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L ike humans, computers can team up with their peers to achieve results that n
them could obtain alone; unlike humans, they can do many things at once (or wi
appearance of simultaneity), and do all of them well. So far, however, the discussio
implicitly assumed that the computation is sequential — proceeds along a single thread 
control. We should now see what happens when this assumption no longer holds,
move to concurrent (also known as parallel) computation.

Concurrency is not a new subject, but for a long time interest in it remained m
confined to four application areas: operating systems, networking, implementatio
database management systems, and high-speed scientific software. Although strate
prestigious, these tasks involve only a small subset of the software develop
community.

Things have changed. Concurrency is quickly becoming a required component 
about every type of application, including some which had traditionally been thought
fundamentally sequential in nature. Beyond mere concurrency, our systems, whethe
client-server, must increasingly become distributed over networks, including the network
of networks — the Internet. This evolution gives particular urgency to the central quest
of this chapter: can we apply object-oriented ideas in a concurrent and distributed co

Not only is this possible: object technology can help us develop concurren
distributed applications simply and elegantly.

30.1  A SNEAK PREVIEW

As usual, this discussion will not throw a pre-cooked answer at you, but instead
carefully build a solution from a detailed analysis of the problem and an exploratio
possible avenues, including a few dead ends. Although necessary to make you und
the techniques in depth, this thoroughness might lead you to believe that they are co
that would be inexcusable, since the concurrency mechanism on which we will fi
settle is in fact characterized by almost incredible simplicity. To avoid this risk, we
begin by examining a summary of the mechanism, without any of the rationale.

If you hate “spoilers”, preferring to start with the full statement of the issues and to let the
drama proceed to its dénouement step by step and inference by inference, ignore the on
page summary that follows and skip directly to the next section.

t 
 



CONCURRENCY, DISTRIBUTION, CLIENT-SERVER  AND THE INTERNET§30.1952

mal

s, we
1 can

les it.

 by the
at the

r,
uch

ent
essor
re of
but just
 thread
xecute
 one
ows
ncy
rs to

ward:

 after
it
as in

tached

cular,
sor in

h-
t can

nced
from
g
A complete sum-
mary appears in 
30.11, page 1025.
The extension covering full-fledged concurrency and distribution will be as mini
as it can get starting from a sequential notation: a single new keyword — separate. How
is this possible? We use the fundamental scheme of O-O computation: feature call, x● f (a),
executed on behalf of some object O1 and calling f on the object O2 attached to x, with the
argument a. But instead of a single processor that handles operations on all object
may now rely on different processors for O1 and O2 — so that the computation on O
move ahead without waiting for the call to terminate, since another processor hand

Because the effect of a call now depends on whether the objects are handled
same processor or different ones, the software text must tell us unambiguously wh
intent is for any x. Hence the need for the new keyword: rather than just x: SOME_TYPE,
we declare x: separate SOME_TYPE to indicate that x is handled by a different processo
so that calls of target x can proceed in parallel with the rest of the computation. With s
a declaration, any creation instruction!!  x● make (…) will spawn off a new processor — a
new thread of control — to handle future calls on x.

Nowhere in the software text should we have to specify which processor to use. All
we state, through the separate declaration, is that two objects are handled by differ
processors, since this radically affects the system’s semantics. Actual proc
assignment can wait until run time. Nor do we settle too early on the exact natu
processors: a processor can be implemented by a piece of hardware (a computer), 
as well by a task (process) of the operating system, or, on a multithreaded OS, just a
of such a task. Viewed by the software, “processor” is an abstract concept; you can e
the same concurrent application on widely different architectures (time-sharing on
computer, distributed network with many computers, threads within one Unix or Wind
task…) without any change to its source text. All you will change is a “Concurre
Configuration File” which specifies the last-minute mapping of abstract processo
physical resources.

We need to specify synchronization constraints. The conventions are straightfor

• No special mechanism is required for a client to resynchronize with its supplier
a separate call x● f (a) has gone off in parallel. The client will wait when and if 
needs to: when it requests information on the object through a query call, 
value:= x● some_query. This automatic mechanism is called wait by necessity.

• To obtain exclusive access to a separate object O2, it suffices to use the at
entity a as an argument to the corresponding call, as in r (a).

• A routine precondition involving a separate argument such as a causes the client to
wait until the precondition holds.

• To guarantee that we can control our software and predict the result (in parti
rest assured that class invariants will be maintained), we must allow the proces
charge of an object to execute at most one routine at any given time.

• We may, however, need to interrupt the execution of a routine to let a new, hig
priority client take over. This will cause an exception, so that the spurned clien
take the appropriate corrective measures — most likely retrying after a while.

This covers most of the mechanism, which will enable us to build the most adva
concurrent and distributed applications through the full extent of O-O techniques, 
multiple inheritance to Design by Contract — as we will now study in detail, forgettin
for a while all that we have read in this short preview.
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30.2  THE RISE OF CONCURRENCY

Back to square one. We must first review the various forms of concurrency, to under
how the evolution of our field requires most software developers to make concurrenc
of their mindset. In addition to the traditional concepts of multiprocessing 
multiprogramming, the past few years have introduced two innovative concepts: o
request brokers and remote execution through the Net.

Multiprocessing

More and more, we want to use the formidable amount of computing power ava
around us; less and less, we are willing to wait for the computer (although we have be
quite comfortable with the idea that the computer is waiting for us). So if one proce
unit would not bring us quickly enough the result that we need, we will want to rel
several units working in parallel. This form of concurrency is known as multiprocess

Spectacular applications of multiprocessing have involved researchers relyin
hundreds of computers scattered over the Internet, at times when the comp
(presumably consenting) owners did not need them, to solve computationally inte
problems such as breaking cryptographic algorithms. Such efforts do not just app
computing research: Hollywood’s insatiable demand for realistic computer graphic
played its part in fueling progress in this area; the preparation of the movie Toy Story, one
of the first to involve artificial characters only (only the voices are human), relied at s
point on a network of more than one hundred high-end workstations — more econom
it seems, than one hundred professional animators.

Multiprocessing is also ubiquitous in high-speed scientific computing, to solve 
larger problems of physics, engineering, meteorology, statistics, investment bankin

More routinely, many computing installations use some form of load balancing:
automatically dispatching computations among the various computers available a
particular time on the local network of an organization.

Another form of multiprocessing is the computing architecture known as client-
server computing, which assigns various specialized roles to the computers on a netw
the biggest and most expensive machines, of which a typical company network will
just one or a few, are “servers” handling shared databases, heavy computations an
strategic central resources; the cheaper machines, ubiquitously located wherever t
an end user, handle decentralizable tasks such as the human interface and 
computations; they forward to the servers any task that exceeds their competence.

The current popularity of the client-server approach is a swing of the pendulum away
from the trend of the preceding decade. Initially (nineteen-sixties and seventies)
architectures were centralized, forcing users to compete for resources. The persona
computer and workstation revolution of the eighties was largely about empowering users
with resources theretofore reserved to the Center (the “glass house” in industry jargon).
Then they discovered the obvious: a personal computer cannot do everything, and som
resources must be shared. Hence the emergence of client-server architectures in the
nineties. The inevitable cynical comment — that we are back to the one-mainframe-
many-terminals architecture of our youth, only with more expensive terminals now called
“client workstations” — is not really justified: the industry is simply searching, through
trial and error, for the proper tradeoff between decentralization and sharing.
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Multiprogramming

The other main form of concurrency is multiprogramming, which involves a sin
computer working on several tasks at once. 

If we consider general-purpose systems (excluding processors that are embed
an application device, be it a washing machine or an airplane instrument, and s
mindedly repeat a fixed set of operations), computers are almost always m
programmed, performing operating system tasks in parallel with application tasks
strict form of multiprogramming the parallelism is apparent rather than real: at any s
time the processing unit is actually working on just one job; but the time to switch bet
jobs is so short that an outside observer can believe they proceed concurrently. In ad
the processing unit itself may do several things in parallel (as in the advance fetch sc
of many computers, where each clock cycle loads the next instruction at the same 
executes the current one), or may actually be a combination of several processing
so that multiprogramming becomes intertwined with multiprocessing.

A common application of multiprogramming is time-sharing, allowing a single
machine to serve several users at once. But except in the case of very po
“mainframe” computers this idea is considered much less attractive now than it was
computers were a precious rarity. Today we consider our time to be the more va
resource, so we want the system to do several things at once just for us. In particularmulti-
windowing user interfaces allow several applications to proceed in parallel: in one win
we browse the Web, in another we edit a document, in yet another we compile an
some software. All this requires powerful concurrency mechanisms.

Providing each computer user with a multi-windowing, multiprogramming interf
is the responsibility of the operating system. But increasingly the users of the softwa
develop want to have concurrency within one application. The reason is always the sam
they know that computing power is available by the bountiful, and they do not want to
idly. So if it takes a while to load incoming messages in an e-mail system, you will 
to be able to send an outgoing message while this operation proceeds. With a goo
browser you can access a new site while loading pages from another. In a stock t
system, you may at any single time be accessing market information from several
exchanges, buying here, selling there, and monitoring a client’s portfolio. 

It is this need for intra-application concurrency which has suddenly brough
whole subject of concurrent computing to the forefront of software development and 
it of interest far beyond its original constituencies. Meanwhile, all the traditio
applications remain as important as ever, with new developments in operating system
Internet, local area networks, and scientific computing — where the continual que
speed demands ever higher levels of multiprocessing.
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Object request brokers

Another important recent development has been the emergence of the CORBA pro
from the Object Management Group, and the OLE 2/ActiveX architecture from Micro
Although the precise goals, details and markets differ, both efforts promise subst
progress towards distributed computing.

The general purpose is to allow applications to access each other’s object
services as conveniently as possible, either locally or across a network. The CORBA
(more precisely its CORBA 2 stage, clearly the interesting one) has also placed par
emphasis on interoperability:

• CORBA-aware applications can coöperate even if they are based on “object re
brokers” from different vendors.

• Interoperability also applies to the language level: an application written in one o
supported languages can access objects from an application written in anothe
interaction goes through an intermediate language called IDL (Interface Defin
Language); supported languages have an official IDL binding, which maps
constructs of the language to those of IDL. 

IDL is a common-denominator O-O language centered on the notion of interface
IDL interface for a class is similar in spirit to a short form, although more rudimen
(IDL in particular does not support assertions); it describes the set of features availa
a certain abstraction. From a class written in an O-O language such as the notation
book, tools will derive an IDL interface, making the class and its instances of intere
client software. A client written in the same language or another can, through an
interface, access across a network the features provided by such a supplier.

Remote execution

Another development of the late nineties is the mechanism for remote execution th
the World-Wide Web.

The first Web browsers made it not just possible but also convenient to ex
information stored on remote computers anywhere in the world, and to follow log
connections, or hyperlinks, at the click of a button. But this was a passive mechani
someone prepared some information, and everyone else accessed it read-only.

The next step was to move to an active setup where clicking on a link act
triggers execution of an operation. This assumes the presence, within the Web brow
an execution engine which can recognize the downloaded information as executable
and execute it. The execution engine can be a built-in part of the browser, or it m
dynamically attached to it in response to the downloading of information of 
corresponding type. This latter solution is known as a plug-in  mechanism and assume
that users interested in a particular execution mechanism can download the exe
engine, usually free, from the Internet. 
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Cited in [Matsuoka 
1993].
This idea was first made popular by Java in late 1995 and 1996; Java exe
engines have become widely available. Plug-ins have since appeared for many
mechanisms. An alternative to providing a specific plug-in is to generate, from any s
language, code for a widely available engine, such as a Java engine; several co
vendors have indeed started to provide generators of Java “bytecode” (the low
portable code that the Java engine can execute).

For the notation of this book the two avenues have been pursued: ISE has a free executio
engine; and at the time of writing a project is in progress to generate Java bytecode.

Either approach raises the potential of security problems: how much do you trus
someone’s application? If you are not careful, clicking on an innocent-looking hype
could unleash a vicious program that destroys files on your computer, or steals
personal information. More precisely you should not, as a user, be the one asked
careful: the responsibility is on the provider of an execution engine and the asso
library of basic facilities. Some widely publicized Java security failures in 1996 ca
considerable worries about the issue.

The solution is to use carefully designed and certified execution engines and lib
coming from reputable sources. Often they will have two versions:

• One version is meant for unlimited Internet usage, based on a severely res
execution engine.

In ISE’s tool the only I/O library facilities in this restricted tool only read and
write to and from the terminal, not files. The “external” mechanism of the
language has also been removed, so that a vicious application cannot cause
mischief by going to C, say, to perform file manipulations. The Java “Virtual
Machine” (the engine) is also draconian in what it permits Internet “applets”
to do with the file system of your computer.

• The other version has fewer or no such restrictions, and provides the full pow
the libraries, file I/O in particular. It is meant for applications that will run on a sec
Intranet (internal company network) rather than the wilderness of the Internet.

In spite of the insecurity specter, the prospect of unfettered remote execution, 
step in the ongoing revolution in the way we distribute software, has generated eno
excitement, which shows no sign of abating.

30.3  FROM PROCESSES TO OBJECTS

To support all these mind-boggling developments, requiring ever more use of conc
processing, we need powerful software support. How are we going to program 
things? Object technology, of course, suggests itself.

Robin Milner is said to have exclaimed, in a 1991 workshop at an O-O confere
“ I can’t understand why objects [of O-O languages] are not concurrent in the first place”.
Even if only in the second or third place, how do we go about making objects concu
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Addison-Wesley, 
1996.
If we start from non-O-O concurrency work, we will find that it largely relies on 
notion of process. A process is a program unit that acts like a special-purpose comp
it executes a certain algorithm, usually repeating it until some external event trig
termination. A typical example is the process that manages a printer, repeatedly exe

“Wait until there is at least a job in the print queue”
“Get the next print job and remove it from the queue”
“Print the job”

Various concurrency models differ in how processes are scheduled 
synchronized, compete for shared hardware resources, and exchange information. I
concurrent programming languages, you directly describe a process; in others, s
Ada, you may also describe process types, which at run time are instantiated int
processes, much as the classes of object-oriented software are instantiated into ob

Similarities

The correspondence seems indeed clear. As we start exploring how to combine idea
concurrent programming and object-oriented software construction, it seems natu
identify processes with objects, and process types with classes. Anyone who has s
concurrent computing and discovers O-O development, or the other way around, w
struck by the similarities between these two technologies:

• Both rely on autonomous, encapsulated modules: processes or process types; 

• Like processes and unlike the subroutines of sequential, non-O-O approa
objects will, from each activation to the next, retain the values they contain.

• To build reasonable concurrent systems, it is indispensable in practice to en
heavy restrictions on how modules can exchange information; otherwise th
quickly get out of hand. The O-O approach, as we have seen, places similarly severe
restrictions on inter-module communication.

• The basic mechanism for such communication may loosely be described, in
cases, under the general label of “message passing”. 

So it is not surprising that many people have had a “Eureka!” when first think
Milner-like, about making objects concurrent. The unification, it seems, should c
easily.

This first impression is unfortunately wrong: after the similarities, one soon stum
into the discrepancies. 

Active objects

Building on the analogies just summarized, a number of proposals for concurrent
mechanisms (see the bibliographical notes) have introduced a notion of “active ob
An active object is an object that is also a process: it has its own program to execut
definition from a book on Java:

Each object is a single, identifiable process-like entity (not unlike a Unix
process) with state and behavior. 
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This notion, however, raises difficult problems.

The most significant one is easy to see. A process has its own agenda: as illu
by the printer example, it relentlessly executes a certain sequence of actions. Not s
classes and objects. An object does not do one thing; it is a repository of services (th
features of the generating class), and just waits for the next client to solicit one of 
services — chosen by the client, not the object. If we make the object active, it bec
responsible for the scheduling of its operations. This creates a conflict with the cl
which have a very clear view of what the scheduling should be: they just want the sup
whenever they need a particular service, to be ready to provide it immediately!

The problem arises in non-object-oriented approaches to concurrency and has
mechanisms for synchronizing processes — that is to say, specifying when and how e
is ready to communicate, waiting if necessary for the other to be ready too. For ex
in a very simple, unbuffered producer-consumer scheme we may have a producer process
that repeatedly executes

a scheme which we may also view pictorially:

Communication occurs when both processes are ready for each other; t
sometimes called a handshake or rendez-vous. The design of synchronization mechanism
— enabling us in particular to express precisely the instructions to “Make it known that
process is ready” and “Wait for process to be ready” — has been a fertile area of resear
and development for several decades.

“Make it known that producer is not ready”
“Perform some computation that produces a value x”
“Make it known that producer is ready”
“Wait for consumer to be ready”
“Pass x to consumer”

and a consumer process that repeatedly executes

“Make it known that consumer is ready”
“Wait for producer to be ready”
“Get x from producer”
“Make it known that consumer is not ready”
“Perform some computation that uses the value x”

Handshake

Produce

Consume

Wait

Communicate

producer consumer

Handshake
(pass x)

Wait

Communicate
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All this is fine for processes, the concurrent equivalent of traditional seque
programs which “do one thing”; indeed, a concurrent system built with processes is 
sequential system with several main programs. But in the object-oriented approa
have rejected the notion of main program and instead defined software units that
ready to provide any one of a number of possible features.

Reconciling this view with the notion of process requires elaborate synchroniz
constructs to make sure that each supplier is ready to execute a feature when the
needs it. The reconciliation is particularly delicate when both client and supplier are a
objects, since each has its own agenda.

All this does not make it impossible to devise mechanisms based on the notion
active object, as evidenced by the abundant literature on the subject (to whic
bibliographical notes to this chapter give many references). But this evidence also s
the complexity of the proposed solutions, of which none has gained wide accep
suggesting that the active object approach is not the right one.

Active objects clash with inheritance

Doubts about the suitability of the active object approach grow as one starts look
how it combines with other O-O mechanisms, especially inheritance.

If a class B inherits from a class A and both are active (that is to say, descri
instances that must be active objects), what happens in B to the description of A’s process?
In many cases you will need to add some new instructions, but without special lan
mechanisms this means that you will almost always have to redefine and rewrite the
process part — not an attractive proposition.

Here is an example of special language mechanism. Although the Simul
language does not support concurrency, it has a notion of active object: a Simula cla
besides its features, include a set of instructions, called the body of the class, so t
can talk of executing an object — meaning executing the body of its generating clas
body of a class A can include a special instruction inner, which has no effect in the clas
itself but, in a proper descendant B, stands for the body of B. So if the body of A reads

some_initialization; inner; some_termination_actions

and the body of B reads

specific_B_actions

then execution of that body actually means executing

some_initialization; specific_B_actions; some_termination_actions

Although the need for a mechanism of this kind is clear in a language supportin
notion of active object, objections immediately come to mind: the notation is mislea
since if you just read the body of B you will get a wrong view of what the execution doe
it forces the parent to plan in detail for its descendants, going against basic O-O co
(the Open-Closed principle); and it only works in a single-inheritance language.
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Even with a different notation, the basic problem will remain: how to combine
process specification of a class with those of its proper descendants; how to rec
parents’ process specifications in the case of multiple inheritance.

