36

An object-oriented environment

The diagram is on
pagel1l49

I_ ate into Beethoven’s Choral Symphony, a baritone breaks the stream of astounding b
until then purely instrumental sounds to awake us to something even grander:

O my friends! No more of these tunes!
Let us strike up instead
Some more pleasant and friendly songs.

After reviewing in the preceding chapters some of the common approaches to O-(
development, we should similarly end with a perhaps more modern and comprehensi
approach (with no intended disparagement of the others; after all the Ninth’s first thre
movements, before it goes vocal, already were pretty decent stuff.)

This chapter presents an environment (ISE’s) that relies on the principles develope
in the rest of this book, and makes them available concretely to O-O software developer
A complete diagram of the environment appears later in this chapter; some of the princip
components are included for trial purposes in the CD-ROM attached to this book.

The purpose of this presentation is to put the final touch to our study of object
technology by showing how environment support can make the concepts convenientto u
in practice. A caveat: nothing in this discussion suggests that the environment discuss
below is perfect (in fact, it is still evolving). It is only one example of a modern O-O
environment; others — such as Borland’s Delphi to name just one — have met wide an
deserved success. But we need to explore one environmentin some depth to understand
connection between the method’s principles and their day-to-day application by a develop
sitting at a terminal. Many of the concepts will, | hope, be useful to readers using other tool:

36.1 COMPONENTS

The environment combines the following elements:
* An underlyingmethod the object-oriented method, as described in this book.

A language the notation presented in this book, for analysis, design and
implementation.

A set oftools for exploiting the method and the language: compiling, browsing,
documenting, designing.

« Libraries of reusable software components.

The next sections sketch these various elements, except for the first which, of cours
has been the subject of the rest of this book.

1144 AN OBJECT-ORIENTED ENVIRONMENT§36.2

36.2 THE LANGUAGE

The language is the notation that we have devised inC and applied throughout the
book. We have essentially seen all of it; the only exceptions are a few technical details
such as how to represent special characters.

Evolution

The first implementation of the language dates back to late 1986. Only one significant
revision has occurred since then (in 1990); it did not change any fundamental concepts but
simplified the expression of some of them. Since then there has been a continuous attempt
at clarification, simplification and cleanup, affecting only details, and bringing two recent
extensions: the concurrency mechanism of che30 (concretely, the addition of a single
keyword,separate) and thePrecurso construct to facilitate redefinition. The stability of

the language, a rare phenomenon in this field, has been a major benefit to users.

Openness

Although a full-fledged programming language, the notation is also designed to serve as
a wrapping mechanism for components that may be written in other languages. The
mechanism for including external elements —external clause — was described in an
earlier chapter. It is also possible, through Cecil library, for external software to use

the O-O mechanisms: create instances of classes, and call features on these objects,
through dynamic binding (but of course with only limited static type checking).

Of particular interest are the C and C++ interfaces. For C++, atool Legacy++
is available to produce, out of an existing C++ class, a “wrapper” class that will
automatically include the encapsulation of all the exported features of the original. This is
particularly useful to developers whose organizations may have used C++ as their first
stop on the road to object orientation in the late eighties or early nineties, and now want
to move on to a more complete and systematic form of the technology — without
sacrificing their investment. Legacy++ smoothes the trion.it

36.3 THE COMPILATION TECHNOLOGY

The first task of the environment is, of course, to let us execute our software.

Compilation challenges

Developed over many years and bootstrapped through several iterations, the compilation
technology is an answer to a set of challenges:

C1l « The efficiency of thegenerated coc must be excellent, comparable to what
developers could obtain by using a classical language such as C. There is no reason
to pay a significant performance price for O-O techniques.

C2 « Therecompilation tim' after a change must be short. More precisely, it should be
proportional to the size of the change, not to the size of the entire system. The
crucial compilation concern, for developers working on a possibly large system, is
the need to perform changes and see the results immediately.

