
32
Some O-O techniques for
graphical interactive applications
.)

roduct.
tware
ultiple
u can
ortant
ns.

neral

se
sion

 few
lmost
e and
roduct
cal.

ced

rder it

s been
ch as
Famous Designer has recently designed an automobile. It has neither a
fuel gauge, nor a speedometer, nor any of the idiot controls that plague
other modern cars. Instead, if the driver makes a mistake, a large “?”
lights up in the middle of the dashboard. “The experienced driver”, says
Famous, “will usually know what went wrong”.

Unix folklore. (Instead of “Famous Designer”, the
original names one of the principal contributors to Unix

E legant user interfaces have become a required part of any successful software p
Advances in display hardware, ergonomics (the study of human factors) and sof
have taken advantage of interaction techniques first pioneered in the seventies: m
windows so you can work on several jobs, mouse or other fast-moving device so yo
show what you want, menus to speed up your choices, icons to represent imp
notions, figures to display information visually, buttons to request common operatio

The acronym GUI, for Graphical User Interfaces, has come to serve as a ge
slogan for this style of interaction. Related buzzwords include WYSIWYG (What You See
Is What You Get), WIMP (“Windows, Icons, Menus, Pointing device”) and the phra
“direct manipulation”, characterizing applications which give their users the impres
that they work directly on the objects shown on the screen.

These impressive techniques, not long ago accessible only to users of a
advanced systems running on expensive hardware, have now become a
commonplace even on the most ordinary personal computers. So commonplac
popular, in fact, that a software developer can hardly expect any success from a p
that uses just a line-oriented interface, or even one that is full-screen but not graphi

Yet until recently the construction of interactive applications offering advan
graphical facilities remained so difficult as to justify what may be called the Interface
Conjecture: the more convenient and easy an application appears to its users, the ha
will be for its developers to build.

One of the admirable advances of the software field over the past few years ha
to start disproving the interface conjecture through the appearance of good tools su
interface builders.

SOME O-O TECHNIQUES FOR GRAPHICAL INTERACTIVE APPLICATIONS§32.11064

y can
 O-O,
prove
t have
roper
 reuse

tive
 more
and
your

ost
called
ple,
stem
. The
y the
ser”
pers’

 who
rious

ts are

ir end

ive
ch as

ndows
on
ation
 Motif
More progress remains necessary in this fast-moving area. Object technolog
help tremendously, and in fact the fields denoted by the two buzzwords, GUI and
have had a closely linked history. Simply stated, the purpose of this chapter is to dis
the Interface Conjecture, by showing that to be user-friendly an application does no
to be developer-hostile. Object-oriented techniques will help us concentrate on the p
data abstractions, suggest some of these abstractions, and give us the ability to
everything that can be reused.

A complete exploration of O-O techniques for building graphical and interac
applications would take a book of its own. The aim of the present chapter is much
modest. It will simply select a few of the less obvious aspects of GUI building,
introduce a few fundamental techniques that you should find widely applicable if
work involves designing graphical systems.

32.1 NEEDED TOOLS

What tools do we need for building useful and pleasant interactive applications?

End users, application developers and tool developers

First, a point of terminology to avoid any confusion. The word “user” (one of the m
abused terms in the computer field) is potentially misleading here. Certain people,
application developers, will produce interactive applications to be used by other peo
to be called end users; a typical end user would be a dentist’s assistant, using a sy
built by some application developer for recording and accessing patient history
application developers themselves will rely, for their graphical needs, on tools built b
third group, tool developers. The presence of three categories is the reason why “u
without further qualification is ambiguous: the end users are the application develo
users; but the application developers themselves are the tool developers’ users.

An application is an interactive system produced by a developer. An end user
uses an application will do so by starting a session, exercising the application’s va
facilities by providing the input of his choice. Sessions are to applications what objec
to classes: individual instances of a general pattern.

This chapter analyzes the requirements of developers who want to provide the
users with useful applications offering graphical interfaces.

Graphical systems, window systems, toolkits

Many computing platforms offer some tools for building graphical interact
applications. For the graphical part, libraries are available to implement designs su
GKS and PHIGS. For the user interface part, basic window systems (such as the Wi
Application Programming Interface, the Xlib API under Unix and the Presentati
Manager API under OS/2) are too low-level to make direct use convenient for applic
developers, but they are complemented by “toolkits”, such as those based on the
user interface protocol.

