate cases, however, it may be a preparation for extensi
inheritance or implementation variation inheritance. An example of type variatio
inheritance might be the heiMALE_EMPLOYEEandFEMALE _EMPLOYE =

Type variation inheritance is not necessary when the original signature us
anchored like ...) declarations. For example in tISEGMENTclass of an interactive
drawing package you may have introduced a function

perpendicula: SEGMENTis
-- Segment of same length and same middle point, rotated 90 degrees

and then want to define an heDOTTED SEGMEN to provide a graphical
representation with a dotted line rather than a continuous one. In thaperpendicular
should return a result of ty[DOTTED_SEGMEN, so you will need to redefine the type.
None of this would be needed if the original returned a result oflike Current, and if
you have access to the source of the original and the authority to modify it you may pre
to update that type declaration, normally without any adverse effect on existing clien
But if for some reason you cannot modify the original, or if an anchored declaration is r
appropriate in that original (perhaps because of the needs of other descendants), thel
ability to redefine the type can save the day.

In functional variation inheritance we change some of the features’ bodies; if, as
usually the case, the features were already effective, this means changing tl
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implementation. The features’ specification, as given by assertions, may also change. It is

also possible, although less common, to have functional variation inheritance between two

deferred classes; in that case the assertions will change. This may imply changes in some
functions, deferred or effective, used by the assertions, or even the addition of new features
as long as this is for the “direct needs of the redefined features” as the definition states.

Functional variation inheritance is the direct application of the Open-ClcSee‘The Open-
principle: we want to adapt an existing class without affecting the original (of whictClosed principle”,
may not even have the source code) and its clients. It is subject to abuses since it P29¢ °
a form of hacking: twisting an existing class so as to fit a slightly different purpose. At
least this will beorganizedhacking, which avoids the dangers of directly modifying
existing software, as analyzed in the discussion of the Open-Closed principle. But if you
do have access to the source code of the original class, you should examine whether it is
not preferable to reorganize the inheritance hierarchy by introducing a more abstract class
of which bothA (the existing variant) anB (the new one) will both be heirs, or proper
descendants with peer status.

Uneffecting

Definition: uneffecting inheritance

Uneffecting inheritance appliesB redefines some of the effective featufes
of Ainto deferred features.

Uneffecting is not common, and should not be. Its basic idea goes against the normal
direction of inheritance, since we usually expB to be more concrete arA more
abstract (as with the next category, reification, for wlA is deferred anB effective or

at least less deferred). For that reason beginners should stay away from uneffecting. But
it may be justified in the following two cases:

* In multiple inheritance, you may want to merge features inherited from two diffeSee“Rules on
parents. If one is deferred and the other is effective, this will happen automatinames’, page 5¢.2
as soon as they have the same name (possibly after renaming), the effective \
will serve as implementatn. But if both are effective, you will need to uneffect one
of them; the other’s implementation will take precedence.

* You may find a reusable class thatoo concrete for your purposes, although the
abstraction it describes serves your needs. Uneffecting will remove the unwanted
implementations. Before using this solution, consider the alternatives: itis preferable
to reorganize the inheritance hierarchy to make the more concrete class an heir of the
new deferred class, rather than the reverse. But this is not always possible, for
example if you do not have the authority to mocA and its inheritance hierarchy.
Uneffecting may, in such cases, provide a useful form of generalization.

For a link of the uneffecting categorB will be deferred;A will normally be
effective, but might be partially deferred.
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See*Numeric and
comparable val-
ues”, page 522

Reification inheritance

We now come to the third and last general group, software inheritance.

Definition: reification inheritance

Reification inheritance appliesA represents a general kind of data structure,

and B represents a partial or complete choice of implementation for|data
structures of that kin(A is deferredB may still be deferred, leaving room fpr
further reification through its own heirs, or it may be effective.

An example, used several times in earlier chapters, is a deferredTABLE
describing tables of a very general nature. Reification leads to SEQUENTIAL_
TABLE and HASH_TABLI, still deferred. Final reification oSEQUENTIAL_TABLE
leads to effective classARRAYED TABL,/LINKED TABLE FILE_TABLE.

The term “reification”, from Latin words meaning “making into a thing”, comes from the
literary criticism of Georg Lukacs. In computing science it is used as part of the VDM
specification and development method.

Structure inheritance

Definition: structure inheritance

Structure inheritance applies A, a deferred class, represents a genleral
structural property anB, which may be deferred or effective, represents a
certain type of objects possessing that property.

UsuallyA represents a mathematical property that a certain set of objects may possess
exampleA may be the clasCOMPARABLI, equipped with such operationsinfix "<"
andinfix ">=", representing objects to which a total order relation is applicable. A clas
that needs an order relation of its own, sucSTRING, will inherit from COMPARABLL:

Itis common for a class to inherit from several parents in this way. For example cle
INTEGEF in the Kernel Library inherits frorCOMPARABLI as well as from a class
NUMERIC (with features such ainfix "+" andinfix "[") representing its arithmetic
properties. (ClasNUMERICmore precisely represents the mathematical notion of ring.

What is the difference between the structure and reification categories? Wi
reification inheritanceB represents the same notion A, with more implementation
commitment; with structure inheritanB represents an abstraction of its own, of wtAch
covers only one aspect, such as the presence of an order relation or of arithmetic operat

Waldén and Nerson note that novices sometimes believe they are using a sim
form of inheritance when they are in fact mistaking a “contains” relation for “is” — a:
with AIRPLANEinheriting fromVENTILATION_SYSTE, a variant of the “car-owner”
scheme, and just as wrong. They point out that it is easy to avoid this mistake throug
criterion of the “absolute” kind, leaving no room for hesitation or ambiguity:
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With the inheritance schel although the inherited properties are Cited (with change
secondar, they are still properties of thwhole object: described by the of example) froin
class. If we makeAIRPLANE inherit COMPARABLI to take account of an bl 06,
ordering relation on plane, the inherited features apply to each airplane as

a wholg; but the features (VENTILATION _SYSTE do no. Featurestor of
VENTILATION_SYSTE is not supposed to stop the plane

The conclusion in this example is cleAIRPLANEmMust be a client, not an heir, of
VENTILATION_SYSTEM

Implementation inheritance

Definition: implementation inheritance

Structural inheritance appliesB obtains fromA a set of features (other than
constant attributes and once functions) necessary to the implementation of the
abstraction associated wB. Both A andB must be effective.

Implementation inheritance is discussed in detail later in this chapter. A common c“IMPLEMENTA-
the “marriage of convenience”, based onltiple inheritance, where one parent provideTION INHERIT-
the specification (reification inheritance) and the other provides the impIementaSAL\iLCE 1 24.8, page
(implementation inheritance).

The case of inheriting constant attributes or once functions is covered by the next variant.
Facility inheritance

Facility inheritance is the scheme in which the parent is a collection of useful features
meant only for use by descendants:

Definition: facility inheritance

Facility inheritance applies A exists solely for the purpose of providing a
set of logically related features for the benefit of heirs suclB. Two
common variants are:

* Constant inheritancin which the features (& are all constants or on¢e
functions describing shared objects.

* Machine inheritanc in which the features (A are routines, which maly
be viewed as operations on an abstract machine.

An example of facility inheritance was provided by clEXCEPTION., a utility See‘ADVANCED

class providing a set of facilities for detailed access to the exception handling mechéEXCEPTION HAN-
DLING”, 12.6, page

Sometimes, as in the examples given later in this chapter, a link of the facility 431.
uses only one of the two variants, constant or machine; but in others, such as
EXCEPTION, the parent class provides both constants (such as the exception code
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“FACILITY

INHERITANCE”",

24.9, page 84.7

“The dual perspec-

tive”, page 49

“The two styles”,

page 602

Incorrect_inspect_vall) and routines (such érigger to raise a developer exception).
Since this discussion is meant to introduce disjoint inheritance categories, we should ti
facility inheritance as a single category — with two (non-disjoint) variants.

With constant inheritance, boA and B are effective. With machine inheritance,
there is more flexibility, buB should be at least as effectiveA.s

Facility inheritance is discussed in detail later in this chapter.

Using inheritance with deferred and effective classes

Each of the various categories reviewed places some requirements on which of the h
and the parent may be deferred and which may be effective. The following tabl
summarizes the rules. “Variation” covers type variation and functional variation. Items
marked- appear in more than one entry.

Parent — Deferred Effective
Heir
! De
Constan:! Extensior ef
Restrictior- Uneffecting an
Structure
Deferred Subtype
Uneffecting
Variatior:
View
Constan: Constar::
Reification Extensior
Effective Structure: Implementation
Subtype Restrictior.
Variatior:

24.6 ONE MECHANISM, OR MORE?

(Note: this discussion assumes as background the earlier presentation of “The meanin
inheritance”, especially its sectiontgled “The dual perspective”, and the presentation of
descendant hiding, especially its section entitled “The two styles” with its summary table

The variety of uses of inheritance, evidenced by the preceding discussion, may e
to the impression that we should have several language mechanisms to cover
underlying notions. In particular, a number of authors have suggested separating betw
modul¢inheritance, essentially a tool to reuse existing features in a new modutypand
inheritance, essentially a type classification mechanism.

Such a division seems to cause more harm than good, for several reasons.
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First, recognizing only two categories is not representative of the variety of uses of
inheritance, reflected by the preceding classification. Since no one will advocate
introducing ten different language mechanisms, the result would be too restrictive.

The practical effect would be to raise useless methodological discussions: assume
you want to inherit from an iterator class suctLINEAR ITERATO; should you use
module inheritance or type inheritance? One can find arguments to support either answer.
You will waste your time trying to decide between two competing language mechanisms;
the contribution of such reflections to the only goals that count — the quality of your
software and the speed at which you produce it — is exactly zero.

An exercise asks you to analyze our categories to try to see for each of them whether iExerciseE24.8, page
relates more to the “module” or “type” kind. 87c¢.

It is also interesting to think of the consequences that such a division will have on
the complexity of the language. Inheritance comes with a number of auxiliary
mechanisms. Most of them will be needed on both sides:

« Redefinitiol is useful both for subtyping (think oRECTANGLI redefining
perimete from POLYGOT) and for module extension (the Open-Closed principle
demands that when we inherit a module we keep the flexibility of changing what is
not adapted any more to our new context — a flexibility without which we would
lose one of the main attractions of the object-oriented method).