Later in this chapter we will see other problems, known as the “inheritance anomaly” and
arising from the use of inheritance with synchronization constraints.

Faced with these difficulties, some of the early O-O concurrency proposals pref
to stay away from inheritance altogether. Although justifiable as a temporary meas
help understand the issues by separating concerns, this exclusion of inheritance ca
sustained in a definitive approach to the construction of concurrent object-orie
software; this would be like cutting the arm because the finger itches. (For good me
some of the literature adds that inheritance is a complex and messy notion anywa
telling the patient, after the operation, that having an arm was a bad idea in the first p

The inference that we may draw is simpler and less extreme. The problem 
object technology per se, in particular inheritance; it is not concurrency; it is not eve
combination of these ideas. What causes trouble is the notion of active object.

Processes programmed

As we prepare to get rid of active objects it is useful to note that we will not reall
renouncing anything. An object is able to perform many operations: all the features
generating class. By turning it into a process, we select one of these operations as t
one that really counts. There is absolutely no benefit in doing this! Why limit ourselv
one algorithm when we can have as many as we want?

Another way to express this observation is that the notion of process need no
built-in concept in the concurrency mechanism; processes can be programmed simply as
routines. Consider for example the concept of printer process cited at the beginning 
chapter. The object-oriented view tells us to focus on the object type, printer, and to
the process as just one routine, say live, of the corresponding class:

indexing
description: "Printers handling one print job at a time"
note: “A better version, based on a general class PROCESS, %

%appears below under the name PRINTER"
class

PRINTER_1
feature -- Status report

stop_requested: BOOLEAN is do … end
oldest: JOB is do … end

feature -- Basic operations
setup is do … end
wait_for_job is do … end
remove_oldest is do … end
print ( j: JOB) is do … end
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feature -- Process behavior

live is
-- Do the printer thing.

do
from setup until stop_requested loop

wait_ for_job; print (oldest); remove_oldest

end
end

… Other features …
end -- class PRINTER_1

Note the provision for Other features: although so far live and the supporting feature
have claimed all our attention, we can endow processes with many other features
want to, encouraged by the O-O approach developed elsewhere in this book. Tu
PRINTER_1 objects into processes would mean limiting this freedom; that would b
major loss of expressive power, without any visible benefit.

By abstracting from this example, which describes a particular process type s
as a class, we can try to provide a more general description of all process types thr
deferred class — a behavior class as we have often encountered in previous chapt
Procedure live will apply to all processes. We could leave it deferred, but it is not too m
of a commitment to note that most processes will need some initialization, s
termination, and in-between a basic step repeated some number of times. So w
already effect a few things at the most abstract level:

indexing
description: "The most general notion of process"

deferred class
PROCESS

feature -- Status report

over: BOOLEAN is
-- Must execution terminate now?

deferred
end

feature -- Basic operations

setup is
-- Prepare to execute process operations (default: nothing).

do
end

step is
-- Execute basic process operations.

deferred
end
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d

wrapup is
-- Execute termination operations (default: nothing).

do
end

feature -- Process behavior

live is
-- Perform process lifecycle.

do
from setup until over loop

step
end
wrapup

end

end -- class PROCESS

A point of methodology: whereas step is deferred, setup and wrapup are effective
procedures, defined as doing nothing. This way we force every effective descendant to
provide a specific implementation of step, the basic process action; but in the not
infrequent cases that require no particular setup or termination operation we avoid
bothering the descendants. This choice between a deferred version and a null effective
version occurs regularly in the design of deferred classes, and you should resolve it base
on your appreciation of the likely characteristics of descendants. A wrong guess is not a
disaster; it will just lead to more effectings or more redefinitions in descendants.

From this pattern we may define a more specialized class, covering printers:

indexing
description: "Printers handling one print job at a time"
note: “Revised version based on class PROCESS"

class PRINTER inherit
PROCESS

rename over as stop_requested end
feature -- Status report

stop_requested: BOOLEAN

-- Is the next job in the queue a request to shut down?
oldest: JOB is

-- The oldest job in the queue
do … end

feature -- Basic operations

step is
-- Process one job.

do
wait_for_job; print (oldest); remove_oldest

end
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wait_for_job is
-- Wait until job queue is not empty.

do
…

ensure
oldest /= Void

end
remove_oldest is

-- Remove oldest job from queue.
require

oldest /= Void
do

if oldest●is_stop_request then stop_requested:= True end
“Remove oldest from queue”

end
print ( j: JOB) is

-- Print j, unless it is just a stop request.
require

j /= Void
do

if not j ●is_stop_request then “Print the text associated with j” end
end

end -- class PRINTER

The class assumes that a request to shut off the printer is sent as a special prij
for which j ● is_stop_request is true. (It would be cleaner to avoid making print and
remove_oldest aware of the special case of the “stop request” job; this is easy to impr

The benefits of O-O modeling are apparent here. In the same way that going
main program to classes broadens our perspective by giving us abstract objects that
limited to “doing just one thing”, considering a printer process as an object describe
a class opens up the possibility of new, useful features. With a printer we can do mor
execute its normal printing operation as covered by live (which we should perhaps hav
renamed operate when inheriting it from PROCESS); we might want to add such feature
as perform_internal_test, switch_to_Postscript_level_1 or set_resolution. The equalizing
effect of the O-O method is as important here as in sequential software.

More generally, the classes sketched in this section show how we can use the n
object-oriented mechanisms — classes, inheritance, deferred elements, pa
implemented patterns — to implement processes. There is nothing wrong with the co
of process in an O-O context; indeed, we will need it in many concurrent applications
rather than a primitive mechanism it will simply be covered by a library class PROCESS
based on the version given earlier in this section, or perhaps several such classes c
variants of the notion.

For the basic new construct of concurrent object technology, we must look elsewhere.
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30.4  INTRODUCING CONCURRENT EXECUTION

What — if not the notion of process — fundamentally distinguishes concurrent 
sequential computation?

Processors

To narrow down the specifics of concurrency, it is useful to take a new look at the f
which helped us lay the very foundations of object technology by examining the 
basic ingredients of computation:

To perform a computation is to use certain processors to apply certain actions to
certain objects. At the beginning of this book we discovered how object technolo
addresses fundamental issues of reusability and extendibility by building soft
architectures in which actions are attached to objects (more precisely, object types)
than the other way around.

What about processors? Clearly we need a mechanism to execute the actions
objects. But in sequential computation there is just one thread of control, hence ju
processor; so it is taken for granted and remains implicit most of the time.

In a concurrent context, however, we will have two or more processors. 
property is of course essential to the idea of concurrency and we can take it 
definition of the notion. This is the basic answer to the question asked above: proc
(not processes) will be the principal new concept for adding concurrency to the frame
of sequential object-oriented computation. A concurrent system may have any num
processors, as opposed to just one for a sequential system.

The nature of processors

Definition : processor

A processor is an autonomous thread of control capable of supporting the
sequential execution of instructions on one or more objects.

Action Object

Processor
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This is an abstract notion, it should not be confused with that of physical proce
device, for which the rest of this chapter will use the term CPU, common in computer
engineering to denote the processing units of computers. “CPU” is an abbreviati
“Central Processing Unit” even though there is most of the time nothing central a
CPUs. You can use a CPU to implement a processor; but the notion of processor is
more abstract and general. A processor can be, for example:

• A computer (with its CPU) on a network.

• A task, also called process, as supported on operating systems such as
Windows and many others.

• A coroutine. (Coroutines, covered in detail later in this chapter, simulate 
concurrency by taking turns at execution on a single CPU; after each interrup
each coroutine resumes its execution where it last left it.) 

• A “thread” as supported by such multi-threaded operating systems as Solaris,
and Windows NT.

Threads are mini-processes. A true process can itself contain many threads, which i
manages directly; the operating system (OS) only sees the process, not its threads
Usually the threads of a process will all share the same address space (in object-oriente
terms, they potentially have access to the same set of objects), whereas each process h
its own address space. We may view threads as coroutines within a process. The mai
advantage of threads is efficiency: whereas creating a process and synchronizing it with
other processes are expensive operations, requiring direct OS intervention (to allocate th
address space and the code of the process), the corresponding operations on threads a
much simpler, do not involve any expensive OS operations, and so can be faster by a
factor of several hundreds or even several thousands.

The difference between processors and CPUs was clearly expressed by 
Lieberman (for a different concurrency model):

The number of [processors] need not be bounded in advance, and if there are
too many [ processors] for the number of real physical [CPUs] you have on
your computer system, they are automatically time-shared. Thus the user can
pretend that processor resources are practically infinite. 

To avoid any misunderstanding, be sure to remember that throughout this chap
“processors” denote virtual threads of control; any reference to the physical un
computation uses the term CPU.

At some point before or during you will need to assign computational resourc
the processors. The mapping will be expressed by a “Concurrency Control File
described below, or associated library facilities.

Handling an object

Any feature call must be handled (executed) by some processor. More generally
object O2 is handled by a certain processor, its handler; the handler is responsible fo
executing all calls on O2 (all calls of the form x● f (a) where x is attached to O2).

-
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We may go further and specify that the handler is assigned to the object at th
of creation, and remains the same throughout the object’s life. This assumption wil
keep the mechanism simple. It may seem restrictive at first, since some distri
systems may need to support object migration across a network. But we can address t
need in at least two other ways:

• By allowing the reassignment of a processor to a different CPU (with this solu
all objects handled by a processor will migrate together).

• By treating object migration as the creation of a new object.

The dual semantics of calls

With multiple processors, we face a possible departure from the usual semantics 
fundamental operation of object-oriented computation, feature call, of one of the for

x● f (a) -- if f is a command

y := x●f (a) -- if  f is a query

As before, let O2 be the object attached to x at the time of the call, and O1 the obje
on whose behalf the call is executed. (In other words, the instruction in either form i
of a call to a certain routine, whose execution uses O1 as its target.)

We have grown accustomed to understanding the effect of the call as the exe
of f ’s body applied to O2, using a as argument, and returning a result in the query cas
the call is part of a sequence of instructions, as with

… previous_instruction; x● f (a); next_instruction; …

(or the equivalent in the query case), the execution of next_instruction will not commence
until after the completion of f.

Not so any more with multiple processors. The very purpose of concu
architectures is to enable the client computation to proceed without waiting fo
supplier to have completed its job, if that job is handled by another processor. I
example of print controllers, sketched at the beginning of this chapter, a client applic
will want to send a print request (a “job”) and continue immediately with its own age

So instead of one call semantics we now have two cases:

• If O1 and O2 have the same handler, any further operation on O1 (next_instruction)
must wait until the call terminates. Such calls are said to be synchronous. 

• If O1 and O2 are handled by different processors, operations on O1 can proc
soon as it has initiated the call on O2. Such calls are said to be asynchronous.

The asynchronous case is particularly interesting for a command, since the rem
of the computation may not need any of the effects of the call on O2 until much lat
at all: O1 may just be responsible for spawning one or more concurrent computation
then terminating). For a query, we need the result, as in the above example whe
assign it to y, but as explained below we might be able to proceed concurrently anyw
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Separate entities

A general rule of software construction is that a semantic difference should alwa
reflected by a difference in the software text.

Now that we have two variants of call semantics we must make sure that the sof
text incontrovertibly indicates which one is intended in each case. What determine
answer is whether the call’s target, O2, has the same handler (the same processor
call’s originator, O1. So rather than the call itself we should mark x, the entity denoting
the target object. In accordance with the static typing policy, developed in earlier cha
to favor clarity and safety, the mark should appear in the declaration of x.

This reasoning yields the only notational extension supporting concurrency. Along
with the usual

x: SOME_TYPE

we allow ourselves the declaration form

x: separate SOME_TYPE

to express that x may become attached to objects handled by a different processor
class is meant to be used only to declare separate entities, you can also declare it a

separate class X … The rest as usual …

instead of just class X … or deferred class X ….

The convention is the same as for declaring an expanded status: you can declare y as being
of type expanded T, or equivalently just as T if T itself is a class declared as expanded
class T… The three possibilities — expanded, deferred, separate — are mutually
exclusive, so at most one qualifying keyword may appear before class.

It is quite remarkable that this addition of a single keyword suffices to turn 
sequential object-oriented notation into one supporting general concurrent computa

Some straightforward terminology. We may apply the word “separate” to var
elements, both static (appearing in the software text) and dynamic (existing at run 
Statically: a separate class is a class declared as separate class …; a separate type is
based on a separate class; a separate entity is declared of a separate type, or as separate
T for some T; x● f (…) is a separate call if its target x is a separate entity. Dynamically: th
value of a separate entity is a separate reference; if not void, it will be attached to an objec
handled by another processor — a separate object.

Typical examples of separate class include:

• BOUNDED_BUFFER, to describe a buffer structure that enables various concur
components to exchange data (some components, the producers, depositing 
into the buffer, and others, the consumers, acquiring objects from it).

• PRINTER, perhaps better called PRINT_CONTROLLER, to control one or more
printers. By treating the print controllers as separate objects, applications do no
to wait for the print job to complete (unlike early Macintoshes, with which you w
stuck until the last page had come out of the printer).
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• DATABASE, which in the client part of a client-server architecture may serve
describe the database hosted by a distant server machine, to which the clien
send queries through the network.

• BROWSER_WINDOW, in a Web browser that allows you to spawn a new wind
where you can examine different Web pages.

Obtaining separate objects

In practice, as illustrated by the preceding examples, separate objects will be of two 

• In the first case an application will want to spawn a new separate object, grabbing
the next available processor. (Remember that we can always get a new proc
since processors are not material resources but abstract facilities, their numbe
bounded.) This is typically the case with BROWSER_WINDOW: you create a new
window when you need one. A BOUNDED_BUFFER or PRINT_CONTROLLER
may also be created in this way.

• An application may simply need to access an existing separate object, usually share
between many different clients. This is the case in the DATABASE example: the client
application uses an entity db_server: separate DATABASE to access the databas
through such separate calls as db_server●ask_query (sql_query). The server must
have at some stage obtained the value of server — the database handle — from th
outside. Accesses to existing BOUNDED_BUFFER or PRINT_CONTROLLER
objects will use a similar scheme.

The separate object is said to be created in the first case and external in the second.

To obtain a created object, you simply use the creation instruction. If x is a separate
entity, the creation instruction

!!  x● make (…)

will, in addition to its usual effect of creating and initializing a new object, assign a 
processor to handle that object. Such an instruction is called a separate creation.

To obtain an existing external object, you will typically use an external routine, 
as

server (name: STRING; … Other arguments …): separate DATABASE

where the arguments serve to identify the requested object. Such a routine will typ
send a message over the network and obtain in return a reference to the object.

A word about possible implementations may be useful here to visualize the n
of separate object. Assume each of the processors is associated with a task (process) of an
operating system such as Windows or Unix, with its own address space; this is of c
just one of many concurrent architectures. Then one way to represent a separate
within a task is to use a small local object, known as a proxy :
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A proxy for a 
separate object
The figure shows an object O1, instance of a class T with an attribute x: separate U.
The corresponding reference field in O1 is conceptually attached to an object O2, ha
by another processor. Internally, however, the reference leads to a proxy object, ha
by the same processor as O1. The proxy is an internal object, not visible to the aut
the concurrent application. It contains enough information to identify O2: the task
serves as O2’s handler, and O2’s address within that task. All operations on x on behalf of
O1 or other clients from the same task will go through the proxy. Any other processo
also handles objects containing separate references to O2 will have its own proxy fo

Be sure to note that this is only one possible technique, not a required property of the
model. Operating system tasks with separate address spaces are just one way t
implement processors. With threads, for example, the techniques may be different.

Objects here, and objects there

When first presented with the notion of separate entity, some people complain tha
over-committing: “I do not want to know where the object resides! I just want to req
the operation, x● f (…), and let the machinery do the rest — execute f on x wherever x is.”

Although legitimate, this desire to avoid over-commitment does not obviate the 
for separate declarations. It is true that the precise location of an object is often an
implementation detail that should not affect the software. But one “yes or no” proper
the object’s location remains relevant: whether the object is handled by the same processor
or by another. This is a fundamental semantic difference since it determines whethe
on the object are synchronous or asynchronous — cause the client to wait, or not. Ig
this property in the software would not be a convenience; it would be a mistake.

Once we know the object is separate, it should not in most cases matter fo
functionality of our software (although it may matter for its performance) whether
object belongs to another thread of the same process, another process on the
computer, another computer in the same room, another room in the same building, a
site on the company’s private network, or another Internet node half-way aroun
world. But it matters that it is separate.

Other

fields
(non-separate)

x: separate U

(T)

PROXY
OBJECT

(U)

O1

O2

Other
objects

Other
objects

Address space 1

Address space 2



CONCURRENCY, DISTRIBUTION, CLIENT-SERVER  AND THE INTERNET§30.4970

ject
s of

r the

hich
rrent

ture

erating
pports
achine
e that
 CPU-
ation

, are a
text

sms

nda

-level
s
ly. But

Two-level 
architecture for 
concurrency 
mechanism

(See a similar archi-
tecture for graphical 
libraries on page 
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A concurrency architecture

The use of separate declarations to cover the fundamental boolean property “is this ob
here, or is it elsewhere?” while leaving room for various physical implementation
concurrency suggests a two-level architecture, similar to what is available fo
graphical mechanisms (with the Vision library sitting on top of platform-specific
libraries):

At the highest level the mechanism is platform-independent. This is the level w
most applications use, and which this chapter describes. To perform concu
computation, applications simply use the separate mechanism.

Internally, the implementation will rely on some practical concurrent architec
(lower level on the figure). The figure lists some possibilities:

• There may be an implementation using processes (tasks) as provided by the op
system. Each processor is associated with a process. This solution su
distributed computing: the process of a separate object can be on a remote m
as well as a local one. For non-distributed processing, it has the advantag
processes are stable and well known, and the disadvantage that they are
intensive; both the creation of a new process and the exchange of inform
between processes are expensive operations.

• There may be an implementation using threads. Threads, as already noted
lighter alternative to processes, minimizing the cost of creation and con
switching. Threads, however, have to reside on the same machine.

• A CORBA implementation is also possible, using CORBA distribution mechani
as the physical layer to exchange objects across the network.

• Other possible mechanisms include PVM (Parallel Virtual Machine), the Li
language for concurrent programming, Java threads…

As always with such two-level architectures, the correspondence between high
constructs and the actual platform mapping (the handle in terms of a previous chapter) i
in most cases automatic, so that application developers will see the highest level on

Process-based 
handle

Thread-based 
handle

CORBA-
based handle

General concurrency mechanism (SCOOP)
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mechanisms must be available to let them access the lower level if they need to (a
course, are ready to renounce platform-independence).

