
T
p

36
An object-oriented environment
ng but

 O-O
nsive
three

loped
opers.
ncipal

bject
 to use
ussed
-O

e and
tand the
eloper
 tools.

and

ng,

ourse,

he diagram is on
age 1149.
Late into Beethoven’s Choral Symphony, a baritone breaks the stream of astoundi
until then purely instrumental sounds to awake us to something even grander:

O my friends! No more of these tunes!
Let us strike up instead
Some more pleasant and friendly songs.

After reviewing in the preceding chapters some of the common approaches to
development, we should similarly end with a perhaps more modern and comprehe
approach (with no intended disparagement of the others; after all the Ninth’s first
movements, before it goes vocal, already were pretty decent stuff.)

This chapter presents an environment (ISE’s) that relies on the principles deve
in the rest of this book, and makes them available concretely to O-O software devel
A complete diagram of the environment appears later in this chapter; some of the pri
components are included for trial purposes in the CD-ROM attached to this book.

The purpose of this presentation is to put the final touch to our study of o
technology by showing how environment support can make the concepts convenient
in practice. A caveat: nothing in this discussion suggests that the environment disc
below is perfect (in fact, it is still evolving). It is only one example of a modern O
environment; others — such as Borland’s Delphi to name just one — have met wid
deserved success. But we need to explore one environment in some depth to unders
connection between the method’s principles and their day-to-day application by a dev
sitting at a terminal. Many of the concepts will, I hope, be useful to readers using other

36.1 COMPONENTS

The environment combines the following elements:

• An underlying method: the object-oriented method, as described in this book.

• A language, the notation presented in this book, for analysis, design
implementation.

• A set of tools for exploiting the method and the language: compiling, browsi
documenting, designing.

• Libraries of reusable software components.

The next sections sketch these various elements, except for the first which, of c
has been the subject of the rest of this book.

AN OBJECT-ORIENTED ENVIRONMENT§36.21144

etails

ficant
pts but
ttempt

cent
e
f

rve as
. The
n

objects,

 will
his is
ir first
 want

thout

ilation

at
reason

 be
. The
m, is
36.2 THE LANGUAGE

The language is the notation that we have devised in part C and applied throughout the
book. We have essentially seen all of it; the only exceptions are a few technical d
such as how to represent special characters.

Evolution

The first implementation of the language dates back to late 1986. Only one signi
revision has occurred since then (in 1990); it did not change any fundamental conce
simplified the expression of some of them. Since then there has been a continuous a
at clarification, simplification and cleanup, affecting only details, and bringing two re
extensions: the concurrency mechanism of chapter 30 (concretely, the addition of a singl
keyword, separate) and the Precursor construct to facilitate redefinition. The stability o
the language, a rare phenomenon in this field, has been a major benefit to users.

Openness

Although a full-fledged programming language, the notation is also designed to se
a wrapping mechanism for components that may be written in other languages
mechanism for including external elements — the external clause — was described in a
earlier chapter. It is also possible, through the Cecil library, for external software to use
the O-O mechanisms: create instances of classes, and call features on these
through dynamic binding (but of course with only limited static type checking).

Of particular interest are the C and C++ interfaces. For C++, a tool called Legacy++
is available to produce, out of an existing C++ class, a “wrapper” class that
automatically include the encapsulation of all the exported features of the original. T
particularly useful to developers whose organizations may have used C++ as the
stop on the road to object orientation in the late eighties or early nineties, and now
to move on to a more complete and systematic form of the technology — wi
sacrificing their investment. Legacy++ smoothes the transition.

36.3 THE COMPILATION TECHNOLOGY

The first task of the environment is, of course, to let us execute our software.

Compilation challenges

Developed over many years and bootstrapped through several iterations, the comp
technology is an answer to a set of challenges:

C1 • The efficiency of the generated code must be excellent, comparable to wh
developers could obtain by using a classical language such as C. There is no
to pay a significant performance price for O-O techniques.

C2 • The recompilation time after a change must be short. More precisely, it should
proportional to the size of the change, not to the size of the entire system
crucial compilation concern, for developers working on a possibly large syste
the need to perform changes and see the results immediately.

§36.3 THE COMPILATION TECHNOLOGY 1145

ing
ernet

 and
h
must

stem,
tem
ments

le

t the
elted

er be

pe
, like
ked).