* Renaminiis definitely useful for module inheritance. To present it as inappropriate
for type inheritance (se[Breu 1995) seems too restrictive. In the modeled external
system, variants of a certain notion may introduce specific terminology, which it is
often desirable for the software to respect. A cISTATE INSTITUTIONSIn a
geographical or electoral information system might have a descendant class
LOUISIANA INSTITUTION reflecting the peculiarities of Louisiana’s political
structures; it is not unreasonable to expect that the fecountie, giving the list of
counties in a state, would be renarparishe:in the descendant, since parish is what
Louisianians call what the rest of the US knows as a county.

* Repeated inheritanimay occur with either form. Since we may expect that module-
only inheritance will preclude polymorphic substitution, the problem of
disambiguating dynamic binding, and hence the need selec clause, will only
arise for type inheritance; but all the other questions, in particular when to share
repeatedly inherited features and when to replicate them, still arise.

e As always when we introduce new mechanisms into a language, they interact with
the rest, and with each other. Do we prohibit a class from both module-inheriting and
type-inheriting the same class? If so, we may be just vexing developers who have a
good reason to use the same class in two different ways; if not, we open up a whole
Pandora’s box of new language issues — name conflicts, redefinition conflicts etc.
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On Dijkstra’s advice
see“The need for
methodology guide-
lines”, page 66

All this for the benefit of a purist's view of inheritance — restrictive and
controversial. Not that there is anything wrong with defending controversial views; b
one should be careful before imposing their consequences on language users — that
say, on everyone. When in doubt, abstain. Once again, the contrast with Dijkstra’s origi
gotc excommunication is striking: Dijkstra took great care to explain in detail the
drawbacks of thegotc instruction, based on a theory of software construction anc
execution, and to explain what replacements were available. In the present case,
compelling argument — at least none that | have seen — shows why it is “bad” to us
single mechanism to cover both module and type inheritance.

Aside from blanket condemnations based on preconceived ideas of what inheritar
should be, there is only one serious objection to the use of a single mechanism: the €
complication that this approach imposes on the tasstatic type checkin¢. This issue
was discussed at length in chagl7; it places an extra burden compilers, which is
always justifiable (when the burden is reasonable, as here) if the effect is to facilitate
develope’s task.

In the end what all this discussion shows is that the ability to use only one inheritan
mechanism for both module and type inheritance is not — as partisans of sepal
mechanisms implicitly consider — the result of a confusion of genres. It is the result
thevery first decisio of object-oriented software construction: the unification of module
and type concepts into a single notion, the class. If we accept classes as both modules
types, then we should accept inheritance as both module accumulation and subtyping

24.7 SUBTYPE INHERITANCE AND DESCENDANT
HIDING

The first category on our list is probably the only form on which everyone agrees, at le
everyone who accepts inheritance: what we may call pure subtype inheritance.

Most of the discussion will also apply to restriction inheritance, whose principe
difference with subtype inheritance is that it does not require the parent to be deferred

Defining a subtype

As was pointed out in the introduction of inheritance, part of the power of the idea com
from its fusion of a type mechanism, the definition of a new type as a special case
existing types, with a module mechanism, the definition of a module as extension
existing modules. Many of the controversial questions about inheritance come frc
perceived conflicts between these two views. With subtype inheritance there is no sl
question — although, as we shall see, this does not mean that everything becomes e

Subtype inheritance is closely patterned after the taxonomical principles of natul
and mathematical sciences. Every vertebrate is an animal; every mammal is a vertebi
every elephant is a mammal. Every group (in mathematics) is a monoid; every ring i
group; every field is a ring. Similar examples, of which we saw many in earlier chapte!
abound in object-oriented software:
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FIGURE <¢— CLOSED_FIGURE#— POLYGOM&— QUADRANGI#—
RECTANGLE=— SQUARE

DEVICE&— FILE— TEXT_FILE
SHIP— LEISURE_SHIR®— SAILBOAT
ACCOUNT-=— SAVINGS_ACCOUNS—  FIXED_RATE_ACCOUNT

and so on. In any one of these subtype links, we have clearly identified the set of objects
that the parent type describes; and we have spotted a subset of these objects, characterized
by some properties which do not necessarily apply to all instances of the parent. For
example a text file is a file, but it has the extra property of being made of a sequence of
characters — a property that some other files, such as executable binaries, do not possess.

A general rule of subtype inheritance is that the various heirs of a class represent
disjoint sets of instances. No closed figure, for example, is both a polygon and an ellipse.

Several of the examples, SUCFRECTANG LE<— SQUAF, will most likely involve
an effective parent, and so are cases of restriction inheritance.

Multiple views

Subtype inheritance is straightforward when a clear criterion exists to classify the variants
of a certain notion. But sometimes several qualities vie for our attention. Even in such a
seemingly easy example as the classification of polygons, doubt may arise: should we use
the number of sides, leading to heirs sSUcCTRIANGLE, QUADRANGLI etc., or should

we divide our objects into regular polygolEQUILATERAL POLYGO, SQUAREand

so on) and irregular ones?

Several strategies are available to address such conflicts. They will be reviewed as
part of the study of view inheritance later in this chapter.

Enforcing the subtype view

A type is not just as a set of objects, of course: it is also characterized by the applicable
operations (the features), and their semantic properties (the assertions: preconditions,
postconditions, invariants). We expect the fate of features and assertions in the heir to be
compatible with the concept of subtype — meaning that it must allow us to view any
instance of the heir also as an instance of the parent.

The rules on assertions indeed support the subtype view:

e The parent's invariant is automatically part of the heir’s invariant; so all the
constraints that have been specified for instances of the parent also apply to instances
of the heir.

« A routine precondition applies, possibly weakened, to any redeclaration of the
routine: so any call which satisfies the requirement specified for instances of the
parent will also satisfy the (equal or weaker) requirement specified for instances of
the heir.
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« A routine postcondition applies, possibly strengthened, to any redeclaration of t
routine: so any property of the routine’s outcome that has been specified f
instances of the parent will be guaranteed to hold as a result of the (equal or stron
properties specified for instances of the heir.

For features, the situation is a little more subtle. The subtype view implies that :
operations applicable to an instance of the parent should be applicable to an instanc
the heir. Internally, this is always true: even in the inheritaneerR6{AYED _STACHom
ARRAY which seems far from subtype inheritance, the featuresRiHAYwere still
available to the heir, and indeed were essential to the implementation T AtSK
features. But in that case we had hidden all thigseAYfeatures from the heir’s clients,
and for good reason (we do not want a client of a stack class to perform arbitre
operations on the representation, such as directly modifying an array element, since
would be a violation of the class interface).

For pure subtype inheritance we might expect a much stronger ruleevbst
feature that a client can apply to instances of the parent class also be applicable, by
same client, to instances of the heir. In other words, no descendant hidinghéritsf
from A, then the export status dfn B is at least as generous astin(That is to say: if
was generally exported, it still is; and if it was selectively exported to some classes, i
still exported to them, although it may be exported to more.)

The need for descendant hiding

In a perfect world we could indeed enforce the no-descendant-hiding rule; but not in 1
real world of software development. Inheritance must be usable even for classes writter
people who do not have perfect foresight; some of the features they include in a class |
not make sense in a descendant written by someone else, later and in a completely diffe
context. We may call such casasonomy exceptions(In a different context the word
“exception” would suffice, but we do not want any confusion with the software notion c
exception handling as studied in earlier chapters.)

Should we renounce inheriting from an attractive and useful class simply because
a taxonomy exception, that is to say because one or two of its features are inapplicabl
our own clients? This would be unreasonable. We just hide the features from our clier
view, and proceed with our work.

The alternatives have been studied as part of one of the founding principles of obj
technology —Open-Closed principle— and they are not attractive:

* We might modify the original class. This means we may invalidate myriads c
existing systems that relied on it — no, thanks. In most practical cases, anyway, |
class will not be ours to modify; we may not even have access to its source form.

* We might write a new version of the class (or, if we are lucky and do have access
its source code, make a copy), and modify it. This approach is the reverse
everything that object technology promotes; it defeats any attempt at reusability a
at an organized software process.
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Avoiding descendant hiding

Before probing further why and when we may need descendant hiding, it is essential to note
that most of the time we do not. Descendant hiding should remain a technique of last resort.
When you have a full grasp of the inheritance structure sufficiently early in the design
processprecondition are a better technique to handle apparent taxonomy exceptions.

Consider classELLIPSE. An ellipse has two focuses through which you can

normally draw a line:
An ellipse and
Focus line its focus line
%‘&‘

Focuses

ClassELLIPSE might correspondingly have a featifocus_lint.

It is quite normal to define claCIRCLE as an heir tELLIPSE: every circle is also
an ellipse. But for a circle the two focuses are the same point — the circle’s center — so
there is no focus line. (It is perhaps more accurate to say that there is an infinity of focus
lines, including any line that passes through the center, butin practice the effectis the same.)

A circle and its
center

Center

Is this a good example of descendant hiding? In other words, shoulcCIRCLE
make featurdocus_line secret, as in

classCIRCLE inherit
ELLIPSE
export {NONE} focus_lineend

Probably not. In this case, the designer of the parent class has all the information at
his disposal to determine thfocus_lincis not applicable to all ellipses. Assuming the
feature is a routine, it should have a precondition:

focus_lineis
-- The line through the two focuses
require
not equal(focus_:, focus_2)
do

end
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See pagél

(The precondition could also be abstract, using a functieimct_ focusesghis has
the advantage thatlRCLE can redefine that function once and for all to yield false.)

Here the need to support ellipses without a focus line follows from a proper analy:
of the problem. Writing an ellipse class with a functioous_linethat has no precondition
would be a design error; addressing such an error through descendant hiding woulc
attempting to cover up for that error. As was pointed out at the end of the presentatior
the Open-Closed principle, erroneous designs must be fixed, not patched in descende

Applications of descendant hiding

Thefocus_lineexample is typical of taxonomy exceptions arising in application domain
such as mathematics which can boast a solid theory with associated classificatic
patiently refined over a long period. In such a context, the proper answer is to us
precondition, concrete or abstract, at the place where the original feature appears.