Mapping the processors: the Concurrency Control File

If the software does not specify the physical CPUs, this specification must ap
somewhere else. Here is a way to take care of it. This is only one possible solution
fundamental part of the approach; the exact format is not essential, but any configu
mechanism will somehow have to provide the same information. 

Our example format is a “Concurrency Control File” (CCF) describing 
concurrent computing resources available to our software. CCFs are similar in pu
and outlook to Ace files used to control system assembly. A typical CCF looks like 

creation

local_nodes:

system

"pushkin"  (2): "c:\system1\appl●exe"

"akhmatova" (4): "/home/users/syst1"

Current: "c:\system1\appl2● exe"

end

remote_nodes:

system
" lermontov": "c:\system1\appl● exe"

" tiuchev" (2): "/usr/bin/syst2"

end

end

external

Ingres_handler: "mandelstam" port  9000

ATM_handler: "pasternak" port  8001

end

default

port : 8001; instance: 10

end

Defaults are available for all properties of interest, so that each of the three possible parts
(creation, external, default) is optional, as well as the CCF as a whole.

The creation part specifies what CPUs to use for separate creations (instructio
the form!! x● make (…) for separate x). The example uses two CPU groups: local_nodes,
presumably covering local machines, and remote_nodes. The software can select a CPU
group through a call such as

set_cpu_group ("local_nodes")
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directing subsequent separate creations to use the CPU group local_nodes until the next call
to set_cpu_group. This procedure comes from a class CONCURRENCY providing
facilities for controlling the mechanism; we will encounter a few more of its features be

The corresponding CCF entry specifies what CPUs to use for local_nodes: the first
two objects will be created on machine pushkin, the next four on akhmatova, and the next
ten on the current machine (the one which executes the creation instructions); aft
the allocation scheme will repeat itself — two objects on pushkin and so on. In the absenc
of a processor count, as with Current here, the value is taken from the instance entry in
the default part (here 10) if present, and is 1 otherwise. The system used to create
instance is an executable specified in each entry, such as c:\system1\appl● exe for pushkin
(obviously a machine running Windows or OS/2).

In this example the processors are all mapped to processes. The CCF also s
assigning processors to threads (in the thread-based handle) or other concu
mechanisms, although we need not concern ourselves with the details.

The external part specifies where to look for existing external separate objects.
CCF refers to these objects through abstract names, Ingres_handler and ATM_handler in
the example, which the software will use as arguments to the functions that estab
connection with such an object. For example with the server function as assumed earlier

server (name: STRING; … Other arguments …): separate DATABASE

a call of the form server ("Ingres_handler", …) will yield a separate object denoting th
Ingres database server. The CCF indicates that the corresponding object resi
machine mandelstam and is accessible on port 9000. In the absence of a port specific
the value used is drawn from the defaults part or, barring that, a universal default.

The CCF is separate from the software. You may compile a concurrent or distri
application without any reference to a specific hardware and network architecture; t
run time each separate component of the application will use its CCF to connect to othe
existing components (external parts) and to create new components (creation parts).

This sketch of CCF conventions has shown how we can map the abstract co
of concurrent O-O computation — processors, created separate objects, external s
objects — to physical resources. As noted, these conventions are only an example o
can be done, and they are not part of the basic concurrency mechanism. Bu
demonstrate that it is possible to decouple the software architecture of a concurrent 
from the concurrent hardware architecture available at any particular stage.

Library mechanisms

With a CCF-like approach, the application software will, most of the time, not con
itself with the physical concurrency architecture. Some application developers 
however, need to exert a finer degree of control from within the application, at the po
expense of dynamic reconfigurability. Some CCF functionalities must then be acce
directly to the application, enabling it, for example, to select a specific process or t
for a certain processor. They will be available through libraries as part of the two-
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concurrency architecture; it does not raise any difficult problem. We will encounte
need for more library mechanisms later in this chapter.

At the other extreme, some applications may want unlimited run-t
reconfigurability. It is not enough then to have the ability to read a CCF or sim
configuration information at start-up time and then be stuck with it. But we cannot e
expect to re-read the configuration before each operation, as this would kill perform
The solution is once again to use a library mechanism: a procedure must be availa
read or re-read the configuration information dynamically, allowing the applicatio
adapt to a new configuration when (and only when) it is ready to do so.

Validity rules : unmasking traitors

Because the semantics of calls is different for separate and non-separate objec
essential to guarantee that a non-separate entity (declared as x: T for non-separate T) can
never become attached to a separate object. Otherwise a call x● f (a) would wrongly be
understood — by the compiler, among others — as synchronous, whereas the at
object is in fact separate and requires asynchronous processing. Such a reference
declared as non-separate while having its loyalties on the other side, will be ca
traitor . We need a simple validity rule to guarantee that our software has no traitor —
every representative or lobbyist of a separate power is duly registered as such w
appropriate authorities. 

The rule will have four parts. The first part eliminates the risk of producing trai
through attachment, that is to say assignment or argument passing:

An attachment of target x and source y is either an assignment x := y or a call
f (…, y, …) where the actual argument corresponding to x is y. Having such an attachmen
with y separate but not x would make x a traitor, since we could use x to access a separat
object (the object attached to y) under a non-separate name, as if it were a local object w
synchronous call. The rule disallows this.

Note that syntactically x is an entity but y may be any expression. This means that the rule
assumes we have defined the notion of “separate expression”, in line with previous
definitions. A simple expression is an entity; more complex expressions are function calls
(remember in particular that an infix expression such as a + b is formally considered a
call, similar to something like a● plus (b)). So the definition is immediate: an expression
is separate if it is either a separate entity or a separate call.

As will be clear from the rest of the discussion, permitting an attachment of a 
separate source to a separate target is harmless — although usually not very usefu

Separateness consistency rule (1)

If the source of an attachment (assignment instruction or argument passing)
is separate, its target entity must be separate too.
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We need a complementary rule covering the case in which a client passe
separate supplier a reference to a local object. Assume the separate call

x● f (a)

where a, of type T, is not separate, although x is. The declaration of routine f, for the
generating class of x, will be of the form

f (u: … SOME_TYPE)

and the type T of a must conform to SOME_TYPE. But this is not sufficient! Viewed from
the supplier’s side (that is to say, from the handler of x), the object O1 attached to a has a
different handler; so unless the corresponding formal argument u is declared as separate 
would become a traitor, giving access to a separate object as if it were non-separat

So SOME_TYPE must be separate; for example it may be separate T. Hence the
second consistency rule:

The issue only arises for arguments of reference type. The other case, expanded type
including in particular the basic types such as INTEGER, is considered next.

As an application of the technique, consider an object that spawns several se
objects, giving them a way to rely later on its resources; it is saying to them, in e
“Here is my business card; call me if you need to”. A typical example would be an
operating system’s kernel that creates several separate objects and stands ready to
operations for them when they ask. The creation calls will be of the form

!!  subsystem● make (Current, … Other arguments …)

Separateness consistency rule (2)

If an actual argument of a separate call is of a reference type, the
corresponding formal argument must be declared as separate.

a 
O1

Processor 1

Processor 2

(T)

Here a is a reference
to a local object.

x● f (a)

u 
 f (u: …)

Here u is a reference
to a separate object.

(the handler of x)
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where Current is the “business card” enabling subsystem to remember its progenitor, and
ask for its help in case of need. Because Current is a reference, the corresponding form
argument in make must be declared as separate. Most likely, make will be of the form

make (p: separate PROGENITOR_TYPE; … Other arguments …) is

do

progenitor:= p

… Rest of subsystem initialization operations …
end

keeping the value of the progenitor argument in an attribute progenitor of the enclosing
class. The second separateness consistency rule requires p to be declared as separate; s
the first rule requires the same of attribute progenitor. Later calls for progenitor resources
of the form progenitor● some_resource (…) will, correctly, be treated as separate calls.

A similar rule is needed for function results:

Since the last two rules only apply to actual arguments and results of reference 
we need one more rule for the other case, expanded types:

In other words, the only expanded values that we can pass in a separate c
“completely expanded” objects, with no references to other objects. Otherwise we 
again run into traitor trouble since attaching an expanded value implies copying an object:

Separateness consistency rule (3)

If the source of an attachment is the result of a separate call to a function
returning a reference type, the target must be declared as separate.

Separateness consistency rule (4)

If an actual argument or result of a separate call is of an expanded type, its
base class may not include, directly or indirectly, any non-separate attribute
of a reference type.

 
a 

O1
Processor 1

Processor 2

x● f (a)

 f (u: …)

This is a reference
to a local object.

(the handler of x)

O2

u 
O'1

This is a
separate reference.

(fields copied

from O1)
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245.
The figure illustrates the case in which the formal argument u is itself expanded.
Then the attachment is simply a copy of the fields of the object O1 onto those of the 
O'1 attached to u. Permitting O1 to contain a reference would produce a traitor field in 
The problem would also arise if O1 had a subobject with a reference; hence the m
“directly or indirectly” in the rule.

If the formal argument u is a reference, the attachment is a clone; the call wo
create a new object O'1 similar to the one on the last figure and attach reference u to it. In
this case the solution is to create the clone explicitly on the client’s side, before the

a: expanded SOME_TYPE; a1: SOME_TYPE

…

a1 := a; -- This clones the object and attaches a1 to the clone.

x● f (a1)

As per the second validity rule, the formal argument u must be of a separate referenc
type, separate SOME_TYPE or conforming; the call on the last line makes u a separate
reference attached to the newly created clone on the client’s side.

Importing object structures

A consequence of the separateness consistency rules is that it is not possible to 
clone function (from the universal class ANY) to obtain an object handled by anoth
processor. The function is declared as

clone (other: GENERAL): like other is

-- New object, field-by-field identical to other

…

so that an attempt to use y := clone (x) for separate x would violate part 1 of the rule: x,
which is separate, does not conform to other which is not. This is what we want: a separa
object running on a machine in Vladivostok may contain (non-separate) referenc
objects that are in Vladivostok too; but then if you could clone it in Kansas City,
resulting object would contain traitors — references to those objects, now separate
though in the generating class the corresponding attributes are not declared as sep

The following function, also in class GENERAL, enables us to clone separate obje
structures without producing traitors:

deep_import (other: separate GENERAL): GENERAL is

-- New object, field-by-field identical to other

…
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You should be 
familiar with the 
notions of shallow 
and deep clone; see 
“Deep clone and 
comparison”, page 
247.
The result is a non-separate object structure, recursively duplicated from the se
structure starting at other. For the reasons just explained, a shallow import operation could
yield traitors; so what we need is the equivalent of deep_clone applied to a separate objec
Function deep_import provides it. It will produce a copy of the entire structure, maki
all the object copies non-separate. (It may of course still contain separate reference
original structure contained references to objects handled by another processor.)

For the developers of distributed systems, deep_import is a convenient and powerfu
mechanism, through which you can transfer possibly large object structures acr
network without the need to write any specialized software, and with the guarante
the exact structure (including cycles etc.) will be faithfully duplicated.

30.5  SYNCHRONIZATION ISSUES

We have our basic mechanism for starting concurrent executions (separate creatio
for requesting operations from these executions (the usual feature call mechanism
concurrent computation, object-oriented or not, must also provide ways to synchronize
concurrent executions, that is to say to define timing dependencies between them.

If you are familiar with concurrency issues, you may have been surprised b
announcement that a single language mechanism, separate declarations, is enough to ad
full concurrency support to our sequential object-oriented framework. Surely we 
specific synchronization mechanisms too? Actually no. The basic O-O constructs s
to cover a wide range of synchronization needs, provided we adapt the definition o
semantics when they are applied to separate elements. It is a testimony of the powe
object-oriented method that it adapts so simply and gracefully to concurrent comput

Synchronization vs. communication

To understand how we should support synchronization in object-oriented concurren
is useful to begin with a review of non-O-O solutions. Processes (the concurrent un
most of these solutions) need mechanisms of two kinds:

• Synchronization mechanisms enforce timing constraints. A typical constraint mi
state that a certain operation of a process, such as accessing a database ite
only occur after a certain operation of another process, such as initializing the 

• Communication mechanisms allow processes to exchange information, which in
object-oriented case will be in the form of objects (including the special cas
simple values such as integers) or object structures.

A simple classification of approaches to concurrency rests on the observation
some of them focus on the synchronization mechanism and then use ordinary
concurrent techniques such as argument passing for communication, whereas othe
communication as the fundamental issue and deduce synchronization from it. We ma
about synchronization-based and communication-based mechanisms.
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Synchronization-based mechanisms

The best known and most elementary synchronization-based mechanism i
semaphore, a locking tool for controlling shared resources. A semaphore is an obje
which two operations are available: reserve and free (traditionally called P and V, but
more suggestive names are preferable). At any time the semaphore is either reserv
certain client or free. If it is free and a client executes reserve, the semaphore become
reserved by that client. If the client that has reserved it executes free, the semaphore
becomes free. If the semaphore is reserved by a client and another executes reserve, the
new client will wait until the semaphore is free again. The following table summarizes
specification:

Events represented by shaded entries are not supposed to occur; they can be treated eith
as errors or as having no effect.

The policy for deciding which client gets through when two or more are waiting
a semaphore that gets freed may be part of the semaphore’s specification, or may
unspecified. (Usually clients expect a fairness property guaranteeing that if everyon
gaining access to the semaphore ultimately frees it no one will wait forever.)

This description covers binary semaphores. The integer variant lets at most n clients
through at any given time, for some n, rather than at most one.

Although many practical developments still rely on them, semaphores are w
considered too low-level for building large, reliable systems. But they provide a 
starting point for discussing more advanced techniques.

Critical regions are a more abstract approach. A critical region is a sequenc
instructions that may be executed by at most one client at a time. To ensure exc
access to a certain object a you may write something like

hold a then … Operations involving fields of a …end

where the critical region is delimited by then … end. Only one client can execute th
critical region at any given time; others executing a hold will wait.

Most applications need a more general variant, the conditional critical region , in
which execution of the critical region is subject to a boolean condition. Consider a b
shared by a producer, which can only write into the buffer if it is not full, and a consu
which can only read from it if it is not empty; they may use the two respective schem

hold buffer when not buffer● full then “Write into buffer, making it not empty” end

hold buffer when not buffer● empty then “Read from buffer, making it not full” end

STATE

OPERATION

Free Reserved by 
me

Reserved by 
someone else

reserve Becomes 
reserved by me.

I wait.

free Becomes free.
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Such interplay between input and output conditions cries for introducing asser
and giving them a role in synchronization, an idea to be exploited later in this chapt

Another well-known synchronization-based mechanism, combining the notio
critical region with the modular structure of some modern programming languages, 
monitor . A monitor is a program module, not unlike the packages of Modula or Ada.
basic synchronization mechanism is simple: mutual exclusion at the routine level. At
one client may execute a routine of the monitor at any given time.

Also interesting is the notion of path expression. A path expression specifies th
possible sequencing of a set of processes. For example the expression

init ; (reader*  | writer)+ ; finish

prescribes the following behavior: first an init process; then a state in which at any time eith
one writer process or any number of reader processes may be active; then a finish process.
The asterisk *  means any number of concurrent instances; the semicolon; indicates
sequencing;| means “either-or”;+ means any number of successive repetitions. 
argument often cited in favor of path expressions is that they specify the processes a
synchronization separately, avoiding interference between the description of indiv
algorithmic tasks and the description of their scheduling.

Yet another category of techniques for specifying synchronization relies on analyzing the
set of states through which a system or system component can go, and transitions
between these states. Petri nets, in particular, rely on graphical descriptions of the
transitions. Although intuitive for simple hardware devices, such techniques quickly
yield a combinatorial explosion in the number of states and transitions, and make it hard
to work hierarchically (specifying subsystems independently, then recursively
embedding their specifications in those of bigger systems). So they do not seem
applicable to large, evolutionary software systems.

Communication-based mechanisms

Starting with Hoare’s “Communicating Sequential Processes” (CSP) in the late seve
most non-O-O concurrency work has focused on communication-based approache

The rationale is easy to understand. If you have solved the synchronization pro
you must still find a way to make concurrent units communicate. But if you devise a 
communication mechanism you might very well have solved synchronization 
because two units cannot communicate unless the sender is ready to send and the 
ready to receive, communication implies synchronization; pure synchronization ma
viewed as the extreme case of communicating an empty message. If your commun
mechanism is general enough, it will provide all the synchronization you need.

CSP is based on this “I communicate, therefore I synchronize” view. The sta
point is a generalization of a fundamental concept of computing, input and outp
process receives information v from a certain “channel” c through the construct c ? v; it
sends information to a channel through the construct c ! v. Channel input and output are
only two among the possible examples of events.

For more flexibility CSP introduces the notion of non-deterministic wa
represented by the symbol , enabling a process to wait on several possible events 
execute the action associated with the first that occurs. Assume for example a s
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enabling a bank’s customers to make inquiries and transfers on their accounts, a
bank manager to check what is going on:

(balance_enquiry? customer→ 

(ask_password● customer? password →
(password_valid → (balance_out● customer! balance) 

 (password_invalid → (denial●customer! denial_message)))

transfer_request? customer→ …
control_operation? manager→ …)

In the initial state the system stands ready to accept one of three possible
events: a balance_enquiry or transfer_request from a customer, or a control_operation
from a manager. The first event that occurs will trigger the behavior described, using
same mechanisms, on the right of the corresponding arrow.

The right side of the arrow has only been filled in for the first event: after getti
balance_enquiry relative to a certain customer, you send the customer an ask_ password
event from which you expect to get the password; you validate the password, as a resu
sending to the customer one of two possible messages: balance_out, with the balance as
argument, or denial.

Once the event’s processing is complete, the system returns to its initial 
listening to possible input events.

The original version of CSP was a major influence on the concurrency mecha
of Ada, whose “tasks” are processes able to wait on several possible “entries” throu
“accept” instruction. The Occam language, a direct implementation of CSP, is the pr
programming tool for the transputer, a family of microprocessors designed specifically 
Inmos (now SGS-Thomson) for the construction of highly concurrent architectures.

Synchronization for concurrent O-O computation

Many of the ideas just reviewed will help us find the right approach to concurrency 
object-oriented context. In the final form of the solution you will recognize conc
coming from CSP as well as monitors and conditional critical regions.

The CSP emphasis on communication seems right for us, since the central tec
of our model of computation — calling a feature, with arguments, on an object —
communication mechanism. But there is another reason for preferring a communic
based solution: a synchronization-based mechanism can conflict with inheritance.

