
27
Object-oriented analysis
ject-
. Of
tware
logy to

pecific
n lists
thods.

nt to

irst,

tists

goals
 two

more

ftware

oals:
F ocused initially on the implementation aspects of software construction, the ob
oriented method quickly expanded to cover the totality of the software lifecycle
particular interest has been the application of O-O ideas to the modeling of sof
systems, or even of non-software systems and issues. This use of object techno
present problems rather than solutions is known as object-oriented analysis.

In the past few years, many books have appeared on the topic and many s
methods of object-oriented analysis have been proposed. The bibliography sectio
some of the best-known books, and Web addresses for some of the best-known me

Most of the concepts introduced in the preceding chapters are directly releva
object-oriented analysis. Here we will briefly review what make object-oriented analysis
special among other object-oriented topics, and what makes object-oriented analysis
different from other analysis methods.

Two points of terminology to avoid imagining differences where none exist. F
you will encounter, as a synonym for “analysis”, the term system modeling, or just
modeling. Second, the computing science community tends to use the word specification
where information modeling folks talk about analysis; in particular, computing scien
have devoted considerable efforts to devising methods and languages for formal
specification using mathematical techniques for purposes of system modeling. The
are the same, although the techniques may differ. In the past few years the
communities — information modelers and formal specifiers — have been paying
attention to each other’s contributions.

27.1 THE GOALS OF ANALYSIS

To understand analysis issues we must be aware of the roles of analysis in so
development and define requirements on an analysis method.

Tasks

By devoting time to analysis and producing analysis documents we pursue seven g

OBJECT-ORIENTED ANALYSIS §27.1904

ision

he two
-depth
nother

apter
ay be

e all
cess,

sk the
 the
s? By
le

move
 than
ering

ment
e cared
l
licting

 from
If analysis is being applied to a non-software system, or independently of a dec
to build a software system, A1, A2 and A3 may be the only relevant goals.

For a software system, the list assumes that analysis follows a stage of feasibility
study which has resulted in a decision to build a system. If, as sometimes happens, t
stages are merged into one (not an absurd proposition, since you may need an in
analysis to determine whether a satisfactory result is conceivable), the list needs a
item: A0, deciding whether to build a system.

Although related, the goals listed are distinct, prompting us in the rest of this ch
to look for a set of complementary techniques; what is good for one of the goals m
irrelevant to another.

Goals A2 and A3 are the least well covered in the analysis literature and deserv
the emphasis they can get. One of the primary benefits of an analysis pro
independently of any document that it produces in the end, is that it leads you to a
relevant questions (A2): what is the maximum acceptable temperature? What are
recognized categories of employees? How are bonds handled differently from stock
providing you with a framework, which you will have to fill using input from peop
competent in the application domain, an analysis method will help spot and re
obscurities and ambiguities which can be fatal to a development. Nothing is worse
discovering, at the last stage of implementation, that the marketing and engine
departments of the client company have irreconcilable views of what equip
maintenance means, that one of these views was taken by default, and that no on
to check what the actual order giver had in mind. As to A3, a good analysis document wil
be the place to which everyone constantly goes back if delicate questions or conf
interpretations arise during the development process.

Requirements

The practical requirements on the analysis process and supporting notations follow
the above list of goals:

Goals of performing analysis
A1 • To understand the problem or problems that the eventual software

system, if any, should solve.

A2 • To prompt relevant questions about the problem and the system.

A3 • To provide a basis for answering questions about specific properties of
the problem and system.

A4 • To decide what the system should do.

A5 • To decide what the system should not do.

A6 • To ascertain that the system will satisfy the needs of its users, and
define acceptance criteria (especially when the system is developed for
an outside customer under a contractual relationship).

A7 • To provide a basis for the development of the system.

§27.1 THE GOALS OF ANALYSIS 905

lysis,

 (

 (

stem

r both
scribe
 over
l a part
, the

ave
 are to
ns to

ware

ready
s and

recise
able

deep
 your
n if
 out

d in
ld try

r the
e side
ures,
s to
• There must be a way to let non-software people contribute input to the ana
examine the results and discuss them (A1, A2).

• The analysis must also have a form that is directly usable by software developersA7).

• The approach must scale up (A1).

• The analysis notation must be able to express precise properties unambiguouslyA3).

• It must enable readers to get a quick glimpse of the overall organization of a sy
or subsystem (A1, A7)

Scaling up (the third point) means catering to systems that are complex, large o
— the ones for which you most need analysis. The method should enable you to de
the high-level structure of the problem or system, and to organize the description
several layers of abstraction, so that you can at any time focus on as big or as smal
of the system as you wish, while retaining the overall picture. Here, of course
structuring and abstracting facilities of object technology will be precious.

Scaling up also means that the criteria of extendibility and reusability, which h
guided much of our earlier discussions, are just as applicable to analysis as they
software design and implementation. Systems change, requiring their descriptio
follow; and systems are similar to previous systems, prompting us to use libraries of
specification elements to build their specifications, just as we use libraries of soft
components to build their implementations.

The clouds and the precipice

It is not easy to reconcile the last two requirements of the above list. The conflict, al
discussed in the context of abstract data types, has plagued analysis method
specification languages as long as they have existed. How do you “express p
properties unambiguously” without saying too much? How do you provide read
broad-brush structural descriptions without risking vagueness?

The analyst walks on a mountain path. On your left is the mountain top,
ensconced in clouds; this is the realm of the fuzzy. But you must also stay away, on
right, from the precipice of overspecification, to which you might be perilously draw
your attempts to be precise tempt you to say too much, especially by giving
implementation details instead of external properties of the system.