But that technique is not always applicable, especially in domains that are driven
human processes, with their attendant capriciousness that often makes it hard to fore
all possible exceptions.

Consider as an example a class hierarchy, rooted in a kI@$sSTGAGE in a
software system for managing mortgages. The descendants have been organ
according to various criteria, such as fixed rate versus variable rate, business vel
personal or any other that was found appropriate; we may assume for simplicity that t
is a taxonomy of the pure subtype kind. CIa89RTGAGEhas a procedurssdeem
which handles the mechanisms for paying off a mortgage at a certain time earlier tt
maturation.

Now assume that Congress, in a fit of generosity (or under the pressure
construction lobbies), introduces a new form of government-backed mortgage whc
otherwise advantageous conditions carry a provision barring any early redemption. \
have found a proper place in the hierarchy for the corresponding\dtass MORTGAGE
but what about proceduredeen?

We could use the technique illustrated witltus_line a precondition. But what if
there has never before in banker's memory existed a mortgage that could not
redeemed? Then procedurzieenprobably does not have a precondition. (The situation
is the same if the precondition existed but was concrete, so that it cannot be redefinec

So if we decide to use a precondition we must modify ¢lE8R TGAGE As usual,
this assumes that we have access to its source code and the right to modify it — often
true. Suppose, however, that this is not a problem. We will adidbte TGAGEa boolean-
valued functiomedeemabland toredeema clause

require
redeemable
But now we have changed the interface of the class. All the clients of the class &

of its numerous descendants have instantly been made potentially incorrect; to observe
specification all callsn.redeen...) should now be rewritten as
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if m.redeenablethen

m.redeem(...)
else

... (What in the world do we say here...)
end

Initially this change is not urgent, since the incorrectness is only potential: existing
software will only use the existing descendantMORTGAGI, so no harm can result.
But not fixing them means leaving a time bomb — unprotected calls to a precondition-
equipped routine — ticking in our software. As soon as a client developer has the clever
idea of using a polymorphic attachment with a source of NEW_MORTGAG but
forgets the test we have a bug. And the compiler will not produce any diagnostic.

The absence of a precondition in the original versioredeen was not a design
mistake on the part of the original designers: in their view of the world, until now correct,
no precondition was needed. Every mortgage was redeemable. We cannot require every
feature to have a precondition; imagine a world in which for every uf there would be
an accompanying boolean-valued functf feasiblc serving as its bodyguard; then we
would never be able to write a simyx«f for the rest of our lives; each call would be in an
if ... or equivalent as illustrated above mrredeen. Not fun.

Theredeenexample is typical of taxonomy exceptions which, unfocus_lincand
other cases of perfect-foresight classification, cannot be addressed througha prioril
precondition design. The observation made earlier fully applies: it would be absurd to
renounce inheritance — the reuse of a rich class structure, lovingly developed and
carefully validated — because a feature or two, out of dozens of useful ones, do not apply
to our goal of the moment. We should just use descendant hiding:

classNEW_MORTGAGIlinherit
MORTGAGE
export {NONE} redeenend

No error or anomaly will be introduced in existing software — the existing class
structure or its clients. If someone modifies a client class to include a polymorphic
attachment with source tyNEW_MORTGAG, and the target of that attachment is also
used withredeen, as in

m: MORTGAGI; nm: NEW_MORTGAGE

m.redeent(...) “BEWARE OF

. . ) POLYMORPHIC
then the call becomes a catcall, and the potential error will be caught statically bcaTcaLLs!” 17.7,

extended mechanism described in our discussion of typing. page 63
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From: the New York
Public Library Sci-
ence Desk Refer-
encg, ec. Patricia
Barnes-Svarne,/
199t

Taxonomies and their limitations

Taxonomy exceptions are not specific to software examples. Even — or perha
especially — in the most established areas of natural science, it sometimes set
impossible to find a statement of the formembers of the ABC phyli[or genus, species
etc.] @e characterized by property XV’ that is not prefaced bymosf", qualified by
“usually’ or followed by ‘except in a few cas”.This is true at all levels of the hierarchy,
even the most fundamental categories, which a layman might naively believe to
established on indisputable criteria!

If you think for example that the distinction between the animal and plant kingdon
is simple, just ponder its definition in a popular reference text (italics added):

DISTINGUISHING PLANTS FROM ANIMALS

There are severigenera factors that distinguish plants from animéahougt there are
numerous exceptio.as

Locomotion Mosianimals move about freelwhile it israreto find plants that can move
around in their surrounding environmerMos! plants are rooted in the soil, or attached
to rocks, wood oother material s

Food Green plants that contain chlorophyll manufacture food themselvesmosit
animals obtain nutrients by eating plants or other anin...J. [

Growth Plantsusually grow from the tips of their branches and roots, and at the outer
layer of their stems, for their entire life. Animwsually grow in all parts of their bodies
and stop growing after maturity.

Chemical regulation Though both plants and animegenerally have hormones and
other chemicals that regulaicertain reactions within the organism, the chemical
composition of these hormones differ[s] in the two kingdoms.

The same comments apply to another area of study, cultural rather than natu
which has also contributed to the development of systematic taxonomy: the histori
classification of human languages.

In zoology a common example, so famous in Artificial Intelligence circles as to hay
become a cliché, still provides a good illustration of taxonomy exceptions. (Rememb
however, that this is only aanalogy, not a software example, and so cannot prove
anything; it can only help us understand ideas whose relevance has been demonsti
otherwise.) Birds fly; in software terms cleBIRD would have a procedufly. Yet if we
wanted a clasOSTRICF we would have to admit that ostriches, although among the
birdest of birds, do not fly.

We could think of classifying birds into flying and non-flying categories. But this
would conflict with other possible criteria including, most importantly, the commonly
retained one, shown on the next page.
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—r—Kingdom: Animalia — multicellular organisms without chlorophsH General
. . classification
Phylum: Chordata —coelemic cavity, 3 germ layers, a notocord, .
an endoskeleton and a closed circuiatory system of birds
Class: Aves birds (there are 30 (Data from Ed
Everham, at
Order: Anseriformes — waterfowl www.runet.edu/
Order: Apodiformes — swifts and hummingbirds ————  ~€€everham.) '
Order: Caprimulgiformes nightjars, potoos, frogmouths Reproduced with
owlet- frogmouths and oilbirds ' ' the author's
Order: Casuariiformes cassowaries and emtt 2erm|s_S|og.
Order: Chardriiformes — shorebirds ssociate
comments are
Order: Ciconiiformes — long-legged wading birds———  reproduced in

“The arbitrariness

of classifications”,
Order: Columbiformes — pigeons and doves page 859

Order: Coliiformes — mousebirds

Order: Coraciiformes — kingfishers

Order: Cuciliformes — cuckoos

Order: Dinornithiformes — kiwis and moas

Order: Falconiformes— raptors

Order: Galliformes — gallinaceous birds (chickens, grouse, quail
and pheasant)

Order: Gaviiformes — loons

Order: Gruiformes — terrestrial and marsh birds—m

Order: Musophagiformes— turacos
Order: Passeriformes— perching birds, songbirds and passerines

Order: Pelecaniformes— waterbirds with webbed feet—

Order: Phoenicopteriformes— flamingos

Order: Piciformes— woodpeckers

Order: Podicipediformes— grebes

Order: Procellariiformes — tube-nosed seabirds—

Order: Psittaciformes— parrots, macaws

Order: Pteroclidiformes — sandgrouse

Order: Rheiformes— rheas, nandus

Order: Sphenisciformes— penguins

Order: Strigiformes — owls

Order: Struthioniformes — ostrich

Order: Tinamiformes — tinamous

Order: Trogoniformes — trogons and quetzals—
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The OSTRICFexample has an interesting twist. Although regrettably most of then
do not seem to be aware of it, ostriches really should fly. Younger generations lost t
ancestral skill through an accident of evolutionary history, but anatomically ostriches ha
retained most of the aeronautical machinery of birds. This property, which makes the
of the professional taxonomist a little harder (although it may facilitate that of hi
colleague, the professional taxidermist), will not in the end prevent him from classifyin
ostriches among birds.

In software termOSTRICF will simply inherit fromBIRD and hide the inherited
fly feaure.

Using descendant hiding

All our efforts[at classification]are powerless against the multiple relations
which from everywhere affect the living beings aroun. This is the figt,t
described by the great botanist Go¢, between Man and Nature in her
infinity. One can be sure that Man will always be defeated

Henri Baillon, General Study of the Euphorbiaceous
Family (1850). Quoted (in French) in Peter F. Stevens,
The Development of Biological Systeme Antoine-
Laurent de Jussie, Nature, and the Natural Syste,m
Columbia University Press, New York, 1994.

The preceding evidence, from both software practice and non-software analogi
suggests that even with a careful design some taxonomy exceptions may remain. Hic
redeenfromNEW_MORTGAGIor fly from OSTRICF is not necessarily a sign of sloppy
design or insufficient foresight; it is the recognition that other inheritance hierarchies th
would not require descendant hiding could be more complex and less useful.

Such taxonomy exceptions have the precedent of centuries of effort by intellectt
giants (including Aristotle, LinnéBuffon, Jussieu and Darwin). They may even signal
some intrinsic limitation of the human ability to comprehend the world. Could they b
related to the indeterminacy results that shook scientific thought in the twentieth centu
uncertainty in physics and undecidability in mathematics?

All this assumes that descendant hiding remains, as already noted, a rare occurre
If you design a taxonomy with taxonomy exceptions all over — well, they are nc
exceptions any more, so you do not really have much of a taxonomy.

In software, for those few cases in which conflicting classification criteria or massiv
previous work precludes the production of a perfect subtype hierarchy, descendant hic
is more than a convenient facility: it will save your neck.
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24.8 IMPLEMENTATION INHERITANCE

A form of inheritance that has often been criticized but is in fact both convenient and
conceptually valid is the use of an inheritance link between a class describing a certain
implementation of an abstract data structure and the class providing the implementation.