This conflict is most obvious if we consider path expressions. The idea of using
expressions has attracted many researchers on O-O concurrency as a way to spe
actual processing, given by the features of a class, separately from the synchron
constraints, given by path expressions. The purely computational aspects of the so
which may have existed prior to the introduction of concurrency, will thus rem
untainted by concurrency concerns. So for example if a class BUFFER has the features
remove (remove the oldest element of the buffer) and put (add an element), we may
express the synchronization through constraints such as



§30.5  SYNCHRONIZATION ISSUES 981

f them,

a
:

m

t all be

ubbed
view
nted

ature
king

ts can

ce, or
dea of
 (The
 must

ok too

ging a
s of

d error-
Petri
of states
stem it

 rigid

;

Notation and exam
ple from [Matsuoka 
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ance”, page 959.
empty: { put}
partial: { put, remove}
full: { remove}

using a path-expression-like notation which lists three possible states and, for each o
the permitted operations. But then assume you want a descendant NEW_BUFFER to
provide an extra feature remove_two which removes two buffer items at a time (with 
buffer size of at least three). Then you need an almost completely new set of states

empty: { put}

partial_one: { put, remove} -- State in which the buffer contains exactly one ite

partial_two_or_more: { put, remove, remove_two}

full: { remove, remove_two}

and if the routines specify what states they produce in each possible case, they mus
redefined from BUFFER to NEW_BUFFER, defeating the purpose of inheritance.

This problem, and similar ones identified by several researchers, have been d
the inheritance anomaly, and have led some concurrent O-O language designers to 
inheritance with suspicion. The first versions of the POOL parallel object-orie
language, for example, excluded inheritance (see the bibliographical notes).

Concerns about the “inheritance anomaly” have sparked an abundant liter
proposing solutions, which generally try to decrease the amount of redefinition by loo
for modular ways of specifying the synchronization constraints, so that descendan
describe the changes more incrementally, instead of having to redefine everything.

On closer examination, however, the problem does not appear to be inheritan
even any inherent conflict between inheritance and concurrency, but instead the i
specifying synchronization constraints separately from the routines themselves.
formalisms discussed actually do not quite meet this goal anyway, since the routines
specify their exit states.)

To the reader of this book, familiar with the principles of Design by Contract, the
technique using explicit states and a list of the features applicable in each state will lo
low-level. The specifications of BUFFER and NEW_BUFFER obscure fundamental
properties that we have learned to characterize through preconditions: put should state
require not full; similarly, remove_two should state require count >= 2; and so on. This
more compact and more abstract specification is easier to explain, to adapt (chan
routine’s precondition does not affect any other routine), and to relate to the view
outsiders such as customers. State-based techniques appear more restrictive an
prone. They also raise the risk of combinatorial explosion mentioned in relation to 
nets and other state-based models: for the above elementary examples the number 
is already three in one case and four in the other, suggesting that in a complex sy
might become unmanageable. 

The “inheritance anomaly” only occurs because such specifications tend to be
and fragile: change anything, and the whole specification crumbles. 

At the beginning of this chapter we saw another apparent inheritance-concurrency clash
but the culprit turned out to be the notion of active object. In both cases inheritance is at

-

-
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odds not with concurrency but with a particular approach to concurrency (active objects,
state-based specifications); rather than dismissing or limiting inheritance — cutting the
arm whose finger itches — the solution is to look for better concurrency mechanisms.

One of the practical consequences of this discussion is that we should try to re
synchronization in concurrent computation, on what we already have in the object-or
model, in particular assertions. Preconditions will indeed play a central role
synchronization, although we will need to adapt their semantics from the sequential

30.6  ACCESSING SEPARATE OBJECTS

We now have enough background to devise the proper synchronization mechanis
our concurrent object-oriented systems.

Concurrent accesses to an object

The first question to address is how many executions may proceed concurrently 
object. The answer was in fact implicit in the definition of the notions of processor
handler: if all calls to features on an object are executed by its handler (the proces
charge of it), and a processor is a single thread of execution, it follows that at mos
feature may be executing on a given object at any time.

Should we not allow several routines to execute concurrently on a given object
main incentive for answering no is to retain the ability to reason on our software.

The study of class correctness in an earlier chapter provides the proper persp
We saw the lifecycle of an object pictured as this:

In this view the object is externally observable only in the states marked as sh
squares: just after creation (S1), after every application of a feature by a client (S
subsequent states). These have been called the “stable times” of the object’s 
consequence was the formal rule: to prove the correctness of the class, we only h

!!  a● make (…)
S1

S2

S3

S4

a● f (…)

a● g (…)

a● f (…)
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page 370.
verify one property for each creation procedure, and one property for each exp
feature. If p is a creation procedure, the property to check is

{ Default and prep}  Bodyp  { postp and INV}

meaning: if you execute the body of p when the object has been initialized to the defa
values and the precondition of p holds, you will end up satisfying the postcondition an
the invariant. For an exported routine r , the property to check is

{ prer and INV}  Bodyr { postr  and INV}

meaning: if you execute r when the precondition and the invariant are satisfied, you w
end up satisfying the postcondition and the invariant.

So the number of things to check is very limited; there are no complicated run
scenarios to analyze. This is important even in a somewhat informal approach to so
development, which still requires the ability to reason about the software executio
examining the software text. The informal version of the preceding properties is tha
can understand the class by looking at its routines separately from each oth
convincing yourself, however informally, that each routine will deliver the intended f
state starting from the expected initial state.

Introduce concurrent execution into this simple, consistent world, and all hell br
loose. Even plain interleaving, in which we would start executing a routine, interrupt
favor of another, switch back to the first and so on, would deprive us from any abili
use straightforward reasoning on our software texts. We simply would not have any
as to what can happen at run-time; trying to guess would force us to examine all po
interleavings, immediately leading to a combinatorial explosion of cases to conside

So for simplicity and consistency we will let at most one routine execute on
particular object at any particular time. Note, however, that in a case of emergency
a client keeps an object for too long, we should be able to interrupt the client, as long as
we do so in a sufficiently violent way — triggering an exception — to ensure tha
unfortunate client will receive a notification, enabling it to take corrective actio
appropriate. The mechanism of duels, explained later, offers that possibility.

The end of the discussion section examines whether any circumstances would allow us
to relax the prohibition of concurrent accesses to a single object.

Reserving an object

We need a way for a client to obtain exclusive access to a certain resource, represe
a certain object.

An idea which seems attractive at first (but will not suffice) would be simply to r
on the notion of separate call. Consider, executed on behalf of a certain client obje
the call x● f (…), for separate x attached at run time to O2. Once the call has star
executing, we have seen that O1 can safely move to its next business without waiti
the call’s termination; but this execution of the call cannot start until O2 is free for O1
we might decide that before starting the call the client will wait until the target object is
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Unfortunately this simple scheme is not sufficient, because it does not allow
client to decide how long to retain an object. Assume O2 is some shared data str
such as a buffer, and the corresponding class provides procedure remove to remove an
element. A client O1 may need to remove two consecutive elements, but just writin

buffer● remove; buffer● remove

will not do: between the two instructions, any other client can jump in and per
operations on the shared structure! So the two elements might not be adjacent.

One solution is to add to the generating class of buffer (or of a descendant) a
procedure remove_two that removes two elements at once. But in the general case th
unrealistic: you cannot change your suppliers for every synchronization need of your own
client code. There must be a way for the client to reserve a supplier object for as lo
it needs, using the supplier class as it is.

In other words, we need something like a critical region mechanism. The sy
introduced earlier was

hold a then actions_requiring_exclusive_access end

or the conditional variant

hold a when a● some_property then actions_requiring_exclusive_access end

We will, however, go for a simpler approach, perhaps surprising at first. 
convention will simply be that if a is a non-void separate expression a call of the form

actions_requiring_exclusive_access (a)

causes the caller to wait until the object attached to a is available. In other words, there i
no need for a hold instruction; to reserve a separate object, you simply use it as a
argument in a call.

Note that waiting only makes sense if the routine contains at least one call x● some_routine
on the formal argument x corresponding to a. Otherwise, for example if all it does is a
“business card” assignment some_attribute:= x, there is no need to wait. This is specified
in the full form of the rule, also involving preconditions, which appears later in this chapter.

Other policies are possible, and indeed some authors have proposed retaininghold
instruction (see the bibliographical notes). But the use of argument passing as the
reservation mechanism helps keep the concurrency model simple and easy to lear
of the observations justifying this policy is that with the hold scheme shown above it wil
be tempting for developers, in line with the general “Encapsulate Repetition” mot
O-O development, to gather in a routine the actions that require exclusive access
object; this trend was foreseen in the above summary of the hold instruction, where the
actions appear as a single routine actions_requiring_exclusive_access. But then such a
routine will need an argument representing the object; here we go further and consid
the presence of such an argument suffices to achieve object reservation.

This convention also means that, paradoxically enough, most separate calls do no
need to wait. When we are executing the body of a routine that has a separate f
argument a, we know that we have already reserved the attached object, so any cal
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target a can proceed immediately. As we have seen, there is no need to wait for the 
terminate. In the general case, with a routine of the form

r (a: separate SOME_TYPE) is
do

…; a● r1 (…); …
…; a● r2 (…); …

end

an implementation can continue executing the intermediate instructions without wa
for any of the calls to terminate, as long as it logs all the calls on a so that they will be
executed in the order requested. (We have yet to see how to wait for a separate
terminate if that is what we want; so far, we just start calls and never wait!)

If a routine has two or more separate arguments, a client call will wait until it can reserve
all the corresponding objects. This requirement is hard on the compiler, which will have
to generate code using protocols for multiple simultaneous reservations; for that reason
an implementation might at first impose the restriction that a routine may have at most
one separate formal argument. But if the full mechanism is implemented it provides
considerable benefits to application developers; as a typical example, studied later in this
chapter, the famous “dining philosophers” problem admits an almost trivial solution.

Accessing separate objects

The last example shows how to use, as the target of a separate call, a formal arg
itself separate, of the enclosing routine r. An advantage is that we do not need to wor
about how to get access to the target object: this was taken care of by the call to r, which
had to reserve the object — waiting if necessary until it is free.

We can go further and make this scheme the only one for separate calls:

Remember that a call a● r (…) is separate if the target a is itself an entity or expression
declared as separate. So if we have a separate entity a we cannot call a feature on it unles
a is a formal argument of the enclosing routine. If, for example, attrib is an attribute
declared as separate, we must use, instead of attrib ● r (…), the call rf (attrib, …) with

rf (x: separate SOME_TYPE; … Other arguments …) is
-- Call r on x.

do
x● r (…)

end

This rule may appear to place an undue burden on developers of concu
applications, since it forces them to encapsulate all uses of separate objects in rout

Separate Call rule

The target of a separate call must be a formal argument of the routine in
which the call appears.
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may indeed be possible to devise a variant of this chapter’s model which does not in
the Separate Call rule; but as you start using the model you will, I think, realize tha
rule is in fact of great help. It encourages developers to identify accesses to se
objects and separate them from the rest of the computation. Most importantly, it a
grave errors that would be almost bound to happen without it.

The following case is typical. Assume a shared data structure — such as, once
a buffer — with features remove to remove an element and count to query the number of
elements. Then it is quite “natural” to write

if buffer●count >= 2 then
buffer● remove; buffer● remove

end

The intent is presumably to remove two elements. But, as we have already seen, t
not always work — at least not unless we have secured exclusive access to buffer.
Otherwise between the time you test count and the time you execute the first remove, any
other client can come in and remove an element, so that you will end up trying to 
remove to an empty structure.

Another example, assuming that we follow the style of previous chapters and in
a feature item, side-effect-free, to return the element that remove removes, is

if not buffer●empty then
value:= buffer● item; buffer●remove

end

Without a protection on buffer, another client may add or remove an eleme
between the calls to item and remove. If the author of the above extract thinks that t
effect is to access an element and remove it, he will be right some of the time; but 
is not your lucky day you will access an element and remove another — so that yo
for example (if you repeat the above scheme) access the same element twice! Very 

By making buffer an argument of the enclosing routine, we avoid these proble
buffer is guaranteed to be reserved for the duration of the routine’s call.

Of course the fault in the examples cited lies with the developer, who was not ca
enough. But without the Separate Call rule such errors are too easy to make. What
things really bad is that the run-time behavior is non-deterministic, since it depends 
relative speed of the clients. The bug will be intermittent, here one minute, gone the
Worse yet, it will probably occur rarely: after all (using the first example) a compe
client has to be quite lucky to squeeze in between your test of count and your first call to
remove. So the bug may be very hard to reproduce and isolate.

Such tricky bugs are responsible for the nightmarish reputation of concurrent sy
debugging. Any rule that can significantly decrease their likelihood of occurring is a
potential help.

With the Separate Call rule you will write the examples as the following proced
assuming a separate type BOUNDED_BUFFER detailed below:
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remove_two (buffer: BOUNDED_BUFFER) is
-- Remove oldest two items.

do
if  buffer● count >= 2 then

buffer●remove; buffer●remove
end

end

get_and_remove (buffer: BOUNDED_BUFFER) is
-- Assign oldest item to value, and remove it.

do
if not buffer● empty then

value:= buffer● item; buffer● remove
end

end

These procedures may be part of some application class; preferably, they will a
in a class BUFFER_ACCESS which encapsulates buffer manipulation operations, a
serves as parent to application classes needing to use buffers of the appropriate ty

The procedures both seem to be crying for a precondition. We will shortly see
that they can get one.

Wait by necessity

Assume that a separate call such as buffer● remove has been started, after waiting 
necessary for any separate arguments to become available. We have seen that fro
on it does not block the client, which can proceed with the rest of its computation
surely the client may need to resynchronize with the supplier. When should we wa
the call to terminate?

It would seem that we need a special mechanism, as has indeed been propo
some concurrent O-O languages such as Hybrid, to reunite the parent computation w
prodigal call. But instead we can use the idea of wait by necessity, due to Denis Ca
The goal is to wait when we truly need to, but no earlier.

When does the client need to be sure that a call a● r (…), for separate a attached to a
separate object O1, is finished? Not when it is doing something else on other ob
separate or not; not even necessarily when it has started a new procedure call a● r (…) on
the same separate object since, as we have seen, a smart implementation can sim
such calls so that they will be processed in the order emitted (an essential requirem
course); but when we need to access some property of O1. Then we require the object to
be available, and all preceding calls on it to have been finished.

You will remember the division of features into commands (procedures), which
perform some transformation on the target object, and queries (functions and attributes)
which return information about it. Command calls do not need to wait, but query 
may.
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Consider for example a separate stack s and the successive calls

s● put (x1); …Other instructions…; s●put (x2); … Other instructions …; value:= s● item

(which because of the Separate Call rule must appear in a routine of which s is a formal
argument). Assuming none of the Other instructions uses s, the only one that requires u
to wait is the last instruction since it needs some information about the stack, its top
(which in this case should be x2).

These observations yield the basic concept of wait by necessity: once a separa
has started, a client only needs to wait for its termination if the call is to a query. A 
precise rule will be given below, after we look at a practical example.

Wait by necessity (also called “lazy wait”, and similar to mechanisms of “call by
necessity” and “lazy evaluation” familiar to Lispers and students of theoretical comp
science) is a convenient rule which allows you to start parallel computations as you
and avoid unnecessary waiting, but be reassured that the computation will  wait when it must.

A multi-launcher

Here is a typical example showing the benefits of wait by necessity. Assume that a c
object must create a set of other objects, each of which goes off on its own:

launch (a: ARRAY [separate X]) is
-- Get every element of a started.

require
-- No element of a is void

local
i: INTEGER

do
from i := a● lower until i > a● upper loop

launch_one (a @ i); i := i + 1
end

end 

launch_one (p: separate X) is
-- Get p started.

require
p /= Void

do
p● live

end 

If, as may well be the case, procedure live of class X describes an infinite process
this scheme relies on the guarantee that each loop iteration will proceed immediately after
starting launch_one, without waiting for the call to terminate: otherwise the loop wou
never get beyond its first iteration. One of the examples below uses this scheme. 

Readers familiar with coroutine-based discrete event simulation, studied in a later
chapter, will recognize a scheme very close to what happens when you start a simulate
process and want to gain control back, as permitted by Simula’s detach instruction.
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An optimization

(This section examines a fine point and may be skipped on first reading.)

To wrap up this discussion of wait by necessity we need to examine more car
when a client should wait for a separate call to terminate.

We have seen that only query calls should cause waiting. But we may go furth
examining whether the query’s result is of an expanded type or a reference type. (F
s● item example, assuming s of type STACK [SOME_TYPE], this is determined by SOME_
TYPE.) If the type is expanded, for example if it is INTEGER or another of the basic types
there is no choice: we need the value, so the client computation must wait until the 
has computed its result. But for a reference type, one can imagine that a 
implementation could still proceed while the result, a separate object, is being comp
in particular, if the implementation uses proxies for separate objects, the proxy o
itself can be created immediately, so that the reference to it is available even if the 
does not yet refer to the desired separate object.

This optimization, however, complicates the concurrency mechanism becau
means proxies must have a “ready or not” boolean attribute, and all operations on se
references must wait until the proxy is ready. It also seems to prescribe a part
implementation — through proxies. So we will not retain it as part of the basic rule:

To account for the possible optimization just discussed, replace “a call to a query”
by “a call to a query returning of expanded type”.

Avoiding deadlock

Along with several typical and important examples of passing separate referenc
separate calls, we have seen that it is also possible to pass non-separate references
as the corresponding formal arguments are declared as separate (since, on the su
side, they represent foreign objects, and we do not want any traitors). Non-sep
references raise a risk of deadlock and must be handled carefully.

The normal way of passing non-separate references is what we have calle
business card scheme: we use a separate call of the form x● f (a) where x is separate but a
is not; that is to say, a is a reference to a local object of the client, possibly Current itself;
on the supplier side, f is of the form

Wait by necessity

If a client has started one or more calls on a certain separate object, and it
executes on that object a call to a query, that call will only proceed after all
the earlier ones have been completed, and any further client operations will
wait for the query call to terminate. 
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f (u: separate SOME_TYPE) is
do

local_reference:= u

end

where local_reference, also of type separate SOME_TYPE, is an attribute of the enclosing
supplier class. Later on, in routines other than f, the supplier may use local_reference to
request operations on objects on the original client’s side, through separate calls 
form local_reference● some_routine (…)

This scheme is sound. Assume, however, that f did more, for example that it included
a call of the form u● g (…) for some g. This is likely to produce deadlock: the client (th
handler for the object attached to u and a) is busy executing f or, with wait by necessity,
may be executing another call that has reserved the same object.

The following rule will avoid this kind of situation:

At present this is a only methodological guideline although it may be desirab
introduce a formal validity rule (an exercise asks you to explore this idea further.) S
more comments on deadlocks appear in the discussion section.

30.7  WAIT CONDITIONS

One synchronization rule remains to be seen. It will deal with two questions at once

• How can we make a client wait until a certain condition is satisfied, as in conditi
critical regions?