The risk of overspecification is ever present in the minds of people intereste
analysis. (It is said that, to gain the upper hand in a debate in this field, you shou
“ Approach X is nice, but isn’t it a tad implementation-oriented?” The poor author of X,
reputation lost, career shattered, will not dare show up in a software gathering fo
next twenty years.) To avoid this pitfall, analysis methods have tended to err on th
of the clouds, relying on formalisms that do a good job of capturing overall struct
often through cloud-like graphical notations, but are quite limited when it come
expressing the semantic properties of systems as required to address goal A2 (answering
precise questions).

OBJECT-ORIENTED ANALYSIS §27.2906

mes
tions

ftware
 when
g out

ural

most
but
is; it

d of
mer’s
owing
e and
not the

htly
sable
er may

hich

s were
ering
some
om to
enon

inence

Requirements
analysis as a
negotiation
Many of the traditional analysis methods fit this description. Their success co
from their ability to list the components of a system and describe their rela
graphically, making them the software equivalent of the block diagrams of other
engineering disciplines. But they are not too good at capturing the semantics. For so
projects this carries a risk: believing that you have completed a successful analysis
all you have really done is to define the major components and their relations, leavin
many deeper properties of the specification that may turn out to be critical.

Later in this chapter we will study ideas for reconciling the goals of struct
description and semantic precision.

27.2 THE CHANGING NATURE OF ANALYSIS

Although the object-oriented analysis literature hardly mentions this point, the
significant contribution of object technology to analysis is not technical
organizational. Object technology does not just provide new ways of doing analys
affects the very nature of the task and its role in the software process.

This change follows from the method’s emphasis on reusability. If instea
assuming that every new project must start from scratch, considering the custo
requirements as the Gospel, we bring into the picture the presence of a regularly gr
repertory of software components, some obtained (or obtainable) from the outsid
some developed as a result of in-house projects, the process becomes different:
execution of an order from above, but a negotiation.

The figure suggests this process: the customer starts with a requirement at A; you
counter with a proposal at B, covering perhaps only part of the requirements, or a slig
different form of the requirements, but based for a large part on existing reu
components and hence achievable at significantly less cost and sooner. The custom
initially find the sacrifice of functionality too large; this opens a haggling phase w
should eventually lead to an acceptable compromise.

The haggling has always been there, of course. The customer’s requirement
the Gospel only in some descriptions of the “software process” in the software engine
literature, presenting an ideal view for pedagogical purposes, and perhaps in
government contracts. In most normal situations, the developers had some freed
discuss requirements. But with the advent of object technology this officious phenom
becomes an official part of the software development process, and gains new prom
with the development of reusable libraries.

Customer

Developer

A

B

(Compromise)

§27.3 THE CONTRIBUTION OF OBJECT TECHNOLOGY 907

. The
d with

s an

eling

s, in
t just

tions

 and

such
us to

lysis.

evel

eeds of
vides

g.

e it is
 not

can

stem
n nor
27.3 THE CONTRIBUTION OF OBJECT TECHNOLOGY
Object technology also affects, of course, the techniques of analysis.

Here the most important thing to learn is that we have almost nothing to learn
framework defined in the preceding chapters has more than enough to get us starte
modeling. “More than enough” actually means too much: the notation include
operational part, made of two components which we do not need for analysis:

• Instructions (assignments, loops, procedure calls, …) and all that goes with them.

• Routine bodies of the do form (but we do need deferred routines to specify
operations without giving out their implementation).

If we ignore these imperative elements, we have a powerful system mod
method and notation. In particular:

• Classes will enable us to organize our system descriptions around object type
the broad sense of the word “object” defined in preceding chapters (covering no
physical objects but also important concepts of the application domain).

• The ADT approach — the idea of characterizing objects by the applicable opera
and their properties — yields clear, abstract, evolutionary specifications.

• To capture inter-component relations, the two basic mechanisms of “client”
inheritance are appropriate. The client relation, in particular, covers such
information modeling concepts as “part of”, association and aggregation.

• As we saw in the discussion of objects, the distinction between reference and
expanded clients corresponds to the two basic kinds of modeling association.

• Inheritance — single, multiple and repeated — addresses classification. Even
seemingly specialized inheritance mechanisms as renaming will be precio
model analysis concepts.

• Assertions are essential to capture what was called above the semantics of systems:
properties other than structural. Design by Contract is a powerful guide to ana

• Libraries of reusable classes will provide us — especially through their higher-l
deferred classes — with ready-made specification elements.

This does not necessarily mean that the approach seen so far covers all the n
system analysis (a question that will be discussed further below); but it certainly pro
the right basis. The following example will provide some evidence.

27.4 PROGRAMMING A TV STATION

Let us see concretely how to apply the O-O concepts that we know to pure modelin

The example involves organizing the schedule of a television station. Becaus
drawn from a familiar application area, we can start it (although we most likely could
complete it) without the benefit of input from “domain experts”, future users etc.; we
just, for the analysis exercise, rely on every layperson’s understanding of TV.

Although the effort may be the prelude to the construction of a computerized sy
to manage the station’s programming automatically, this possibility is neither certai
relevant here; we are just interested in modeling.

OBJECT-ORIENTED ANALYSIS §27.4908

ction)
ram

 into

deed
me time.

ands

on of
 Here
eed a
ally:

See “More on
implicitness”, page
149.
Schedules

We concentrate on the schedule for a 24-hour period; the class (data abstra
SCHEDULE presents itself. A schedule contains a sequence of individual prog
segments; let us start with

class SCHEDULE feature
segments: LIST [SEGMENT]

end

When doing analysis we must constantly watch ourselves for fear of lapsing
overspecification. Is it overspecifying to use a LIST? No: LIST is a deferred class,
describing the abstract notion of sequence; and television programming is in
sequential, since one cannot broadcast two segments on the same station at the sa
By using LIST we capture a property of the problem, not the solution.