The marriage of convenience

In the discussion of multiple inheritance we saw an example of the “marriag“The marriage of
convenience” kind, which combines a deferred class with a mechanism to implem(gggve”'ence »page

The example waARRAYED_ STAC, of the general form
classARRAYED_STACI[G] inherit

STACKI[G]
redefine change_tojend
ARRAY[G]
rename
countas capacity, putas array_put
export
{NONE} all
end
feature

... Implementation of the deferred routinesSTACE, such aput, coun, full,
and redefinition ochange_to, in terms olARRA" operation...
end

It is interesting to comparARRAYED_STAC, as sketched here, with the classSTACK: appeared
STACK: of an earlier discussion — an array implementation of stacks defined withouon page35(.
use of inheritance. Note in particular how avoiding the need for the class to be a cli
ARRA" simplifies the notation (the previous version had toimplementationputwhere
we can now just writput).

In the above inheritance part IARRA" all features have been made secret. This is
typical of marriage-of-convenience inheritance: all the features from the specification-
providing parent, herSTACK, are exported; all the features from the implementation-
providing parent, herARRA", are hidden. This forces clients of cl ARRAY_STACto
use the corresponding instances through stack features only; we do not want to let them
perform arbitrary array operations on the representation, such as changing the value of an
element other than the top one.

It feels so good, but is it wrong?

Implementation inheritance is not without its critics. That we hide many inherited features
seems to some people a violation of the “is-a” principle of inheritance.

It is not. There are different forms ds-a”. By its behavior, an arrayed stack is a stack;
but internally it is an array. In fact the representation of an instarARRAYED STACK
is exactly the same as that of an instancARRA", enriched with one attributccoun).
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Page35C.

Being made in the same way is a rather strong form of “is-a”. And it is not just tf
representation: all the featuresARRA", such ajput (renamecarray_ pu), infix "@" and
count(renameccapacity) are available tARRAYED_ STAC, although not exported to its
clients; the class needs them to implemenSTACEK features.

So there is nothing conceptually wrong with such implementation-only inheritanc
The comparison with the counter-example studied at the beginning of this chapter
striking: for CAR_OWNE we had a gross misunderstanding of the concept; witl
ARRAYED_STACwe have a well-identified form of the “is-a” relationship.

There is one drawback: permitting the inheritance mechanism to restrict the exp
availability of an inherited feature — that is to say, permittincexport clause — makes
static type checking more difficult, as we have studied in detail. But this difficulty i
largely for the compiler writer, not for the software developer.

Doing without inheritance

Let us probe further and see what it would take to work without implementatio
inheritance in our example case. This has been seen alreadySTACK: of an earlier
chapter. It has an attriburepresentatio of type ARRAY[G] and stack procedures
implemented in the following style (assertions omitted):

put(x: G) is
-- Add x on top.
require

do
count:= count + 1
representationput (coun, Xx)
ensure

end

Every manipulation of the representation requires a call to a featARRA" with
representationas the target. There is a performance penalty: minor for space (tt
representatio attribute), more serious for time (going throurepresentatio, that is to
say adding an indirection, for each operation).

Assume we can ignore the efficiency issue. Tediousness is another, with all t
“representation” prefixes that you must add before every array operation. This will b
true in all the classes that implement various data structures — stacks, but also li
queues and others — through arrays.

The object-oriented designer hates tedious, repetitive tasks. “Encapsulate repetiti
is our motto. If we see such a pattern occurring repeatedly throughout a set of classes
natural and healthy reaction is to try to understand the common abstraction, &
encapsulate it in a class. The abstraction here is something like “data structure that
access to an array and its operations”. The class could be:
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indexing

descriptior: "Objects that have access to an array and its opera"ions
class

ARRAYEL[G]

feature -- Access
item(i: INTEGEF): Gis
-- The representation’s element at ind ex
require

do
Result:= representationitem (i)
ensure

end
feature -- Element change
put(x: G; i: INTEGEF) is
-- Replace by the representation’s element at ind 2x
require

do
representationput (x, i)
ensure

end
feature {NONE} -- Implementation
representatio: ARRAVY[G]
end -- clasARRAYED

The featuresitem andpul have been exported. SiINnARRAYEI only describes internal
properties of a data structure, it does not really need exported features. So someone who
disagrees with the very idea of letting a descendant hide some of its parents’ exported
features may prefer to make all the featureARRAYEI secret. They will then by default
remain secret in descendants.

With this class definition it becomes quite uncontroversial to make classes such as
ARRAYED_STAClor ARRAYED_LIS inherit from ARRAYEL they indeed describe
“arrayed” structures. These classes can nowiterr instead ofrepresentatioritem and
so on; we have rid ourselves of the tediousness.

But wait a minute! If it is right to inherit frorARRAYEIL why can we not inherit
directly from ARRAY? We gain nothing from the further layer or encapsulation that we
have thrown ovelARRA' — a form of encapsulation that starts looking more like
obfuscation. By going througARRAYELwe are just pretending to ourselves that we are
not using implementation inheritance, but for all practical purposes we are. We have just
made the software more complex and less efficient.

There is indeed no reason in this example for ARRAYEL Direct implementation
inheritance from classes suchARRA" is simpl¢ and legitinate.
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24.9 FACILITY INHERITANCE

With facility inheritance we are even less coy than with implementation inheritance abc
why we want the marriage: pure, greedy self-interest. We see a class with advantage
features and we want to use them. But there is nothing to be ashamed of: the class hz
otherraison d'étre.

Using character codes

The Base Libraries include a cleASCII:

indexing
descriptior:
"The ASCII character s£%
%This class may be used as ancestor by classes needing its f.":ilities
classASCllIfeature -- Access
Character_set_si: INTEGERIs 12€; Last_asc: INTEGERIis 127
First_printable: INTEGERIs 32; Last_printabl: INTEGERIs 126
Letter_layou: INTEGERIs 70
Case_dif: INTEGERIs 32
-- Lower_a—Upper_a

Ctrl_a: INTEGERIs 1; Sol: INTEGERIs 1
Ctrl_b: INTEGERIs 2; St: INTEGERIs 2

Blank: INTEGERIs 3Z; Sy: INTEGERIs 32
Exclamatior: INTEGERIs 3&; Doublequot: INTEGERIs 34

Upper_z INTEGERIs 65; Upper_k: INTEGERIs 66

Lower_& INTEGERIs 97; Lower_L: INTEGERIs 98
... etc....
end -- classASCII

This class is a repertoire of constant attributes (142 features in all) describi
properties of the ASCII character set. As descriptior entry states, it is meant to be
inherited by classes needing access to such properties.

Consider for example a lexical analyzer — the part of a language analysis syst
that is responsible for identifying the basic elementstoken; of an input text; these
tokens may be (assuming the input is a text in some programming language) inte
constants, identifiers, symbols and so on. One of the classes of the system,
TOKENIZEF, will need access to the character codes, to classify the input characters i
digits, letters etc. Such a class will inherit these codes ASCI:
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classTOKENIZEF inherit ASCllfeature
... Routines here may use such featureBlank, Case_difietc. ...

end

Classes such ¢éASCI have been known to raise a few eyebrows; before going into
the methodological discussion of whether they are a proper application of inheritance, we
will look at another example of facility inheritance.

Iterators

The second example will show a case in which the inherited features are not just constant
attributes (as witlASCI) but routines of the most general kind.

Assume that we want to provide a general mechanism to iterate over data structures
of a certain kind, for example linear structures such as lists. “Iterating” means performing
a certain procedure, siaction, on elements of such a structure, taken in their sequential
order. We are asked to provide a number of iteration mechanisms, including: applying
actionto all the elements; applying it to all the elements that satisfy a certain criterion
given by a boolean-valued functites; applying it to all the elements up to the first one
that satisfiestes;, or the first one that does not satisfy this condition; and so on. A system
that uses the mechanism must be able to apply it tactionandtes of its choice.

At first it might seem that the iterating features should belong to the data strugxerciseE24.7,
classes themselves, such LIST or SEQUENCI; but as an exercise invites you tPage 87\
determine for yourself this is not the right solution. It is preferable to introduce a separate
hierarchy for iterators:

*

ITERATOR

/

*
LINEAR
ITERATOR

*
TREE_
ITERATOR

*
BILINEAR_
ITERATOR

ClassLINEAR_ITERATO, the one of interest for this discussion, looks like this:
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indexing
description
"Objects that are able to iterate over linear structures
namesiterators iteration, linear_iterators linear_iteration
deferred classLINEAR_ITERATORG] inherit
ITERATORG]
redefine targetend
feature -- Access
invariant_value: BOOLEANs
-- The property to be maintained by an iteration (default: true).
do
Result:= True
end

target LINEAR[G]
-- The structure to which iteration features will apply

test BOOLEANis
-- The boolean condition used to select applicable elements
deferred
end

feature -- Basic operations

actionis
-- The action to be applied to selected elements.
deferred
end
do_ifis
-- Apply actionin sequence to every itemtafrgetthat satisfiesest
do

from startinvariant invariant_valueuntil exhaustedoop
if testthen actionend

forth
end
ensure then
exhausted
end

... And so ondo_all, do_while do_untiletc....

end -- classLINEAR_ITERATOR

Now assume a class that needs to perform a certain operation on selected elem
of a list of some specific type; for example a command class in a text processing sysi
may need to justify all paragraphs in a document, excepted for preformated paragra
(such as program texts and other display paragraphs). Then:
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classJUSTIFIERinherit
LINEAR_ITERATOHPARAGRAPII
rename
action asjustify,
testasjustifiable,
do_allasjustify_all

end
feature
justify is
do... end
justifiableis
-- Is paragraph subject to justification?
do
Result:= not preformated
end

end -- classJUSTIFIER

The renaming was not indispensable but helps for clarity. Note that there is no need
to declare or redeclare the procedjustify_all (the formerdo_all): as inherited, it does
the expected job based on the effected versioactior andtes.

Procedurejustify, instead of being described in the class, could be inherited from
another parent. In this case multiple inheritance would perform a “join” operation that
effects the deferreactior, inherited from one parent under the najustify (here the
renaming is essential), with the effectjustifyinherited from the other parent. A form of
marriage of convenience, in fact.

LINEAR_ITERATO is aremarkable example behavior clas, capturing common “Don't call us, we’ll
behaviors while leaving specific components open so that descendants can plug icall you”, page 505
specific variants.