• What is the meaning of assertions, in particular preconditions, in a concurrent con

A buffer is a separate queue

We need a working example. To study what happens to assertions, it is interesting 
a closer look at a notion that is ubiquitous in concurrent application (and has al
appeared informally several times in this chapter): bounded buffers. A bounded buffer,
illustrated by the top figure on the facing page, allows different components 
concurrent system to exchange data, produced by some and consumed by others, 
forcing each producer that has generated an object to wait until a consumer is ready
it, and conversely. Instead, communication occurs through a shared structure, the 
producers deposit their wares into the buffer, and consumers get their material from
a bounded implementation the structure can only hold a certain number maxcount of
items, and so it can get full. But waits will only occur when a consumer needs to con

Business Card principle

If a separate call uses a non-separate actual argument of a reference type, the
routine should only use the corresponding formal as source of assignments.
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of the Undoing 
design pattern used
a similar represen-
tation. See page 710.

Bounded buffer

Bounded buffer 
implemented by
an array
and the buffer is empty, or when a producer needs to produce and the buffer is ful
well-regulated system such events will be much more infrequent than with unbuf
communication, and their frequency will decrease as the buffer’s capacity grows. T
new source of delays arises because buffer access must be exclusive: at most on
may at any one time be performing a deposit (put) or retrieval (item, remove) operation.
But these are very simple and fast operations, so any resulting wait is typically shor

In most cases the time sequence in which objects have been produced is rele
the consumers, so the buffer must maintain a first-in , first-out  policy (FIFO): an object
deposited before another must be retrieved before it. The behavior is similar to that o
cars being added at one end of a single track and removed at the other end:

A typical implementation — not essential to the discussion, but giving us a m
concrete view — can use an array representation of size capacity = maxcount + 1,
managed circularly; the integer oldest will be the index of the oldest item, and next the
index of the position to be used for inserting the next item that comes in. We can p
the array as being torn into a ring so that positions 1 and capacity are conceptually adjacent

The procedure put used by a producer to add an item x will be implemented as

representation● put (x, next); next:= (next\\ maxcount) + 1

where \\ is the integer remainder operation; the query item used by consumers to obtai
the oldest element simply returns representation @ oldest (the array element at index
oldest); and procedure remove simply executes oldest:= (oldest \\ maxcount) + 1. The

Producers
produce

Consumers
consume

 

 

 
1

maxcount

next

oldest

capacity

Occupied position

Free position

Reserved position
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array entry at index capacity, shaded in gray on the figure, is kept free; this make
possible to distinguish between the test for empty, expressed as next = oldest, and the test
for full, expressed as (next\\ maxcount) + 1 = oldest.

The structure, with its FIFO policy, and the circular array representation, ar
course not concurrency-specific: what we have is simply a bounded queue similar to
many of the structures studied in preceding chapters. Writing the corresponding cl
directly applicable to the Undoing design pattern — is not hard; here is a short form 
class, in simplified form (main features only, header comments removed, prin
assertion clauses only):

class interface BOUNDED_QUEUE [G] feature

empty, full: BOOLEAN

put (x: G)

require
not full

ensure
not empty

remove
require

not empty

ensure
not full

item: G
require

not empty
end -- class interface BOUNDED_QUEUE

Obtaining from this description a class describing bounded buffers is about as s
as we could dream:

separate class BOUNDED_BUFFER [G] inherit

BOUNDED_QUEUE [G]

end

The separate qualifier applies only to the class where it appears, not its heirs. So a
separate class may, as here, inherit from a non-separate one, and conversely. Th
convention is the same as with the other two qualifiers applicable to a class: expanded
and deferred. As noted, the three properties are mutually exclusive, so that at most one
of the qualifiers may appear before the keyword class.

We see once again the fundamental simplicity of concurrent O-O softw
development, and the smooth transition from sequential to concurrent concepts,
possible in particular by the method’s focus on encapsulation. A bounded buffer (a n
for which you will find many complicated descriptions if you look at the concurre
literature) is nothing else than a bounded queue made separate.
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Preconditions under concurrent execution

Let us examine a typical use of a bounded bufferbuffer by a client, for example a produce
that needs to deposit a certain object y using the procedure put. Assume that buffer is an
attribute of the enclosing class, having been declared, for some type T which is also the
type of y, as buffer: BOUNDED_BUFFER [T].

The client may for example have initialized buffer to a reference to the actual buffer
passed by its creation procedure, using the business card scheme suggested earlier:

make (b: BOUNDED_BUFFER [T], …) is do …; buffer:= b; … end

Because buffer, being declared of a separate type, is a separate entity, any call o
form buffer● put (y) is a separate call and has to appear in a routine of which buffer is an
argument. So we should instead use put (buffer, y) where put (a routine of the client class
not to be confused with the put of BOUNDED_BUFFER, which it calls) is declared as

put (b: BOUNDED_BUFFER [T]; x: T) is
-- Insert x into b. (First attempt.)

do
b● put (x)

end

Well, this is not quite right. Procedure put of BOUNDED_BUFFER has a
precondition, not full. Since it does not make sense to try to insert x into b if b is full, we
should mimic this precondition for our new procedure in the client class:

put (b: BOUNDED_BUFFER [T]; x: T) is
-- Insert x into b.

require
not b● full

do
b● put (x)

end

Better. How can we call this procedure with a specific buffer and y? We must make
sure, of course, that the precondition is satisfied on input. One way is to test:

if  not full (buffer) then put (buffer, y) -- [PUT1]

but we could also rely on the context of the call as in

remove (buffer); put (buffer, y) -- [PUT2]

where the postcondition of remove includes not full. (Example PUT2 assumes that it
initial state satisfies the appropriate precondition, not empty, for remove itself.)

Is this going to work? The answer, disappointing in light of the earlier comm
about the unpredictability of bugs in concurrent systems, is maybe. Between the test for
full and the call for put in the PUT1 variant, or between remove and put in PUT2, any other
client may have interfered and made the buffer full again. This is the same flaw
required us, earlier on, to provide an object reservation mechanism through encapsu
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We could try encapsulation again by writing PUT1 or PUT2 as a procedure to which
buffer will be passed as argument, giving for PUT1:

put_if_possible (b: BOUNDED_BUFFER [T]; x: T) is
-- Insert x into b if possible; otherwise set was_ full to true.

do
if b ● full then was_full:= True else

put (b, x); was_full:= False

end
end

But this does not really help me as a client. First, having to check was_ full on return is a
nuisance; then, what do I do if it is true? Try again, probably — but with no more
guarantee of result. What I probably want is a way to execute put when the buffer is
indisputably non-full, even if I have to wait for this to be the case.

The precondition paradox

This situation that we have just uncovered is disturbing because it seems to invalid
a concurrent context, the basic methodological guideline for getting software right: Design
by Contract. With a queue, that is to say in sequential computation, we have been u
precisely defined specifications of mutual obligations and benefits:

Implicit behind such contracts is a no hidden clause principle: the precondition is
the only requirement that a client must satisfy to get served. If you call put with a non-full
queue, you are entitled to the routine’s result, as expressed by the postcondition.

But in a concurrent context, with a separate supplier such as a BOUNDED_BUFFER,
things are rather distressing for the client: however hard we try to please the supp
ensuring its stated precondition, we can never be sure to meet its expectations! To e
correctly, however, the suppliers still need the precondition. For example the bo
routine put in class BOUNDED_QUEUE (which is the same as in BOUNDED_BUFFER)
will most likely not work unless full is guaranteed to be false.

put OBLIGATIONS BENEFITS

Client
(Satisfy precondition:)

Only call put (x) on a non-
full queue.

(From postcondition:)

Get new, non-empty queue 
with x added.

Supplier (Satisfy postcondition:)

Update queue to add x and 
ensure not empty.

(From precondition:)

Processing protected by 
assumption that queue not full.

A

(
e
o
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To summarize: suppliers cannot do their work without the guarantee tha
precondition holds; but for separate arguments the clients are unable to ensure these
preconditions. This may be called the concurrent precondition paradox.

There is a similar postcondition paradox: on return from a separate call to put, we cannot
any more be sure that not empty and other postcondition clauses hold for the client. These
properties are satisfied just after the routine’s termination; but some other client may
invalidate them before the caller gets restarted. Because the problem is even more seriou
for preconditions, which determine the correct execution of suppliers, the rest of the
discussion mainly considers preconditions.

The paradoxes only arise for separate formal arguments. For a non-sep
argument — in particular for an expanded value such as an integer — we can conti
rely on the usual properties of assertions. But this not much consolation.

Although this has not yet been widely recognized in the literature, the concu
precondition paradox is one of the central issues of concurrent O-O software constru
and the futility of trying to retain habitual assertion semantics is one of the princ
factors distinguishing concurrent computation from its sequential variants.

The precondition paradox may also arise in situations that are not ordinarily thought of
as involving concurrency, such as accessing a file. This is explored in an exercise.

The concurrent semantics of preconditions

To resolve the concurrent precondition paradox we assess the situation th
three observations:

A1 • Suppliers need the preconditions to protect their routine bodies. Here put will never
work, in class BOUNDED_BUFFER as in BOUNDED_QUEUE, unless the routine
has the guarantee that on entry the queue is non-full.

A2 • Separate clients cannot rely any more on the usual (sequential) semantic
preconditions. Testing for full before calling your buffer supplier gives you no
guarantee at all.

A3 • Because each client may be vying with others for resource access, a client ma
prepared to wait before it gets its resources — if this guarantees correct proce
after the wait.

The conclusion seems inescapable: we still need preconditions, if only for
suppliers’ sake, but they must be given a different semantics. Instead of be
correctness condition, as in the sequential context, a precondition applying to a sepa
argument will be a wait condition. This will apply to what we may call “separat
precondition clauses”: any precondition clause involving a call whose target is a sep
argument. A typical separate precondition clause is not b● full for put.
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Here is the rule:

A separate object is free if it is not being used as an actual argument of a se
call (implying that no routine is being executed on it).

The rule only causes waiting for separate arguments appearing as call t
somewhere in the routine’s body (it uses the word “blocking” for the corresponding ob
since they can block the call from proceeding). With a routine of the “business card” form

r (x: separate SOME_TYPE) is do some_attribute:= x end

or some other scheme that does not contain a call of the form x● some_routine, there is no
need to wait on the actual argument corresponding to x.

If there is such a call the short form of the class must reflect it for the benefit of client
authors. It will present the routine header as r (x: blocking SOME_TYPE)…

With this rule the above version of put in a client class achieves the desired resul

put (b: BOUNDED_BUFFER [T]; x: T) is

require
not b● full

do
b ● put (x)

ensure
not b● empty

end

A call of the form put (buffer, y), from a producer client, will wait until buffer is free
(available) and not full. If buffer is free but full, the call cannot be satisfied; but some ot
client, a consumer, may get access to it (since the precondition of interest to cons
not b● empty, will be satisfied in this case); after such a client has removed an item, ma
the buffer non-full, the producer client can now have its call executed.

Which client should the implementation let through if two or more satisfy the conditions
of the rule (blocking objects free, preconditions satisfied)? Some people, for fear of
overspecifying, prefer to leave such decisions to the compiler, while providing library
features allowing an application to specify a particular policy. It seems better to define a
default first-in-first-out policy, which enhances portability and helps towards solving the
issue of fairness. Library mechanisms can still be available to application writers who
wish to override the default.

Be sure to note that the special semantics of preconditions as wait conditions
applies to what we have called separate precondition clauses, that is to say, c
involving a condition of the form b● some_property where b is a separate argument. A non

Separate call semantics

Before it can start executing the routine’s body, a separate call must wait until
every blocking object is free and every separate precondition clause is satisfied.

In this definition, an object is blocking if it is attached to an actual argument,
and the routine uses the corresponding formal as the target of at least one call.
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See “Monitoring 
assertions at run 
time”, page 393.

As a consequence
the assertion may 
not appear in a clas
invariant, which is 
not part of a routine
separate clause, such as i > = 0 where i is an integer, or b /= Void even if b is separate (this
does not involve a call on b), will keep its usual correctness semantics since the concur
precondition paradox does not apply in such cases: if the client ensures the 
condition before the call, it will still hold when the routine starts; if the condition does
hold, no amount of waiting would change the situation.

Assertions, sequential and concurrent

The idea that assertions, and in particular preconditions, may have two different sem
— sometimes correctness conditions, sometimes wait conditions — may have sur
you. But there is no way around it: the sequential semantics is inapplicable in the c
separate precondition clauses.

One possible objection must be answered. We have seen that a mere comp
switch can turn run-time assertion checking on or off. Is it not dangerous, then, to a
that much semantic importance to preconditions in concurrent object-oriented sys
No, it is not. The assertions are an integral part of the software, whether or not the
enabled at run time. Because in a correct sequential system the assertions will alway
we may turn off assertion checking for efficiency if we think we have removed all
bugs; but conceptually the assertions are still there. With concurrency the only diffe
is that certain assertions — the separate precondition clauses — may be violated
time even for a correct system, and serve as wait conditions. So the assertion mon
options must not apply to these clauses.

A validity constraint

To avert deadlock situations, we need to impose a validity constraint on preconditio
postcondition clauses. Assume we permitted routines of the form 

f (x: SOME_TYPE) is
require

some_property (separate_attribute)

do
…

end

where separate_attribute is a separate attribute of the enclosing class. Nothing in 
example, save separate_attribute, need be separate. The evaluation of f ’s precondition,
either as part of assertion monitoring for correctness, or as a synchronization condi
the actual argument corresponding to x in a call is itself separate, could cause blocking
the attached object is not available.

This is not acceptable and is prohibited by the following rule:

Assertion Argument rule

If an assertion contains a function call, any actual argument of that call must,
if separate, be a formal argument of the enclosing routine.

, 

s 

.
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431; “Class MEM-
ORY”, page 309.
States and transitions

The following figure summarizes some of the preceding discussion by showing
various possible states in which objects and processors may be, and how they will c
state as a result of calls. 

A call is successful if the handler of its target is idle or suspended, all its non-v
separate arguments are attached to free objects, and the corresponding s
precondition clauses, if any, are true. Note that this makes the definitions of objec
processor states mutually dependent.

30.8  REQUESTING SPECIAL SERVICE

We have completed the review of the basic communication and synchronization p
For more flexibility, it is useful to define a few mechanisms that will allow interrupt
the normal processing in some cases.

Because these facilities are add-ons intended for convenience, rather than a 
the basic concurrency model, they are available not as language constructs but as
features. We will assume a class CONCURRENCY, which classes needing these spec
mechanisms can inherit. A similar approach has already been used twice in this bo

• To complement the basic exception handling rules when finer control is des
through the library class EXCEPTIONS.

• To complement the default memory management and garbage collection mech
when finer control is desired, through the library class MEMORY.

Successful call uses as target an 
object handled by this processor

Call terminates
FREE RESERVED

IDLE BUSY
Call terminates

Successful call uses this object as 
separate argument

Object states

Processor states

SUSPENDED

Current routine attempts
an unsuccessful call

++

Same
as ++
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[Yonezawa 1987a].

See “Concurrent 
accesses to an 
object”, page 982.

The comments on 
static binding were
on page 514.

See also “Permitting 
concurrent access?” 
page 1031.
Express messages

The ABCL/1 concurrent language introduced the notion of “express message” for 
we want to let a supplier object serve a certain VIP client immediately, even thoug
supplier may be busy with another client.

In some approaches an express message will just interrupt the normal messa
serviced, and then let the normal message be resumed. But this is unacceptable, as
earlier in this chapter when we found out that at most one execution should be act
any object at any given time: the express message, like any exported feature, ne
initial state satisfying the invariant; but who knows in what state the interrupted ro
will be when it is forced to yield to the express message? And who knows what sta
express message will produce as a result? All this opens the way to what the discus
static binding called “one of the worst events that could occur during the execution 
software system”: producing an inconsistent object. As we saw then: “if such a situation
can arise, we can no longer hope to predict what execution will do”.

This does not mean, however, that we should reject the notion of express me
altogether. We may indeed need to interrupt a client — either because we have som
more important to do with the object it has reserved, or because it is overextendi
welcome to retain it. But such an interruption is not a polite request to step aside
while. It is murder, at least attempted murder. To take our rival’s place we shoot at i
that it will die unless it can recover in the hospital. In software terms, the interrup
client must cause an exception in its rival, which will either retry (the hospital) or fail.

Such behavior, however, assumes that the challenger is somehow stronger th
holder. If not, the one that will get an exception is the challenger.

Duels and their semantics

The almost inescapable metaphor suggests that instead of the “express me
terminology we talk about the attempt to snatch a shared object from its current hol
a duel (the result, in an earlier era, of trying to snatch away someone’s legitimate spo
An object has executed the instruction

r (b)

where b is separate. After possibly waiting for the object of its desires, b, to become free,
and for separate precondition clauses to hold, it has captured b, becoming its current
holder. The execution of r on b has started on behalf of the holder, but is not finishe
Another separate object, the challenger, executes

s (c)

where c, also separate, is attached to the same object as the holder’s b. Normally, the
challenger will wait until the call to r  is over. What if the challenger is impatient?

 

,
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Exercise E30.5, page 
1035, asks you to add 
priorities.

The semantics 
of duels
Through procedures in class CONCURRENCY we can provide the necessar
flexibility. On the holder’s side we have yield, which means: “I am willing to release m
hold if someone more worthy comes along”. Most holders, of course, are no
accommodating: unless it makes an explicit call to yield, a holder will retain its hold. To
return to this default behavior, you may use the procedure retain.

On the challenger’s side we can use two kinds of request to get special treatm

• demand means “now or never!”. If you cannot immediately capture the objec
your dreams (that is to say, if the holder has not called yield), you will get an
exception. (This is the old suicide threat trick, as in Così fan tutte.)

• insist is more gentle: you try to interrupt the holder’s routine, but if that is imposs
you accept the common lot — waiting until the object is freed.

To return to the default behavior of waiting for the holder to finish, use wait_turn.

A call to one of these CONCURRENCY procedures will retain its effect until anothe
supersedes it. Note that the two sets of facilities are not exclusive; for exam
challenger could use both insist to request special treatment and yield to accept being
interrupted by another. A priority scheme can be added, so that challengers will only
to others with higher priorities, but we can ignore this refinement here.

The following table shows the result of a duel — a conflict between a holder a
challenger — in all possible cases. The default options and behavior, in the absence
call to CONCURRENCY procedures, are underlined.

The “holder’s routine” that gets an exception in the two rightmost bottom entri
the supplier routine being executed on behalf of the holder. In the absence of a retry , it
will pass on the exception to the holder, and the challenger will get the object.

As you will remember, every kind of exception has a code, accessible through
EXCEPTIONS. To distinguish an exception caused by one of the situations appeari
the above table, EXCEPTIONS provides the boolean query is_concurrency_interrupt.

Interrupt handling : the Secretary-Receptionist Algorithm

Here is an example using duels. Assume a certain controller object has started
number of partner objects, and then proceeds with its own work, which needs a c
resource shared. But the other objects may need access to the shared resource, a
controller is willing to interrupt its current task to let any of them proceed; when
partner is done, the controller resumes the last interrupted task.