§32.1 NEEDED TOOLS 1065

ers’

ulti-
tures

lkit.

patch
nts.

e —
 add

and
 many
plays
d
reen
ers).
nce to
 care
 even
tential

at will
-level
 job,

eded
 tools.

ental
enu,

nd it
ying
press
 the
hose
arts of
All these systems fulfil useful needs, but they do not suffice to satisfy develop
requirements. Among their limitations:

• They remain hard to use. With Motif-based toolkits, developers must master a m
volume documentation describing hundreds of predefined C functions and struc
bearing such awe-inspiring names as XmPushButtonCallbackStruct — with the B of
Button in upper-case, but the b of back in lower-case — or XmNsubMenuId. The
difficulties and insecurities of C are compounded by the complexity of the too
Using the basic Application Programming Interface of Windows is similarly tedious:
to create an application, you must write the application’s main loop to get and dis
messages, a window procedure to catch user events, and other low-level eleme

• Although the toolkits cover user interface objects — buttons, menus and the lik
some of them offer little on graphics (geometrical figures and transformations). To
true graphics to the interface is a significant effort.

• The toolkits are incompatible with each other. Motif, the Windows graphics
Presentation Manager, although based on essentially similar concepts, differ in
ways, some significant (in Windows and PM creating a user interface object dis
it immediately, whereas under Motif you first build the corresponding structure an
then call a “realize” operation to display it), some just a matter of convention (sc
coordinates are measured from the top left in PM, from the bottom left in the oth
Many user interface conventions also vary. Most of these differences are a nuisa
end users, who just want something that works and “looks nice”, and do not
whether window corners are sharp or slightly rounded. The differences are an
worse nuisance to developers, who must choose between losing part of their po
market or wasting precious development time on porting efforts.

The library and the application builder

To answer the needs of developers and enable them to produce applications th
satisfy their end users, we must go beyond the toolkits and provide portable, high
tools that relieve developers from the more tedious and repetitive parts of their
allowing them to devote their creativity to the truly innovative aspects.

The toolkits provide a good basis, since they support many of the ne
mechanisms. But we must hide their details and complement them with more usable

The basis of the solution is a library of reusable classes, supporting the fundam
data abstractions identified in this chapter, in particular the notions of window, m
context, event, command, state, application.

For some of the tasks encountered in building an application, developers will fi
convenient to work not by writing software texts in the traditional fashion, but by rel
on an interactive system, called an application builder, which will enable them to ex
their needs in a graphical, WYSIWIG form; in other words, to use for their own work
interface techniques that they offer to their users. An application builder is a tool w
end users are themselves developers; they use the application builder to build the p

SOME O-O TECHNIQUES FOR GRAPHICAL INTERACTIVE APPLICATIONS§32.21066

tion
hich
r into
ftware

ays,
data
uilder

irectly

ly by

 right
area.

good
tions.

rary.
ng the
ariants

hen
layed,
 the
tself.

ite a
any

rse: to
uch
level
t the

em:
their systems that may be specified visually and interactively. The term “applica
builder” indicates that this tool is far more ambitious than plain “interface builders”, w
only cover the user interface of an application. Our application builder must go furthe
expressing the structure and semantics of an application, stopping only where so
text becomes the only reasonable solution.

In defining the library and the application builder, we should be guided, as alw
by the criteria of reusability and extendibility. This means in particular that for every
abstraction identified below (such as context, command or state) the application b
should provide two tools:

• For reusability, a catalog (event catalog, context catalog, state catalog…) containing
predefined representatives of the abstraction, which developers can include d
into their applications.

• For extendibility, an editor (context editor, command editor, state editor…) enabling
developers to produce their own variants, either from scratch or more common
pulling out an element from a catalog and then modifying it.

Using the object-oriented approach

In the object-oriented approach to software construction, the key step is to find the
data abstractions: the types of objects which characterize applications in the given

To advance our understanding of graphical user interfaces and devise
mechanisms for building applications, we must explore the corresponding abstrac
Some are obvious; others will prove more subtle.

Each of the abstractions encountered below will yield at least one class in the lib
Some will yield a set of classes, all descending from a common ancestor describi
most general notion. For example, the library includes several classes describing v
of the notion of menu.