§36.3 THE COMPILATION TECHNOLOGY 1145

C3 ¢ A third requirement, which appeared more recently, is quickly becoming
important: the need to support the fast delivery of applications through the Intern
to users or potential users, for immediate execution.

The first two requirements, in particular, are hard to reconC1 is usually
addressed through extensive compiler optimizations that make the recompilation &
linking process prohibitively lon¢C2 is well served by interpretive environments, which

execute software on-the-fly with little or no processing, but to obtain this result they mu
sacrifice execution-time performancC1) and static type checking.

The Melting Ice Technology

The compilation technology that deals with the preceding issues, knownMelting Ice
Technolog, uses a mix of complementary techniques. Once you have compiled a syste
it is said to befrozer, like a block of ice stored in the freezer. As you take out the systen
to start working on it (so the metaphor goes), you produce some heat; the melted elem
represent the changes. Those elementsnot cause a compile-link cycle, which would

defeat the goal of fast recompilaticC2); the melted code is, instead, directly executable
by the environment’s execution engine.

YOUR SYSTEM THE ENVIRONMENT
The Frozen
and the Melted

FREEZING

Machine code
(from C code)

Execution,
browsing,

) >
symbolic debugging,
documentation.

MELTING

“Bytecode”

The tricky part (for the compiler implementers) is of course to make sure that tt
various components can work together, in particular that frozen code can call melt

elements — even though it was not known, at freezing time, that they would later |
melted! But the result is definitely worthwhile:

« Recompilation is fast. The waiting time is typically a few seconds.

» This is still a compilation approach: any recompilation will perform full type
checking (without undue penalty on recompilation time because the checking, lil
the recompilation in general, is incremental: only the changed parts are rechecke

1146 AN OBJECT-ORIENTED ENVIRONMENT§36.3

* Run-time performance remaiasceptable because for a non-trivial system a typical
modification will only affect a small percentage of the code; everything else will be
executed in its compiled form. (For maximum efficiency, you will use the
finalizatior form of compilation, as explained below.)

As you perform more and more changes, the proportion of melted code will grow;
after a while the effect on performance, time and space, may become perceptible. So it is
wise to re-freeze every few days. Because freezing implies a C-compilation and linking,
the time it takes is typically more on the order of minutes (or even an hour after several
days of extensive changes). You can start this task in the background, or at night.

Dependency analysis

As should be the case in any modern development environment, the recompilation process
is automatic; you will simply click on the Melt button of the Project Tool, in the interface
described below, and the compiling mechanisms will silently determine the smallest set
of elements that need to be recompiled; there is no need for “Make files” and the notation
has no notion of “include file”.

To compute what needs to be recompiled, the environment’s tools first find out what
you have changed, either from within the environment, using its own class editor, or
through outside tools such as text editors (each class text being stored in a fitegthe
stamps provide the basic information). Then they use the two dependency relations, client
and inheritance, to determine what else may have been affected and needs recompilation.
In the client case, information hiding is an important help to minimize propagation: if a
change to a class only affects secret features, its clients do not need recompilation.

To reduce melting time further, the grain of recompilation is not the class but the
individual routine.

Note that if you add an external element, for example a C function, a freeze will be
required. Again this will be determined automatically.

Precompilation

In accordance with the method’s emphasis on reusability, it is essential to allow software
developers to put together carefully crafted sets of components — libraries —, compile
them once and for all, and distribute them to other developers who will simply include
them in their systems without having to know anything about their internal organization.

The precompilation mechanism achieves this goal. A special compilation 0jOn Ace files see
generates a compiled form of a set of classes; then it is possible (through the Ace {/Assembling a sys-
include a precompiled library in a new system. tem’, page 193

There is no limit to the number of precompiled libraries that you may include in a
new system. The mechanism that combines precompiled libraries supports sharing: if two
precompiled libraries B and C both rely on a third one A (as with the Vision graphical
library and the Net client-server library, discussed later, which both rely on the Base
libraries for data structures and fundamental algorithms), only one copy of A will be
included provided both B and C use the same version of A.

