
26
A sense of style
ils of

object-
miss

 not
 that
hould
rious

s text
ering
rmal
uld be
 issues
th the

 first
se a
every

tart by
 care
I mplementing the object-oriented method requires paying attention to many deta
style, which a less ambitious approach might consider trifles.

26.1 COSMETICS MATTERS!

Although the rules appearing hereafter are not as fundamental as the principles of
oriented software construction covered in earlier chapters, it would be foolish to dis
them as just “cosmetics”. Good software is good in the large and in the small, in its high-
level architecture and in its low-level details. True, quality in the details does
guarantee quality of the whole; but sloppiness in the details usually indicates
something more serious is wrong too. (If you cannot get the cosmetics right, why s
your customers believe that you can master the truly difficult aspects?) A se
engineering process requires doing everything right: the grandiose and the mundane.

So you should not neglect the relevance of such seemingly humble details a
layout and choice of names. True, it may seem surprising to move on, without low
our level of attention, from the mathematical notion of sufficient completeness in fo
specifications (in the chapter on abstract data types) to whether a semicolon sho
preceded by a space (in the present chapter). The explanation is simply that both
deserve our care, in the same way that when you write quality O-O software bo
design and the realization will require your attention.

We can take a cue from the notion of style in its literary sense. Although the
determinant of good writing is the author’s basic ability to tell a story and devi
coherent structure, no text is successful until everything works: every paragraph,
sentence and every word.

Applying the rules in practice

Some of the rules of this chapter can be checked or, better yet, enforced from the s
software tools. Tools will not do everything, however, and there is no substitute for
in writing every piece of the software.

A SENSE OF STYLE§26.1876

ings
how
 you

f the
n to

ere is
 who

ou to
 layout.

ming
en the
ges

s of
s are

ests;

ike
never
le; for
 not

n
s to
as the
ving
ll the
ature

s of a

r own
erated
.

er the
ascal,
 of a
There is often a temptation to postpone the application of the rules, writing th
casually at first and thinking “I will clean up everything later on; I do not even know
much of this will eventually be discarded”. This is not the recommended way. Once
get used to the rules, they do not add any significant delay to the initial writing o
software; even without special tools, it is always more costly to fix the text later tha
write it properly from the start. And given the pressure on software developers, th
ever a risk that you will forget or not find the time to clean things up. Then someone
is asked later to take up your work will waste more time than it would have cost y
write the proper header comments, devise the right feature names, apply the proper
That someone may be you.

Terseness and explicitness

Software styles have oscillated between the terse and the verbose. In program
languages, the two extremes are perhaps APL and Cobol. The contrast betwe
Fortran-C-C++ line and the Algol-Pascal-Ada tradition — not just the langua
themselves, but the styles they have bred — is almost as stark.

What matters for us is clarity and, more generally, quality. Extreme form
terseness and verbosity can both work against these goals. Cryptic C program
unfortunately not limited to the famous “obfuscated C” and “Obfuscated C++” cont
but the almost equally famous DIVIDE DAYS BY 7 GIVING WEEKS of Cobol is a waste
of everyone’s attention.

The style that follows from this chapter’s rules is a particular mix of Algol-l
explicitness (although not, it is hoped, verbosity) and telegram-style terseness. It
begrudges keystrokes, even lines, when they truly help make the software readab
example, you will find rules that enjoin using clear identifiers based on full words,
abbreviations, as it is foolish to save a few letters by calling a feature disp (ambiguous)
rather than display (clear and precise), or a class ACCNT (unpronounceable) rather tha
ACCOUNT. There is no tax on keystrokes. But at the same time when it come
eliminating waste and unneeded redundancies the rules below are as pitiless
recommendations of a General Accounting Office Special Commission on Impro
Government. They limit header comments to indispensable words, getting rid of a
non-essential “the” and other such amenities; they proscribe over-qualification of fe
names (as in account_balance in a class ACCOUNT, where balance is perfectly
sufficient); against dominant mores, they permit the grouping of related component
complex construct on a single line, as in from i := 1 invariant i <= n until i = n loop; and
so on.

This combination of terseness and explicitness is what you should seek in you
texts. Do not waste space, as exaggerated size will in the end mean exagg
complexity; but do not hesitate to use space when it is necessary to enhance clarity

Also remember, if like many people you are concerned about how much small
text of an object-oriented implementation will be than the text of a comparable C, P
Ada or Fortran program, that the only interesting answer will appear at the level

§26.1 COSMETICS MATTERS! 877

el of
t the
ughly,
E’s
 being
iented
” level

ated
neric

f that
guage

tions.

calls.

 error

ectural
trokes

lude
 may
t two

ersal
ter’s
bt as a

 well,
 the
ses the
same

s, you
 but
biding
lasses
significant system or subsystem. If you express a basic algorithm — at the lev
Quicksort, say, or Euclid’s algorithm — in C and in the notation of this book, expec
O-O version to be at least as large. In many cases, if you apply the principles thoro
it will be larger, since it will include assertions and more type information. Yet in IS
experience of looking at medium-scale systems we have sometimes found (without
able to give a general law, as the circumstances vary considerably) the object-or
solution to be several times smaller. Why? This is not due to terseness at the “micro
but to systemwide application of the architectural techniques of the O-O method:

• Genericity is one of the key factors. We have found C programs that repe
essentially the same C code many times to handle different types. With a ge
class — or for that matter a generic Ada package — you immediately get rid o
redundancy. It is disturbing in this respect to see that Java, a recent O-O lan
based on C, does not support genericity.

• Inheritance is also fundamental in gathering commonalities and removing duplica

• Dynamic binding replaces many complex decision structures by much shorter

• Assertions and the associated idea of Design by Contract avoid redundant
checking, a principal source of bloat.

• The exception mechanism gets rid of some error code.

If you are concerned with source size, make sure to concentrate on these archit
aspects. You should also be terse in expressing algorithms, but never skimp on keys
at the expense of clarity.

The role of convention

Most rules define a single permissible form, with no variants. The few exceptions inc
font use, which is governed by external considerations (what looks good in a book
not be visible on overhead transparencies), and semicolons, for which there exis
opposite schools with equally forceful arguments (although we will have a few univ
rules anyway). In all other cases, in line with the introductory methodology chap
exhortations against wishy-washiness, the rules leave about as much room to dou
past due reminder from the Internal Revenue Service.

The rules are rooted in a careful analysis of what works and what works less
resulting from many years of observation; some of the rationale will appear in
discussion. Even so, some rules may appear arbitrary at first, and indeed in a few ca
decision is a matter of taste, so that reasonable persons working from the
assumptions may disagree. If you object to one of the recommended convention
should define your own, provided you explain it in detail and document it explicitly;
do think carefully before making such a decision, so obvious are the advantages of a
by a universal set of rules that have been systematically applied to thousands of c
over more than ten years, and that many people know and understand.

A SENSE OF STYLE§26.1878

les),
 way
re is

 been
should
rity of
bject-

re text
le by

urce on
ing the

yrus
s, and
n it is.

d will
 few

texts

rounds
pers
cing
ritten.

unded
flect
plied
etimes
ehm:

ut
”).