We will first examine the overall structure of a portable graphics library; t
consider the main graphical abstractions covering the geometrical objects to be disp
and the “interaction objects” supporting event-driven dialogues; finally we will study
more advanced abstractions describing applications: command, state, application i

32.2 PORTABILITY AND PLATFORM ADAPTATION

Some application developers want a portable library, which will enable them to wr
single source text that will then adapt automatically to the look-and-feel of m
platforms, at the price of a recompile but without any change. Others want the reve
gain full access to all the specific “controls” and “widgets” of a particular platform s
as Microsoft Windows, but in a convenient fashion (rather than at the typically low
of the native libraries). Yet others want a bit of both: portability as the default, bu
ability to go native when needed.

With a careful design, relying on a two-layer structure, we can try to satisfy all of th

§32.2 PORTABILITY AND PLATFORM ADAPTATION 1067

nding
y. At
ind

s the
d
eral
 and
es the
d and
e C
ies on

st to
gher

 (for
ing

cific
rily a

ative
e the
ry

e not
 and
s must
r it is
must
idual

Graphical
libraries
architecture

(See a similar arch-
tecture for concur-
rency: page 970.)

See “AN APPLICA-
TION: THE HANDLE
TECHNIQUE”, 24.3,
page 817.
To make things more concrete the figure shows the names of the correspo
components in ISE’s environment, but the idea is applicable to any graphical librar
the top level (Vision) there is a portable graphical library; at the bottom level you f
specialized libraries, such as WEL for Windows, adapted to one platform only.

WEL and other bottom-level libraries can be used directly, but they also serve a
platform-dependent component of the top level: Vision mechanisms are implemente
through WEL on Windows, MEL on Motif and so on. This technique has sev
advantages: for the application developers, it fosters compatibility of concepts
techniques; for the tool developers, it removes unneeded duplications, and facilitat
implementation of the top level (which relies on clean, abstract, assertion-equippe
inheritance-rich O-O libraries such as WEL, rather than interfacing directly with th
level, always a dangerous proposition). The connection between the two levels rel
the handle design pattern developed in an earlier chapter.

Application developers have a choice of level:

• If you want to ensure portability, use the higher layer. This is also of intere
developers who, even if they work for a single platform, want to benefit from the hi
degree of abstraction provided by high-level libraries such as Vision.

• If you want to have direct access to all the specific mechanisms of a platform
example the many “controls” provided by Windows NT), go to the correspond
lower-layer library.

The last comment touches on a delicate issue. How much platform-spe
functionality do you lose by relying on a portable library? The answer is necessa
tradeoff. Some early portable libraries used an intersection (or “lowest common
denominator”) approach, limiting the facilities offered to those that were present in n
form in all the platforms supported. This is usually not enough. At the other extrem
library authors might use the union approach: provide every single mechanism of eve
supported platform, using explicit algorithms to simulate the mechanisms that ar
natively available on a particular platform. This policy would produce an enormous
redundant library. The answer has to be somewhere in-between: the library author
decide individually, for every mechanism present on some platforms only, whethe
important enough to warrant writing a simulation on the other platforms. The result
be a consistent library, simple enough to be used without knowledge of the indiv
platforms, but powerful enough to produce impressive visual applications.

WEL
(Windows)

MEL
(Motif)

PEL
(Presentation

Manager)

Platform-independent library (Vision)

i

SOME O-O TECHNIQUES FOR GRAPHICAL INTERACTIVE APPLICATIONS§32.31068

ers is
r than

ether

 bulk
rking
ixing
 partial,
 of its

known

 an
u

room
just
 key,
cial-

ernal

ctive
hics.

 city)
l levels
For application developers, one more criterion in choosing between the two lay
performance. If your main reason for considering the top layer is abstraction rathe
portability, you must be aware that including the extra classes will carry a space penalty
(any time penalty should be negligible with a well-designed library), and decide wh
it is worthwhile. Clearly, a one-platform library such as WEL will be more compact.