Note in passing the importance of reusability: by using classes such as LIST you
immediately gain access to a whole set of features describing list operations: comm
such as put for adding elements, queries such as the number of elements count. Reusability
is as central to object-oriented analysis as it is to other O-O tasks.

What would be overspecifying here would be to equate the notion of schedule with
that of list of segments. Object technology, as you will remember from the discussi
abstract data types, is implicit; it describes abstractions by listing their properties.
there will certainly be more to a schedule than the list of its segments, so we n
separate class. Some of the other features of a schedule present themselves natur

indexing
description: "Twenty-four hour TV schedules"

deferred class SCHEDULE feature
segments: LIST [SEGMENT] is

-- The successive segments
deferred
end

air_time: DATE is
-- Twenty-four hour period for this schedule

deferred
end

set_air_time (t: DATE) is
-- Assign this schedule to be broadcast at time t.

require
t ● in_future

deferred
ensure

air_time = t
end

print is
-- Print paper version of schedule.

deferred
end

end

§27.4 PROGRAMMING A TV STATION 909

alysis
 body,
g the
t two

ake
t. In
uter-
aints
 and
O-O
ation.

to the
ooth
 the

on to

See “Using asser-
tions for documen-
tation: the short
form of a class”,
page 389.
Note the use of deferred bodies. This is appropriate since by nature an an
document is implementation-independent and even design-independent; having no
deferred features are the proper tool. You could, of course, dispense with writin
deferred specification and instead use a formalism such as that of short forms. Bu
important arguments justify using the full notation:

• By writing texts that conform to the syntax of the software notation, you can m
use of all the tools of the supporting software development environmen
particular, the compiling mechanism will double up as a precious CASE (comp
aided software engineering) tool, applying type rules and other validity constr
to check the consistency of your specifications and detect contradictions
ambiguities; and the browsing and documentation facilities of a good
environment will be as useful for analysis as they are for design and implement

• Using the software notation also means that, should you decide to proceed
design and implementation of a software system, you will be able to follow a sm
transition path; your work will be to add new classes, effective versions of
deferred features and new features. This supports the seamlessness of the approach,
discussed in the next chapter.

The class assumes a boolean query in_future on objects of type DATE; it only allows
setting air time for future dates. Note our first use of a precondition and postconditi
express semantic properties of a system during analysis.

Segments

Rather than continuing to refine and enhance SCHEDULE, let us at this stage switch to
the notion of SEGMENT. We can start with the following features:

indexing

description: " Individual fragments of a broadcasting schedule"

deferred class SEGMENT feature

schedule: SCHEDULE is deferred end
-- Schedule to which segment belongs

index: INTEGER is deferred end
-- Position of segment in its schedule

starting_time, ending_time: INTEGER is deferred end
-- Beginning and end of scheduled air time

next: SEGMENT is deferred end
-- Segment to be played next, if any

sponsor: COMPANY is deferred end
-- Segment’s principal sponsor

OBJECT-ORIENTED ANALYSIS §27.4910

query

g
vided
elations

 called
wo

ve to
s have
 and we

fined
ertain
rating: INTEGER is deferred end
-- Segment’s rating (for children’s viewing etc.)

… Commands such as change_next, set_sponsor, set_rating omitted …

Minimum_duration: INTEGER is 30
-- Minimum length of segments, in seconds

Maximum_interval: INTEGER is 2
-- Maximum time between two successive segments, in seconds

invariant
in_list: (1 <= index) and (index <= schedule● segments●count)
in_schedule: schedule● segments● item (index) = Current
next_in_list: (next /= Void) implies (schedule● segments● item (index + 1) = next)
no_next_iff_last: (next = Void) = (index = schedule● segments●count)
non_negative_rating: rating >= 0
positive times: (starting_time > 0) and (ending_time > 0)
sufficient_duration: ending_time – starting_time >= Minimum_duration
decent_interval: (next● starting_time) – ending_time <= Maximum_interval

end

Each segment “knows” the schedule of which it is a part, expressed by the
schedule, and its position in that schedule, expressed by index. It has a starting_time and
an ending_time; we could also add a query duration, with an invariant clause expressin
its relation to the previous two. Redundancy is acceptable in system analysis pro
redundant features express concepts of interest to users or developers, and the r
between redundant elements are stated clearly through the invariant. Here, clausesin_list
and in_schedule of the invariant express the relation between a segment’s own index and
its position in the schedule’s list of segments.

A segment also knows about the segment that will follow, next. Invariant clauses
again express the consistency requirements: clause next_in_list indicates that if the
segment is at position i the next one is at position i +1; clause no_next_iff_last, that there
is a next if and only if the segment is not the last in its schedule.

The last two invariant clauses express constraints on durations: sufficient_duration
defines a minimum duration of 30 seconds for a program fragment to deserve being
a segment, and decent_interval a maximum of two seconds for the time between t
successive segments (when the TV screen may go blank).