Forms of facility inheritance

The two examplesASCllandLINEAR _ITERATO, are typical of the two main variants
of facility inheritance:

« Constan inheritance, in which the parent principally yields constant attributes and
shared objects.

» Operationinheritance, in which it yields routines.

As noted earlier, it is possible to combine both of these variants in a single
inheritance link. That is why facility inheritance is one of our categories, not two.

Understanding facility inheritance

To some people facility inheritance appears to be an abuse of the mechanism — a form of
hacking. But that is not necessarily the case.
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“Objects as
machines”, page
751.

On iterator objects
see exercise15.4,
page 567

The main question to consider in these examples is not about inheritance but ab
the classes that have been definASCIlI and LINEAR_ITERATO. As always when
looking at a class design, we must ask ourselves: “Does this indeed describe a meanir
data abstraction?” — a set of objects characterized by their abstract properties.

With the examples the answer is less obvious than with a RECTANGLI;:
BANK_ACCOUN orLINKED_LIST, but it exists all the same:

« ClassASCIl represents the abstraction: “any object that has access to the proper:
of the ASCII character set”.

* ClassLINEAR_ITERATO represents the abstraction: “any object that has the
ability to perform sequential iterations on a linear structure”. Such objects tend to
of the “machine” kind described in the preceding chapter.

Once these abstractions have been accepted, the inheritance links do not raise
problem: an instance (TOKENIZEF does need “access to the properties of the ASCII
character set”, and an instanceJUSTIFIEF does need “the ability to perform sequential
iterations on a linear structure”. In fact, we could classify such examples of inheritance lir
under the subtype kind. What distinguishes facility inheritance is the nature of the pare

That the classes themselves are the issue, not the use of inheritance, is reinforce
the observation that an application class could rely on these classes as a client rather
heir. This would make things heavier, especiallyASCII: with

charse: ASCII

Il charset

every use of a character code would have to be wicharset Lower ¢ and the like. The
object attached witASCI| does not play any useful role. WLINEAR ITERATO the
same comments apply as long as a given class needs only one kind of iteration. If sev
are required, it becomes interesting to create iterator objects, each with its own versio!
action andtes; then you can have as many iteration schemes as you need.

If it is appropriate to have iterator objects, we need iterator classes, and there is
reason to deny such classes the right to join the inheritance club.

24.10 MULTIPLE CRITERIA AND VIEW INHERITANCE

Perhaps the most difficult problem of using inheritance arises when alternative criteria
available to classify the abstractions of a certain application area.

Classifying through multiple criteria

The traditional classifications of the natural sciences use a single criterion (possil
involving several qualities) at each level: vertebrate versus invertebrate, leaves rene
each year or not, and so on. The result is what we would call single inheritance hierarch
whose main advantage is their great simplicity. But there are problems too, since natur
definitely not single-criterion. This will be obvious to anyone who has ever tried to take
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nature walk armed with a botanical book meant to enable plant recognition through the
official Linnaean criteria. Species A is deciduous and species B is not, the book says; how
long can you afford to wait, if this is July, to find out whether the leaves remain? You are
told that June will bring bright purple flowers, but how can you tell in the midst of
January? The roots of A are at most 7 meters deep, versus at least 9 for B— must you dig?

In software, when a single criterion seems too restrictive, we can use all the
techniques of multiple and especially repeated inheritance that we have learned to master
in earlier chapters. Assume for example a cEMPLOYEEin a personnel management
system. Assume further that we have two separate criteria for classifying employees:

» By contract type, such as permanvs. temporary.
* By job type, such as engineering, administrative, managerial.

and that both of these criteria have been recognized to lead to valid descendant classes;
in other words you are not engaging in taxomania, since the classes that you have
identified, such aTEMPORARY_EMPLOYE for the first criterion anlVIANAGEF for

the second, are truly characterized by specific features not applicable to the other
categories. What do you do?

A first attempt might introduce all the variants at the < level:

A messy
classification

SUPERVISOR

TEMPORARY

ADMINISTRATIV

To keep this sketched example small and the figure simple, the class hames have been
abbreviated. To go from this example to a real system we would have to apply the usual
naming guidelines, which suggest longer and more accurate names such as
PERMANENT_EMPLOYE, ENGINEERING_EMPLOYE and so on.

This inheritance hierarchy is not satisfactory since widely different concepts are
represented by classes at the same level.
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View inheritance

Classification If you retain the idea of using inheritance for the classification used in the example un

through views discussion, you should introduce an intermediate level to describe the competi
classification criteria:

*
SPECIALTY
EMPLOYE

SUPERVISORY

ADMINISTRATIV
PERMANENT
TEMPORARY

Note that the namCONTRACT _EMPLOYEdoes not mean “employee that has a
contract” (as opposed to employees who might not have onel!), but “employee
characterized by his contract”. The name of the sibling class similarly means “employ
as characterized by his specialty”.

*
CONTRACT Y
EMPLOYE

That these names seem far-fetched reflects a certain uneasiness, typical of
kind of inheritance. In subtype inheritance we encountered the rule that the sets
instances represented by the various heirs to a class be disjoint. Here the rule doe:
apply: a permanent employee, for example, may be an engineer too. This means
such a classification is meant for repeated inheritance: some proper descendants o
classes shown in the figure will have boiICONTRACT_EMPLOYE and
SPECIALTY_EMPLOYE as ancestors — not directly, but for example by inheriting
from bothPERMANEN andENGINEEF. Such classes will be repeated descendants
of EMPLOYEE.
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This form of inheritance may be called view inheritance: various heirs of a certain
class represent not disjoint subsets of instances (as in the subtype case) but various ways
of classifying instances of the parent. Note that this only makes sense if both the parent
and the heirs are deferred classes, that is to say, classes describing general categories rather
than fully specified objects. Our first attempiEMPLOYEEclassification by views (the
one that had all descendants atthe same level) violated that rule; the second one satisfies it.

Is view inheritance appropriate?

View inheritance is relatively far from the more common uses of inheritance and is subject
to criticism. The reader will be judge of whether to use it for his own purposes, but in any
case we should examine the pros and cons.

It should be clear that — like repeated inheritance, which it requires — view
inheritance isnot a beginner’s mechanisr. The rule of prudence that was introduced for
repeated inheritance holds here: if you have less than a few months’ hands-on experience
with O-O development of significant projects, better stay away from view inheritance.

The alternative to view inheritance is to choose one of the classification criteria as
primary, and use it as the sole guide for devising the inheritance hierarchy; to address the
other criteria, you will use specific features. It is interesting to note that many modern
zoologists and botanists use this approach: their basic classification criterion is the
reconstructed evolutionary history of the genera and species involved. Would it that we
always had such a single, indisputable standard to guide us in devising software
taxonomies.

To stick to a single primary criterion in our example we could decide that the job type
is the factor of principal interest, and represent the employment status by a feature. As a
first attempt, the feature (in claEMPLOY EE) could be

is_permaner: BOOLEAN
but this is dangerously constraining; to extend the possibilities, we could have

Permaner: INTEGERIs unique
Temporar: INTEGERIs unique
Contractol: INTEGERIs unique

but then we have learned to be wary, for good reasons, of explicit enumerations. A better
approach is to introduce a cleWORK_CONTRAC, most likely deferred, with as many
descendants as necessary to account for specific kinds of work contract. Then we can stay
away from loathed explicit discriminations of the form

if is_permanenthen ... else... end

or
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inspect
contract_type

when Permanenthen

when ...

end

with their contingent of future extendibility troubles (stemming from their violation of just
about every modularity principle: continuity, single choice, open-closedness); instead, !
will equip classWORK_CONTRACwith deferred features representing contract-type-
dependent operations, which will then be effected differently in descendants. Most
these features will need an argument of tEMPLOY EE, representing the employee to
which the operation is being applied; examples might inchire andterminate.

The resulting structu will look like this:

Multi-criteria contract *
classification > WORK_
through hire* CONTRACT
separat, A terminate
client-related
hierarchies
SUPERVISOR
ADMINISTRATIVE TEMPORAR
CONTRACT,
hire* hire*
terminaté terminaté
See’AN APPLICA- This scheme, as you may have noted, is almost identical handle-based design

TION: THE HAN-  pattern described earlier in this chapter.
DLETECHNIQUE”,

24.3, page 817 Such a technique may be used in place of view inheritance. It does complicate
structure by introducing a separate hierarchy, a new attribute contrac) and the

corresponding client relations. It has the advantage that the abstractions in such a hiera
are beyond question (work contract, permanent work contract); with the view inheritan
solution, the abstractions are clear too but a little trickier to explain (“employee seen from!

perspective of his work contract”, “employee seen from erspective of his specialty”).
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Criteria for view inheritance

It is not uncommon to think of view inheritance early in the analysis of a problem domain,
while you are still struggling with the fundamental concepts and considering several
possible classification criteria, all of which vie for your attention. As you improve your
understanding of the application area, it will often happen that one of the criteria starts to
dominate the others, imposing itself as the primary guide for devising the inheritance
structure. In such cases, the preceding discussion strongly suggests that you should
renounce view inheritance in favor of more straightforward techniques.

| still find view inheritance useful when the following three conditions are met:

« The various classification criteria are equally important, so any choice of a primary
one would be arbitrary.

* Many possible combinations (such as, in the earlier example, permanent supervisor,
temporary engineer, permanent engineer and so on) are needed.

» The classes under consideration are so important as to justify spending significant
time to get the best possible inheritance structure. This applies in particular when the
classes are part ofreusable library with large reuse potential.

An example of application of these criteria is the uppermost structure of the Base
libraries, in the environment described in the last chapter of this book. The resulting
classes followed from an effort, described in detail in the [[M 1994a, of applying
taxonomical principles to the systematic classification of computing science’s basic
structures, in the tradition of the natural scientists. The highest part of the “container”

structure lookdike this:
A view-based
classification
of fundamental

computing
structures
*
Ty oo

*
HIERARCHI
CAL
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Building a data
structure class
by combination
of abstractions
through
multiple
inheritance

The first-level classificatiorBOX, COLLECTION TRAVERSABL) is view-based;
the level below it (and many of those further below, not shown) is a subtype classificatic
A container structure is characterized through three criteria:

* How items will beaccessedCOLLECTION A SET makes it possible to find out
whether an item is present, whereaBAG also enables the client to find out the
number of occurrences of a given element. Further refinements include such acc
abstractions aSEQUENCI (items are accessed sequentialSTACE (items are
accessed in the reverse order of their insertion) and so on.