The comment was in
the introduction to
chapter 23.

Sentence in italics
from D.H. Brandon,
“Data Processing
Organization and
Manpower Planning”,
Petrocelli, 1974,
emphasis in original.
Quoted in [Boehm
1981], p. 674.
As noted in an earlier chapter (in the more general context of design princip
many of the style rules were originally developed for libraries, and then found their
into ordinary software development. In object technology, of course, all softwa
developed under the assumption that even if it is not reusable yet it might eventually be
made reusable, so it is natural to apply the same style rules right from the start.

Self-practice

Like the design rules of the preceding chapters, the style rules which follow have
carefully applied to the many examples of this book. The reasons are obvious: one
practice what one preaches; and, more fundamentally, the rules do support cla
thought and expression, which can only be good for a detailed presentation of the o
oriented method.

The only exceptions are a few occasional departures from the rules on softwa
layout. These rules do not hesitate to spread texts over many lines, for examp
requiring that every assertion clause have its own label. Lines are not a scarce reso
computer screens; it has been observed that with the computer age we are revers
direction of the next-to-last revolution in written communication, the switch from pap
rolls to page-structured books. But this text is definitely a book, structured into page
a constant application of the layout-related rules would have made it even bigger tha

The cases of self-dispensation affect only two or three layout-related rules, an
be noted in their presentation below. Any exception only occurs after the first
examples of a construct in the book have applied the rules scrupulously.

Such exceptions are only justified for a paper presentation. Actual software
should apply the rules literally.

Discipline and creativity

It would be a mistake to protest against the rules of this chapter (and others) on the g
that they limit developer creativity. A consistent style favors rather than ham
creativity by channeling it to where it matters. A large part of the effort of produ
software is spent reading existing software and making others read what is being w
Individual vagaries benefit no one; common conventions help everyone.

Some of the software engineering literature of the nineteen-seventies propo
the idea of “egoless programming”: developing software so that it does not re
anything of its authors’ personality, thereby making developers interchangeable. Ap
to system design, this goal is clearly undesirable, even if some managers may som
long for it (as in this extract of a programming management book quoted by Barry Bo
“…the programmer[‘s] creative instincts should be totally dulled to insure uniform and
understandable programming”, to which Boehm comments: “Given what we know abo
programmers and their growth motivation, such advice is a clear recipe for disaster

What quality software requires is egoful design with egoless expression.

§26.2 CHOOSING THE RIGHT NAMES 879

rrent
other
road

ware

es, in

s the

 such

ition, a

ected

 is not
n class
describe

o or

mes
More than style standards, what would seem to require justification is the cu
situation of software development, with its almost total lack of style standards. In no
discipline that demands to be called “engineering” is there such room for such b
personal variations of whim and fancy. To become more professional, soft
development needs to regulate itself.

26.2 CHOOSING THE RIGHT NAMES

The first aspect that we need to regulate is the choice of names. Feature nam
particular, will be strictly controlled for everyone’s benefit.

General rules

What matters most is the names of classes and features which will be used extensively by
the authors of classes that rely on yours.

For feature and class names, use full words, not abbreviations, unles
abbreviations are widely accepted in the application domain. In a class PART describing
parts in an inventory control system, call number, not num, the feature (query) giving the
part number. Typing is cheap; software maintenance is expensive. An abbreviation
as usa in a Geographical Information System or copter in a flight control system, having
gained an independent status as a word of its own, is of course acceptable. In add
few standard abbreviations have gained recognition over the years, such as PART for
PARTIAL in class names such as PART_COMPARABLE describing objects equipped with
a partial order relation.

In choosing names, aim for clarity. Do not hesitate to use several words conn
by underscores, as in ANNUAL_RATE, a class name, or yearly_premium, a feature name.

Although modern languages do not place any limit on the length of identifiers, and
treat all letters as significant, name length should remain reasonable. Here the rule
the same for classes and for features. Class names are input only occasionally (i
headers, type declarations, inheritance clauses and a few other cases) and should
an abstraction as completely as possible, so PRODUCT_QUANTITY_INDEX_
EVALUATOR may be fine. For features, there is seldom a need for more than tw
possibly three underscore-connected words. In particular, do not overqualify feature
names. If a feature name appears too long, it is usually because it is overqualified:

The feature giving the part number in class PART should be called just number, not
part_number. Such over-qualification is a typical beginner’s mistake; the resulting na

Composite Feature Name rule

Do not include in a feature name the name of the underlying data
abstraction (which should serve as the class name).

A SENSE OF STYLE§26.2880

e will

d also
r and

e
yptic

stance
may for

e
ame,

yle of

entities
ocative.
ility by
tities

he
obscure rather than illuminate the text. Remember that every use of the featur
unambiguously indicate the class, as in part1● number where part1 must have been
declared with a certain type, PART or a descendant.

For composite names, it is better to avoid the style, popularized by Smalltalk an
used in such libraries as the X Window System, of joining several words togethe
starting the internal ones with an upper-case letter, as in yearlyPremium. Instead, separate
components with underscores, as in yearly_ premium. The use of internal upper-cas
letters is ugly; it conflicts with the conventions of ordinary language; and it leads to cr
names, hence to possible errors (compare aLongAndRatherUnreadableIdentifier with
an_even_longer_but_perfectly_clear_choice_of_name).

Sometimes, every instance of a certain class contains a field representing an in
of another class. This suggests using the class name also as attribute name. You
example have defined a class RATE and, in class ACCOUNT, need one attribute of type
RATE, for which it seems natural to use the name rate — in lower case, according to th
rules on letter case stated below. Although you should try to find a more specific n
you may, if this fails, just declare the feature as rate: RATE. The rules on identifier choice
explicitly permit assigning the same name to a feature and a class. Avoid the st
prefixing the name with the, as in the_rate, which only adds noise.

Local entities and routine arguments

The emphasis on clear, spelled-out names applies to features and classes. Local
and arguments of a routine only have a local scope, so they do not need to be as ev
Names that carry too much meaning might almost decrease the software’s readab
giving undue weight to ancillary elements. So it is appropriate to declare local en
(here in routines of TWO_WAY_LIST in the Base libraries) as

move (i: INTEGER) is
-- Move cursor i positions, or after if i is too large.

local
c: CURSOR; counter: INTEGER; p: like FIRST_ELEMENT

…

remove is
-- Remove current item; move cursor to right neighbor (of after if none).

local
succ, pred, removed: like first_element

…

If succ and pred had been features they would have been called successor and
predecessor. It is also common to use the names new for a local entity representing a new
object to be created by a routine, and other for an argument representing an object of t
same type as the current one, as in the declaration for clone in GENERAL:

frozen clone (other: GENERAL): like other is…

§26.2 CHOOSING THE RIGHT NAMES 881

most
help

tities

case:

r non-

h two
n

rs are
nglish,

un, as

jective

le:

sibly

rbs;
e

ns
r

The example of i
was on page 648.