The class specification has taken two shortcuts that would almost certainly ha
be removed at the next iteration of the analysis process. First, times and duration
been expressed as integers, measured in seconds; this is not abstract enough,
should be able to rely on library classes DATE, TIME and DURATION. Second, the notion
of SEGMENT covers two separate notions: a TV program fragment, which can be de
independently of its scheduling time; and the scheduling of a certain program at a c
time slot. To separate these two notions is easy; just add to SEGMENT an attribute

content: PROGRAM_FRAGMENT

§27.4 PROGRAMMING A TV STATION 911

ts

ment.
by the
justify
gned.

enefit
 that
nces.

nd
tance:

; you
where
the
parate
e yes;

sted
 new

See “TAXOMA-
NIA”, 24.4, page
820.
with a new class PROGRAM_FRAGMENT describing the content independently of i
scheduling. Feature duration should then appear in PROGRAM_FRAGMENT, and a new
invariant clause of SEGMENT should state

content● duration = ending_time – starting_time

For brevity the rest of this sketch continues to treat the content as part of the seg
Such discussions are typical of what goes on during the analysis process, aided
object-oriented method: we examine various abstractions, discuss whether they
different classes, move features to other classes if we think they have been misassi

A segment has a primary sponsor, and a rating. Although here too we might b
from a separate class, rating has just been specified as an integer, with the convention
a higher rating implies more restrictions; 0 means a segment accessible to all audie

Programs and commercials

Probing the notion of SEGMENT further, we distinguish two kinds: program segments a
commercial breaks (advertizing segments). This immediately suggests using inheri

This urge to use inheritance during analysis, by the way, is always suspect
should be wary of bouts of taxomania, prompting you to create spurious classes
simple distinctive properties would suffice. The guiding criterion was given in
description of inheritance: does each proposed class really correspond to a se
abstraction, characterized by specific features and properties? Here the answer will b
it is not difficult to think of features for both programs and commercials, as will be li
in part below. Using inheritance will also yield the benefit of openness: we can add a
heir such as INFOMERCIAL later to describe segments of a different kind.

We can start COMMERCIAL as follows:

indexing

description: "Advertizing segment"

deferred class COMMERCIAL inherit

SEGMENT

rename sponsor as advertizer end

PROGRAM

SEGMENT

COMMERCIAL

OBJECT-ORIENTED ANALYSIS §27.4912

sight
 out to
opriate

not a

 rules:

 it; you
query

 you

lysis
ogram
h show
nd a
ment,

ts, are
feature

primary: PROGRAM is deferred
-- Program to which this commercial is attached

primary_index: INTEGER is deferred
-- Index of primary

set_primary (p: PROGRAM) is
-- Attach commercial to p.

require
program_exists: p /= Void
same_schedule: p● schedule = schedule
before: p●starting_time <= starting_time

deferred
ensure

index_updated: primary_index = p● index
primary_updated: primary = p

end

invariant
meaningful_primary_index: primary_index = primary● index
primary_before: primary● starting_time <= starting_time
acceptable_sponsor: advertizer● compatible (primary● sponsor)
acceptable_rating: rating <= primary● rating

end

Note the use of renaming, another example of a notational facility that at first
might have appeared to be useful mostly for implementation-level classes, but turns
be just as necessary for modeling. When a segment is a commercial, it is more appr
to refer to its sponsor as being its advertizer.

Every commercial segment is attached to an earlier program segment (
commercial), its primary, whose index in the schedule is primary_index. The first two
invariant clauses express consistency conditions; the last two express compatibility

• If a show has a sponsor, any advertizer during that show must be acceptable to
do not advertize for Pepsi-Cola during a show sponsored by Coca-Cola. The
compatible of class COMPANY might be given through some database.

• The rating of a commercial must be compatible with that of its primary program:
should not advertize for Bulldozer Massacre III on a toddlers’ program.

The notion of primary needs refinement. It becomes clear at this stage of our ana
that we should really add a level: instead of a schedule being a succession of pr
segments and commercials, we should view it as a succession of shows, where eac
(described by a class SHOW) has its own features, such as the show’s sponsor, a
succession of show segments and commercials. Such improvement and refine
developed as we gain more insight into the problem and learn from our first attemp
a normal component of the analysis process.

§27.4 PROGRAMMING A TV STATION 913

straints

 use
ith the

ere
lude

ject to
n. For
nt of

an-
 is
pecify
ame
 truth,

e far
 how
ndent
) for
ss just
ethod
ms as
lution.

, or
object

ystem
 of a
The
work;
Business rules

We have seen how invariant clauses and other assertions can cover semantic con
of the application domain, also known in analysis parlance as business rules: in class
SCHEDULE, that one can schedule a segment only in the future; in SEGMENT, that the
interruption between two segments may not exceed a preset duration; in COMMERCIAL,
that a commercial’s rating must be compatible with that of the enclosing program.

It is indeed one of the principal contributions of the method that you can
assertions and the principles of Design by Contract to express such rules along w
structure, avoiding both the clouds and the precipice.

A practical warning however: even without any implementation commitment, th
is a risk of overspecification. In assertions of the analysis text, you should only inc
business rules that have a high degree of certainty and durability. If any rule is sub
change, use abstraction to express what you need but leave room for adaptatio
example the rules on sponsor-advertizer compatibility can change; so the invaria
COMMERCIAL stays away from overspecification by simply postulating a boole
valued query compatible in class COMPANY. One of the great advantages of analysis
that you choose what you say and what you say not. State what is known — if you s
nothing, the specification will not be of much interest — but no more. This is the s
comment that we encountered in the discussion of abstract data types: we want the
all the relevant truth, but nothing more than the truth.

That ADT comments should be directly applicable here is no surprise: ADTs are a high-
level specification technique, and in fact the use of deferred classes with their assertions
as a tool for analysis, illustrated by the TV station example, is conceptually a variant of
ADT specification using software syntax.

Assessment

Although we have only begun the TV station programming example, we have gon
enough to understand the general principles of the approach. What is striking is
powerful and intuitive the concepts and notation are for general, software-indepe
system modeling, even though they were initially developed (in earlier chapters
software purposes and, to the superficial observer, may even appear to addre
programming issues. Here they come out in their full scope: as a general-purpose m
and notation for describing systems of many kinds, covering the structure of syste
well as fine aspects of their semantics, and able to tackle complexity as well as evo

Nothing in a specification of the kind illustrated above is implementation-related
even software-related, or even computer-related. We are using the concepts of
technology for purely descriptive purposes; no computer need enter the picture.