Finally, note that the two solutions are not completely exclusive. You can do the
of your work at the top level and provide some platform-specific goodies to users wo
on your top-selling platform. This has to be done carefully, of course; carelessly m
portable and non-portable elements would soon cancel any expected benefits, even
of portable development. An elegant design pattern (which ISE has applied to some
libraries) relies on assignment attempt. The idea is this. Consider a graphical object
through an entity m whose type is at the top level, say MENU. Any actual object to which
it will become attached at run time will be, of course, platform-specific; so it will be
instance of a lower-layer class, say WEL_MENU. To apply platform-specific features yo
need an entity, say wm, of this type. You can use the following scheme:

wm?= m

if wm = Void then

… We are not on Windows! Do nothing, or something else …

else

… Here we may apply any WEL_MENU (i.e. Windows-specific)

feature to wm …

end

We can picture this scheme as a way to go into the Windows-only room. The
is locked, to prevent you from claiming, if someone finds you there, that you
wandered into it by accident. You are permitted to enter, but you must ask for the
explicitly and politely. For such official and conditional requests to enter a spe
purpose area, the key is assignment attempt.

32.3 GRAPHICAL ABSTRACTIONS

Many applications will use graphical figures, often representing objects from an ext
system. Let us see a simple set of abstractions that will cover this need.

Figures

First we need a proper set of abstractions for the graphical part of an intera
application. To keep things simple, this discussion will assume two-dimensional grap

Geographical maps provide an excellent model. A map (of a country, a region, a
provides a visual representation of some reality. The design of a map uses severa
of abstraction:

§32.3 GRAPHICAL ABSTRACTIONS 1069

set of
and

 call
 main
s or
).

 of the

The graphical
abstractions
• We must view the reality behind the model (in an already abstracted form) as a
geometrical shape or figures. For a map the figures represent rivers, roads, towns
other geographical objects.

• The map will describe a certain set of figures, which may be called the world .

• The maps will show only a part of the world — one or more areas which we will
windows, and assume to be rectangular. For example a map can have one
window devoted to a country, and subsidiary windows devoted to large citie
outlying parts (as with Corsica in maps of France or Hawaii in maps of the USA

• Physically the map appears on a physical display medium, the device. The device is
usually a sheet of paper, but we may also use a computer screen. Various parts
device will be devoted to the various windows.

WORLD

WINDOW

DEVICE

Figures

Windows
Window1

Window2

Window3

Window4

SOME O-O TECHNIQUES FOR GRAPHICAL INTERACTIVE APPLICATIONS§32.31070

es of
phical
areas

dow
ow is
s also
ically
 the

evice
creens,
ll dot,

 since
: an
ist in

ition
ent
 and

sition
 the
sition
fined
s may

cal
ch to a
s of a
The four basic concepts — WORLD, FIGURE, WINDOW, DEVICE — transpose
readily to general graphical applications, where the world may contain arbitrary figur
interest to a certain computer application, rather than just representations of geogra
objects. Rectangular areas of the world (windows) will be displayed on rectangular
of the device (the computer screen).

The figure on the previous page shows the three planes: world (bottom), win
(middle) and device (top). The notion of window plays a central role, as each wind
associated both with an area of the world and with an area of the device. Window
cause the only significant extension to the basic map concepts: support for hierarch
nested windows. Our windows will be permitted to have subwindows, with no limit on
nesting level. (No nesting appears in the figure.)

Coordinates

We need two coordinate systems: device coordinates and world coordinates. D
coordinates measure the positions of displayed items on the device. On computer s
they are often measured in pixels; a pixel (picture element) is the size of a sma
usually the smallest displayable item.

There is no standard for the unit of world coordinates, and there should not be
the world coordinate system is best left for application developers to decide
astronomer may wish to work in light years, a cartographer in kilometers, a biolog
millimeters or microns.

Because a window captures part of a world, it will have a certain world pos
(defined by the x and y world coordinates of its top left corner) and a certain ext
(horizontal and vertical lengths of the parts of the world covered). The world position
the extent are expressed in world coordinate units.

Because the window is displayed on part of a device, it has a certain device po
(defined by the x and y device coordinates of its top left corner) and a certain size on
device, all expressed in device coordinate units. For a window with no parent, the po
is defined with respect to the device; for a subwindow, the position is always de
relative to the parent. Thanks to this convention, any application that uses window
run with the whole screen to itself as well as in a previously allocated window.