The Frozen
and the Melted
C3 • A third requirement, which appeared more recently, is quickly becom
important: the need to support the fast delivery of applications through the Int
to users or potential users, for immediate execution.

The first two requirements, in particular, are hard to reconcile. C1 is usually
addressed through extensive compiler optimizations that make the recompilation
linking process prohibitively long. C2 is well served by interpretive environments, whic
execute software on-the-fly with little or no processing, but to obtain this result they
sacrifice execution-time performance (C1) and static type checking.

The Melting Ice Technology

The compilation technology that deals with the preceding issues, known as the Melting Ice
Technology, uses a mix of complementary techniques. Once you have compiled a sy
it is said to be frozen, like a block of ice stored in the freezer. As you take out the sys
to start working on it (so the metaphor goes), you produce some heat; the melted ele
represent the changes. Those elements will not cause a compile-link cycle, which would
defeat the goal of fast recompilation (C2); the melted code is, instead, directly executab
by the environment’s execution engine.

The tricky part (for the compiler implementers) is of course to make sure tha
various components can work together, in particular that frozen code can call m
elements — even though it was not known, at freezing time, that they would lat
melted! But the result is definitely worthwhile:

• Recompilation is fast. The waiting time is typically a few seconds.

• This is still a compilation approach: any recompilation will perform full ty
checking (without undue penalty on recompilation time because the checking
the recompilation in general, is incremental: only the changed parts are rechec

YOUR SYSTEM

Execution,
browsing,

symbolic debugging,
documentation…

MELTING

FREEZING

Machine code
(from C code)

FROZEN

MELTED

BENCH

“Bytecode”

THE ENVIRONMENT

AN OBJECT-ORIENTED ENVIRONMENT§36.31146

cal
ll be
the

row;
So it is
king,
veral

rocess
ace
st set
tation

 what
r, or
e
, client
ilation.

: if a
.

t the

tware
mpile
lude
tion.

ption
file) to

 in a
 if two
ical

Base
ll be

On Ace files see
“Assembling a sys-
tem”, page 198.
• Run-time performance remains acceptable because for a non-trivial system a typi
modification will only affect a small percentage of the code; everything else wi
executed in its compiled form. (For maximum efficiency, you will use
finalization form of compilation, as explained below.)

As you perform more and more changes, the proportion of melted code will g
after a while the effect on performance, time and space, may become perceptible.
wise to re-freeze every few days. Because freezing implies a C-compilation and lin
the time it takes is typically more on the order of minutes (or even an hour after se
days of extensive changes). You can start this task in the background, or at night.

Dependency analysis

As should be the case in any modern development environment, the recompilation p
is automatic; you will simply click on the Melt button of the Project Tool, in the interf
described below, and the compiling mechanisms will silently determine the smalle
of elements that need to be recompiled; there is no need for “Make files” and the no
has no notion of “include file”.

To compute what needs to be recompiled, the environment’s tools first find out
you have changed, either from within the environment, using its own class edito
through outside tools such as text editors (each class text being stored in a file, thtime
stamps provide the basic information). Then they use the two dependency relations
and inheritance, to determine what else may have been affected and needs recomp
In the client case, information hiding is an important help to minimize propagation
change to a class only affects secret features, its clients do not need recompilation

To reduce melting time further, the grain of recompilation is not the class bu
individual routine.

Note that if you add an external element, for example a C function, a freeze will be
required. Again this will be determined automatically.

Precompilation

In accordance with the method’s emphasis on reusability, it is essential to allow sof
developers to put together carefully crafted sets of components — libraries —, co
them once and for all, and distribute them to other developers who will simply inc
them in their systems without having to know anything about their internal organiza

The precompilation mechanism achieves this goal. A special compilation o
generates a compiled form of a set of classes; then it is possible (through the Ace
include a precompiled library in a new system.

There is no limit to the number of precompiled libraries that you may include
new system. The mechanism that combines precompiled libraries supports sharing:
precompiled libraries B and C both rely on a third one A (as with the Vision graph
library and the Net client-server library, discussed later, which both rely on the
libraries for data structures and fundamental algorithms), only one copy of A wi
included provided both B and C use the same version of A.