Of course if you or your customer do decide to go ahead and build a software s
for managing TV station programming, you will have the tremendous advantage
description that is already in a software-like form, syntactically and structurally.
transition to a design and implementation will proceed seamlessly in the same frame
you may even be able to retain many of the analysis classes as is in the final system, with
implementations provided in proper descendants.

OBJECT-ORIENTED ANALYSIS §27.5914

e TV
trial

 the
 other
sers,

t at first
to it?

 that
-depth
c and
ations

ain,
alism
ights
ss. In

 and
s will

low.

oals of
ake it

s and
and

 as the

s the
sis”.

ic

“STUDYING A
REQUIREMENTS
DOCUMENT”, 22.
1, page 720.
27.5 EXPRESSING THE ANALYSIS: MULTIPLE VIEWS

The use of specifications expressed in a software-like language, illustrated by th
station example, raises an obvious question of practicality in normal indus
environments.

What can cause some skepticism is that the people who will have to review
analysis document may not all be comfortable with such notations; more than any
stage, analysis is the time for collaboration with application domain experts, future u
managers, contract administrators. Can we expect to them to read a specification tha
sight looks like a software text (although it is a pure model), and possibly contribute

Surprisingly often, the answer is yes. Understanding the part of the notation
serves for analysis, as illustrated by the preceding example, does not require in
software expertise, simply an understanding of elements of the basic laws of logi
organized reasoning in any discipline. I can attest to having used such specific
successfully with people of widely different backgrounds and education.

But this is not the end of the story. A core of formalism-averse people may rem
whose input you will still need. And even those who appreciate the power of the form
will need other views, in particular graphical representations. In fact the recurrent f
about graphics versus formalism, formalism versus natural language, are pointle
practice the description of a non-trivial system requires several complementary views,
such as:

• A formal text, as illustrated in the preceding example.

• A graphical representation, showing system structures in terms of “bubble
arrow” diagrams (also used in one instance for the example). Here the graph
show classes, clusters, objects, and relations such as client and inheritance.

• A natural-language requirements document.

• Perhaps a tabular form, as appears in the presentation of the BON method be

Each such view has its unique advantages, addressing some of the multiple g
analysis defined at the beginning of this chapter; each has limitations that may m
irrelevant to other goals. In particular:

• Natural-language documents are irreplaceable for conveying essential idea
explaining fine nuances. But they are notoriously prone to imprecision
ambiguity, as we saw in the critique of the “underline the nouns” approach.

• Tabular representations are useful to collect a set of related properties, such
principal characteristics of a class — parents, features, invariant.

• Graphical representations are excellent for describing structural properties of a
problem or system by showing the components and their relations. This explain
success of “bubble-and-arrow” descriptions as promoted by “structured analy
But they are severely limited when it comes to expressing precise semantic
properties, as required by item A3 of the list of analysis goals (answering specif

§27.5 EXPRESSING THE ANALYSIS: MULTIPLE VIEWS 915

for an

ool for
phical
ystem

b

s

 views

iews.
ols to

idate to
cause
ell as

e of
ersonal
 formal
en in
ilities
ation
phical
uage
o have
 in an

tion;

Inheritance
link
questions). For example a graphical description is not the best place to look at
answer to the question “what is the maximum length of a commercial break?”.

• Formal textual representations, such as the notation of this book, are the best t
answering such precise questions, although they cannot compete with gra
representation when the goal is simply to get a quick understanding of how a s
is organized.

The usual argument for graphical representations over textual ones is the cliché that “a
picture is worth a thousand words”. It has its share of truth; block diagrams are indeed
unsurpassed to convey to the reader the overall impression of a structure. But the prover
conveniently ignores the details that the words can carry, the imprecision that can affect
the picture, and the errors that it can contain. The next time someone invites you to use
a diagram as the final specification of some delicate aspect of a system, look at the comic
page of the daily paper: the “find the differences between these two variants” teasers do
not ask you to rack your eyes and brain over two sentences or two paragraphs, but to find
the hidden differences between two deceptively similar pictures.

So what we need with a good analysis method is a way to use each one of these
as the need arises, switching freely from one to the other.

The question then arises of how to maintain consistency between the various v
The solution is to use one of the views as the reference, and to rely on software to
make sure that additions and changes get propagated to all views. The best cand
serve as reference — the only credible one, in fact — is the formal text, precisely be
it is the only one that is both defined rigorously and able to cover semantics as w
structural properties.

With this approach, the use of formal software-like descriptions is not exclusiv
other styles, and you can use a variety of tools adapted to the expertise levels and p
tastes of the analysis participants (software people, managers, end users). For the
text, the software development environment may be appropriate: we have se
particular that the compiler can double as an analysis support tool thanks to its fac
for checking type rules and other validity constraints, although its code gener
mechanism is irrelevant at this stage. For the graphical notation, you will use a gra
CASE tool, apt at producing and manipulating structure charts. For the natural lang
texts, document manipulation and management systems can help. Tables can als
specific tool support. The various tools involved can be either separate or integrated
analysis or development workbench.

Graphical or tabular input will immediately be reflected in the formal representa
for example if the graphical view showed a class C inheriting from a class A

C

A B

OBJECT-ORIENTED ANALYSIS §27.5916

 the

. But
 with
ext and
n class
ularly
 when
iption,
directly

 from
n, a

 scare
o think
ch as

]

and you interactively redirect the arrow to point to B, the tools will automatically change
the inherit clause of the formal text to reflect the change. Conversely, if you edit
formal description, the graphical and tabular representations will be updated.