See the Class Nam
rule on page 727.
Letter case

Letter case is not significant in our notation, as it is too dangerous to let two al
identical identifiers denote different things. But strongly recommended guidelines
make class texts consistent and readable:

• Class names appear in all upper case: POINT, LINKED_LIST, PRICING_MODEL.
Formal generic parameters too, usually with just one letter: G.

• Names of non-constant attributes, routines other than once functions, local en
and routine arguments appear in all lower case: balance, deposit, succ, i.

• Constant attributes have their first letter in upper case and the rest in lower
Pi: INTEGER is 3.1415926524; Welcome_message: STRING is "Welcome!" . This
applies to unique values, which are constant integers.

• The same convention applies to once functions, the equivalent of constants fo
basic types: Error_window, Io. Our first example, the complex number i, remained
in lower case for compatibility with mathematical conventions.

This takes care of developer-chosen names. For reserved words, we distinguis
categories. Keywords such as do and class play a strictly syntactic role; they are writte
in lower case, and will appear in boldface (see below) in printed texts. A few reserved
words are not keywords because they carry an associated semantics; written with an initial
upper case since they are similar to constants, they include Current, Result, Precursor,
True and False.

Grammatical categories

Precise rules also govern the grammatical category of the words from which identifie
derived. In some languages, these rules can be applied without any hesitation; in E
as noted in an earlier chapter, they will leave more flexibility.

The rule for class names has already been given: you should always use a no
in ACCOUNT, possibly qualified as in LONG_TERM_SAVINGS_ACCOUNT, except for
the case of deferred classes describing a structural property, which may use an ad
as in NUMERIC or REDEEMABLE.

Routine names should faithfully reflect the Command-Query separation princip

• Procedures (commands) should be verbs in the infinitive or imperative, pos
with complements: make, move, deposit, set_color.

• Attributes and functions (queries) should never be imperative or infinitive ve
never call a query get_value, but just value. Non-boolean query names should b
nouns, such as number, possibly qualified as in last_month_balance. Boolean
queries should use adjectives, as in full. In English, because of possible confusio
between adjectives and verbs (empty, for example, could mean “is this empty?” o

e

A SENSE OF STYLE§26.2882

ch as

 insert
ment

lass, it

s, for
on-

Standard
command
names

Standard
names for non-
boolean
queries
“empty this!”), a frequent convention for boolean queries is the is_ form, as in is_
empty.

Standard names

You will have noted, throughout this book, the recurrence of a few basic names, su
put and item. They are an important part of the method.

Many classes will need features representing operations of a few basic kinds:
an element into a structure, replace the value of an element, access a designated ele…
Rather than devising specific names for the variants of these operations in every c
is preferable to apply a standard terminology throughout.

Here are the principal standard names. We can start with creation procedure
which the recommended is make for the most common creation procedure of a class. N
vanilla creation procedures may be called make_some_qualification, for example make_
polar and make_cartesian for a POINT or COMPLEX class.

For commands the most common names are:

For non-boolean queries (attributes or functions):

extend Add an element.

replace Replace an element.

force Like put but may work in more cases; for example put
for arrays has a precondition to require the index to be
within bounds, but force has no precondition and will
resize the array if necessary.

remove Remove an (unspecified) element.

prune Remove a specific element.

wipe_out Remove all elements.

item The basic query for accessing an element: in ARRAY,
the element at a given index; in STACK classes, the
stack top; in QUEUE classes, the oldest element; and so
on.

infix "@" A synonym for item in a few cases, notably ARRAY.

count Number of usable elements in a structure.

capacity Physical size allocated to a bounded structure, measured
in number of potential elements. The invariant should
include 0 <= count and count <= capacity.

§26.2 CHOOSING THE RIGHT NAMES 883

tions

 to the

ould
t. For
ent

 and
r can

ry).

.

Standard
names for
boolean
queries
For boolean queries:

A few name choices which may seem strange at first are justified by considera
of clarity and consistency. For example prune goes with prunable and extend with
extendible; delete and add might seem more natural, but then s●deletable and s● addable
would carry the wrong connotation, since the question is not whether s can be deleted or
added but whether we can add elements to it or delete elements from it. The verbsprune
and extend, with the associated queries, convey the intended meaning.

The benefits of consistent naming

The set of names sketched above is one of the elements that most visibly contribute
distinctive style of software construction developed from the principles of this book.

Is the concern for consistency going too far? One could fear that confusion c
result from routines that bear the same name but internally do something differen
example item for a stack will return the top element, and for an array will return an elem
corresponding to the index specified by the client.

With a systematic approach to O-O software construction, using static typing
Design by Contract, this fear is not justified. To learn about a feature, a client autho
rely on four kinds of property, all present in the short form of the enclosing class:

F1 • Its name.

F2 • Its signature (number and type of arguments if a routine, type of result if a que

F3 • Its precondition and postcondition if any.

F4 • Its header comment.

A routine also has a body, but that is not part of what client authors are supposed to use

empty Is the structure devoid of elements?

full Is there no more room in the representation to add
elements? (Normally the same as count = capacity.)

has Is a certain element present? (The basic membership
test.)

extendible Can an element be added? (May serve as a precondition
to extend.)

prunable Can an element be removed? (May serve as a
precondition to remove and prune.)

readable Is there an accessible element? (May serve as
precondition to item and remove.)

writable Is it possible to change an element? (May variously
serve as precondition to extend, replace, put etc.)

A SENSE OF STYLE§26.3884

mple

t); the
nts are
ion
nism.

ethod
 new
 in on

ook,
hould
Three of these elements will differ for the variants of a basic operation. For exa
in the short form of class STACK you may find the feature

put (x: G)

-- Push x on top.

require
writable: not full

ensure
not_empty: not empty

pushed: item = x

whereas its namesake will appear in ARRAY as

put (x: G; i: INTEGER)
-- Replace by x the entry of index i

require
not_too_small: i >= lower

not_too_large: i <= upper

ensure
replaced: item (i) = x

The signatures are different (one variant takes an index, the other does no
preconditions are different; the postconditions are different; and the header comme
different. Using the same name put, far from creating confusion, draws the reader’s attent
to the common role of these routines: both provide the basic element change mecha

This consistency has turned out to be one of the most attractive aspects of the m
and in particular of the libraries. New users take to it quickly; then, when exploring a
class which follows the standard style, they feel immediately at home and can zero
the features that they need.

26.3 USING CONSTANTS

Many algorithms will rely on constants. As was noted in an early chapter of this b
constants are widely known for the detestable practice of changing their values; we s
prepare ourselves against the consequences of such fickleness.

Manifest and symbolic constants

The basic rule is that uses of constants should not explicitly rely on the value:

Symbolic Constant principle

Do not use a manifest constant, other than the zero elements of basic
operations, in any construct other than a symbolic constant declaration.

§26.3 USING CONSTANTS 885

s
g

 in the
s:

 to be

f
 the

ould
 of its
etimes

mple
t

cation

nts
n it is
tring
, after
or the
rk if

in the
In this principle, a manifest constant is a constant given explicitly by its value, a
in 50 (integer constant) or "Cannot find file" (string constant). The principle bars usin
instructions of the form

population_array●make (1, 50)

or

print ("Cannot find file") -- See mitigating comment below about this case

Instead, you should declare the corresponding constant attributes, and then,
bodies of the routines that need the values, denote them through the attribute name

US_state_count: INTEGER is 50
File_not_found: STRING is "Cannot find file"
…
population_array●make (1, state_count)
…
print (file_not_found)

The advantage is obvious: if a new state is added, or the message needs
changed, you have only have to update one easy-to-locate declaration.