* How items will be representeBOX. Variants include finite and infinite structures.
A finite structure can be bounded or unbounded; a bounded structured can be fi
or resizable.

* How the structure can be traversTRAVERSABL.E

It is interesting to note that the hierarchy did not start out as view inheritance. T|
initial idea was to definBOX, COLLECTIONandTRAVERSABLIas unrelated classes,
each at the top of a separate hierarchy; then, when describing any particular data struc
implementation, to use multiple inheritance to pick one parent from each of the three pa
For example a linked list is finite and unbounded (representation), sequentially acces
(access), and linearly traverse (traversal):

ST
/ Lo L1

_ Traversal
Representation hierarchy hierarchy

hierarchy

But then we realized that it was inappropriate to kBOX, COLLECTIONand
TRAVERSABL separate: they all needed a few common features, in parthasar
(membership test) arempty(test for no elements). This clearly indicated the need for &
common ancestor -CONTAINEF, where these common features now appear. Hence
structure that was initially designed as pure multiple inheritance, with three disjoil
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hierarchies at the top, turned out to be a view inheritance hierarchy with a considerable
amount of repeated inheritance.

Although initially difficult to get right, this structure has turned out to be useful,
flexible and stable, confirming both of the conclusions of this discussion: that view
inheritance is not for the faint of heart; and that when applicable it can play a key role for
complex problem domains where many criteria interact — if the effort is justified, as in a
fundamental library of reusable components, which simply has to be done right.

24.11 HOW TO DEVELOP INHERITANCE STRUCTURES

When you read a book or pedagogical article on the object-oriented method, or wheSome of the material
discover a class library, the inheritance hierarchies that you see have already'[',:/ltqgg;c“o“'Sfrom
designed, and the author does not always tell you how they got to be that way. Hov '

do you go about designing your own structures?

Specialization and abstraction

Voluntarily or not, many pedagogical presentations tend to create the impression that
inheritance structures should be designed from the most general (the upper part) to the
most specific (the leaves). This is in part because this is often the best desctibea

good structure once it exists: from the general to the particular; from the figures to the
closed figures to the polygons to the rectangles to the squares. But the best way to describe
a structure is not necessarily the best wagrtmuceit.

A similar comment, due to Michael Jackson, was mentioned in the discussion of top- See‘Production

down design. and description”,
. . . page 114
In an ideal world populated with perfect people, we would always recognize

proper abstractions right away, and then draw the categories, their subcategories and so
on. In the real world, however, we often see a specific case before we discover the general
abstraction of which it is but a variant.

In many cases the abstraction is not unique; how best to generalize a certain notion
depends on what you or your clients will most likely want to do with the notion and its
variants. Consider for example a notion that we have often encountered in earlier
discussion: points in a two-dimensional space. At least four generalizations are possible:

« Points in arbitrary-dimension space — leading to an inheritance structure where the
sisters of clas®OINTwill be classe®£ OINT_3Dand so on.

» Geometrical figures — the other classes in the structure being the likéS ORE,
RECTANGLECIRCLEand so on.

» Polygons — with other classes suchCasADRANGLEfour vertices),TRIANGLE
(three vertices) an6EGMENT(two vertices),POINT being the special polygon
with just one vertex.

« Objects that are entirely determined by two coordinates — the other contenders here
beingCOMPLEXandVECTOR_ 2D
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Although some of these generalizations may intuitively be more appealing th:
others, it is impossible to say in the absolute which one of them is the best. The ans
will depend on how your software base evolves and what it will need. So a prudent proc
in which you sometimes abstract a bit too late, because you waited until you were sure
you had found the most useful path of generalization, may be preferable to one in wh
you might get too much untested abstraction too soon.

The arbitrariness of classifications

The POINT example is typical. When presented with two competing classifications of
certain set of abstractions, you will often be able to determine, based on ratiot
arguments, which one bettej; but seldom is one in a position to determine that a certair
inheritance structure is ttbes possible one.

This situation is not specific to software. Do not believe, for example that th
Linnaean classifications of natural science are universally accepted or eternal. T
maintainers of the “Tree of Life” Internet archive mentioned earlier (see also tt
bibliographical notes) state at the outset that the project’s classification — howe\
collaborative and interdisciplinary — is controversial. And this is not just for weirc
smallish creatures too viscous to be discussed at luncEverham’s Web classification
of birds cited earlier comes with the comment

See pag842. Bib- There are 174 Famili, 2044 Genera and 9021 species of birds in the \! The
ga%;aspgﬁqgejﬁg most abundant species are in the order Passeriformes with 5276 . The least
i number of species in an order i the Ostrich in Struthioniform. (I would have

thought the Ostrich would be in an order with the E, Kiwis and Moa, all

extinc, because they all are flightless with stout legs and longish .) The

Linnaeus system groups organisms based on morphological simil. Another

classification of animals is based on DNA-DNA hybridize. This is highly

comple;; for example an American Cuckoo would be classifie. Kingdon,

Animalig; Phylur, Chordat; Class, Avey Subclas, Neornithe; Infraclass,

Neoave; Parvclas, Passera; Superorde, Cuculimorpha; Order,

Cuculiforme; Infraordel, Cuculide; Parvorde, Coccyzid; Family, Coccyzida.2

More on competing This shows the competition between two systems: the traditional one, based

classification meth- morphology (and evolution); and a more inductive one based on DNA analysis. They le

gﬁ:\pitetrhe endofthisy, 4 dically different results. Also note, as an aside, that here we see a zoologist who ¢
think that flightlessness should be a significant taxonomical criterion — but the offici
classification disagrees.

Induction and deduction

To design software hierarchies, the proper process is a combination of the deductive
the inductive, of specialization and generalization: sometimes you see the abstraction
and then infer the special cases; sometimes you first build or find a useful class and t
realize that there is a more abstract underlying concept.
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If you find yourself not always using the first scheme, but once in a while
discovering the abstract only after you have seen the conmaybe there is nothing
wrong with yoi. You are simply using a normal “yoyo” approach to classification.

As you accumulate experience and insight, you should find that the share of (correct)
a priori decisions grows. But an a posteriori component will always remain.

Varieties of class abstraction

This principle of Reversion is the most wonderful of all
the attributes of inheritance.

Charles Darwin
Two forms of a posteriori parent construction are common and useful.

Abstracting is the late recognition of a higher-level concept. You find a Bass
which covers a useful notion, but whose developer did not recognize that it was actually
a special case of a more general noA, justifying an inheritanclink:

Abstraction

JU

That this insight was initially missed — that is to say, B was built withoutA —
is not a reason to renounce the use of inheritance in this case. Once you recognize the need
for A, you can, and in most cases should, write this class andB to become one of its
heirs. It is not as good as having writA earlier, but better than not writing it at all.

Factoringis the case in which you detect that two claE andF actually represent
variants of the same genenotion:

@ Factoring
If you recognize this commonality belatedly, the generalization step will enable you

to add a common parent claD. Here again it would have been preferable to get the
hierarchy right the first time around, but late is better than never.
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Abstraction
factoring and
clients

Client independence

Abstracting and factoring may in many cases proceed without negative effects on -
existing clients (an application of the Open-Closed principle).

This property results from the method’s use of information hiding. Consider aga
the preceding schematic cases, but with a typical client glassled to the picture:

D D
D=

WhenB gets abstracted inth, or the features df get factored with those éfinto
D, a clasX that is a client oB3 or E (in the figure it is a client of both) will in many cases
not feel any effect from the change. The ancestry of a class does not affect its client
they are simply applying the features of the class on entities of the corresponding type
other words, iX usesB andE as suppliersinder the scheme

bl B;el E
blsome feature of B

el.some_feature_of E

thenX is unaffected by any re-parentingbr E arising from abstracting or factoring.

Elevating the level of abstraction

Abstracting and factoring are typical of the process of continuous improvement th
characterizes a successful object-oriented software construction process. In
experience this is one of the most elating aspects of practicing the method: knowing t
even though you are not expected to reach perfection the first time around, you are gi
the opportunity to improve your design continually, until it satisfies everyone.

In a development group that applies the method well, this regular elevation of t
level of abstractiorof the software, and as a corollary of its quality, is clearly perceptible
to the project members, and serves as constant incentive and motivation.
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24.12 A SUMMARY VIEW: USING INHERITANCE WELL

Inheritance will never cease to surprise us with its power and \aysati this chapter
we have tried to get a better handle at what inheritance really means and how we can use
it to our best advantage. A few central conclusions have emerged.

First, we should not be afraid of the variety of ways in which we can use inheritance.
Prohibiting multiple inheritance or facility inheritance achieves no other aim than to hurt
ourselves. The mechanisms are there to help you: use them well, but use them.

Next, inheritance is for the most parsupplier's technique. It is one weapon in our
arsenal of techniques for fighting our adversaries (in particular complexity, the software
developer’s relentless foe). Inheritance may matteclient software as well, especially
in the case of libraries, but its main goal is to help us building the thing in the first place.

Of course, all software is designed for its clients, and the clients’ needs drive the
process. A set of classes is good if it will offer excellent service to client software:
interfaces and associated implementations that are complete, free from bad surprises (such
as unexpected performance penalties), simple to use, easy to learn, easy to remember,
extendible. To achieve these goals, the designer is free to use inheritance and other object-
oriented techniques in any way he pleases.The end justifies the means.

Also remember, when designing an inheritance structure, that the goal is software
construction, not philosophy. Seldom is there a single solution, or even a best one in the
absolute. “Best” means best for the purposes of a certain class of client applications. This
is particularly true as we move away from areas such as mathematics and fundamental
computing science, where a widely accepted body of theory exists, towards business-
driven application domains. To find out what class hierarchy best addresses the notion of
company share, you probably need to know whether the software caters to individual
investors, to a publicly traded company, to a stock broker, or to the Stock Exchange.