It is more difficult for tools to process changes in natural-language descriptions
if the document manipulation system enforces structured system descriptions,
chapters, sections and paragraphs, it is possible to keep links between the formal t
the natural-language requirements document, for example to indicate that a certai
or feature is connected to a certain paragraph of the requirements; this is partic
useful when the environment also provides configuration management tools, so that
something changes in the requirements the tools can, if not update the formal descr
at least alert you to the change and produce a list of all the elements that depended,
or indirectly, on the modified part.

The other direction is interesting too: producing natural-language descriptions
formal texts. The idea is simply to reconstruct, from a formal system descriptio
natural-language text that would express the same information in a form that will not
the more formalism-averse members of the target readership. It is not hard indeed t
of a tool that, starting from our analysis sketch, would produce a fake English form su

1. System concepts
The concepts of this system are:

SCHEDULE, SEGMENT, COMMERCIAL, PROGRAM …
SCHEDULE is discussed in section 2; SEGMENT is discussed in section 3; [etc.]

2. The notion of SCHEDULE
…

3. …
4. The notion of COMMERCIAL

4.1 General description:
Advertizing segments

4.2 Source notions.
The notion of COMMERCIAL is a specialized case of the notion
of SEGMENT and has all its operations and properties,
except for redefined ones as listed below.

4.2 Renamed operations.
What is called sponsor for SEGMENT is called advertizer for COMMERCIAL.
…

4.3 Redefined operations
…

4.4 New operations
The following operations characterize a COMMERCIAL:

primary, a query returning a PROGRAM
Needs: none [Arguments, if any, would be listed here
Description:

Program to which commercial is attached
Input conditions:

§27.6 ANALYSIS METHODS 917

ned
ough
sistent

ems
more

 much,
ted in
 has

ly, its
erated
louds.

imate
alysis
r even
thods;

hapter.

s
jects,
ying
hips;

ject
odel,
and a
tended
…
Result conditions:

…
… Other operations …

4.5 Constraints
… An English-like rendition of the invariant properties …

4. The notion of PROGRAM
…

etc.

All the English sentences (“The concepts of this system are”, “ The following
operations characterize a …” and so on) are drawn from a standard set of predefi
formulae, so they are not really “natural” language; but the illusion can be strong en
to make the result palatable to non-technical people, with the guarantee that it is con
with the more formal view since it has been mechanically derived from it.

Although I do not know any tool that has explored this idea very far, the goal se
reachable. A project to build such a tool would be several orders of magnitude
realistic than long-going efforts in the reverse direction (attempts at automatic analysis of
natural-language requirements documents) which have never been able to produce
because of the inherent difficulty of analyzing natural language. Here we are interes
natural language generation, an easier task (in the same way that speech synthesis
progressed faster than speech recognition).

What makes this possible is the generality of the formal notation and, especial
support for assertions, allowing us to include useful semantic properties in the gen
natural-language texts. Without assertions we would remain in the vague — in the c

27.6 ANALYSIS METHODS

Here is a list of some of the best-known methods of O-O analysis, listed in the approx
order of their public appearance. Although the description focuses on the an
component of the methods, note that most of them also include design-related o
implementation-related components. The short summaries cannot do justice to the me
to learn more, see the books and Web pages listed in the bibliographic notes to this c

The Coad-Yourdon method initially resulted from an effort to objectify idea
coming from structured analysis. It involves five stages: finding classes and ob
starting from the application domain and analyzing system responsibilities; identif
structures by looking for generalization-specialization and whole-part relations
defining “subjects” (class-object groups); defining attributes; defining services.

The OMT method (Object Modeling Technique) combines concepts of ob
technology with those of entity-relation modeling. The method includes a static m
based on the concepts of class, attribute, operation, relation and aggregation,
dynamic model based on event-state diagrams, describing in an abstract way the in
behavior of the system.

OBJECT-ORIENTED ANALYSIS §27.6918

end
avior
oblem
terface
ystem
ss uses

on
s the

alysis,
t may
lasses.

sical
nents,
nified

 as
n use

 object
odel,

e a
sists of
well as
del,
 and
tween
 and

s. For
erface
ration
ribing
 data

f
el
rdware

nment.
es and
T, to

See “Use cases”,
page 738.

Citation from the
Syntropy Web page
listed in the bibliog-
raphy section.
The Shlaer-Mellor method is original in its emphasis on producing models that l
themselves to simulation and execution, making it possible to validate model beh
independently of any design or implementation. To separate concerns, it divides the pr
into a number of domains: application domain, service domains (such as the user in
domain), software architecture domain, implementation domains (such as operating s
or language). Rather than seamless development, its model for the development proce
translation to link the domains together into code for final system construction.

The presence of architecture, design and implementation models in Shlaer-Mellor and
some of the following methods illustrates the comment made above that the methods’
ambition often extends beyond analysis to cover a large part of the lifecycle, or all of it.

In the Martin-Odell method, also known as OOIE (Object-Oriented Informati
Engineering), analysis consists of two parts: object structure analysis, which identifie
object types and their composition and inheritance relations; and object behavior an
which defines the dynamic model by considering object states and the events tha
change these states. The events are considered first, leading to the identification of c

The Booch method uses a logical model (class and object structure) and a phy
model (module and process architecture), including both static and dynamic compo
and relying on numerous graphical symbols. It is intended to be subsumed by the “U
Modeling Language” (see below).

The OOSE method (Object-Oriented Software Engineering), also known
Jacobson’s method or as Objectory, the name of the original supporting tool, relies o
cases (scenarios) to elicit classes. It distinguishes five use case models: domain
model, analysis model (the use cases structured by the analysis), design m
implementation model, testing model.