The use of 1 together with state_count in the first instruction is not a violation of the
principle, since its prohibition applies to manifest constants “other than zero elements o
basic operations”. These zero elements, which you may use in manifest form, include
integers 0 and 1 (zero elements of addition and multiplication), the real number 0.0, the
null character written '%0', the empty string " ". Using a symbolic constant One every time
you need to refer to the lower bound of an array (1 using the default convention) w
lead to an unsustainable style — pedantic, and in fact less readable because
verbosity. Sometimes, Freud is supposed to have said, a cigar is just a cigar; som
One is just 1.

Some other times 1 is just a system parameter that happens to have the value one today
but could become 4,652 later — its role as addition’s zero element being irrelevant. Then
it should be declared as a symbolic constant, as in Processor_count: INTEGER is 1 in a
system that supports multiple processors and is initially applied to one processor.

The Symbolic Constant principle may be judged too harsh in the case of si
manifest strings used just once, such as "Cannot find file" above. Some readers may wan
to add this case to the exception already stated in the principle (replacing the qualifi
by “other than manifest string constants used only once in the same class, and zero
elements of basic operations”). This book has indeed employed a few manifest consta
in simple examples. Such a relaxation of the rule is acceptable, but in the long ru
probably preferable to stick to the rule as originally given even if the result for s
constants looks a little pedantic at times. One of the principal uses of string constants
all, is for messages to be output to users; when a successful system initially written f
home market undergoes internationalization, it will be that much less translation wo
all the user-visible message strings (at least any of them that actually appear
software text) have been put in symbolic constant declarations.

A SENSE OF STYLE§26.4886

bably
umeric

 serve
r to use

et and

of the
eader
exing

ng a

rms:

at the

 style
rove

See “ Facility inher-
itance”, page 832.
Where to put constant declarations

If you need more than a handful of local constant attributes in a class, you have pro
uncovered a data abstraction — a certain concept characterized by a number of n
or character parameters.

It is desirable, then, to group the constant declarations into a class, which can
as ancestor to any class needing the constants (although some O-O designers prefe
the client relation in this case). An example in the Base libraries is the class ASCII, which
declares constant attributes for the different characters in the ASCII character s
associated properties.

26.4 HEADER COMMENTS AND INDEXING CLAUSES

Although the formal elements of a class text should give as much as possible
information about a class, they must be accompanied by informal explanations. H
comments of routines and feature clause answer this need together with the ind
clause of each class.

Routine header comments: an exercise in corporate downsizing

Like those New York street signs that read “Don’t even think of parking here!”, the sign
at the entrance of your software department should warn “Don’t even think of writi
routine without a header comment”. The header comment, coming just after the is for a
routine, expresses its purpose concisely; it will be kept by the short and flat-short fo

distance_to_origin: REAL is

-- Distance to point (0, 0)

local

origin: POINT

do

!! origin

Result:= distance (origin)

end

Note the indentation: one step further than the start of the routine body, so th
comment stands out.

Header comments should be informative, clear, and terse. They have a whole
of their own, which we can learn by looking at an initially imperfect example and imp
it step by step. In a class CIRCLE we might start with

§26.4 HEADER COMMENTS AND INDEXING CLAUSES 887

t

hould
s
query
what

eriod

mber

tine’s
e
 and

mon

e
mple

pes,
 —
em in

on’s

urse,

Warning: not the
recommended styl
for header com-
ments!

Not the recom-
mended style.

Not yet…

Still not it…

Almost there, but
not quite…
tangent_from (p: POINT): LINE is
-- Return the tangent line to the current circle going through the poinp,

-- if the point is outside of the current circle.

require
outside_circle: not has (p)

…

There are many things wrong here. First, the comment for a query, as here, s
not start with “Return the…” or “Compute the…”, or in general use a verbal form; thi
would go against the Command-Query Separation principle. Simply name what the
returns, typically using a qualified noun for a non-boolean query (we will see below
to use for a boolean query and a command). Here we get:

-- The tangent line to the current circle going through the point p,

-- if the point p is outside of the current circle

Since the comment is not a sentence but simply a qualified noun, the final p
disappears. Next we can get rid of the auxiliary words, especially the, where they are not
required for understandability. Telegram-like style is desirable for comments. (Reme
that readers in search of literary frills can always choose Proust novels instead.)

--Tangent line to current circle from point p,

-- if point p is outside current circle

The next mistake is to have included, in the second line, the condition for the rou
applicability; the precondition, not has (p), which will be retained in the short form wher
it appears just after the header comment, expresses this condition clearly
unambiguously. There is no need to paraphrase it: this could lead to confusion, if the
informal phrasing seems to contradict the formal precondition, or even to errors (a com
oversight is a precondition of the form x >= 0 with a comment stating “applicable only to
positive x”, rather than “non-negative”); and there is always a risk that during th
software’s evolution the precondition will be updated but not the comment. Our exa
becomes:

-- Tangent line to current circle from point p.

Yet another mistake is to have used the words line to refer to the result and point to
refer to the argument: this information is immediately obvious from the declared ty
LINE and POINT. With a typed notation we can rely on the formal type declarations
which again will appear in the short form — to express such properties; repeating th
the informal text brings nothing. So:

-- Tangent to current circle from p.

The mistakes of repeating type information and of duplicating the preconditi
requirements point to the same general rule: in writing header comments, assume the
reader is competent in the fundamentals of the technology; do not include information that
is obvious from the immediately adjacent short form text. This does not mean, of co

e

A SENSE OF STYLE§26.4888

g such
the
bject
y to the

ould
s hard

 “
 it

hould
ers.
lways

s —
 (more
en an
 then:

en

ld be
form
 line

This is it.
that you should never specify a type; the earlier example, -- Distance to point (0,0), could
be ambiguous without the word point.

When you need to refer to the current object represented by a class, use phrasin
as current circle, current number and so on as above, rather than referring explicitly to
entity Current. In many cases, however, you can avoid mentioning the current o
altogether, since it is clear to everyone who can read a class text that features appl
current object. Here, for example, we just need

-- Tangent from p.

At this stage — three words, starting from twenty-two, an 87% reduction that w
make the toughest Wall Street exponent of corporate downsizing jealous — it seem
to get terser and we can leave our comment alone.

A few more general guidelines. We have noted the uselessness of “Return the …” in
queries; other noise words and phrases to be avoided in routines of all kinds includeThis
routine computes…”, “ This routine returns…”; just say what the routine does, not that
does it. Instead of

-- This routine records the last outgoing call.

write

-- Record outgoing call.

As illustrated by this example, header comments for commands (procedures) s
be in the imperative or infinitive (the same in English), in the style of marching ord
They should end with a period. For boolean-valued queries, the comment should a
be in the form of a question, terminated by a question mark:

has (v: G): BOOLEAN is

-- Does v appear in list?