In a way, this is comforting. The naturalist who classifies a certain set of plants and
animals must devise absolute categories. In software the equivalent only happens if you
are in the business of producing general-purpose libraries (such as those covering
fundamental data structures, graphics, databases). Most of the time, your aims will be
more modest. You will need to desigigooc hierarchy, one that will satisfy the needs of
a certain kind of client software.

The final lesson of this chapter generalizes a comment made in the discussion of
facility inheritance: the principal difficulty of building class structures is not inheritance
per se; it is the search for abstractions. If you have identified valid abstractions, their
inheritance structure will follow. To find the abstractions, the guide you will use is the
guide that we follow throughout this book: the theory of abstract data types.
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24.13 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

« Every use of inheritance should reflect some form of “is” relation between tw
categories of object, either in an external modeled domain or in the software itsel

« Do not use inheritance to model a “has this kind of component” relation; this is tt
province of the client relation. (RememtCAR_OWNE.)

¢ When inheritance is applicable, client is often potentially applicable too. If th
corresponding view can change, use the client relation; if you foresee polymorpt
uses, use inheritance.

e Do not introduce intermediate inheritance nodes unless they describe a we
identified abstraction, characterized by specific features.

* A classification of inheritance was defined, based on twelve kinds divided into thre
general categories: model inheritance (describing relations existing in the model
domain), software inheritance (describing relations in the software itself), an
variation inheritance (for class adaptation in either the model or the software).

« The power of inheritance comes from its combination of a type specialization anc
module extension mechanism. It seems neither wise nor useful to use differe
language mechanisms.

¢ Implementation and facility inheritance require some care but can be powerf
supplier-side techniques.

« View inheritance, a delicate technique involving repeated inheritance, allow
classifying object types along several competing criteria. It is useful for profession
libraries. In many cases a simpler handle technique is preferable.

« Although not theoretically ideal, the actual process of designing inheritanc
hierarchies is often yoyo-like — from the abstract to the concrete and back.

« Inheritance is primarily a supplier technique.

24.14 BIBLIOGRAPHICAL NOTES

The principal reference on the taxonomy of inheritan [Girod 1991. A book on O-O
methodolog /[Page-Jones 199, one of a very small number that provide useful
methodological advice on object-oriented design, includes precious advice on uses
misuses of inheritance. Another useful referen[McGregor 1992; John McGregor has
particularly explored the technigue called view inheritance in this chapter.

[Breu 1995 also provides interesting concepts, based on a view of prope
inheritance usage more restrictive than the one in this chapter.

A technique similar to this chapter’s “handles” is descriin [Gil 1994].

The preparation of this chapter benefited from the comments of several biologis
who maintain Web-accessible resources on the taxonomy of living beings, in particul
the “tree of life” at the University of Arizonsphylogen.arizone.edu/treellife.html),
courtesy of Professors David Maddison and, for birds, Michel Laurin (the latter fror
Berkeley). Professor EdwEverham from Radford University was also very helpful.

General references on the theory of classificatiorsystematic, appear at the end
of the next section.



864 USING INHERITANCE PROPERLY§24.15

24.15 APPENDIX: A HISTORY OF TAXONOMY

This Appendix is supplementary material, not used in the rest of this book. The study of

taxonomic efforts in other disciplines is full of potential lessons for us object-oriented software

developers. | hope to spur further interest in this fascinating area — possibly a topic for an inter-
disciplinary Master’s or Ph. D. thesis.

From Aristotle to Darwin

The classification of species began at least as early as Aristotle (384-322 B.C.E.), whose
taxonomy of animalsHistoria Animaliun, continued for plants under the titHistoria
Plantarumby his student Theophrastus of Eresos (ca. 370-288 B.C.E.), was accepted as definitive
for many centuries. Aristotle’s criteria for classifying animals include both how they reproduce
and where they live; from a modern viewpoint, only the first would be considered relevant, as we
have come to accept that regardless of habitat considerations a dolphin is closer to a llama than to
a shark. Theophrastus’s classification was more systematically structural. Modern botanical
terminology comes largely from Aristotle and Theophrastus through the Latin translation of the
latter’s terms in thiNatural History oiPliny the Elder (23-79 C.E.) (Pliny was well aware of the
need to avoid being misled by appearancit was the pla [of some Greek naturalis to
delineate the various plants in col, and then to add in writing a description of the properties
which they possess. Pictures, howeve, are very apt to misle; .... beside, it is not sufficient

to delineate a plant as it appears at one period, as it presents a different appearance at each

of the four seasons of the y.”) A later important contributor was Dioscorides of Anazarbus (1st
century C.E.), Nero’s doctor, who classified plants according to their medicinal properties.

Several scholars took up the work at the time of the Renaissance, in particular Conrad
Gessner, who was to influence Linné and Cuvier througtOpera Botanicaand Historia
Plantarunr (1541-1571), distinguishing genus from species and order from class, and Caspar
Bauhin, who devised a binomial system for the classification of plants Pinax(1596). In the
next century, John Ray (1628-1705) removed some of the arbitrariness of prevailing
classifications by taking into account several properties of plants’ morphology, rather than just
one feature. He established the basic division of flowering plants into monocots and dicots
(foreseen by Theophrastus). That division, still in use today, is another example of the fuzziness
of even some of the fundamental classification criteria of biologyUC Berkeley Museum of
Paleontology (see the bibliographical references at the end of this section) gives a list of seven
factors distinguishing monocots from dicots — ws. two cotyledons in the embryo, flower parts
in multiples of threevs. multiples of four or five, etc. — but adds that no single factor in that list
will infallibly identify a given flowering plant as a monocot or dicot.

Only in the eighteenth century, with the development of biology as a science and the fast
growth in known species, did the problem of biological classification start to acquire a character
of urgency. Whereas Theophrastus had identified five hundred plant species, Bauhin knew six
thousand, and Linnaeus catalogued eighteen thousand; less than a century later Cuvier listed over
fifty thousand! The philosopher-scientists of the Age of Enlightenment, aroused by Newton’s
classification of heavenly bodies in IPrincipia Mathematic (1687), were not content any more
to list the species, but started to look for meaningful principles of grouping them into categories
— for the proper abstraction mechanisms, as we software people would say. The roots of modern
taxonomy can be traced to that collective effort of the early modern era.

The key contributor was the Swedish botanist Carl Linné (1701-1778), also known by the
Latin name Carolus Linnaeus, who in 1737 published his taxonomic system, still the basis of all
taxonomic systems used today. One of his major innovations, was — using software engineering
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terminology again — to discard titop-dowi approach used by previous taxonomists (who
posited basic abstract categories and successively divided them into smaller groups) in favor
bottom-uj approach, well in line with the emphasis on pragmatism and experimentation tf
marked the beginnings of the scientific method; he started from the species themselves
grouped them into categories.

Both Ray and Linné were in search of a “natural system”, that is to say an ide
classification that would reveal divine intentions.

Progress between Linné and Darwin was largely due to an astonishing successior
naturalists at the ParJardin des Plante:s

e Georges-Louis de Buffon (1707-1788) wrote the magnificent 44-volHistoire
Naturelle, bold enough to suggest a common ancestry for humans and apes.

¢ Antoine-Laurent de Jussieu (1748-1836) looked for a more natural and comprehens
system of plant classification than Linné’s. Modern taxonomies of plants actually follo
from Jussieu’s work, itself based on Ray’s. (Although modern classification systems ¢
based on Linné’s ideas, his actual taxonomy has largely been discarded — initially in p
because of moral reasons, since he gave such importance to sexual features.)

» Jean-Baptiste Lamarck (1744-1829), whose theory of evolution announced Darwin
published hisFlore frangaist in 1778 and almost single-handedly originated the
classification of “invertebrates”, a term he coined. InHistoire naturelle des Animaux
sans Vertebre he was the first to separate the crustaceans from the insects.

e Georges Cuvier (1769-1832) did for vertebrates what Lamarck did for invertebrates. |
was famous for his ability to reconstruct complete organisms from fossil fragments. +
classified animals into four branches.

« Etienne Geoffroy Saint-Hilaire (1772-1844), another great taxonomist, was the advers:
of Cuvier (whom he had brought to Paris) in a famous public debate abouvs. diversity
of life forms. The dispute reflected deeper questions: evolutiovs. fixed views of
species, and the issue, still open today, of formevs. functionalism. When we see Cuvier
writing “If there are resemblances between the organs of fishes and those of the ot
vertebrate classes, it is only insofar as there are resemblances between their f” intions
1828, and Geoffroy respondiniAnimals have no habits but those that result from the
structure of their orgar” in 1829, it is hard for a software professional to avoid thinking
“abstract data type” and “implementation”.

The next revolution in taxonomical thought came with Charles Darwin (1809-1882), who
Origin of Species(1859) suggested a simple basis for taxonomy: use evolutionary history. Tt
classification of organisms according to their origin in evolution is knovcladistics. For some
biologists, this is thonly criterion. The Berkeley Museum of Paleontology again:

For many yeat, since even before Darv, it has been popular to tell “stories” about
how certain traits of organisms came tc. With cladistic, it is possible to determine
whether these stories have m, or whether they should be abandoned in favor of a
competing hypothe:. For instanc, it was long said that the orb-weaving spi¢, with
their intricate and orderly wel, had evolved from spiders with cobweb-like \. The
cladistic analysis of these spiders showed, in faci, orb-weaving was the primitive
state, and that cobweb-weaving had evolved from spiders with more orderl.; webs

Biologists who use to this single, unimpeachable criterion, are in a way more fortunate tt
us poor software modelers: they can assume, or pretend, that there is a single taxonomical t
and that the only problem is to reconstruct it. (In other words they have fulfilled Ray’s, Linné
and Jussieu’s quest for a single Natural System.) In software modeling we cannot postulate
alone discover, such an underlying truth.
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The modern scene

You would think that biological taxonomy, with its long and prestigious history, from Aristotle

to Darwin and Huxley, would by now be a sedate field. Think again. Since the sixties, controversy
has been raging. There are three main schools, the ardor of whose debates will seem thoroughly
familiar to anyone who has heard software engineers debate their favorite programming
languages. Here is — after the taxonomy of taxonomy which occupied our efforts at the beginning
of this chapter — the taxonomy of taxonomists:

* The numerical pheneticistdraw their classifications from the study of organisms’
individual characters, using numerical measures of distance (and relying generously on
computer algorithms) to group organisms that have the most characters in common. Sokal
and Sneath are recognized as the founders of this approach.