The OSA method (for Object-oriented Systems Analysis) is meant to provid
general model of the analysis process rather than a step-by-step procedure. It con
three parts: the object-relationship model, which describes objects and classes as
their relations — with each other and with the “real world”; the object-behavior mo
which provides the dynamic view through states, transitions, events, actions
exceptions; and the object-interaction model, specifying possible interactions be
objects. The method also supports a notion of view, as well as generalization
specialization, which apply to both the interaction and behavior models.

The Fusion method seeks to combine some of the best ideas of earlier method
analysis it includes an object model, devoted to the problem domain, and an int
model, describing system behavior. The interface model is itself made of an ope
model, specifying events and the resulting operations, and a lifecycle model, desc
scenarios that guide the evolution of the system. Analysts should maintain a
dictionary which collects all the information from the various models.

The Syntropy method defines three models: the essential model “is a model of a real
or imaginary situation, [having nothing] to do with software: it describes the elements o
the situation, their structure and behavior”. The specification model is an abstract mod
that treats the system as a stimulus-response mechanism, assuming unlimited ha
resources. The implementation model takes into account the actual computing enviro
Each model may be expressed along several views: a type view describing object typ
their static properties; state views, similar to the state transition diagrams of OM

§27.7 THE BUSINESS OBJECT NOTATION 919

ethod
, going
ages.

ass
ice on
rvice
next

 using
tain”

age.

ject
del”.

ion of

ods.
ll, is
tional
ified

ethod
ldén’s
t into
ll only
sis;

aldén-

nting
 just a
ferent

cycle.
is to

; BON
sertion
so its

pter.
 of a
describe dynamic behavior; and mechanisms diagrams for implementation. The m
also supports a notion of viewpoint to describe various interfaces to the same objects
beyond the mere separation of interface and implementation provided by O-O langu

The MOSES method involves five models: object-class; event, showing cl
collaboration by describing what messages are triggered as a result of calling a serv
an object; “objectcharts”, to model state-transition dynamics; inheritance; and se
structure, to show data flow. Like the Business Object Notation reviewed in the
section, MOSES emphasizes the importance of contracts in specifying a class,
preconditions, postconditions and invariants in the style of the present book. Its “foun
process model defines a number of standard documents to be produced at each st

The SOMA method (Semantic Object Modeling Approach) uses a “Task Ob
Model” to capture the requirements and transforms them into a “Business Object Mo
It is one of the few methods to have benefited from formal approaches, using a not
contract to describe business rules applying to objects.

At the time of writing, two separate efforts are progressing to unify existing meth
One, led by Brian Henderson-Sellers, Don Firesmith, Ian Graham and Jim Ode
intended to produce an OPEN (the retained name) unified method. The other, by Ra
Corporation, is starting from the OMT, Booch and Jacobson methods to define a “Un
Modeling Language”.

27.7 THE BUSINESS OBJECT NOTATION

Each of the approaches listed in the preceding sections has its strong points. The m
that seems to provide the most benefit for the least complexity is Nerson’s and Wa
Business Object Notation; let us take a slightly closer look at it to gain some insigh
what a comprehensive approach to O-O analysis requires. This brief presentation wi
sketch the principal features of the method, limiting itself to its contribution to analy
for more details, and to explore design and implementation aspects, see the W
Nerson book cited in the bibliography.

The Business Object Notation started as a graphical formalism for represe
system structures. The original name was kept, even though BON has grown from
notation to a complete development method. BON has been used in many dif
application areas for the analysis and development of systems, some very complex.

BON is based on three principles: seamlessness, reversibility and contracting.
Seamlessness is the use of a continuous process throughout the software life
Reversibility is the support for both forward and backward engineering: from analys
design and implementation, and back. Contracting (remember Design by Contract) is the
precise definition, for each software element, of the associated semantic properties
is almost the only one among the popular analysis methods to use a full-fledged as
mechanism, allowing analysts to specify not only the structure of a system but al
semantics (constraints, invariants, properties of the expected results).

Several other properties make BON stand out among O-O methods:

• It is meant to “scale up”, in the sense explained at the beginning of this cha
Various facilities and conventions enable you to choose the level of abstraction

OBJECT-ORIENTED ANALYSIS §27.7920

 of a
tiple
ss and
pects

hat its
oards.
free
hed in

e used

, the
sic
s; the

ult is a
 of the

c part
ing.

arlier
anual

on, a

ave
luding

ctly.

For further discus-
sion of clusters see
“CLUSTERS”, 28.
1, page 923.

“Constraints” are
invariants.
system or subsystem description, to zoom in on a component, to hide parts
description. This selective hiding is preferable, in my opinion, to the use of mul
models illustrated by some of the preceding methods: here, for seamlessne
reversibility, you keep a single model; but you can at any time decide what as
are relevant to your needs of the moment, and hide the rest.

• BON, created in the nineteen-nineties, was designed under the assumption t
users would have access to computing resources, not just paper and whiteb
This makes it possible to use powerful tools to display complex information,
from the tyranny of fixed-size areas such as paper pages. Such a tool is sketc
the last chapter of this book. For small examples, the method can of course b
with pencil and paper.

• For all its ambition, especially its ability to cover large and complex systems
method is notable for its simplicity. It only involves a small number of ba
concepts. Note in particular that the formalism can be described over two page
most important elements appear below and on the facing page.

BON’s support for large systems relies in part on the notion of cluster, denoting a
group of logically related classes. Clusters can include subclusters, so that the res
nested structure allowing analysts to work on various levels at different times. Some
clusters may of course be libraries; the method puts a strong emphasis on reuse.