§36.3 THE COMPILATION TECHNOLOGY 1147

ving
cons of
code
l tools

 able

cute
as 3E

tly
 will
anism

piled
llows
ork)

is
:

 or
tant
d a

d be
tities.

able,
ding
utine
ides,
ple to
 with

“Formats for reus-
able component dis
tribution”, page 79.

At the time of writing
the plug-in mecha-
nism has not yet
been released.

“Static binding as
an optimization”,
page 511 (also dis-
cusses inlining).
The author of a precompiled library may want to prevent his customers from ha
access to the source code of the library (an early chapter discussed the pros and
this policy). It is indeed possible, when precompiling, to make the source
inaccessible. In that case users of the environment will be able, through the visua
described later in this chapter, to browse the short form and the flat-short form of the
library’s classes, that is to say their interface (public) properties; but they will not be
to see their full text, let alone their flat form.

Remote execution

The interpretive code generated by melting — conventionally known as bytecode and
identified as such on the preceding figure — is platform-independent. To exe
bytecode, it suffices to have a copy of the environment’s Execution Engine, known
and freely downloadable through the Internet.

By adding 3E as a plug-in to a Web browser, it will be possible to make code direc
executable: if a browser’s user clicks on a hyperlink corresponding to bytecode, 3E
automatically execute the corresponding code. This is the remote execution mech
first popularized by Java.

3E actually comes in two flavors, distinguished by the accompanying precom
libraries. The first, secure, is meant for Internet usage; to avoid security risks it only a
input and output to the terminal. The second, meant for Intranet (corporate netw
usage, supports general I/O and other precompiled libraries.

An effort is also in progress to translate the bytecode into Java bytecode, to offer the
supplementary possibility of executing the result of a development using a Java
virtual machine.

Optimization

To generate the best possible code — goal C1 of the earlier discussion — frozen mode
not sufficient. Some crucial optimizations require having a complete, stable system

• Dead code removal removes any routines that can never be called, directly
indirectly, from the system’s root creation procedure. This is particularly impor
if you rely on many precompiled libraries, of which your system may only nee
subset; a space gain of 50% is not uncommon.

• Static binding which, as we studied in detail in the discussion of inheritance, shoul
applied by the compiler for features that are not redefined, or non-polymorphic en

• Routine inlining, also subject to compiler algorithms.

When you are still changing your system, these optimizations are not applic
since your next editing move could invalidate the compiler’s work. For example by ad
just one call you may resuscitate a supposedly dead routine; by adding a ro
redefinition, you cause a statically bound routine to require dynamic binding. Bes
such optimizations may require a complete pass through a system, for exam
determine that no class redefines a certain routine; this makes them incompatible
incremental development.

-

AN OBJECT-ORIENTED ENVIRONMENT§36.41148

 can
ot be
ficient

l or
ime of

. The
xcept
cellent
itious

ng
system
n by

 you
any

gram,
the
 C has
iently
own

larly
ses a

nisms
en in

cess,
As a result, these optimizations are part of a third form of compilation, finalization ,
complementing the other two (melting and freezing). For a large system finalization
take a few hours; but it leaves no stone unturned in removing anything that will n
needed and speeding up everything that is not optimal. The result is the most ef
executable form of the system.

The obvious opportunity for finalization is the delivery of a system, for a fina
intermediate release. But many project leaders like to finalize once a week, at the t
the latest integration.

36.4 TOOLS

The figure on the facing page shows the general organization of the environment
environment is of course used to bootstrap itself, and is written in the O-O notation (e
for some elements of the runtime system, discussed next); this makes it an ex
testbed of the technology, and a living proof that it does scale up to large, amb
systems (which, of course, we would not want to develop in any other way!).

Bench and the development process

The centerpiece is Bench, the graphical workbench for compilation, browsing (explori
classes and features), documentation, execution, debugging. When developing a
you will constantly interact with Bench. For example you can melt the latest versio
clicking on the Melt button of the Bench’s Project Tool, shown below.