…

A convention governs the use of software entities — attributes, argument
appearing in comments. In typeset texts such as the above they will appear in italics
on font conventions below); in the source text they should always appear betwe
opening quote (“backquote”) and a closing quote; the original text for the example is

-- Does ‘v’ appear in list?

Tools such as the short class abstracter will recognize this convention wh
generating typeset output. Note that the two quotes should be different: ‘v’ , not ’v’ .

Be consistent. If a function of a class has the comment Length of string, a routine of
the same class should not say Update width of string if it affects the same property.

All these guidelines apply to routines. Because an exported attribute shou
externally indistinguishable from argumentless functions — remember the Uni
Access principle — it should also have a comment, which will appear on the
following the attribute’s declaration, with the same indentation as for functions:

§26.4 HEADER COMMENTS AND INDEXING CLAUSES 889

res to
cept
 is that
 as the
ader

 for the
. The

).

 a user-

“ Operands and
options”, page 766.
count: INTEGER
-- Number of students in course

For secret attributes a comment is desirable too but the rule is less strict.

Feature clause header comments

As you will remember, a class may have any number of feature clauses:

indexing
…

class LINKED_LIST [G] inherit … creation
…

feature -- Initialization
make is …

feature -- Access
item: G is …
…

feature -- Status report
before: BOOLEAN is …
…

feature -- Status setting
…

feature -- Element change
put_left (v: G) is …
…

feature -- Removal
remove is …
…

feature { NONE} -- Implementation
first_element: LINKABLE [G].
…

end -- class LINKED_LIST

One of the purposes of having several feature clauses is to allow different featu
have different export privileges; in this example everything is generally available ex
the secret features in the last clause. But another consequence of this convention
you could, and should, group features by categories. A comment on the same line
keyword feature should characterize the category. Such comments are, like he
comments of routines, recognized an preserved by documentation tools such as short.

Eighteen categories and the corresponding comments have been standardized
Base libraries, so that every feature (out of about 2000 in all) belongs to one of them
example above illustrates some of the most important categories. Status report corresponds
to options (set by features in the Status setting category, not included in the example
Secret and selectively exported features appear in the Implementation category. These
standard categories always appear in the same order, which the tools know (through

A SENSE OF STYLE§26.4890

 tools

 areas

ing at

s led
f the

n the

t
r which

r
ving it
ftware

sible
en used
 entry

n of
ples

Indexing clauses
were previewed in
“ A note about com-
ponent indexing”,
page 78.

“ Self-Documenta-
tion”, page 54.

More details in
[M 1994a].
editable list) and will preserve or reinstate in their output. Within each category, the
list the features alphabetically for ease of retrieval.

The categories cover a wide range of application domains, although for special
you may need to add your own categories.

Indexing clauses

Similar to header comments but slightly more formal are indexing clauses, appear
the beginning of a class:

indexing

description: "Sequential lists, in chained representation"

names: "Sequence", "List"

contents: GENERIC

representation: chained

date: "$Date: 96/10/20 12:21:03 $"

revision: "$Revision: 2.4$"

…
class LINKED_LIST [G] inherit

…

Indexing clauses proceed from the same Self-Documentation principle that ha
to built-in assertions and header comments: include as much as possible o
documentation in the software itself. For properties that do not directly appear i
formal text, you may include indexing entries, all of the form

indexing_term: indexing_value, indexing_value, …

where the indexing_term is an identifier and each indexing_value is some basic elemen
such as a string, an integer and so on. Entries can indicate alternative names unde
potential client authors might search for the class (names), contents type (contents),
implementation choices (representation), revision control information, autho
information, and anything else that may facilitate understanding the class and retrie
through keyword-based search tools — tools that support reuse and enable so
developers to find their way through a potentially rich set of reusable components.

Both the indexing terms and the indexing values are free-form, but the pos
choices should be standardized for each project. A set of standard choices has be
throughout the Base libraries; the above example illustrates six of the most common
kinds. Every class must have a description entry, introducing as index_value a string
describing the role of the class, always expressed in terms of the instances (as Sequential
lists…, not “this class describes sequential lists”, or “sequential list”, or “the notio
sequential list” etc.). Most significant class texts in this book — but not short exam
illustrating a specific point — include the description entry.

§26.5 TEXT LAYOUT AND PRESENTATION 891

ing at
ying a

ithin

ents.

e the

 for
ection
 is to
ky by
ments

some
ntion
t yields
ns and

naming
lear,
nt and

aper
tics!”;
r’s are
Non-header comments

The preceding rules on comments applied to standardized comments, appear
specific places — feature declarations and beginning of feature clauses — and pla
special role for class documentation.

As in all forms of software development, there is also a need for comments w
routine bodies, to provide further explanations

Another use of comments, although frequent in the practice of software development,
does not figure much in software engineering and programming methodology textbooks.
I am referring here to the technique of transforming some part of the code into comments,
either because it does not work, or because it is not ready yet. This practice is clearly a
substitute for better tools and techniques of configuration management. It has enriched the
language with a new verb form, comment out, whose potential, surprisingly enough, has
not yet been picked up by hip journalists, even though the non-technical applications seem
attractive and indeed endless: “The last elections have enabled Congress to comment out
the President”, “Letterman was commented out of the Academy Awards”, and so on.

Every comment should be of a level of abstraction higher than the code it docum
A famous counter-example is -- Increase i by 1 commenting the instruction i := i + 1.
Although not always that extreme, the practice of writing comments that paraphras
code instead of summarizing its effect is still common.

Low-level languages cry for ample commenting. It is a good rule of thumb,
example, that for each line of C there should be a comment line; not a negative refl
on C, but a consequence that in modern software development the role of C
encapsulate machine-oriented and operating-system-level operations, which are tric
nature and require a heavy explanatory apparatus. In the O-O part, non-header com
will appear much more sparsely; they remain useful when you need to explain
delicate operation or foresee possible confusion. In its constant effort to favor preve
over cure, the method decreases the need for comments through a modular style tha
small, understandable routines, and through its assertion mechanisms: preconditio
postconditions of routines, to express their semantics formally; class invariants; check
instructions to express properties expected to hold at certain stages; the systematic
conventions introduced earlier in this chapter. More generally, the secret of c
understandable software is not adding comments after the fact but devising cohere
stable system structures right from the start.

26.5 TEXT LAYOUT AND PRESENTATION

The next set of rules affects how we should physically write our software texts on p
— real, or simulated on a screen. More than any others, they prompt cries of “Cosme
but such cosmetics should be as important to software developers as Christian Dio
to his customers. They play no little role in determining how quickly and accurately your
software will be understood by its readers — maintainers, reusers, customers.

A SENSE OF STYLE§26.5892

f our
 class
”. An
,

lass,

 same

nds; it
es you

The comb-like
structure of
software texts
Layout

The recommended layout of texts results from the general form of the syntax o
notation, which is roughly what is known as an “operator grammar”, meaning that a
text is a sequence of symbols alternating between “operators” and “operands
operator is a fixed language symbol, such as a keyword (do etc.) or a separator (semicolon
comma …); an operand is a programmer-chosen symbol (identifier or constant).