Operations on windows

To take care of the hierarchical nature of windows we make class WINDOW an heir of
class TWO_WAY_TREE, an implementation of trees. As a result, all hierarchi
operations are readily available as tree operations: add a subwindow (child), reatta
different enclosing window (parent) and so on. To set the world and device position
window, we will use one of the following procedures (all with two arguments):

Set absolute position Move, relative to current position

Position in world go pan

Position on deviceplace_proportional
place_pixel

move_proportional
move_pixel

§32.4 INTERACTION MECHANISMS 1071

s of
solute

ow.

tion
 have

in
se or

 more
ost

cuting

e the
 usually
of the

king
call a
e how
ct to a

ction.
are
efined
The _proportional procedures interpret the values of their arguments as fraction
the parent window’s height and width; arguments to the other procedures are ab
values (in world coordinates for go and pan, in device coordinates for the _pixel
procedures). Procedures are similarly available to set the extent and size of a wind

Graphical classes and operations

All classes representing figures are descendants of a deferred class FIGURE; standard
features include display, hide, translate, rotate, scale.

It is indispensable to keep the set of figure types extendible, allowing applica
developers (and, indirectly, end users of graphical tools) to define new types. We
seen how to do this: provide a class COMPOSITE_FIGURE, built by multiple inheritance
from FIGURE and a container type such as LIST [FIGURE].

32.4 INTERACTION MECHANISMS

Let us now turn our attention to how our applications will interact with users.

Events

Modern interactive applications are event-driven: as the interactive user causes certa
events to occur (for example by entering text at the keyboard, moving the mou
pressing its buttons), certain operations get executed.

Innocuous as this description may seem, it represents a major departure from
traditional styles of interaction with users. In the old style (which is still by far the m
common), a program that needed input from its user would get it by repeatedly exe
scenarios of the form

… Perform some computation …
print ("Please type in the value for parameter xxx.")

read_input

xxx := value_read

… Proceed with the computation, until it again needs a value from the user …
In the event-driven style, roles are reversed: operations occur not becaus

software has reached a preset stage of its execution, but because a certain event,
triggered by the interactive user, has caused execution of a certain component
software. Input determines the software’s execution rather than the reverse.

The object-oriented style of software development plays an important role in ma
such schemes possible. Dynamic binding, in particular, enables the software to
feature on an object under the understanding that the form of the object will determin
it will handle the feature. The feature may be associated with an event and the obje
command; more on this below.

The notion of event is important enough in this discussion to yield a data abstra
An event object (instance of the EVENT class) will represent a user action; examples
key press, mouse movement, mouse button down, mouse button up. These pred
events will be part of the event catalog.

SOME O-O TECHNIQUES FOR GRAPHICAL INTERACTIVE APPLICATIONS§32.51072

onent

nus,

bove
g of

 event
 button,
texts

cation

ue or

n such
on?”, a

ude
s
own
ong

ay be
ses will

A button
In addition, it must be possible to define custom events, which a software comp
may send explicitly by a procedure call of the form raise (e).

Contexts and user interface objects

GUI toolkits offer a number of predefined “User Interface Objects”: windows, me
buttons, panels. Here is a simple example, an OK button.

Superficially, a user interface object is just a figure. But unlike the figures seen a
it usually has no relation with the underlying world: its role is limited to the handlin
user input. More precisely, a user interface object provides a special case of context.

To understand the need for the notion of context, we must remember that an
generally does not suffice to determine the software’s response. Pressing a mouse
for example, will give different results depending on where the mouse cursor is. Con
are precisely those conditions which determine the responses that an appli
associates with events.

In general, then, a context is simply a boolean value — a value which will be tr
false at any instant of the software’s execution.

The most common contexts are associated with user interface objects. A butto
as the one above defines the boolean condition “is the mouse cursor inside the butt
context. Contexts of this kind will be written IN (uio), where uio is the user interface
object.

For every context c its negation not c is also a context; not IN (uio) is also called
OUT (uio). The context ANYWHERE is always true; its negation NOWHERE is never true.

Our application builder should then have a context catalog, which will incl
ANYWHERE and contexts of the form IN (uio) for all commonly useful interface object
uio. In addition, we may wish to enable application developers to define their
contexts; the application builder will provide a context editor for this purpose. Am
other facilities, the context editor makes it possible to obtain not c for any c (in particular
a c from the catalog).

32.5 HANDLING THE EVENTS

We now have the list of events, and the list of contexts in which these events m
significant. We must describe what to do as a response to these events. The respon
involve commands and transition labels.