Challenger →

↓ Holder

wait_turn demand insist

retain Challenger waits Exception in 
challenger

Challenger waits

yield Challenger waits Exception in 
holder’s routine.

Exception in 
holder’s routine.
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This general description covers among others the case of an operating system
(the controller) which starts off input-output processors (the partners), but does no
for an I/O operation to complete, since I/O is typically several orders of magnitude sl
than computation. When an I/O operation terminates, its processor can interrupt the 
to request attention. This is the traditional interrupt-driven scheme for handling I/O —
the problem which gave the original impetus, many years ago, to the study of concur

The general scheme may be called the Secretary-Receptionist Algorithm by analogy
with what you find in many organizations: a receptionist sits near the entrance to 
register and direct visitors, but this is not a full-time job; the receptionist is also entru
with some other work, usually secretarial. When a visitor shows up, the recept
interrupts his work, takes care of the visitor, and then goes back to the interrupted t

Restarting a task after it has been started and interrupted may require some cl
this is why the following procedure passes to operate the value of interrupted, which will
enable operate to find out whether the current task has already been attempted. The
argument of operate, here next, identifies the task to perform. The procedure is assume
to be part of a class that inherits from both CONCURRENCY (for yield and retain) and
EXCEPTIONS (for is_concurrency_interrupt). Procedure operate could take a long time to
execute, and so is the interruptible part.

execute_interruptibly is
-- Perform own set of actions, but take interrupts
-- (the Secretary-Receptionist Algorithm).

local
done, next: INTEGER; interrupted: BOOLEAN

do
from done:= 0 until termination_criterion loop

if interrupted then
process_interruption (shared); interrupted:= False

else
next:= done + 1; yield

operate (next, shared, interrupted)-- This is the interruptible part.

retain; done:= next
end

end
rescue

if is_concurrency_interrupt then
interrupted:= True; retry

end
end

Some of the steps performed by the controller may actually have been reques
one of the interrupting partners. In an I/O interrupt, for example, the I/O processor
signal the end of an operation and (in the input case) the availability of the data just
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30.10, page 1022.

30.11, page 1025.

30.12, page 1028.

30.14, page 1033.
The interrupting partner may use the object shared to deposit that information; to interrup
the controller, it will execute

insist; interrupt (shared); wait_turn

-- Request controller’s attention, interrupting it if necessary.
-- Deposit any needed information into the object shared.

This is the reason why process_interruption, like operate, uses shared as argument:
it may have to analyze the shared object to detect information passed by the interrupt
partner. This will allow it, if necessary, to set up one of its upcoming tasks, to be exe
on behalf of that partner. Note that process_interruption, unlike operate, is not
interruptible; any other partner that becomes ready while it is executing will have to
(otherwise some partner requests might get lost). So process_interruption should only
perform simple operations — registering information for future processing. If that is
possible, you may use a slightly different scheme in which process_interruption relies on
a separate object other than shared.

We have one more precaution to take. Although partners’ requests can be pro
later (through calls to operate in upcoming steps), it is essential that none of these requ
be lost. With the scheme as given, after a partner executes an interrupt, another one could
do the same, overriding the information deposited by the first, before the controlle
had the time to register that information by executing process_interruption. This case is
not acceptable. To avoid it, we can just add to the generating class of shared a boolean
attribute deposited with the associated setting and resetting procedures. Then interrupt
will have the precondition not shared● deposited, so as to wait until the previous partne
has been registered, and will execute the call shared● set_deposited before returning;
process_interruption will execute shared● set_not_deposited before exiting.

The partners are initialized by “business card” calls of the form!! partner● make
(shared, …) which pass them a reference to shared to be retained for future needs.

Procedure execute_interruptibly has been spelled out in full, with the application-
specific elements represented by calls to routines operate, process_interruption,
termination_criterion that are assumed to be deferred, in the behavior class style. This
prepares for the procedure’s possible inclusion into a concurrency library. 

About the rest of this chapter

With the presentation of the duel mechanism we have finished defining the s
necessary concurrency tools. The rest of this chapter provides an extensive 
examples, from diverse application areas, illustrating the use of these tools. Afte
examples you will find:

• A sketch of a proof rule, for mathematically-inclined readers.

• A summary of the concurrency mechanism, with syntax, validity rules and sema

• A discussion of the mechanism’s goals and of further work needed.

• A detailed bibliography of other work in this area.
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30.9  EXAMPLES 

To illustrate the mechanism, here now are a few examples chosen from di

backgrounds — from traditional concurrent programming examples through large-

multiprocessing to real-time applications.

The dining philosophers

Dijkstra’s famous “dining philosophers”, an artificial example meant to illustrate

behavior of operating system processes vying for shared resources, is an obligato

of any discussion on concurrency. Five philosophers around a table spend thei

thinking, then eating, then thinking again and so on. To eat the spaghetti, each 

access to the fork immediately to his left and to his right — creating contention

possible deadlock.

The following class describes the philosopher’s behavior. Thanks to the mecha

for reserving objects through separate arguments, there is essentially (in contrast w

usual solutions in the literature) no explicit synchronization code:
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appeared on page 
961. wrapup 
remains an empty 
separate class PHILOSOPHER creation 

make

inherit

GENERAL_PHILOSOPHER

PROCESS

rename setup as getup undefine getup end

feature { BUTLER}  

step is

-- Perform a philosopher’s tasks.

do

think

eat (left, right)

end

feature { NONE}  

eat (l, r : separate FORK) is

-- Eat, having grabbed l and r.

do … end

end -- class PHILOSOPHER

The entire synchronization requirement is embodied by the call to eat, which uses
arguments left and right representing the two necessary forks, thus reserving these obj

The simplicity of this solution comes from the mechanism’s ability to reserve sev
resources through a single call having several separate arguments, here left and right. If
we restricted the separate arguments to at most one per call, the solution would use
the many published algorithms for getting hold of two forks one after the other wit
causing deadlock.

The principal procedure of class PHILOSOPHER does not appear above since 
comes from the behavior class PROCESS: procedure live, which as given in PROCESS
simply executes from  setup until  over loop step end, so all we need to redefine here 
step. I hope you will enjoy the renaming of setup as getup — denoting the philosopher’s
initial operation.

Thanks to the use of multiple object reservation through arguments, the so
described here does not produce deadlock; but it is not guaranteed to be fair. Some
philosophers can conspire to starve the others. Here too the literature provides v
solutions, which may be integrated into the above scheme. 

To avoid confusion of genres the concurrency-independent features of a philos
have been kept in a class GENERAL_PHILOSOPHER:

The synchronization
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 the
class GENERAL_PHILOSOPHER creation
make

feature -- Initialization

make (l, r: separate FORK) is
-- Define l as left and r as right forks.

do

left := l; right := r

end

feature { NONE} -- Implementation

left, right: separate FORK

-- The two required forks

getup is
-- Take any necessary initialization action.

do … end

think is
-- Any appropriate action or lack thereof.

do … end

end -- class GENERAL_PHILOSOPHER 

The rest of the system simply takes care of initialization and of describing
auxiliary abstractions. Forks have no immediately relevant properties: 

class FORK end

A butler is used to set up and start a session:

class BUTLER creation 

make 

feature

count: INTEGER

-- The number of both philosophers and forks

launch is
-- Start a full session.

local

i: INTEGER

do

from i := 1 until i > count loop

launch_one (participants @ i); i := i + 1

end

end 
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feature { NONE}  

launch_one (p: PHILOSOPHER) is
-- Let one philosopher start his actual life.

do
p●live

end

participants: ARRAY [PHILOSOPHER]

cutlery: ARRAY [FORK] 

feature { NONE} -- Initialization

make (n: INTEGER) is
-- Initialize a session with n philosophers.

require
n >= 0

do

count:= n

!!  participants●make (1, count); !!  cutlery●make (1, count)

make_philosophers

ensure
count = n

end

make_philosophers is
-- Set up philosophers.

local
i: INTEGER; p: PHILOSOPHER; left, right: FORK

do
from i := 1 until i > count loop

p := philosophers @ i

left := cutlery @ i

right := cutlery @ ((i \\ count) + 1

!!  p● make (left, right)

i := i + 1

end
end 

invariant  

count >= 0; participants● count = count; cutlery● count = count 

end 

Note how launch and launch_one, using a pattern discussed in the presentation
wait by necessity, rely on the property that the call p● live will not cause waiting, allowing
the loop to proceed to the next philosopher.
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Making full use of hardware parallelism

The following example illustrates how to use wait by necessity to draw the maximum
benefit from any available hardware parallelism. It shows a sophisticated form of load
balancing in which we offload computation to many different computers on a netw
Thanks to the notion of processor, we can rely on the concurrency mechanism to c
these computers automatically for us.

The example itself — computing the number of nodes in a binary tree — is of 
practical value, but illustrates a general scheme that may be extremely useful for 
heavy computations such as those encountered in cryptography or advanced co
graphics, for which developers need all the resources they can get, but do not want t
to take care manually of the assignment of abstract computing units to actual comp

Consider first a class extract that does not involve concurrency:

class BINARY_TREE [G] feature

left, right: BINARY_TREE [G]

… Other features …

nodes: INTEGER is

-- Number of nodes in this tree

do

Result:= node_count (left) + node_count (right) + 1

end

feature { NONE}

node_count (b: BINARY_TREE [G]): INTEGER is

-- Number of nodes in b

do

if  b /= Void then Result:= b● nodes end

end

end -- class BINARY_TREE

Function nodes uses recursion to compute the number of nodes in a tree. 
recursion is indirect, through node_count. 

In a concurrent environment offering many processors, we could offload al
separate node computations to different processors. Declaring the class as separate,
replacing nodes by an attribute and introducing procedures does the job:
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separate class BINARY_TREE1 [G] feature 

left, right: BINARY_TREE1 [G]

… Other features … 

nodes: INTEGER

update_nodes is
-- Update nodes to reflect the number of nodes in this tree.

do
nodes:= 1
compute_nodes (left); compute_nodes (right)

adjust_nodes (left); adjust_nodes (right)
end

feature { NONE}  
compute_nodes (b: BINARY_TREE1 [G]) is

-- Update information about the number of nodes in b.
do

if  b /= Void then
b● update_nodes

end
end

adjust_nodes (b: BINARY_TREE1 [G]) is
-- Adjust number of nodes from those in b.

do
if  b /= Void then nodes:= nodes + b● nodes end

end
end -- class BINARY_TREE1

The recursive calls to compute_nodes will now be started in parallel. The additio
operations wait for these two parallel computations to complete. 

If an unbounded number of CPUs (physical processors) are available, this so
seems to make the optimal possible use of the hardware parallelism. If there are
CPUs than nodes in the tree, the speedup over sequential computation will depend 
well the implementation allocates CPUs to the (virtual) processors. 

The presence of two tests for vacuity of b may appear unpleasant. It results, however,
from the need to separate the parallelizable part — the procedure calls, launched
concurrently on left and right — from the additions, which by nature must wait for their
operands to become ready. 

An attractive property of the solution is that it ignores the practical problem
assigning the actual computers. The software just allocates processors as it needs t
is done in the creation instructions, not shown, which will appear in particular in
insertion procedure: to insert a new element into a binary tree you create a new
through!!  new_node● make (new_element) which here, new_node being of the separate
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type BINARY_TREE1[G], will allocate a new processor to it.) The mapping of the
virtual processors to the available physical resources is entirely automatic.

Locks

Assume you want to allow a number of clients (the “lockers”) to obtain exclusive acce
certain resources (the “lockables”) without having to enclose the exclusive access se
in routines. This will provide us with a semaphore-like mechanism. Here is a solution

class LOCKER feature 

grab (resource: separate LOCKABLE) is
-- Request exclusive access to resource.

require

not resource● locked 

do

resource●set_holder (Current)

end 

release (resource: separate LOCKABLE) is

require

resource●is_held (Current)

do

resource●release

end

end

class LOCKABLE feature { LOCKER}  

set_holder (l: separate LOCKER) is

-- Designate l as holder.

require

l /= Void

do

holder := l

ensure

locked

end

locked: BOOLEAN is

-- Is resource reserved by a locker?

do

Result:= (holder /= Void)

end
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is_held (l: separate LOCKER): BOOLEAN is
-- Is resource reserved by l?

do

Result:= (holder = l)

end

release is
-- Release from current holder.

do

holder := Void

ensure

not locked

end 

feature { NONE}  

holder: separate LOCKER 

invariant

locked_iff_holder: locked = (holder /= Void)

end 

Any class describing resources will inherit from LOCKABLE. The proper
functioning of the mechanism assumes that every locker performs sequences of grab and
release operations, in this order. Other behavior will usually result in deadlock; 
problem was mentioned in the discussion of semaphores as one of the major limitat
this technique. But we can once again rely on the power of object-oriented computa
enforce the required protocol; rather than trusting every locker to behave, we may r
lockers to go through procedure use in descendants of the following behavior class:

deferred class LOCKING_PROCESS feature 

resource: separate LOCKABLE

use is
-- Make disciplined use of resource.

require

resource /= Void

do

from !!  lock; setup until over loop

lock● grab (resource)

exclusive_actions

lock● release (resource)

end

finalize

end
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set_resource (r: separate LOCKABLE) is
-- Select r as resource for use.

require
r /= Void

do
resource:= r

ensure
resource /= Void

end

feature { NONE}  

lock: LOCKER

exclusive_actions
-- Operations executed while resource is under exclusive access

deferred
end

setup
-- Initial action; by default: do nothing.

do
end

over: BOOLEAN is
-- Is locking behavior finished?

deferred
end

finalize
-- Final action; by default: do nothing.

do
end

end -- class LOCKING_PROCESS

An effective descendant of LOCKING_PROCESS will effect exclusive_actions
and over, and may redefine setup and finalize. Note that it is desirable to write
LOCKING_PROCESS as a descendant of PROCESS.

Whether or not we go through LOCKING_PROCESS, a grab does not take away the
corresponding lockable from all possible clients: it only excludes other lockers 
observe the protocol. To exclude any client from accessing a resource, you must e
the operations accessing the resource in a routine to which you pass it as an argum

Routine grab of class LOCKER is an example of what has been called the business
card scheme: passing to resource a reference to the Current locker, which the resource
will keep as a separate reference.

Based on the pattern provided by these classes, it is not difficult to write o
implementing semaphores under their various forms. Object-oriented mechanisms h
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help users of our classes avoid the classic danger of semaphores: executing a reserve on a
resource and forgetting to execute the corresponding free. A developer using a behavio
class such as LOCKING_PROCESS will fill in the deferred operations to cover the nee
of his application, and can rely on the predefined general scheme to guarantee th
reserve will be properly followed by the corresponding free.

Coroutines

Although not truly concurrent, at least not in its basic form, our next example is ess
as a way to test the general applicability of a concurrent mechanism.

The first (and probably the only) major programming language to include a coroutine
construct was also the first object-oriented language, Simula 67; we will study its
coroutine mechanism as part of the presentation of Simula. That discussion will also
present some examples of the practical use of coroutines.

Coroutines emulate concurrency on a sequential computer. They provide a fo
program unit that, although similar to the traditional notion of routine, reflects a m
symmetric form of communication:

• With a routine call, there is a master and a slave; the caller starts a routine, wa
its termination, and picks up where it left; the routine, however, always starts 
the beginning. The caller calls; the routine returns.

• With coroutines, the relationship is between peers; coroutine a gets stuck in its work
and calls coroutine b for help; b restarts where it last left, and continues until it is 
turn to get stuck or it has proceeded as far as needed for the moment; then a picks up
its computation. Instead of separate call and return mechanisms, there is a 
operation resume c, meaning: restart coroutine c where it was last interrupted; I wil
wait until someone else resumes me.

This is all strictly sequential and meant to be executed on a single process (ta
a single computer. But the ideas are clearly drawn from concurrent computation; i
an operating system running on a single CPU will internally use a coroutine
mechanism to implement such schemes as time-sharing, multitasking and multithre

Coroutines may be viewed as a boundary case of concurrency: the poor 
substitute to concurrent computation when only one thread of control is available
always a good idea to check that a general-purpose mechanism degrades grace
boundary cases; so let us see how we can represent coroutines. The following two 
will achieve this goal.

resume a resume a

resume b resume b

a

b
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separate class COROUTINE creation 

make

feature { COROUTINE}  

resume (i: INTEGER) is

-- Wake up coroutine of identifier i and go to sleep.

do

actual_resume (i, controller)

end

feature { NONE}  -- Implementation

controller: COROUTINE_CONTROLLER

identifier: INTEGER

actual_resume (i: INTEGER; c: COROUTINE_CONTROLLER) is

-- Wake up coroutine of identifier i and go to sleep.

-- (Actual work of resume).

do

c● set_next (i); request (c)

end

request (c: COROUTINE_CONTROLLER) is

-- Request eventual re-awakening by c.

require

c● is_next (identifier)

do

-- No action necessary

end

feature { NONE}  -- Creation 

make (i: INTEGER; c: COROUTINE_CONTROLLER) is

-- Assign i as identifier and c as controller.

do

identifier := i

controller := c

end

end -- class COROUTINE
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separate class COROUTINE_CONTROLLER feature { NONE}  

next: INTEGER

feature { COROUTINE}  

set_next (i: INTEGER) is
-- Select i as the identifier of the next coroutine to be awakened.

do
next:= i

end

is_next (i: INTEGER): BOOLEAN is
-- Is i the index of the next coroutine to be awakened?

do
Result:= (next = i)

end
end -- class COROUTINE_CONTROLLER 

One or more coroutines will share one coroutine controller (created through a “o
function not shown here). Each coroutine has an integer identifier. To resume a cor
of identifier i, procedure resume will, through actual_resume, set the next attribute of the
controller to i, and then block, waiting on the precondition next = j, where j is the
coroutine’s own identifier. This ensures the desired behavior. 

Although it looks like normal concurrent software, this solution ensures that (i
coroutines have different identifiers) at most one coroutine may proceed at any time,
making it useless to allocate more than one physical CPU. (The controller could ac
make use of its own CPU, but its actions are so simple as not to warrant it.) 

The recourse to integer identifiers is necessary since giving resume an argument of
type COROUTINE, a separate type, would cause deadlock. In practice, you sh
probably use unique declarations to avoid having to choose the values manually. This
of integers also has an interesting consequence: if we allow two or more coroutines t
the same identifier, then with a single CPU we obtain a non-deterministic mechanism: a
call resume (i) will permit restarting any coroutine whose identifier has value i. With more
than one CPU a call resume (i) will allow all coroutines of identifier i to proceed in parallel. 

So the above scheme, which for a single CPU provides a coroutine mecha
doubles up in the case of several CPUs as a mechanism for controlling the max
number of processes of a certain type which may be simultaneously active. 

An elevator control system

The following example shows a case where object technology and the mechanism d
in this chapter can be used to achieve a pleasantly decentralized event-driven arch
for a real-time application.