As long as you are melting and freezing you can stay within Bench. When
finalize a system — also by clicking on a button, although for this operation and m
others non-graphical commands are also available — the outcome will be a C pro
which the environment will compile to machine code for your platform by calling
appropriate C compiler. Freezing too relies on C as intermediate code. The use of
several benefits: C is available on just about every platform; the language is suffic
low level to provide a good target format for a compiler; C compilers perform their
extensive optimizations. Two further advantages deserve emphasis:

• Thanks to C generation you can use the environment as a cross-development
platform, by compiling the generated C on another platform. This is particu
useful for the production of embedded systems development, which typically u
different platform for development and for final execution.

• The use of C as compilation technology helps implement the openness mecha
discussed earlier, in particular the interfaces to and from existing software writt
C and C++.

Finalized C code, once compiled, must be linked; at this stage it uses the runtime
system, a set of routines providing the interface with the operating system: file ac
signal handling, basic memory allocation.

In the case of cross development of embedded systems, it is possible to provide a
minimum form of the runtime, which, for example, does not include any I/O.

§36.4 TOOLS 1149

)

APPLICATION RESULTS

Numerical and statistical library

EXTERNAL
CODE (C, C++, …)

Base (incl. Kernel)

Vision, WEL, MEL …

Net

Lex, Parse

Math

Web

GUI libraries

Client-server library, object exchange

Lexical and parsing libraries

Web form processing library

Run-time object editing

ObjEdit

Build Build

StoreSTORABLE

Bench

C Compilation

Linking
Runtime system

PORTABLE
ANSI-C CODE

Developer-defined
Classes

Persistent
Objects

Databases

Executable
System

Graphical application builder

Existing software,
libraries,
utility packages,
low-level
access routines…

also Cecil library (calls to O-O
facilities from C and other languages

Shelf

User-contributed reusable components

Case

reverse engineering
Analysis, design and

FAST RECOMPILATION
(MELTING ICE),
EXECUTION,
BROWSING,
AUTOMATIC
DOCUMENTATION,
DEBUGGING

PORTABLE,

BYTECODE

INTERNET-
DOWNLOADABLE

Finali zation

Downloadable
Execution Engine

(Relational,
O-O)

(OPTIMIZED COMPILATION)

General libraries

AN OBJECT-ORIENTED ENVIRONMENT §36.51150

ar.

and-
phical

n on
s. In

isual
 and
te the

ations,

freely
anges

 step-
 and

ng true
d the

ed in
 and
stem,
desire.

er from

 page.
lopers

(lists,
ake up

Chapter 32.

Chapter 28.

“THE BUSINESS
OBJECT NOTA-
TION”, 27.7, page
919.
High-level tools

At the top of the figure on the preceding page, two high-level generation tools appe

Build is an interactive application generator based on the Context-Event-Comm
State model developed in an earlier chapter. You can use it to develop GUI (Gra
User Interface) applications graphically and interactively.

Case is an analysis and design workbench which provides the ability to reaso
systems at a high level of abstraction, and through graphical representation
accordance with the principles of seamlessness and reversibility introduced in the
discussion of the software process, Case allows you both to:

• Devise system structures through graphical interaction — to produce v
representations of classes (“bubbles”), specify their relations through client
inheritance arrows, and group them into clusters —, relying on Case to genera
corresponding software texts in the end (forward engineering).

• Process existing class texts to produce the corresponding graphical represent
to facilitate exploring and restructuring (reverse engineering).

Particular attention has been devoted to making sure that developers can
alternate between forward and reverse engineering. In particular, you can make ch
on either the graphical or the textual form; Case provides a reconciliation mechanism
which will merge the two sets of changes and, in case of conflicts, take you through a
by-step decision process in which you will see the conflicting versions of a feature
choose, in each case, the version to be retained. This part of the tool is key to ensuri
reversibility, letting developers decide at each stage the level of abstraction an
notation, graphical or textual, that they find most appropriate.

The conventions of Case are drawn from the Business Object Notation describ
an earlier chapter. BON supports in particular the tools’ facilities for abstraction
zooming: it is essential, for large systems, to enable developers to work on an entire sy
on a subsystem, on just a small cluster, choosing the exact level of abstraction they

An example Case screen appears at the top of the facing page, showing a clust
a chemical plant description, the properties of one of its classes (VAT), and the properties
of one of the features of that class (fill).