Based on this property, the textual layout of the notation follows the comb-like
structure introduced by Ada; the idea is that a syntactically meaningful part of a c
such as an instruction or an expression, should either:

• Fit on a line together with a preceding and succeeding operators.

• Be indented just by itself on one or more lines — organized so as to observe the
rules recursively.

Each branch of the comb is a sequence of alternating operators and opera
should normally begin and end with an operator. In the space between two branch
find either a single operand or, recursively, a similar comb-like structure.

As an example, depending on the size of its constituents a, b and c, you may spread
out a conditional instruction as

if c then a else b end

or

Operand

Operator
(keyword,
separator etc.)

§26.5 TEXT LAYOUT AND PRESENTATION 893

e first
if

c

then

a

else

b

end

or

if c then

a

else b end

You would not, however, use a line containing just if c or c end, since they include
an operand together with something else, and are missing an ending operator in th
case and a starting operator in the second.

Similarly, you may start a class, after the indexing clause, with

class C inherit -- [1]

or

class C feature -- [2]

or

class -- [3]

C

feature

but not

class C -- [4]

feature

because the first line would violate the rule. Forms [1] and [2] are used in this book for
small illustrative classes; since most practical classes have one or more labeled feature
clauses, they should in the absence of an inherit clause use form [3] (rather than [2]):

class

C

feature -- Initialization

…
feature -- Access

etc.

A SENSE OF STYLE§26.5894

nce to
 more
:

ating
 to
htly;
 more

intra-
ations
es any

ping,
ore

al use:

y the

des
,

ludes

tions

ntrol
of
ctions,
ction
ting).

ally
Height and width

Like most modern languages, our notation does not attach any particular significa
line separations except to terminate comments, so that you can include two or
instructions (or two or more declarations) on a single line, separated by semicolons

count:= count + 1; forth

This style is for some reason not very popular (and many tools for estim
software size still measure lines rather than syntactical units); most developers seem
prefer having one instruction per line. It is indeed not desirable to pack texts very tig
but in some cases a group of two or three short, closely related instructions can be
readable if they all appear on one line.

In this area it is best to defer to your judgment and good taste. If you do apply
line grouping, make sure that it remains moderate, and consistent with the logical rel
between instructions. The Semicolon Style principle seen later in this chapter requir
same-line instructions to be separated by a semicolon.

For obvious reasons of space, this book makes a fair use of intra-line grou
consistent with these guidelines. It also avoids splitting multi-line instructions into m
lines than necessary; on this point one can recommend the book’s style for gener
there is really no reason to split from i:= 1 invariant i <= n until i = n loop or
if a = b then. Whatever your personal taste, do observe the Comb structure.

Indenting details

The comb structure uses indentation, achieved through tab characters (not spaces, which
are messy, error-prone, and not reader-parameterizable).

Here are the indentation levels for the basic kinds of construct, illustrated b
example on the facing page:

• Level 0: the keywords introducing the primitive clauses of a class. This inclu
indexing (beginning of an indexing clause), class (beginning of the class body)
feature (beginning of a feature clause, except if on the same line as class), invariant
(beginning of an invariant clause, not yet seen) and the final end of a class.

• Level 1: beginning of a feature declaration; indexing entries; invariant clauses.

• Level 2: the keywords starting the successive clauses of a routine. This inc
require, local, do, once, ensure, rescue, end.

• Level 3: the header comment for a routine or (for consistency) attribute; declara
of local entities in a routine; first-level instructions of a routine.

Within a routine body there may be further indentation due to the nesting of co
structures. For example the earlier if a then … instruction contains two branches, each
them indented. These branches could themselves contain loops or conditional instru
leading to further nesting (although the style of object-oriented software constru
developed in this book leads to simple routines, seldom reaching high levels of nes

A check instruction is indented, together with the justifying comment that norm
follows it, one level to the right of the instruction that it guards.

§26.5 TEXT LAYOUT AND PRESENTATION 895

A layout
example

Note: this class
has no useful
semantics!
indexing
description: "Example for formating"

class EXAMPLE inherit
MY_PARENT

redefine f1, f2 end
MY_OTHER_PARENT

rename
g1 as old_g1, g2 as old_g2

redefine
g1

select
g2

end
creation

make
feature -- Initialization

make is
-- Do something.

require
some_condition: correct (x)

local
my_entity: MY_TYPE

do
if a then

b; c
else

other_routine
check max2 > max1 + x ^ 2 end
-- Because of the postcondition of other_routine.

new_value:= old_value / (max2 – max1)
end

end

feature -- Access

my_attribute: SOME_TYPE

-- Explanation of its role (aligned with comment for make)

… Other feature declarations and feature clauses …
invariant

upper_bound: x <= y
end -- class EXAMPLE

Note the trailer comment after the end of the class, a systematic convention.

A SENSE OF STYLE§26.5896

e to the

ly as
 this

 to the

s a

s, the
 stand

style.)
 since,
 parts
s

uage
s you
e
eriod

en

r

Spaces

White space contributes as much to the effect produced by a software text as silenc
effect of a musical piece.

The general rule, for simplicity and ease of remembering, is to follow as close
possible the practice of standard written language. By default we will assume
language to be English, although it may be appropriate to adapt the conventions
slightly different rules of other languages.

Here are some of the consequences. You will use a space:

• Before an opening parenthesis, but not after: f (x) (not f (x), the C style, or f(x)).

• After a closing parenthesis unless the next character is a punctuation sign such a
period or semicolon; but not before. Hence: proc1 (x); x := f1 (x) + f2 (y)

• After a comma but not before: g (x, y, z).

• After the two dash signs that start a comment: -- A comment.

Similarly, the default rule for semicolons is to use a space after but not before:

p1; p2 (x); p3 (y, z)

Here, however, some people prefer, even for English-based software text
French style of including a space both before and after, which makes the semicolon
out and emphasizes the symmetry between the components before and after it:

p1 ; p2 (x) ; p3 (y, z)

Choose either style, but then use it consistently. (This book uses the English
English and French styles have the same difference for colons as for semicolons;
however, the software notation only uses colons for declarations, in which the two
— the entity being declared and its type — do not play a symmetric role, it seem
preferable to stick to the English style, as in your_entity: YOUR_TYPE.

Spaces should appear before and after arithmetic operators, as in a + b. (For space
reasons, this book has omitted the spaces in a few cases, all of the form n+1.)

For periods the notation departs from the conventions of ordinary written lang
since it uses periods for a special construct, as originally introduced by Simula. A
know, a● r means: apply feature r to the object attached to a. In this case there is a spac
neither before nor after the period. To avoid any confusion, this book makes the p
bigger, as illustrated: ● rather than just .

There is another use of the period: as decimal point in real numbers, such as3.14.
Here, to avoid any confusion, the period is not made any bigger.