OK

§32.5 HANDLING THE EVENTS 1073

ucing

er, a
eration

 basic
t: an
s are
mand.

ould
mands
rs to

event
to be

g the

 same
art of

“Command as a
class”, page 699.

An exit
command
Commands

Recognizing the notion of command as an important abstraction is a key step in prod
good interactive applications.

This notion was studied as part of the Undoing case study. As you rememb
command object represents the information needed to execute a user-requested op
and, if undoing is supported, cancel it.

To the features defined in the earlier discussion, we will add the attribute exit_label,
explained below.

Basic scheme

With contexts, events and commands we have the basic ingredients to define the
operation of an interactive application, which our application builder should suppor
application developer will select the valid context-event combinations (which event
recognized in which contexts) and, for every one of them, define the associated com

This basic idea can provide the first version of an application builder. There sh
be catalogs of contexts and events (based on the underlying toolkit) as well as com
(provided by the development environment, and available for application develope
extend). A graphical metaphor should make it possible to select a context-
combination, for example left-click on a certain button, and select a command
executed in response.

States

For a fully general scheme we should include an extra level of abstraction, givin
Context-Event-Command-State model of interactive graphical applications.

In an application a given context-event combination does not always have the
effect. For example, you might find yourself during a session in a situation where p
the screen looks like this:

Quit editing last_drawing?

OK Cancel

SOME O-O TECHNIQUES FOR GRAPHICAL INTERACTIVE APPLICATIONS §32.51074

; for
cking

 the
d the
e two
w state
f
 formal
ns and
ociated

t

r

Confirming a
command
In this state the application recognizes various events in various contexts
example you may click on a figure to move it, or request the Save command by cli
on the OK button shown. If you choose this latter possibility, a new panel appears:

At this stage only two context-event combinations will be accepted: clicking on
“OK” or on the “Cancel” button of the new panel. All others have been disabled (an
application has dimmed the rest of the figure as a reminder that everything but th
buttons is temporarily inactive). What happened is that the session has entered a ne
of the application. States, also called modes, are a familiar notion in discussions o
interactive systems, but are seldom defined precisely. Here we have the seeds for a
definition: a state is characterized by a set of acceptable context-event combinatio
a set of commands; for each context-event combination, the state defines the ass
command. This will be restated as a mathematical definition below.

Many interactive applications, graphical or not, will have several states.

A typical example is the well-known Vi editor under Unix. Since this tool is not graphical,
events are simply key presses (each keyboard key triggering a different event) and the
contexts are various possible cursor positions (under a character, at beginning of line, a
end of line etc.). A rough analysis of Vi indicates at least four states:

• In the basic state (which is also the initial one for an end user who calls the editor
on a new or existing file), typing a letter key will, in most cases, directly execute a
command associated with the letter. For example, typing x deletes the character at
cursor position, if any. Some keys cause a transition to another state; for example
typing a colon: leads to the command state, typing i leads to the insertion state, and
typing R leads to the replacement state. Some letters cause unaccepted events; fo
example (unless it has been expressly defined as a macro) the letter z has no effect.

Quit editing last_drawing?

OK Cancel

Overwrite existing file
last_drawing?

OK Cancel

§32.5 HANDLING THE EVENTS 1075

sing to
ticle’s
le of
uld have
 before

r of
e. Such
e the
e time

mber of
rgent

e end
policy

tes that
e new

Partial state
diagram for Vi

The article was in
the special Smalltalk
issue of Byte,
[Goldberg 1981].
• In the command state, only one is available, at the bottom of the Vi window; it
serves to enter commands such as “save” or “restart”.

• In the insertion state, any key corresponding to a printable character is acceptable
as event; the corresponding character will be inserted into the text, causing
displacement of any existing text to its right. The ESCAPE key gets the session back
to basic state.

• Replacement state is a variant of insertion state in which the characters that you type
overwrite rather than displace the ones already in place.

The literature on user interfaces is critical of states because they can be confu
users. An early article on the Smalltalk user interface contained a picture of the ar
author wearing a T-shirt that read “Don’t mode me in!”. It is indeed a general princip
sound user interface design to ensure that at every stage of a session end users sho
as many commands as possible at their disposal (instead of having to change state
they can execute certain important commands).