36.5 LIBRARIES

A number of libraries appear on the general environment diagram of the preceding
They play a considerable role in the software development process, providing deve
with a rich set (several thousand classes) of reusable components. They include:

• The Base libraries, about 200 classes covering the fundamental data structures
tables, trees, stacks, queues, files and so on). The most fundamental classes m
the Kernel library, governed by an international standard (ELKS).

• The graphical libraries: Vision for platform-independent GUI development; WEL for
Windows, MEL for Motif, PEL for OS/2-Presentation Manager.

§36.5 LIBRARIES 1151

lex
under

ting
cepts
s). A

ntal
 and
arlier

“Storable format
variants”, page
1038.

A cluster, class
and feature
under Case

(Here on a Sparc-
station with Motif,
but versions exist
for Windows and
other look-and-feel
variants.)

“Object-oriented
re-architecturing”,
page 441.
• Net, for client-server development, allowing the transferral of arbitrarily comp
object structures over a network; the platforms may be the same or different (
independent_store the format is platform-independent).

• Lex, Parse for language analysis. Parse, in particular, provides an interes
approach to parsing, based on a systematic application of object-oriented con
to parsing (each production modeled by a class; see the bibliographical note
supporting public-domain tool, YOOCC, serves as front-end for Parse.

• Math is a numerical library providing an object-oriented view of the fundame
techniques of numerical computation. It is based internally on the NAG library
covers a large set of facilities. Some of its concepts were presented in an e
chapter as an example of O-O re-architecturing of non-O-O mechanisms.

AN OBJECT-ORIENTED ENVIRONMENT§36.61152

,
pose.

re of
s,
 object
e; and
toring
tabases.

 of the

e, and of
t only
cific

sed on
s.

f the
other
e no

o other
clude
nd

are,

nment
ons of

sion.
se of
tions,
• ObjEdit provides facilities for editing objects interactively during execution.

• Web supports the processing of forms submitted by visitors to a Web site
advantageously replacing the Perl or C “CGI scripts” sometimes used for this pur

The bottom part of the environment diagram shows libraries used for taking ca
persistence needs during execution: the STORABLE class and a few complementary tool
discussed in earlier chapters, support storage, retrieval and network transmission of
structures, self-contained through the application of the Persistence Closure principl
the Store library is the database interface, providing mechanisms for accessing and s
data in relational databases (such as Oracle, Ingres, Sybase) and object-oriented da

This list is not exhaustive; other components are under development, and users
environment have provided their own libraries, either free or commercial.

A particularly interesting combination is the use of Net, Vision and Store for building
client-server systems: a server can take care of the database aspects through Stor
the heaviest part the computation (possibly using Base, Math etc.); lean clients tha
handle the user interface part can rely on Vision (or just one of the platform-spe
libraries), and include little else.

36.6 INTERFACE MECHANISMS

To support the preceding concepts, the environment provides a visual interface, ba
an analysis of the needs of developers and of the requirements of various platform

This brief presentation will only mention some of the most original aspects o
environment. Ample literature (see the bibliographic notes) is available on its
facilities; the reader familiar with other modern development environments will hav
difficulty guessing some of the tools and possibilities not described here.

Platforms

The screenshots that follow were drawn from a session on a Sun Sparcstation, for n
reason than convenience. Other platforms supported at the time of writing in
Windows 95 and Windows NT, Windows 3.1, OS/2, Digital’s VMS (Alpha and Vax) a
all major brands of Unix (SunOS, Solaris, Silicon Graphics, IBM RS/6000, Unixw
Linux, Hewlett-Packard 9000 Series etc.).

Although the general concepts are the same on every platform, and the enviro
supports source-code compatibility, the exact look-and-feel adapts to the conventi
each platform, especially for Windows which has its own distinctive culture.

The following screenshot shows a set of environment windows during a ses
Although printed in black and white in this book, the display makes extensive u
colors, especially to distinguish the various parts of class texts (the default conven
user-changeable, are keywords in blue, identifiers in black, comments in red).

§36.6 INTERFACE MECHANISMS 1153

ebug,
ment
rms to
.) you

t
nt is

wsing
, and
losing
have
look

ay that
tures,
o
ool, a
t O-O
emblies
.

Tools
Tools

An environment consists of tools. In many cases those tools are functional tools, in the
sense of being devoted to functions: a browser tool to browse, a debugger tool to d
a pretty-printer tool to produce formated versions of software texts. A recent environ
such as Sun’s Java Workshop (as demonstrated in September of 1996) still confo
this traditional pattern; to find the ancestors of a class (its parent, grandparent etc
start a special “browser” tool.