The example describes software for an elevator control system, with se
elevators serving many floors. The design below is somewhat fanatically object-ori
in that every significant type of component in the physical system — for example
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notion of individual button in an elevator cabin, marked with a floor number — ha
associated separate class, so that each corresponding object such as a button has
virtual thread of control (processor). This is getting close to Milner’s wish, quoted a
beginning of this chapter, of making all objects parallel. The benefit is that the syst
entirely event-driven; it does not need to include any loop for examining repeatedl
status of objects, for example whether any button has been pressed. 

The class texts below are only sketched, but provide a good idea of what a com
solution would be. In most cases the creation procedures have not been included. 

This implementation of the elevator example, adapted to control elevator displays on
multiple screens and computers across the Internet (rather than actual elevators), has bee
used at several conferences to demonstrate concurrent and distributed O-O mechanism

Class MOTOR describes the motor associated with one elevator cabin, and
interface with the mechanical hardware: 

separate class MOTOR feature { ELEVATOR}  
move (floor: INTEGER) is

-- Go to floor; once there, report.
do

“Direct the physical device to move to floor”
signal_stopped (cabin)

end

signal_stopped (e: ELEVATOR) is
-- Report that elevator stopped on level e.

do
e● record_stop (position)

end

feature { NONE}  
cabin: ELEVATOR

position: INTEGER is
-- Current floor level

do
Result:= “The current floor level, read from physical sensors”

end
end 

The creation procedure of this class must associate an elevator, cabin, with every
motor. Class ELEVATOR includes the reverse information through attribute puller,
indicating the motor pulling the current elevator. 

The reason for making an elevator and its motor separate objects is to redu
grain of locking: once an elevator has sent a move request to its elevator, it is free again
thanks to the wait by necessity policy, to accept requests from buttons either ins
outside the cabin. It will resynchronize with its motor upon receipt of a call to proce
record_stop, through signal_stopped. Only for a very short time will an instance o
ELEVATOR be reserved by a call from either a MOTOR or BUTTON object 
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separate class ELEVATOR creation 
make

feature { BUTTON}  

accept ( floor: INTEGER) is
-- Record and process a request to go to floor.

do
record ( floor)
if  not moving then process_request end

end

feature { MOTOR}  
record_stop ( floor: INTEGER) is

-- Record information that elevator has stopped on floor.

do
moving:= false; position:= floor; process_request

end

feature { DISPATCHER}  

position: INTEGER

moving: BOOLEAN

feature { NONE}  

puller: MOTOR

pending: QUEUE [INTEGER]

-- The queue of pending requests
-- (each identified by the number of the destination floor) 

record ( floor: INTEGER) is
-- Record request to go to floor.

do
“Algorithm to insert request for floor into pending”

end

process_request is
-- Handle next pending request, if any.

local
floor: INTEGER

do
if  not pending● empty then

floor := pending● item

actual_process (puller, floor)
pending●remove

end
end
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actual_process (m: separate MOTOR; floor: INTEGER) is
-- Direct m to go to floor.

do

moving:= True; m● move ( floor)

end

end 

Buttons are of two kinds: floor buttons, which passengers press to call the ele
to a certain floor, and cabin buttons, inside a cabin, which they press to make the
move to a certain floor. The two kinds send different requests: for a cabin button
request is directed to a specific cabin; for a floor button, it can be handled by any ele
and so will be sent to a dispatcher object, which will poll the various elevators to s
one that will handle the request. (The selection algorithm is left unimplemented b
since it is irrelevant to this discussion; the same applies to the algorithm used by ele
to manage their pending queue of requests in class ELEVATOR above.) 

Class FLOOR_BUTTON assumes that there is only one button on each floor. It is
difficult to update the design to support two buttons, one for up requests and the oth
down requests. 

It is convenient although not essential to have a common parent BUTTON for the
classes representing the two kinds of button. Remember that the features expor
ELEVATOR to BUTTON are, through the standard rules of selective information hidi
also exported to the two descendants of this class.

separate class BUTTON feature 

target: INTEGER

end

separate class CABIN_BUTTON inherit BUTTON feature 

target: INTEGER

cabin: ELEVATOR

request is
-- Send to associated elevator a request to stop on level target.

do

actual_request (cabin)

end

actual_request (e: ELEVATOR) is
-- Get hold of e and send a request to stop on level target.

do

e● accept (target) 

end

end
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separate class FLOOR_BUTTON inherit

BUTTON

feature

controller: DISPATCHER

request is

-- Send to dispatcher a request to stop on level target.

do

actual_request (controller)

end 

actual_request (d: DISPATCHER) is

-- Send to d a request to stop on level target.

do

d●accept (target) 

end

end 

The question of switching button lights on and off has been ignored. It is not ha
add calls to routines which will take care of this. 

Here finally is class DISPATCHER. To develop the algorithm that selects an eleva
in procedure accept, you would need to let it access the attributes position and moving of
class ELEVATOR, which in the full system should be complemented by a boolean attri
going_up. Such accesses will not cause any problem as the design ensure
ELEVATOR objects never get reserved for a long time.

separate class DISPATCHER creation 

make

feature { FLOOR_BUTTON}  

accept ( floor: INTEGER) is

-- Handle a request to send an elevator to floor.

local

index: INTEGER; chosen: ELEVATOR

do

“Algorithm to determine what elevator should handle the

request for floor”

index:= “The index of the chosen elevator”

chosen:= elevators @ index

send_request (chosen, floor)

end



§30.9  EXAMPLES 1019

bility

nherit
re

 of
r,
dog.

All routines with an
argument t: REAL 
need the precondi-
tion t >= 0, omitted 
for brevity.
feature { NONE}  

send_request (e: ELEVATOR; floor: INTEGER) is
-- Send to e a request to go to floor.

do
e● accept ( floor)

end

elevators: ARRAY [ELEVATOR]

feature { NONE} -- Creation 

make is
-- Set up the array of elevators.

do
“Initialize array elevators”

end
end 

A watchdog mechanism

Along with the previous one, the following example shows the mechanism’s applica
to real-time problems. It also provides a good illustration of the concept of duel.

We want to enable an object to perform a call to a certain procedure action, with the
provision that the call will be interrupted, and a boolean attribute failed set to true, if the
procedure has not completed its execution after t seconds. The only basic timing
mechanism available is a procedure wait (t), which will execute for t seconds.

Here is the solution, using a duel. A class that needs the mechanism should i
from the behavior class TIMED and provide an effective version of the procedu
action which, in TIMED, is deferred. To let action execute for at most t seconds, it
suffices to call timed_action (t). This procedure sets up a watchdog (an instance
class WATCHDOG), which executes wait (t) and then interrupts its client. If, howeve
action has been completed in the meantime, it is the client that interrupts the watch

 deferred class TIMED inherit
CONCURRENCY

feature { NONE}

failed: BOOLEAN; alarm: WATCHDOG

timed_action (t: REAL) is
-- Execute action, but interrupt after t seconds if not complete.
-- If interrupted before completion, set failed to true.

do
set_alarm (t); unset_alarm (t); failed := False

rescue
if is_concurrency_interrupt then failed := True end

end
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 See exercise E30.13, 
page 1036, about 
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the Business Card 
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set_alarm (t: REAL) is 
-- Set alarm to interrupt current object after t seconds.

do
-- Create alarm if necessary:

if  alarm = Void then !!  alarm end
yield; actual_set (alarm, t); retain

end

unset_alarm (t: REAL) is
-- Remove the last alarm set.

do
demand; actual_unset (alarm); wait_turn

end

action is
-- The action to be performed under watchdog control

deferred
end

feature { NONE}  -- Actual access to watchdog 

actual_set (a: WATCHDOG; t: REAL) is
-- Start up a to interrupt current object after t seconds.

do
a●set (t)

end

… Procedure actual_unset similar, left to the reader …
feature { WATCHDOG}  -- The interrupting operation 

stop is
-- Empty action to let watchdog interrupt a call to timed_action

do -- Nothing end
end -- class TIMED

separate class
WATCHDOG

feature { TIMED}
set (caller: separate TIMED; t: REAL) is

-- After t seconds, interrupt caller;
-- if interrupted before, terminate silently.

require
caller_exists: caller /= Void

local
interrupted: BOOLEAN

do
if not interrupted then wait (t); demand; caller●  stop; wait_turn end

rescue
if is_concurrency_interrupt then interrupted := True; retry end

end
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-- Remove alarm (empty action to let client interrupt set).

do -- Nothing end

feature { NONE}

early_termination: BOOLEAN

end -- class WATCHDOG

For clarity and to avoid mistakes every use of retain should, as here, include also th
following retain, in the form yield; “Some call”; retain. Every use of demand (or insist)
should similarly be of the form demand; “Some call”; wait_turn. You can use behavior
classes to enforce this rule.

Accessing buffers

As a last example, let us wrap up the example of bounded buffers used several time
presentation of the mechanism. We have seen that the class could be declared 
separate class BOUNDED_BUFFER [G] inherit  BOUNDED_QUEUE [G] end,
assuming the proper sequential BOUNDED_QUEUE class.

To use a call such as q●remove on an entity q of type BOUNDED_BUFFER [T], you
must enclose it in a routine using q as formal argument. It may be useful for that purpo
to provide a class BUFFER_ACCESS that fully encapsulates the notion of bounded buffe
application classes may inherit from BUFFER_ACCESS. There is nothing difficult about
this behavior class, but it provides a good example of how we can encapsulate se
classes, directly derived from sequential ones such as BOUNDED_QUEUE, so as to
facilitate their direct uses by concurrent applications. 

indexing

description: “Encapsulation of access to bounded buffers"

class BUFFER_ACCESS [G] is 

put (q: BOUNDED_BUFFER [G]; x: G) is

-- Insert x into q, waiting if necessary until there is room.

require

not q● full 

do

q● put (x)

ensure

not q● empty

end
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remove (q: BOUNDED_BUFFER [G]) is
-- Remove an element from q, waiting if necessary
-- until there is such an element. 

require
not q●empty

do
q●remove

ensure
not q●full

end

item (q: BOUNDED_BUFFER [G]): G is
-- Oldest element not yet consumed

require
not q●empty

do

Result:= q● item

ensure
not q●full

end 

end 

30.10  TOWARDS A PROOF RULE

(This section is for mathematically-inclined readers only. Although you may unders
the basic ideas without having had a formal exposure to the theory of program
languages, full understanding requires that you be familiar with the basics of that th
as given for example in [M 1990], whose notations will be used here.)

The basic mathematical property of sequential object-oriented computation
given semi-formally in the discussion of Design by Contract:

{ INV and pre}  body { INV and post}

where pre, post and body are the precondition, postcondition and body of a routine, 
INV is the class invariant. With suitable axiomatization of the basic instructions this c
serve as the basis of a fully formal axiomatic semantics for object-oriented software

Without going that far, let us express the property more rigorously in the form
proof rule for calls. Such a rule is fundamental for a mathematical study of O-O soft
since the heart of object-oriented computation — whether sequential as befo
concurrent as we are now able to achieve — is operations of the form 

t ● f (…, a, …)

which call a feature f, possibly with arguments such as a, on a target t representing an
object. The proof rule for the sequential case may be informally stated as follows:
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For example, if we are able to prove that the actual implementation of put in class
BOUNDED_QUEUE, assuming not full initially, produces a state satisfying not empty,
then for any queue q and element a the rule allows us to deduce 

{ not q● full}  q● put (x) { not q● empty}

More formally, we may express the basic proof rule as an adaptation to the o
oriented form of computation of Hoare’s procedure proof rule: 

{ INV ∧ }  Body (r) { INV ∧ }

{ }  Call (r) { }

Here INV is the class invariant, Pre ( f) is the set of precondition clauses of f and
Post( f) the set of its postcondition clauses. Recall that an assertion is the conjunct
a set of clauses, of the form 

clause1; …; clausen

The large “and” signs  indicate conjunction of all the clauses. The actual argume
of f have not been explicitly included in the call, but the primed expressions such a t ●q'
indicate substitution of the call’s actual arguments for the formal arguments of f. 

In the interest of conciseness, the rule is stated above in the form which does not suppor
proofs of recursive routines. Adding such support, however, does not affect the present
discussion. For details of how to handle recursion, see [M 1990].

The reason for considering the assertion clauses separately and then “anding
is that this form prepares the rule’s adaptation, described next, to separate calls
concurrent case. Also of interest as preparation for the concurrent version is that you
take the invariant INV into account in the proof of the routine body (above the lin
without any visible benefit for the proof of the call (below the line). More assertions 
that property will appear in the concurrent rule. 

What then changes with concurrency? Waiting on a precondition clause occurs
for a precondition of the form t ● cond, where t is a formal argument of the enclosin
routine, and is separate. In a routine of the form 

If we can prove that the body of  f, started in a state satisfying the precondition
of f, terminates in a state satisfying the postcondition, then we can deduce the
same property for the above call, with actual arguments such as a substituted
for the corresponding formal arguments, and every non-qualified call in the
assertions (of the form some_boolean_property) replaced by the
corresponding property on t (of the form t ● some_boolean_property).

p ∈Pre (r)

p

q ∈ Post (r)
q

p ∈Pre (r)

p'
q ∈ Post (r)

q'
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f (…, a: T, …) is

require

clause1; clause2; …

do
…

end

any of the precondition clauses not involving any separate call on a separate f
argument is a correctness condition: any client must ensure that condition prior to an
otherwise the call is in error. Any precondition clause involving a call of the form a ●some_
condition, where a is a separate formal argument, is a wait condition which will cause c
to block if it is not satisfied. 

These observations may be expressed as a proof rule which, for sep
computation, replaces the preceding sequential rule: 

{ INV ∧ }  Body (r) { INV ∧ }

{ }  Call (r) { }

where Nonsep_pre ( f) is the set of clauses in f ’s precondition which do not involve any
separate calls, and similarly for Nonsep_post ( f). 

This rule captures in part the essence of parallel computation. To prove a ro
correct, we must still prove the same conditions (those above the line) as in the seq
rule. But the consequences on the properties of a call (below the line) are differen
client has fewer properties to ensure before the call, since, as discussed in detail ea
this chapter, trying to ensure the separate part of the precondition would be futile an
but we also obtain fewer guarantees on output. The former difference may be cons
good news for the client, the latter is bad news. 

The separate clauses in preconditions and postconditions thus join the invari
properties that must be included as part of the internal proof of the routine body, b
not directly usable as properties of the call. 

The rule also serves to restore the symmetry between preconditions
postconditions, following a discussion that highlighted the role of the preconditions.

p ∈Pre (r )

p

q ∈ Post (r)
q

p ∈Nonsep_Pre (r)
p'

q ∈ Nonsep_Post (r)

q'
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30.11  A SUMMARY OF THE MECHANISM

Here now is the precise description of the concurrency facilities presented in e
sections. There is no new material in this section, which serves only as reference an
be skipped on first reading. The description consists of four parts: syntax; va
constraints; semantics; library mechanisms. It extends the sequential O-O mecha
developed in the preceding chapters.

Syntax

The syntactic extension involves just one new keyword, separate. 

A declaration of an entity or function, which normally appears as 

x: TYPE

may now also be of the form 

x: separate TYPE

In addition, a class declaration, which normally begins with one of class C,
deferred class C and expanded class C, may now also be of a new form
separate classC. In this case C will be called a separate class. It follows from the synt
convention that a class may be at most one of: separated, expanded, deferred. A
expanded and deferred, the property of being separate is not inherited: a class is s
or not according to its own declaration, regardless of its parents’ separateness statu

A type is said to be separate if it is either based on a separate class or of the
separate T for some T (in which case it is not an error, although redundant, for T to be
separate — again the same convention as for expanded). An entity or function is se
if its type is separate. An expression is separate if it is either a separate entity or a 
a separate function. A call or creation instruction is separate if its target (an express
separate. A precondition clause is separate if it involves a separate call (whose 
because of rules that follow, can only be a formal argument).

Constraints

A Separateness Consistency rule in four parts governs the validity of separate calls

• (1) If the source of an attachment (assignment instruction or assignment pass
separate, its target entity must be separate too.

• (2) If an actual argument of a separate call is of a reference type, the correspo
formal argument must be declared as separate.

• (3) If the source of an attachment is the result of a separate call to a function retu
a reference type, the target must be declared as separate.

• (4) If an actual argument of a separate call is of an expanded type, its base cla
not include, directly or indirectly, any non-separate attribute of a reference type
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There is also a simple consistency rule on types (not given earlier): in a type 
form separate TYPE, the base class of TYPE must be neither deferred nor expanded.

For a separate call to be valid, the target of the call must be a formal argument
enclosing routine.

If an assertion contains a function call, any actual argument of that call mu
separate, be a formal argument of the enclosing routine, if any (separate argument

Semantics

Each object is handled by a processor, its handler. If the target t of a creation instruction
is non-separate, the newly created object will be handled by the same processor
creating object. If t is separate, the new object will be allocated to a new processor. 

Once it has been created, an object will at any time be in either of two states: fre
reserved. It is free if no feature is being executed on it, and no separate client is cu
executing a routine that uses as actual argument a separate reference attached to i

A processor will be in one of three states: idle, busy and suspended. It is busy 
executing a routine whose target is an object that it handles. It becomes suspend
attempts an unsuccessful call (defined below) whose target is an object that it hand

The semantics of calls is affected only if one of more of the elements involve
target and actual arguments — are separate. The discussion assumes a call of the
form t ● f (…, s, …) where f is a routine. (If f is an attribute, we will assume for simplicit
that it is called through an implicit function returning its value.)

The call is executed as part of the execution of a routine on a certain object C_OBJ,
which may only be in a busy state at that stage. The basic notion is the following:

Definition : satisfiable call

In the absence of CONCURRENCY features (described next), a call to a routine
f, executed on behalf of an object C_OBJ, is satisfiable if and only if every
separate actual argument having a non-void value, and hence attached to a
separate object A_OBJ, satisfies the following two conditions if the routine
uses the corresponding formal as target of at least one call:

S1 • A_OBJ is free or reserved by C_OBJ.

S2 • Every separate clause of the precondition of f has value true when
evaluated for A_OBJ and the actual arguments given. 
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If a processor executes a satisfiable call, the call is said to be successfu

proceeds immediately; C_OBJ remains reserved, its processor remains in the busy s

every A_OBJ becomes reserved, the target remains reserved, the target’s ha

becomes busy, and it starts executing the routine of the call. When the call termi

the target’s handler returns to its previous state (idle or suspended) and each A_OBJ

object returns to its previous state (free or reserved by C_OBJ). 

If the call is not satisfiable, it is said to be unsuccessful; C_OBJ enters the suspende

state. The call attempt has no immediate effect on its target and actual arguments.

or more earlier unsuccessful calls are now satisfiable, the processor selects one of t

become successful as just described. The default policy if more than one is satisfia

to select the one that has been waiting longest.