In accordance with this principle, a good design will try to minimize the numbe
states. The principle does not mean, however, that this number should always be on
an extreme interpretation of the “don’t mode me in” slogan could in fact decreas
quality of the user interface, as too many unrelated commands available at the sam
may confuse end users. Furthermore, there may be good reasons to restrict the nu
commands in a certain situation (for example when the application needs an u
response from its end user).

States, in any case, should be explicit for the developers, and usually for th
users as well. This is the only way to enable developers to apply the user interface
of their choice — whether of the strongly anti-modal persuasion or more tolerant.

So our application builder will provide developers with an explicit STATE
abstraction; as for the other abstractions, there will be a state catalog, containing sta
have proved to be of general use, and a state editor, enabling developers to defin
states, often by modifying states extracted from the catalog.

REPLACEMENTINSERTION

BASIC

x dd p P D …

i a I … R C …

q-Return wq-Return …
(macros)

Return
Escape

Escape

:

Initial state

Exit transition
State transition

Escape

COMMAND

SOME O-O TECHNIQUES FOR GRAPHICAL INTERACTIVE APPLICATIONS§32.61076

want
actory

 states,
 We
ent pair;
ay also
to the
 Such

g an
.

ication
 to

ents,
y will
d-drop

uilder
anced
nly for

 state,

rest to
, the
ROM
d”

SE’s
il
er on
Applications

The last major data abstraction is the notion of application.

All the previous abstractions were intermediate tools. What developers really
to build is applications. A text processing system, an investment banking system, a f
control system will be examples of applications.

To describe an application, we need a set of states, transitions between these
and the indication of which state is the initial one (in which all sessions will begin).
have seen that a state associates a certain response with every accepted context-ev
the response, as noted, includes a command. To build complete applications, we m
need to include in a response some indication of the context-event pair which led
response, so that different combinations may trigger transitions to different states.
information will be called a transition label.

With states and transition label we may build the transition diagram describin
entire applications, such as the partial diagram for Vi shown on the preceding page

Context-Event-Command-State: a summary

The abstractions just defined can serve as the basis for a powerful interactive appl
builder — not just an interface builder, but a tool that enables application developers
build entire applications graphically; they will explore visual catalogs of contexts, ev
and, most importantly commands; selecting the desired elements graphically, the
build the desired context-event-command associations through a simple drag-an
mechanism until they have a complete application.

Because simple applications can often rely on just one state, the application b
should make the notion of state should as unobtrusive as possible. More adv
applications, however, should be able to use as many states as they need, and (if o
interface consistency) to derive a new state incrementally from an existing one.

32.6 A MATHEMATICAL MODEL

Some of the concepts presented informally in this chapter, in particular the notion of
have an elegant mathematical description based on the notion of finite function and the
mathematical transformation known as currying.

Because these results are not used in the rest of the book, and mostly of inte
readers who like to explore the mathematical models of software concepts
corresponding sections are not printed here but appear in electronic form in the CD-
accompanying this book, as a supplementary chapter entitled “mathematical backgroun,
an extract from [M 1995e].

32.7 BIBLIOGRAPHICAL NOTES

The ideas for an application builder sketched in this chapter derive largely from I
Build application builder, described in detail in [M 1995e], which also discusses in deta
the underlying mathematical model. (This is the manual from which the extra chapt
the CD-ROM was extracted.)

	32 32 Some O-O techniques for graphical interactiv...
	32.1 NEEDED TOOLS
	End users, application developers and tool develop...
	Graphical systems, window systems, toolkits
	The library and the application builder
	Using the object-oriented approach

	32.2 PORTABILITY AND PLATFORM ADAPTATION
	Graphical libraries architecture

	32.3 GRAPHICAL ABSTRACTIONS
	Figures
	The graphical abstractions

	Coordinates
	Operations on windows
	Graphical classes and operations

	32.4 INTERACTION MECHANISMS
	Events
	Contexts and user interface objects
	A button

	32.5 HANDLING THE EVENTS
	Commands
	Basic scheme
	States
	An exit command
	Confirming a command
	Partial state diagram for Vi

	Applications
	Context-Event-Command-State: a summary

	32.6 A MATHEMATICAL MODEL
	32.7 BIBLIOGRAPHICAL NOTES