The disadvantage of this approach is that it is modal: it forces you to select first wha
you want to do, then what you want to do it to. The practice of software developme
different. During the course of a debugging session, you may suddenly need a bro
facility: for example you discover that a routine causing trouble is a redefined version
you want to see the original. If you see that original you may next want to see the enc
class, its short form, and so on. Modal environments do not let you do this: you will
to go away from the “debugger tool” to a “browser tool” and restart from scratch to
for the item of interest (the routine) even though you had it in the other window.

Here too the object-oriented method provides a better approach. In the same w
we learned to trust object types rather than functions to define our software architec
we can base our tools on the type of development objects that developers manipulate. S
we will have no debugger or browser window, but instead a Class Tool, a Feature T
System Tool, a Project Tool, an Object Tool, corresponding to the abstractions tha
software developers deal with day in and day out: classes, features, systems (ass
of classes), projects, and, at run-time, class instances (“objects” in the strict sense)

AN OBJECT-ORIENTED ENVIRONMENT§36.61154

ong

Project Tool
during a
compilation

A Class Tool in
default format
A Project Tool, for example, will keep track of your overall project. You use it am
other applications to perform a Melt , a Freeze or a Finalize; here is a Project Tool
captured during a compilation, with a progress bar showing the percentage done:

A Class Tool will be targeted to a particular class such as LIST:

§36.6 INTERFACE MECHANISMS 1155

 shows
cution,

e Tool

ool:

Project and
Feature Tool
for debugging

An object and
its fields
captured
during
execution
A Feature Tool, here attached to a Project Tool as part of a debugging session,
both a feature and the progress of the execution, with mechanisms for step-by-step exe
displaying the call stacks (see the local entities’ values in the Project Tool). The Featur
is targeted to feature call_this_routine of class TEST.

During an execution, you can also see an individual object through an Object T

AN OBJECT-ORIENTED ENVIRONMENT §36.61156

 will

as you

get the
e

d

 right-
tually
r than

rop.
s: the
re in
ement
the

See the figure enti-
tled “Pick-and-
throw”, page 534

Typed pick-
and-throw
This shows the various fields of the objects. One of them, guardian, denotes a non-
void reference; you can see the corresponding object by following the link, as we
shortly see.

You can of course have as many Class Tools, Feature Tools and Object Tools
like, although there is only one System Tool and one Project Tool during a session.

Retargeting and browsing

Various techniques are available to change the target of a tool, for example to retar
preceding Class Tool from LIST to ARRAY. One way is simply to type the new class nam
in the corresponding field (possibly with wild card characters as in ARR∗, to get a menu
of matching names if you do not exactly remember).

But you can also used the pick-and-throw mechanism briefly introduced in an
earlier chapter. If you right-click on a class name, such as CHAIN in the Class Tool
targeted to LIST

the cursor changes into a pebble of elliptical form, indicating that what you have picke
is a class. The ellipse corresponds to the form of the class hole ; find the Class Tool
that you want to retarget (the same or another), and drop the pebble into the hole, by
clicking into it, to retarget the tool to the chosen class. For convenience you can ac
drop it more or less anywhere into the tool, globally considered as a big hole. Rathe
pick, drag and throw, you can control-right-click on an object — class, feature… — to
start a new tool of the appropriate type, targeted to the object.

The pick-and-throw mechanism is a generalization of common drag-and-d
Instead of having to maintain the button pressed, however, you work in three step
first right-click selects the object; you release the button immediately. Then you a
drag mode, where moving the mouse will cause the line attached to the original el
(as on the above figure) to follow the pebble. Finally, you right-click again in
destination hole. This has three advantages over common drag-and-drop:

CHAIN[G]

The pebble being dragged

§36.6 INTERFACE MECHANISMS 1157

ough
t in an
 when

rong
ppened
le; I

icked
able
m, a

 lets

hted).
nce
mon

 form

-and-
d set

 Tool
mat

rmat.
cture
• Having to keep the mouse button pressed during the whole process, alth
acceptable for occasional drag-and-drop operations such as moving an elemen
interface builder, can cause considerable muscle fatigue at the end of the day
you use it frequently.