Some European languages use a comma rather than a period as the separator betwe
integral and fractional parts of numbers. Here the conflict is irreconcilable, as in English the
comma serves to separate parts of big numbers, as in “300,000 dollars”, where othe
languages would use a space. The committee discussions for Algol 60 almost collapsed
when some continental members refused to bow to the majority’s choice of the period; the

§26.5 TEXT LAYOUT AND PRESENTATION 897

e
 a

le of

write
ame
 over-

s as it
f the
d the
on.

. The
r, no
inatist
ded for
se an
it has

 with

 cruel
eans

 the
.
 of the
d the
stalemate was resolved when someone suggested distinguishing between a referenc
language, fixed, and representation languages, parameterizable. (In retrospect, not such
great idea, at least not if you ever have to compile the same program in two different
countries!) Today, few people would make this a point of contention, as the spread of
digital watches and calculators built for world markets have accustomed almost everyone
to alternate between competing conventions.

Precedence and parentheses

The precedence conventions of the notation conform to tradition and to the “Princip
Least Surprise” to avoid errors and ambiguities.

Do not hesitate, however, to add parentheses for clarity; for example you may
(a = (b + c)) implies (u /= v) even though the meaning of that expression would be the s
if all parentheses were removed. The examples in this book have systematically
parenthesized expressions, in particular assertions, risking heaviness to avert uncertainty.

The War of the Semicolons

Two clans inhabit the computing world, and the hatred between them is as ferociou
is ancient. The Separatists, following Algol 60 and Pascal, fight for the recognition o
semicolon as a separator between instructions; the Terminatists, rallied behin
contrasting flags of PL/I, C and Ada, want to put a semicolon behind every instructi

Each side’s arguments are endlessly relayed by its propaganda machine
Terminatists worship uniformity: if every instruction is terminated by the same marke
one ever has to ask the question “do I need a semicolon here?” (the answer in Term
languages is always yes, and anyone who forgets a semicolon is immediately behea
high treason). They do not want to have to add or remove a semicolon becau
instruction has been moved from one syntactical location to another, for example if
been brought into a conditional instruction or taken out of it.

The Separatists praise the elegance of their convention and its compatibility
mathematical practices. They see do instruction1; instruction2; instruction3 end as the
natural counterpart of f (argument1, argument2, argument3). Who in his right mind, they
ask, would prefer f (argument1, argument2, argument3,) with a superfluous final comma?
They contend, furthermore, that the Terminatists are just a front for the Compilists, a
people whose only goal is to make life easy for compiler writers, even if that m
making it hard for application developers.

The Separatists constantly have to fight against innuendo, for example
contention that Separatist languages will prevent you from including extra semicolons
Again and again they must repeat the truth: that every Separatist language worthy
name, beginning with the venerated Patriarch of the tribe, Algol 60, has supporte
notion of empty instruction, permitting all of

A SENSE OF STYLE§26.5898

 extra

hem:
newed
inatist

ir own
atist

groups
treated

es as
aratist
 long-
o
ison —
nous

 as in
d such
iously

en
gh the
f such
ll, as

t

ebate,
lution

he article is a
tudy by Gannon
nd Horning

Gannon 1975].

Exercise E26.2,
page 902.
a; b; c

a; b; c;

; a ;; b ;;; c;

to be equally valid, and to mean exactly the same thing, as they only differ by the
empty instructions of the last two variants, which any decent compiler will discard
anyway. They like to point out how much more tolerant this convention makes t
whereas their fanatical neighbors will use any missing semicolon as an excuse for re
attacks, the Separatists will gladly accept as many extra semicolons as a Term
transfuge may still, out of habit, drop into an outwardly Separatist text.

Modern propaganda needs science and statistics, so the Terminatists have the
experimental study, cited everywhere (in particular as the justification for the Termin
convention of the Ada language): a 1975 measurement of the errors made by two
of 25 programmers each, using languages that, among other distinguishing traits,
semicolons differently. The results show the Separatist style causing almost ten tim
many errors! Starting to feel the heat of incessant enemy broadcasts, the Sep
leadership turned for help to the author of the present book, who remembered a
forgotten principle: quoting is good, but reading is better. So he fearlessly went back t
the original article and discovered that the Separatist language used in the compar
a mini-language meant only for “teaching students the concepts of asynchro
processes” — treats an extra semicolon after the final instruction of a compound,
begin a; b; end, as an error! No real Separatist language, as noted above, has ever ha
a rule, which would be absurd in any circumstance (as an extra semicolon is obv
harmless), and is even more so in the context of the article’s experiment since some of the
subjects apparently had Terminatist experience from PL/I and so would have be
naturally prone to add a few semicolons here and there. It then seems likely, althou
article gives no data on this point, that many of the semicolon errors were a result o
normally harmless additions — enough to disqualify the experiment, once and for a
a meaningful basis for defending Terminatism over Separatism.

On some of the other issues it studies, the article is not marred by such flaws in its tes
languages, so that it still makes good reading for people interested in language design.

All this shows, however, that it is dangerous to take sides in such a sensitive d
especially for someone who takes pride in having friends in both camps. The so
adopted by the notation of this book is radical:

“Almost” because of a few rare cases, not encountered in this book, in which omitting the
semicolon would cause a syntactical ambiguity.

Semicolon Syntax rule

Semicolons, as markers to delimit instructions, declarations or assertion
clauses, are optional in almost all the positions where they may appear in the
notation of this book.

T
s
a
[

§26.5 TEXT LAYOUT AND PRESENTATION 899

olon.

ample,

xtra
m one

low).

ollow
t least
at you
hich

sing.

r
 other
dition
ments;
found
 and
essor
t need
diose

ts the
atist
 third
l the
The Semicolon Syntax rule means you can choose your style:

• Terminatist: every instruction, declaration or assertion clause ends with a semic

• Separatist: semicolons appear between successive elements but not, for ex
after the last declaration of a feature or local clause.

• Moderately Separatist: like the Separatist style, but not worrying about e
semicolons that may appear as a result of habit or of elements being moved fro
context to another.

• Discardist: no semicolons at all (except as per the Semicolon Style principle be

This is one of the areas where it is preferable to let each user of the notation f
his own inclination, as the choice cannot cause serious damage. But do stick, a
across a class and preferably across an entire library or application, to the style th
have chosen (although this will not mean much for the Moderately Separatist style, w
is by definition lax), and observe the following principle:

The second clause governs elements that appear two or more to a line, as in

found:= found + 1; forth

which should always include the semicolon; omitting it would make the line quite confu

Just for once, this discussion has no advice here, letting you decide which of the fou
styles you prefer. Since the earliest version of the notation required semicolons — in
words, it had not yet been tuned to support the Semicolon Syntax rule — the first e
of this book used a Separatist style. For the present one I dabbled into a few experi
after polling a sizable group of co-workers and experienced users of the notation, I
(apart from a handful of Terminatists) an almost equal number of Discardists
Separatists. Some of the Discardists were very forceful, in particular a university prof
who said that the main reason his students loved the notation is that they do no
semicolons — a comment which any future language designer, with or without gran
plans, should find instructive or at least sobering.

You should defer to your own taste as long as it is consistent and respec
Semicolon Style principle. (As to this book: for a while I stuck to the original Separ
style, more out of habit than of real commitment; then, hearing the approach of the
millenium and its call to start a new life free of antique superstitions, I removed al
semicolons over a single night of utter debauchery.)