The final semantic change is the definition of wait by necessity: if a client has st

one of more calls on a certain separate object, and it executes on that object a c

query, that call will only proceed after all the earlier ones have been completed, an

further client operations will wait for the query call to terminate. (We have seen tha

optimizing implementation might apply this rule only to queries returning an expanded

result.) When waiting for these calls to terminate, the client remains in the “reserved” state.

Library mechanisms

Features of class CONCURRENCY enable us in some cases to consider that conditionS1

of the satisfiable call definition holds even if A_OBJ has been reserved by another obje

(the “holder”), assuming C_OBJ (the “challenger’) has called demand or insist; if as a

result the call is considered satisfiable, the holder will get an exception. This will 

occur if the holder is in a “yielding” state, which it can achieve by calling yield.

To go back to the default non-yielding state, the holder can execute retain; the

boolean query yielding indicates the current state. The challenger’s state is given by

integer query Challenging which may have the value Normal, Demanding or Insisting.

To return to the default Normal state the challenger can execute wait_turn. The

difference between demand and insist affects what happens if the holder is not yielding: with

demand the challenger will get an exception; with insist it simply waits as with wait_turn.

When these mechanisms cause an exception in the holder or challenger, the b

query is_concurrency_exception from class EXCEPTIONS has value true.
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30.12  DISCUSSION

As a conclusion to this presentation, let us review the essential criteria that should
the development of a concurrent O-O mechanism. These criteria served as a basis
approach presented here; in a few cases, as will be seen, some more work remain
done to achieve their full satisfaction. The goals include:

• Minimality of mechanism. 

• Full use of inheritance and other object-oriented techniques. 

• Compatibility with Design by Contract. 

• Provability. 

• Support for command-query distinction. 

• Applicability to many forms of concurrency. 

• Support for coroutine programming. 

• Adaptability through libraries. 

• Support for reuse of non-concurrent software. 

• Support for deadlock avoidance. 

We will also take a final look at the question of interleaving accesses to an object.

Minimality of mechanism

Object-oriented software construction is a rich and powerful paradigm, which, as no
the beginning of this chapter, intuitively seems ready to support concurrency. 

It is essential, then, to aim for the smallest possible extension. Minimalism he
not just a question of good language design. If the concurrent extension is not min
some concurrency constructs will be redundant with the object-oriented constructs, o
conflict with them, making the developer’s task hard or impossible. To avoid su
situation, we must find the smallest syntactic and semantic epsilon that will give
concurrent execution capabilities to our object-oriented programs.

The extension presented in the preceding sections is indeed minimal syntact
since it is not possible to add less than one new keyword. 

Full use of inheritance and other object-oriented techniques

It would be unacceptable to have a concurrent object-oriented mechanism that do
take advantage of all O-O techniques, in particular inheritance. We have noted th
“inheritance anomaly” and other potential conflicts are not inherent to concurrent 
development but follow from specific choices of concurrency mechanisms, in parti
active objects, state-based models and path-expression-like synchronization
appropriate conclusion is to reject these choices and retain inheritance.
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We have repeatedly seen how inheritance can be used to produce high-level be
class (such as PROCESS) describing general patterns to be inherited by descendants. M
of the examples would be impossible without multiple inheritance.

Among other O-O techniques, information hiding also plays a central role.

Compatibility with Design by Contract

It is essential to retain the systematic, logic-based approach to software constructio
documentation expressed by the principles of Design by Contract. The results of this c
were indeed based on the study of assertions and how they fare in a concurrent con

In that study we encountered a striking property, the concurrent precond
paradox, which forced us to provide a different semantics for assertions in the conc
case. This gives an even more fundamental place to assertions in the resulting mech

Support for command-query separation

A principle of object-oriented software construction was developed in preceding cha
Command-Query Separation. The principle enjoins us not to mix commands (proced
which change objects, and queries (functions and attributes), which return inform
about objects but do not change them. This precludes side-effect-producing functio

It is commonly believed that the principle cannot hold in a concurrent context, a
example you cannot write

next_element:= buffer● item

buffer●remove

and have the guarantee that the element removed by the second call is the same 
first instruction assigned to next_item. Between the two instructions, another client c
mess up with the shared buffer. Such examples are often used to claim that one mu
a side-effect-producing function get, which will both return an element and remove it.

This argument is plainly wrong. It is confusing two notions: exclusive access
routine specification. With the notation of this chapter, it is easy to obtain exclusive a
without sacrificing the Command-Query Separation principle: simply enclose the
instructions above, with buffer replaced by b, in a procedure of formal argument b, and
call that procedure with the attribute buffer as argument. Or, if you do not require the two
operations to apply to the same element, and want to minimize the amount of time a 
resource is held, write two separate routines. This kind of flexibility is important for th
developer. It can be provided, thanks to a simple exclusive access mechanism, whe
not functions may have side effects.

1
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Applicability to many forms of concurrency

A general criterion for the design of a concurrent mechanism is that it should ma
support many different forms of concurrency: shared memory, multitasking, net
programming, client-server computing, distributed processing, real time.

With such a broad set of application areas, a language mechanism cann
expected to provide all the answers. But it should lend itself to adaptation to a
intended forms of concurrency. This is achieved by using the abstract notion of proc
and relying on a distinct facility (Concurrency Control File, libraries…) to adapt the
solution to any particular hardware architecture that you may have available.

Adaptability through libraries

Many concurrency mechanisms have been proposed over the years; some of th
known were reviewed at the beginning of this chapter. Each has its partisans, an
may provide the best approach for a certain problem area. 

It is important, then, that the proposed mechanism should support at least so
these mechanisms. More precisely, the solution must be general enough to allow
program various concurrency constructs in terms of that mechanism. 

Here the facilities of the object-oriented method should again be put to good
One of the most important aspects of the method is that it supports the construct
libraries for widely used schemes. The library construction facilities (classes, asser
constrained and unconstrained genericity, multiple inheritance, deferred classe
others) should allow us to express many concurrency mechanisms in the form of l
components. Examples of such encapsulating mechanisms (such as the PROCESS class
and the behavior class for locks) have been presented in this chapter, and the ex
suggest a few more.

One may expect that a number of libraries will be produced, relying on the b
tools and complementing them, to support concurrency models catering to specific 
and tastes.

We have also seen the use of library classes such as CONCURRENCY to provide
various refinements to the basic scheme defined by the language mechanism.

Support for coroutine programming

As a special case, coroutines provide a form of quasi-concurrency, interesting b
itself (in particular for simulation activities), and as a smoke test of the applicability o
mechanisms, since a general solution should adapt itself gracefully to boundary cas
have seen how it is possible, once again using the library construction mechanis
object technology, to express coroutines based on the general concurrent mechani
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Class BUFFER_
ACCESS was on 
page 1021.

“Locks”, page 
1009, and exercise 
E30.8, page 1036.

“Concurrent 
accesses to an 
object”, page 982.
Support for reuse of non-concurrent software

It is necessary to support the reuse of existing, non-concurrent software, espe
libraries of reusable software components.

We have seen how smooth the transition is between sequential classes s
BOUNDED_QUEUE and their concurrent counterparts such as BOUNDED_BUFFER (just
write separate class BOUNDED_BUFFER [G] inherit  BOUNDED_QUEUE [G] end).
This result is somewhat tempered by the frequent desirability of encapsulation classe
as our BUFFER_ACCESS. Such encapsulation seems useful, however, and may b
inescapable consequence of the semantic differences between sequential and con
computation. Also note that such wrapper classes are easy to write.

Support for deadlock avoidance

One area in which more work remains necessary is how to guarantee deadlock avo

Deadlock potential is a fact of concurrent life. For example any mechanism tha
be used to program semaphores (and a mechanism that is not powerful enough to emulate
semaphores would be viewed with suspicion) can cause deadlock, since semapho
trivially open to that possibility.

The solution lies partly in the use of high-level encapsulation mechanisms.
example a set of classes encapsulating semaphores, as was presented for locks
come with behavior classes that automatically provide a free for every reserve, thereby
guaranteeing deadlock avoidance for applications that follow the recommended pr
by inheriting from the behavior class. This is, in my experience, the best recip
deadlock avoidance.

This approach may not be sufficient, however, and it may be possible to d
simple non-deadlock rules, automatically checkable by a static tool. Such a rule (exp
as a methodological principle rather than a language validity rule, for fear it may b
restrictive) was given earlier: the Business Card principle. But more is needed.

Permitting concurrent access?

A final note on one of the principal properties of the approach: the requirement that a
one client may access any supplier object at any given time, preventing interleav
routines and requiring any VIP treatment to use the duel mechanism.

The rationale was clear: if any challenger client can interrupt the execution 
routine at any time, we lose the ability to reason on our classes (through properties
form { INV and pre}  body { INV and post} ) since the challenger can leave the object in
arbitrary state.

This objection would disappear if we only permitted challengers to execute a
routine of a very special kind: an applicative routine (in the sense defined for function
in earlier chapters) which does not modify the object or, if it modifies it, cancels a
modifications before it leaves. This would assume a language mechanism to state
routine is applicative, and compilers enforcing that property.
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30.13  KEY CONCEPTS INTRODUCED IN THIS CHAPTER 

• Concurrency and distribution are playing an increasing role in most application 
of computers.

• Concurrency has many variants, including multiprocessing and multiprogramm
The Internet, the Web and object request brokers bring even more possibilities

• It is possible to use the fundamental schemes of object technology — cla
encapsulation, multiple inheritance, deferred classes, assertions and so on — 
greatest benefit of developers of concurrent and distributed applications.

• No active-passive object distinction is necessary or desirable. Objects are by 
able to perform many operations; making them active would restrict them to just

• A simple extension of the sequential object-oriented notation, using a s
keywords (separate), covers all the major application areas of concurrency.

• Each object is handled by a processor. Processors are an abstract notion des
threads of control; a system can use as many processors as it wants regardles
number of available computing devices (CPUs). It must be possible to defin
mapping from processors to CPUs outside of the software proper.

• An object handled by a different processor is said to be separate.

• Calls on separate targets have a different semantics, asynchronous rathe
synchronous. For that reason, any entity representing separate objects m
declared as such, using the keyword separate.

• Consistency rules, implying in particular that a separate entity may not be ass
to a non-separate one, ensure that there are no “traitors” — that no non-se
entity becomes attached to a separate object.

• To achieve exclusive access to a separate object, it suffices to use the corresp
reference as an argument to a separate call (a call with a separate target).

• The target of a separate call must itself be a separate formal argument o
enclosing routine.

• Preconditions on separate targets cannot keep their usual semantics as corr
conditions (this is the “concurrent precondition paradox”). They serve as 
conditions.

• The mechanism developed in this chapter covers multitasking, time-sharing, m
threading, client-server computing, distributed processing on networks such a
Internet, coroutines and real-time applications.
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30.14  BIBLIOGRAPHICAL NOTES

The approach to concurrency described in this chapter evolved from a presenta
TOOLS EUROPE [M 1990a] and was revised in [M 1993b], from which some of the
material in this chapter (examples in particular) was derived. It is now known as SC
for “Simple Concurrent Object-Oriented Programming”. John Potter and Ghinwa Ja
have developed a variant that includes an explicit hold instruction [Jalloul 1991]
[Jalloul 1994]. Wait by necessity was introduced by Denis Caromel [Caromel 1989]
[Caromel 1993].

The first implementation of the model described here was developed by Terry 
and Xavier Le Vourch. Both contributed new insights.

A good textbook on the traditional approaches to concurrency is [Ben Ari 1990].
Original references include: on semaphores, [Dijkstra 1968a], which also introduced the
“dining philosophers” problem; on monitors, [Hoare 1974]; on path expressions
[Campbell 1974]. The original CSP model was described in [Hoare 1978]; the book
[Hoare 1985] presents a revised model with special emphasis on its mathema
properties. Occam2 is described in [Inmos 1988]. A CSP and Occam archive is availab
at Oxford University: http://www.comlab.ox.ac.uk/archive/csp.html (I am grateful to Bill
Roscoe from Oxford for help with details of CSP). CCS (Communicating Concur
Systems) [Milner 1989] is another influential mathematically-based model. Althou
cited only in passing in this chapter, Carriero’s and Gelernter’s Linda method and
[Carriero 1990] is a must know for anyone interested in concurrency.

A special issue of the Communications of the ACM [M 1993a] presents a number of
important approaches to concurrent object-oriented programming, originally drawn 
concurrency papers at various TOOLS conferences.

Another collection of papers that appeared at about the same time is [Agha 1993].
An earlier collective book edited by Yonezawa and Tokoro [Yonezawa 1987] served as
catalyst for much of the work in the field and is still good reading. Other surveys inc
a thesis [[Papathomas 1992] and an article [Wyatt 1992]. Yet another compilation of
contributions by many authors [Wilson 1996] covers C++ concurrency extensions.

Hewitt’s and Agha’s actors model, which predates the object-oriented renaissa
and comes from a somewhat different background, has influenced many concurren
approaches; it is described in an article [Agha 1990] and a book [Agha 1986]. Actors are
computational agents similar to active objects, each with a mail address and a beh
An actor communicates with others through messages sent to their mail address
achieve asynchronous communication, the messages are buffered. An actor pro
messages through functions and by providing “replacement behaviors” to be used 
of the actor’s earlier behavior after a certain message has been processed.
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One of the earliest and most thoroughly explored parallel object-oriented langu
is POOL [America 1989]; POOL uses a notion of active object, which was found to ra
problems when combined with inheritance. For that reason inheritance was intro
into the language only after a detailed study which led to the separation of inheritanc
subtyping mechanisms. The design of POOL is also notable for having shown, fro
start, a strong concern for formal language specification. 

Much of the important work in concurrent O-O languages has come from Ja
[Yonezawa 1987], already cited, contains the description of several influential Japa
developments, such as ABCL/1 [Yonezawa 1987a]. MUSE, an object-oriented operatin
system developed at the Sony Computer Science Laboratory, was presented by 
and his colleagues at TOOLS EUROPE 1989 [Yokote 1989]. The term “inheritance
anomaly” was introduced by Matsuoka and Yonezawa [Matsuoka 1993], and further
papers by Matsuoka and collaborators which propose various remedies.

Work on distributed systems has been particularly active in France, with
CHORUS operating system, of which [Lea 1993] describes an object-oriented extensio
the GUIDE language and system of Krakowiak et al. [Balter 1991]; and the SOS system
of Shapiro et al. [Shapiro 1989]. In the area of programming massively paral
architectures, primarily for scientific applications, Jean-Marc Jézéquel has develop
ÉPÉE system [Jézéquel 1992], [Jézéquel 1996] (chapter 9)], [Guidec 1996].

Also influential has been the work done by Nierstrasz and his colleagues a
University of Genève around the Hybrid language [Nierstrasz 1992] [Papathomas 1992],
which does not have two categories of objects (active and passive) but relies inste
the notion of thread of control, called activity. The basic communication mechanism 
remote procedure call, either synchronous or asynchronous.

Other important projects include DRAGOON [Atkinson 1991], which, like the
mechanism of this chapter, uses preconditions and postconditions to ex
synchronization, and pSather [Feldman 1993], based on the notion of thread and 
predefined MONITOR class.

Many other developments would need to be added to this list. For more com
surveys, see the references cited at the beginning of this section. The proceed
workshops regularly held at the ECOOP and OOPSLA conferences, such as [Agha 1988],
[Agha 1991], [Tokoro 1992], describe a variety of ongoing research projects and 
precious to anyone who wants to find out what problems researchers consider most pr

The work reported in this chapter has benefited at various stages from the com
and criticism of many people. In addition to colleagues cited in the first two paragr
of this section they include Mordechai Ben-Ari, Richard Bielak, John Bruno, P
Dubois, Carlo Ghezzi, Peter Löhr, Dino Mandrioli, Jean-Marc Nerson, Robert Sw
and Kim Waldén.
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EXERCISES

E30.1  Printers

Complete the PRINTER class, implementing the job queue as a bounded buffer 
making sure queue manipulation routines as well as print do not need to process th
special “stop request” print job (print may have not j ● is_stop_request as a precondition).

E30.2  Why import must be deep

Assume that a shallow import mechanism (rather than deep_import) were available.
Construct an example that will produce an inconsistent structure — one in wh
separate object is attached to a non-separate entity.

E30.3  The “inheritance anomaly”

In the BUFFER example used to illustrate the “inheritance anomaly”, assume that 
routine specifies the exit state in each case using a yield instruction, as in

put (x: G) is

do
“Add x to the data structure representing the buffer”

if “All positions now occupied” then
yield full

else

yield partial

end

end

Write the corresponding scheme for remove. Then write the class NEW_BUFFER with the
added procedure remove_two and show that the class must redefine both of the inher
features (along with the specification of which features are applicable in which state

E30.4  Deadlock avoidance (research problem)

Starting from the Business Card principle, investigate whether it is feasible to elim
some of the possible deadlocks by introducing a validity rule on the use of non-sep
actual arguments to separate calls. The rule should be reasonable (that is to say, it
not preclude commonly useful schemes), enforceable by a compiler (in particul
incremental compiler), and easily explainable to developers.

E30.5  Priorities

Examine how to add a priority scheme to the duel mechanism of class CONCURRENCY,
retaining upward compatibility with the semantics defined in the presentation
procedures yield, insist and related ones.

-
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Page 1020.
E30.6  Files and the precondition paradox
Consider the following simple extract from a routine manipulating a file:

f: FILE
…
if  f /= Void and then f● readable then

f ● some_input_routine
-- some_input_routine is any routine that reads
-- data from the file; its precondition is readable.

end

Discuss how, in spite of the absence of obvious concurrency in this example
precondition paradox can apply to it. (Hint : a file is a separate persistent structure, so
interactive user or some other software system can access the file in between the 
operations performed by the extract.) Discuss what can happen as a consequence
problem, and possible solutions.

E30.7  Locking
Rewrite the class LOCKING_PROCESS as an heir of class PROCESS.

E30.8  Binary semaphores
Write one or more classes implementing the notion of binary semaphore. (Hint : start from
the classes implementing locks.) As suggested at the end of the discussion of locks, 
to include high-level behavior classes, meant to be used through inheritance, 
guarantee a correct pattern of reserve and free operations.

E30.9  Integer semaphores
Write one or more classes implementing the notion of integer semaphore. 

E30.10  Coroutine controller
Complete the implementation of coroutines by spelling out how the controller is cre

E30.11  Coroutine examples
The discussion of Simula presents several examples of coroutines. Use the cor
classes of the present chapter to implement these examples.

E30.12  Elevators
Complete the elevator example by adding all the creation procedures as well a
missing algorithms, in particular for selecting floor requests.

E30.13  Watchods and the Business Card principle
Show that the procedure set of class WATCHDOG violates the Business Card principle
Explain why this is all right. 

E30.14  Once routines and concurrency
What is the appropriate semantics for once routines in a concurrent context: execute
per system execution, or once per processor?
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