• It is all too easy to slacken off the pressure for a split second and drop on the w
place, often with unpleasant or even catastrophic consequences. (This has ha
to me on Windows 95 while drag-and-dropping an icon representing a fi
involuntarily dropped it at a quite unintended place and had a hard time finding out
what the operating system had done with the file.)

• Common drag-and-drop does not let you cancel the operation! Once you have p
an object, you must drop it somewhere; but there may not be such an accept
somewhere if you have changed your mind. With the pick-and-throw mechanis
left-click will cancel the entire operation at any time before throwing.

• Also note that the mechanism is typed: it will only let you drop a pebble into a
matching hole. There is some tolerance: in the same way that polymorphism
you attach a RECTANGLE object to a POLYGON entity, you can drop a feature
pebble into a class hole (and see the enclosing class, with the feature highlig
Again the environment’s interaction mechanisms directly apply, for convenie
and consistency, the concepts of the method. (Here the difference with com
drag-and-drop mechanisms is not crucial, as some of them do have a limited
of typing.)

These, however, are just user interface issues. More important is the role of pick
throw, combined with other mechanisms of the environment, to provide an integrate
of mechanisms for all tasks of software development. If you look back at the Class
targeted to LIST, a deferred class from the Base libraries, you will note a row of for
buttons (the second row of buttons from the top). They include:

• Class text .

• Ancestors .

• Short form .

• Routines .

• Deferred routines .

and so on. Clicking on one of them will display the class text in the corresponding fo
For example if you click on Ancestors the Class Tool will display the inheritance stru
leading to LIST in the Base libraries:

AN OBJECT-ORIENTED ENVIRONMENT §36.61158

w to

format,

u can

ilable

he

cting,

, the

es in

ee an

elf

 the

 easily

The ancestry of
a class
In such a display, as in every other tool display, everything of importance is

clickable. This means that if for example you notice class CURSOR_STRUCTURE and

want to learn more about it, you can just right-click on it and use pick-and-thro

retarget this tool, or another, to the chosen class. Then you can choose another

such as Short Form. If in that format you see the name of an interesting routine, yo

again apply pick-and-throw to target a Feature Tool to it. In the Feature Tool, the ava

format buttons include history which shows all the adventures of a feature in t

inheritance games: all the versions it has in various classes, after renaming, effe

redefinition; and whenever it lists a class or a feature in showing this information

environment will let you pick-and-throw the element.

Similarly, the debugging session shown earlier showed class and feature nam

various places; to find out information on any of them, just use pick-and-throw. To s

object, such as 0X142F18 on the previous example (an internal identifier, by its

meaningless but clickable), control-right-click on it to start an Object Tool similar to

one we saw, displaying an instance of PERSON. In that tool, all fields are identified by

their class names — clickable — and references are also clickable, so that you can

explore the run-time data structures, however complex.

§36.6 INTERFACE MECHANISMS 1159

ch as

all

isting

duce

.

aries

 any

e the

 with

iple

 set of

s

ing,

 point

n to a

g on

bout

asily

 for

 my

sing?

rt to

sing

s you
For each of the available formats, you can produce output in various forms su

HTML, TEX, Microsoft’s Rich Text Format, FrameMaker MML, troff and so on (a sm

descriptive language enables you to define your own output forms or adapt an ex

one). The output can be displayed, stored with the class files, or, if you want to pro

on-line documentation for an entire project or cluster, stored in a separate directory

These browsing mechanisms do not make any difference between built-in libr

and developer-defined classes. If an element of your software uses INTEGER, you can just

control-right-click or use pick-and-throw to see that basic class in a Class Tool, in

available format. (As noted, the author of a precompiled library may elect to mak

source unavailable, but you will still have access to the short and flat-short forms,

usual clickability properties.) This is of course in line with this book’s general princ

of uniformity and seamlessness, attempting as much as possible to use a single

concepts throughout software development activities.

In contrast, I tried in the aforementioned demo of Java Workshop to get some information
about a redefined feature of a certain class, picked at random, but was told that there wa
no way the “browser tool” could handle that feature, since it turned out to come from a
class of the predefined graphical library. The only way to get any information at all was
to go to another tool and bring up the documentation — which had a one-line description
of the feature. (INTEGER would probably also not be browsable since basic types are not
classes in Java.)