» Thecladists use evolutionary history as the sole criterion. The Berkeley extract reflected
this view (more details below). Cladistics draws its inspiration from work by the German
scientist Willi Hennig, first published in German in 1950 and in English in 1965.

» Theevolutionary taxonomis, led by G.G. Simpson and Ernst Mayr, who claim Darwin’s
direct heritage, base[their] classifications on observed similarities and differences among
groups of organisms, evaluated in the light of their inferred evolutionary h” (as stated
by Mayr, 1981, reference below).

It is next to impossible to find neutral accounts of the arguments for each approach in the
literature. (Perhaps this sounds familiar.) It falls on the outsider to try to develop an impartial
view. In this brief survey we will try to remain as close as possible to the software analogies.

Numerical phenetics — what we would call the bottom-up approach — has the advantage
of being based on precise, repeatable measures. But the choice of measured characters and their
weighting is subjective. And a purely external measure risks being influenced by chance factors;
it is well known since Darwin that evolution involves not only divergence (species evolving from
a common ancestor by developing different characters) but convergence (completely distinct
species developing similar features to adapt to similar environments or by sheer coincidence). So
there is a great danger of arbitrariness. One can also fear instability: the discovery of new species
— which occurs all the time in biology — could, more than with the other approaches, put into
guestion classifications drawn from the statistical analysis of the previously known species.

On the surface the other two schools would seem to be very close to each other. Why then
do they keep arguing with each other from their respective journals and conferences? The reason
is that the cladists are particularly rigorous, as they would see it, or dogmatic, as the other two
schools might put it. They take evolution, and evolution only, as the classification criterion. The
method is particularly strict: it examines the evolutionary history, as given by the fossil record,
and decides which characters isynapomorhicand which onesplesiomorphi. A feature is
plesiomorphic if it was already present in a common ancestor; then for the cladist it is not
interesting at all! The useful features as the synapomorphic ones, which hold for two organisms
but not their ancestors. Synapomorphies are the primary tool for positing new ctaxs, the
plural oftaxor).

In the following situation, then, the cladists will see only two taxa:
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A cladogram

After Mayr, 1961.

T
Evolutionary time

This is acladogran, or record of the appearance of characters in the evolutionary histor
The marks indicate new characteB andC have a synapomorphy, charad, which was notin
the ancestor and is not A; so for a cladisB andC will form a taxon, ancA another. For an
evolutionary taxonomist, there would be three taxa, sC differs from B in many other
charactersa to h). In its pure form cladistics is even more restrictive: like Roman Jakobson’
phonology, it only considerbinary characters; and it posits that when taxa evolve from a
common ancestor the ancestor disappears.

Evolutionary taxonomy seems a more moderate approach, trying to draw from bc
cladistics and phenetics: evolution is the classification basis, but complemented by analysi
other characters, not necessarily synapomorphic.

Why then the restrictiveness of cladistics? The principal argument is epistemological:
attempt to satisfy Karl Popper’s rules of falsifiability. Cladists argue that their approach is tl
only non-circular one; whereas the other two more or less assume (according to this vi
what they are trying to deduce, a cladistic hypothesis can be refuted, in the same way th
single experiment can disprove a theory of physics, although no amount of experimentat
will prove a theory.

The debate between these approaches is not closed. The progress of molecular biology
certainly affect it; in particular, by providing a link between observed characters and tl
evolutionary record, it may help achieve some reconciliation between phenetics and the of
two methods.

We will stop here, with regret (more mundane software engineering topics are claiming ¢
attention). For an O-O software developer, reading the taxonomy literature, although requirin
fair deal of attention in some caseA phylogenetic definition of homology may be considered
more falsifiable than a phenetic definition and therefore preferable if it leads to a hypothesis
homology which includes all the potential falsifiers provided by phenetic comparisons as well
the potential falsifiers provided by phylog...”) is rich in rewards. Our own work constantly
subjects us, like our friends from the Biology department or the Herbarium, to two siren sor
from opposite sides: the a priori form of classification, top-down, deductive and based or
“natural” order of things, coming to us through the cladists from Linné; and the empirice
inductive, bottom-up view of the pheneticists, telling us to observe and gather. Perhaps, like
evolutionary taxonomists, we will \nt a bit ofboth.
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Bibliography on taxonomy

The following references — which have been separated from the main bibliography of this book
to avoid too muctmélange des genre— will be useful as a starting point on the subject of
taxonomy history:

« The on-line material on evolution at the University of California Museum of Paleontology
in Berkeley:http://www.ucmp.berkeley.edu/clad/clad4.htm (authors: Allen G. Collins,
Robert Guralnick, Brian R. Speer). Resolutely cladist. Some of the above presentation
draws from the UCMP pages and from suggestions by their authors.

* A biography of JussielAntoine-Laurent de Jussi, Nature and the Natural Systeby
Peter F. Stevens, Columbia University Press, New York, 1994. (I am grateful to Prof.
Stevens for several important suggestions.)

« A collection of papers on cladisticCladistic Theory and Methodolo, edited by Thomas
Duncan and Tod F. Stuessy, Van Nostrand Reinhold, 1985. Quite cladist, but the end of the
volume adds some interesting critical articles, one in particular by Ernst [Cladistic
analysis or cladistic classificatio?, pages 304-308, originally iZeitung Zool. Syst.
Evolut.-Forsctk, 19:94-128, 1974).

¢ Another volume of contributionsProspects in Systemat, ed. D.L. Hawksworth,
Systematics Association, Clarendon Press, Oxford, 1988.

* A textbook: Biological Systematic by Herbert H. Ross, Addison-Wesley, Reading
(Mass.), 1973.

» The founding book of cladisticsPhylogenetic Systemat by Willi Hennig, English
translation, University of lllinois Press, Urbana (lll.), 1966. See also a shorter presentation
by Hennig (adapted from his original 1950 article) in Duncan and Stuessy.

« A cladistic treatise, starting with the picture of HenrPhylogenetics — The Theory
and Practice of Phylogenetic Systeme by E.O. Wiley, published by John Wiley and
Sons, New York, 1981. By the same author, a Popperian argument for claKarlcs,

R. Popper, Systematics, and Classification: A Reply to Walter Bock and Other
Evolutionary Taxonomis, pages 37-47 of Duncan and Stuessy, originalSyst. Zool
24:233-243, 1975.

e A clear article by Ernst Mayr, leaning to evolutionary taxonomy but discussing the other
approaches with some sympatfBiological Classification: Towards a Synthesis of
Opposing Methodologi, in Scienc, vol. 214, 1961, pages 510-516.

» The foundational text of the pheneticisPrinciples of Numerical Taxonor, by Robert
P. Sokal and Peter H.A. Sneath, Freeman Publishing, San Francisco, 1963, revised
editior 1973.

« A short and more recent book advocafTransformed Cladistic (subtitle:Taxonomy and
Evolutior) by N.R. Scott-Ram, Cambridge University ss, 1990.
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EXERCISES

E24.1 Arrayed stacks

Write in full the STACF class and its helARRAYED STAC sketched in this chapter,
using the “marriage of convenience” technique.

E24.2 Meta-taxonomy

See‘General taxon- Imagine this chapter’s classification of the forms of inheritance were an inheritan
omy”, page 824 hjerarchy. What kind or kinds would it involve?

E24.3 The stacks of Hanoi

The Towers of Hanoi(This exercise comes from an example used by Philippe Drix on the French GL

problen, used in ~ g|actronic mailing list, late 1995 and early 1996.)
many computing sci-

elncefteth asanexam-  Assume a deferred claSTACK with a procedurqui to push an element onto the
Er%geéﬁﬁug‘rfes top, with a precondition involving the boolean-valued funcfull (which could also be
from Edouard Lucs,s calledextendibl; as you study the exercise you will note that the choice of name me

“Récréations Mathé- affect the appeal of various possible solutions).
matiques’, Paris, . B )
188, reprinted by Now consider the famous problem of the Towers of Hanoi, where disks are stack

ﬁ'bf?ftgf?l?mafh on piles — the towers — with the rule that a disk may only be put on a larger disk.
aris, <

Is it appropriate to define the cltHANOI_STACI, representing such piles, as an heir
to STACK? If so, how should the class be written? If not, HANOI_STACKstill make
use of STACK? Write the class in full for the various possible solutions; discuss the prc
and cons of each, state which one you prefer, and explain the rationale for your choice

E24.4 Are polygons lists?

“POLYGONS AND ; : ot ; ; ;
RECTANGLES”, The implementation of our first inheritance example, cPOLYGOW, uses a linked list

141, page 460 attributeverticesto represent the vertices of a polygon. Sh(®?OLY GOl instead inherit
from LINKED_LIST[POINT]?

E24.5 Functional variation inheritance

Provide one or more examples of functional variation inheritance. For each of the
discuss whether they are legitimate applications of the Open-Closed principle or examy
of what the discussion called “organized hacking”.

E24.6 Classification examples
For each of the following cases, indicate which one of the inheritance kinds applies:

* SEGMEN"from OPEN_FIGURE:

« COMPARABLI (objects equipped with a total order relation) inheriting from

"ADVANCED PART COMPARABL (objects with a partial order relation).
EXCEPTION HAN-

DLING", 12.6, page ¢ Some class frorEXCEPTION:3
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E24.7 Where do iterators belong?

Would it be a good idea to have iterator featuwhile dc and the like) included in
classes describing the data structures on which they iterate, sLIST? Consider the
following points:

* The ease of applying iterations to arbitriaction andtestroutines, chosen by the
application.

» Extendibility: the possibility of adding new iteration schemes to the library.
* More generally, respect of object-oriented principles, in particular the idea that
operations do not exist by themselves but only in relation to certain data abstractions.

E24.8 Module and type inheritance

Assume we devise a language with two kinds of inheritance: module extension and
subtyping. Where would each of the inheritance kinds identified in this chapter fit?

E24.9 Inheritance and polymorphism

Of the kinds of inheritance reviewed in this chapter between a pA and an heiB,
which ones do you expect in practice to be used for polymorphic attachment, that is to say
assignmentx :=y or the corresponding argument passing x of typeA andy of typeB?
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