Semicolon Style principle

If you elect to include semicolons as terminators (Terminatist style), do so
for all applicable elements.

If you elect to forego semicolons, use them only when syntactically
unavoidable, or to separate elements that appear on the same line.

A SENSE OF STYLE§26.6900

ging
ssage
d.

s. As a
ptions,
e, you

inted

lated

of the

lead

 but
alue. As
uch as
hey

ee “ Monitoring
ssertions at run

ime”, page 392.
Assertions

You should label assertion clauses to make the text more readable:

require
not_too_small: index >= lower

This convention also helps produce useful information during testing and debug
since, as you will remember, the assertion label will be included in the run-time me
produced if you have enabled monitoring of assertions and one of them gets violate

This convention will spread an assertion across as many lines as it has clause
consequence, it is one of the rules to which the present book has made a few exce
again in the interest of saving space. When collapsing several clauses on one lin
should actually remove the labels for readability:

require
index >= lower; index <= upper

In normal circumstances, that is to say for software texts rather than a pr
textbook, better stick to the official rule and have one labeled clause per line.

26.6 FONTS

In typeset software texts, the following conventions, used throughout this book and re
publications, are recommended.

Basic font rules

Print software elements (class names, feature names, entities…) in italics to distinguish
them from non-software text elements. This facilitates their inclusion in sentences
non-software text, such as “We can see that the feature number is a query, not an
attribute”. (The word number denotes the name of the feature; you do not want to mis
your reader into believing that you are talking about the number of features!)

Keywords, such as class, feature, invariant and the like, appear in boldface.

This was also the convention of the first edition of this book. At some stage it seemed
preferable to use boldface italics which blends more nicely with italics. What was
esthetically pleasing, however, turned out to hamper quality; some readers complained
that the keywords did not stand out clearly enough, hence the return to the original
convention. This is a regrettable case of fickleness. [M 1994a] and a handful of books by
other authors show the intermediate convention.

Keywords play a purely syntactic role: they have no semantics of their own
delimit those elements, such as feature and class names, that do carry a semantic v
noted earlier in this chapter, there are also a few non-keyword reserved words, s
Current and Result, which have a denotation of their own — expressions or entities. T
are written in non-bold italics, with an initial upper-case letter.

S
a
t

§26.6 FONTS 901

. Like

e —
ary
 italics

es of
oned

 and

italics.

ome
plain
 on a
puter

rious
mes,

 for
Following the tradition of mathematics, symbols — colons and semicolons:;,
brackets [] , parentheses (), braces { } , question and exclamation marks ?! and so on —
should always appear in roman (straight), even when they separate text in italics
keywords, they are purely syntactic elements.

Comments appear in roman. This avoids any ambiguity when a feature nam
which, according to the principles seen earlier, will normally be a word from ordin
language — or an argument name appears in a comment; the feature name will be in
and hence will stand out. For example:

accelerate (s: SPEED; t: REAL) is

-- Bring speed to s in at most t seconds.

…

set_number (n: INTEGER) is

-- Make n the new value of number.

…

In the software text itself, where no font variations are possible, such occurrenc
formal elements in comments should follow a specific convention already menti
earlier: they will appear preceded by a back quote ‘ and followed by a normal quote’ , as in

-- Make ‘n’ the new value of ‘number’.

(Remember that you must use two different quote characters for opening
closing.) Tools that process class texts and can produce typeset output, such as short and
flat , know this convention and so can make sure the quoted elements are printed in

Other font conventions

The preceding font conventions work well for a book, an article or a Web page. S
contexts, however, may call for different approaches. In particular, elements in
italics, and sometimes even bold italics, are not always readable when projected
projection screen, especially if what you are projecting is the output of a laptop com
with a relatively small display.

In such cases I have come to using the following conventions:

• Use non-italics boldface for everything, as this projects best.

• Choose a wide enough font, such as Bookman (for which boldface may be called
“demibold”).

• Instead of italics versus roman versus bold, use color to distinguish the va
elements: keywords in black; comments in red; the rest (entities, feature na
expressions…) in blue. More colors can be used to highlight special elements.

These conventions seem to work well, although there is always room
improvement, and new media will undoubtedly prompt new conventions.

A SENSE OF STYLE§26.7902

 used
, but
e

nger

sign

n of
bold

rtions
Color

The particularly attentive reader may by now have come to notice another convention
by this book: for added clarity, all formal elements — software texts or text extracts
also mathematical elements — appear in color. This technique, which of course cannot b
presented as a general requirement, enhances the effect of the rules seen so far on font usage.

26.7 BIBLIOGRAPHICAL NOTES

[Waldén 1995] is the source of the idea of showing by example that even a lo
separated_by_underscores identifier is easier to read than an internalUpperCase
identifier.

[Gannon 1975] is an experimental study of the effect of various language de
choices on error rates.

The rules on standard feature names were first presented in [M 1990b] and are
developed in detail in [M 1994a].

I received important comments from Richard Wiener on students’ appreciatio
the optionality of semicolons, and from Kim Waldén on the respective merits of
italics and plain bold.

EXERCISES

E26.1 Header comment style

Rewrite the following header comments in the proper style:

reorder (s: SUPPLIER; t: TIME) is

-- Reorders the current part from supplier s, to be delivered

-- on time t; this routine will only work if t is a time in the future.

require

not_in_past: t >= Now

…

next_reorder_date: TIME is

-- Yields the next time at which the current part is scheduled

-- to be reordered.

E26.2 Semicolon ambiguity

Can you think of a case in which omitting a semicolon between two instructions or asse
could cause syntactic ambiguity, or at least confuse a simple-minded parser? (Hint : a feature
call can have as its target a parenthesized expression, as in (vector1 + vector2) ● count.)

	26 26 A sense of style
	26.1 COSMETICS MATTERS!
	Applying the rules in practice
	Terseness and explicitness
	The role of convention
	Self-practice
	Discipline and creativity

	26.2 CHOOSING THE RIGHT NAMES
	General rules
	Composite Feature Name rule

	Local entities and routine arguments
	Letter case
	Grammatical categories
	Standard names
	Standard command names
	Standard names for non- boolean queries
	Standard names for boolean queries

	The benefits of consistent naming

	26.3 USING CONSTANTS
	Manifest and symbolic constants
	Symbolic Constant principle

	Where to put constant declarations

	26.4 HEADER COMMENTS AND INDEXING CLAUSES
	Routine header comments: an exercise in corporate ...
	Feature clause header comments
	Indexing clauses
	Non-header comments

	26.5 TEXT LAYOUT AND PRESENTATION
	Layout
	The comb-like structure of software texts

	Height and width
	Indenting details
	A layout example
	Note: this class has no useful semantics!

	Spaces
	Precedence and parentheses
	The War of the Semicolons
	Semicolon Syntax rule
	Semicolon Style principle

	Assertions

	26.6 FONTS
	Basic font rules
	Other font conventions
	Color

	26.7 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E26.1 Header comment style
	E26.2 Semicolon ambiguity