The run-time mechanisms, in particular the debugging facilities (single-stepp

stop points and so on) all follow from these basic concepts. For example to put a stop

on an instruction or a routine you just drag-and-drop the chosen stop point locatio

Stop Point hole .

Some holes, known as “buttonholes”, double up as buttons. For example clickin

a Stop Point hole, treated as a button, will display in the Project Tool information a

all the currently active stop points; such information being again clickable, you can e

remove existing stop points or add new ones to the list.

The systematic application of these techniques makes up a mechanism

proximity browsing where everything of interest is hyperlinked — far preferable, in

experience, to modal environments which force you to ask at each step “Am I brow

Oh no, I am debugging, so I must start a browser tool. And what tool should I sta

get the class documentation?”.

You are neither debugging nor browsing nor documenting nor editing; you are u

and building software, and the tools should let you do what you want on all the object

want, at any time you want.

AN OBJECT-ORIENTED ENVIRONMENT §36.71160

ons

 the
in the

nts at

of the

tins,

Parse
36.7 BIBLIOGRAPHICAL NOTES

For an up-to-date summary of the benefits of the environment see [M 1996b], also
available on line [M-Web] along with many other technical documents and descripti
of actual projects.

A collective volume describing a set of industrial applications produced with
environment over the years, whose chapters are written by the project leaders
companies involved, was published as [M 1993].

Among the publications that have described various aspects of the environme
successive stages of its evolutions are: [M 1985c], [M 1987b], [M 1987c], [M 1988],
[M 1988a], [M 1988d], [M 1988f], [M 1989], [M 1993d], [M 1997].

The reference on the language is [M 1992]. The book Reusable Software [M 1994a]
contains, along with a discussion of library design principles, a detailed description
Base libraries.

Another book [M 1994] presents the environment as a whole. [M 1995c] describes
the Case analysis and design workbench, and [M 1995e] the Build graphical application
builder. The interface principles were presented in [M 1993d].

The YOOC compiler generator was developed by Christine Mingins, Jon Avo
Heinz Schmidt and Glenn Maughan of Monash University [Avotins 1995] and is available
from Monash’s FTP site. The object-oriented parsing techniques of the underlying
library, initially presented in [M 1989d], are covered in [M 1994a].

The Math library was developed by Paul Dubois and is described in [Dubois 1997].

Many people have participated in the development of the environment. Some of the
principal contributions are due to Éric Bezault (to whom I am also grateful for
proofreading parts of this book), Reynald Bouy, Fred Deramat, Fred Dernbach (who built
the original architecture of the current compiler), Sylvain Dufour, Fabrice Franceschi,
Dewi Jonker, Patrice Khawam, Vince Kraemer, Philippe Lahire, Frédéric Lalanne, Guus
Leeuw, Olivier Mallet, Raphaël Manfredi (who established the basis for the current
runtime system), Mario Menger, Joost De Moel, David Morgan, Jean-Marc Nerson
(especially for the initial versions), Robin van Ommeren, Jean-Pierre Sarkis, Glen Smith,
Philippe Stephan (who originated many of the interface principles), Terry Tang, Dino
Valente, Xavier Le Vourch, Deniz Yuksel. It is impossible to cite even a small part of the
environment users who also helped through their feedback and suggestions

	36 36 An object-oriented environment
	36.1 COMPONENTS
	36.2 THE LANGUAGE
	Evolution
	Openness

	36.3 THE COMPILATION TECHNOLOGY
	Compilation challenges
	The Melting Ice Technology
	The Frozen and the Melted

	Dependency analysis
	Precompilation
	Remote execution
	Optimization

	36.4 TOOLS
	Bench and the development process
	High-level tools

	36.5 LIBRARIES
	A cluster, class and feature under Case
	(Here on a Sparc�station with Motif, but versions ...

	36.6 INTERFACE MECHANISMS
	Platforms
	Tools
	Tools
	Project Tool during a compilation
	A Class Tool in default format
	Project and Feature Tool for debugging
	An object and its fields captured during execution...

	Retargeting and browsing
	Typed pick- and-throw
	The ancestry of a class

	36.7 BIBLIOGRAPHICAL NOTES