The static part of the model focuses on classes and clusters; the dynami
describes objects, object interactions and possible scenarios for message sequenc

BON recognizes the need for several complementary formalisms, explained e
in this chapter. (The assumed availability of software tools is essential here: with a m
process, multiple views would raise the issue of how to maintain the consistency of the
model; tools can ensure it automatically.) The formalisms include a textual notati
tabular form and graphical diagrams.

The textual notation is similar to the notation of this book; but since it does not h
to be directly compilable, it can use a few extensions in the area of assertions, inc
delta a to specify that a feature can change an attribute a, forall and exists to express logic
formulae of first-order predicate calculus, and set operators such as member_of.

The tabular form is convenient to summarize the properties of a class compa
Here is the general form of a tabular class chart:

CLASS Class_name Part:

Short description Indexing information

Inherits from

Queries

Commands

Constraints

§27.7 THE BUSINESS OBJECT NOTATION 921

mber.

Main diagram
types of the
Business
Object
Notation

(After
[Waldén 1995],
used with
permission.)

.

The graphical notation is extremely simple, so as to be easy to learn and reme
The principal conventions, static as well as dynamic, appear below.

NAME NAMENAME
[G, H]

∗
NAME

+
NAME

▲

NAME NAME

Class: generic, effective, deferred, reused, persistent, interfaced, root

●

NAME

STATIC DIAGRAMS

Name

Inter-class relations

Inherits from

Client

Expanded client
(aggregation)

Cluster (with some classes)

32 3

Multiplicity of relations

Invariant

Inherits:
Parent classes

Public features

A, B,

Features selectively
exported to A, B

Class invariant

NAME

Class: detailed interface

Features

name*, name+, name++ deferred, effective, redefined

→ name: TYPE input argument

precondition, postcondition? !

Assertion operators

∆ name feature may change attribute name
@, ýýý∅ current object, void reference

∃, ∀, |, ● symbols for predicate calculus operations

∈, ∉ membership operators

DYNAMIC DIAGRAMS

Name

Object group (with some objects) Object

Objects
(one or more)

Name

Name

Inter-object relations

Message passing

name

name

7

(with message number from scenario)

OBJECT-ORIENTED ANALYSIS §27.8922

ting of
ognizes
cept

ries.

e

 in

s.

cation
 of the
s (it is

ables:
. This
 and

resses.

ch-

other

Add the ritual http://
as a prefix to all Web
addresses.
The method defines a precise process for analysis and development, consis
seven tasks. The order of tasks corresponds to an ideal process, but the method rec
that in practice it is subject to variation and iteration, as implied in fact by the very con
of reversibility. The standard tasks are:

B1 • Delineate system borderline: identify what the system will include and not
include; define major subsystems, user metaphors, functionality, reused libra

B2 • List candidate classes: produce first list of classes based on problem domain.

B3 • Select classes and group into clusters: organize classes in logical groups, decid
what classes will be deferred, persistent, externally interfaced etc.

B4 • Define classes: expand the initial definition of classes to specify each of them
terms of queries, commands and constraints.

B5 • Sketch system behavior: define charts for object creation, events and scenario

B6 • Define public features: finalize class interfaces.

B7 • Refine system.

Throughout the process, the method prescribes keeping a glossary of terms of the
technical domain. Experience shows this to be an essential tool for any large appli
project, both to give non-experts a place to go when they do not understand some
domain experts’ jargon, and to make sure that the experts actually agree on the term
surprising to see how often the process reveals that they do not!).

More generally, the method specifies for each step is a precise list of its deliver
documents that the manager is entitled to expect as a result of the step’s work
precision in defining organizational responsibilities makes BON not only an analysis
design method but also a strategic tool for project management.

27.8 BIBLIOGRAPHY

The principal reference on the Business Object Notation is [Waldén 1995]. The basic
concepts were introduced in [Nerson 1992]. A Web page is available at www.tools.com/
products/bon/.

Here are the principal references on other methods, with associated Web add
Coad-Yourdon: [Coad 1990], www.oi.com; OMT: [Rumbaugh 1991]; Shlaer-Mellor
[Shlaer 1992], www.projtech.com; Martin-Odell, [Martin 1992]; Booch: [Booch 1994];
OOSE: [Jacobson 1992]; OSA: [Embley 1992], osm7.cs.byu.edu/OSA.html; Syntropy:
[Cook 1994], www.objectdesigners.co.uk/syntropy; Fusion, [Coleman 1994]; MOSES:
[Henderson-Sellers 1994], www.csse.swin.edu.au/cotar/OPEN/OPEN.html; SOMA,
[Graham 1995].

On the OPEN method convergence project see [Henderson-Sellers 1996];
[Computer 1996] is a discussion of Rational’s Unified Modeling Language effort (Boo
OMT-Jacobson).

Katsuya Amako maintains a set of descriptions of O-O methods, along with
useful O-O information, at arkhp1.kek.jp/~amako/OOInfo.html.

	27 27 Object-oriented analysis
	27.1 THE GOALS OF ANALYSIS
	Tasks
	Goals of performing analysis

	Requirements
	The clouds and the precipice

	27.2 THE CHANGING NATURE OF ANALYSIS
	Requirements analysis as a negotiation

	27.3 THE CONTRIBUTION OF OBJECT TECHNOLOGY
	27.4 PROGRAMMING A TV STATION
	Schedules
	Segments
	Programs and commercials
	Business rules
	Assessment

	27.5 EXPRESSING THE ANALYSIS: MULTIPLE VIEWS
	Inheritance link

	27.6 ANALYSIS METHODS
	27.7 THE BUSINESS OBJECT NOTATION
	Main diagram types of the Business Object Notation...
	(After [Waldén 1995], used with permission.)

	27.8 BIBLIOGRAPHY