§36.3 THE COMPILATION TECHNOLOGY 1147

“Formats for reus-

able component dis-

tribution”, page 79

Atthe time of writing
the plug-in mecha-
nism has not yet
been released.

“Static binding as
an optimization”,
page 51 (also dis-
cusses inlining).

The author of a precompiled library may want to prevent his customers from havir
access to the source code of the library (an early chapter discussed the pros and col
this policy). It is indeed possible, when precompiling, to make the source coc
inaccessible. In that case users of the environment will be able, through the visual to
described later in this chapter, to browse short formr and theflat-short formof the
library’s classes, that is to say their interface (public) properties; but they will not be ak
to see their full text, let alone their flat form.

Remote execution

The interpretive code generated by melting — conventionally knowbytecod and
identified as such on the preceding figure — is platform-independent. To execu
bytecode, it suffices to have a copy of the environment's Execution Engine, known as
and freely downloadable through the Internet.

By adding 3E asplug-in to a Web browser, it will be possible to make code directly
executable: if a browser’s user clicks on a hyperlink corresponding to bytecode, 3E w
automatically execute the corresponding code. This is the remote execution mechan
first popularized by Java.

3E actually comes in two flavors, distinguished by the accompanying precompile
libraries. The first, secure, is meant for Internet usage; to avoid security risks it only alloy
input and output to the terminal. The second, meant for Intranet (corporate netwol
usage, supports general I/O and other precompiled libraries.

An effort is also in progress to translate the bytecode into Java bytecode, to offer the
supplementary possibility of executing the result of a development using a Java
virtual machine.

Optimization

To generate the best possible code — (C1 of the earlier discussion — frozen mode is
not sufficient. Some crucial optimizations require having a complete, stable system:

* Dead code removaremoves any routines that can never be called, directly ol
indirectly, from the system’s root creation procedure. This is particularly importan
if you rely on many precompiled libraries, of which your system may only need
subset; a space gain of 50% is hot uncommon.

 Static bindiniwhich, as we studied in detail in the discussion of inheritance, should b
applied by the compiler for features that are not redefined, or non-polymorphic entitie

* Routine inlining also subject to compiler algorithms.

When you are still changing your system, these optimizations are not applicabl
since your next editing move could invalidate the compiler’'s work. For example by addir
just one call you may resuscitate a supposedly dead routine; by adding a rout
redefinition, you cause a statically bound routine to require dynamic binding. Beside
such optimizations may require a complete pass through a system, for example
determine that no class redefines a certain routine; this makes them incompatible w
incremental development.

1148 AN OBJECT-ORIENTED ENVIRONMENT §36.4

As a result, these optimizations are part of a third form of compilefinalization,
complementing the other two (melting and freezing). For a large system finalization can
take a few hours; but it leaves no stone unturned in removing anything that will not be
needed and speeding up everything that is not optimal. The result is the most efficient
executable form of the system.

The obvious opportunity for finalization is the delivery of a system, for a final or
intermediate release. But many project leaders like to finalize once a week, at the time of
the latest integration.

36.4 TOOLS

The figure on the facing page shows the general organization of the environment. The
environment is of course used to bootstrap itself, and is written in the O-O notation (except
for some elements of the runtime system, discussed next); this makes it an excellent
testbed of the technology, and a living proof that it does scale up to large, ambitious
systems (which, of course, we would not want to develop in any other way!).

Bench and the development process

The centerpiece Bencl, the graphical workbench for compilation, browsing (exploring
classes and features), documentation, execution, debugging. When developing a system
you will constantly interact with Bench. For example you can melt the latest version by
clicking on the Melt button of the Bench'’s Project Tool, shown below.

As long as you are melting and freezing you can stay within Bench. When you
finalize a system — also by clicking on a button, although for this operation and many
others non-graphical commands are also available — the outcome will be a C program,
which the environment will compile to machine code for your platform by calling the
appropriate C compiler. Freezing too relies on C as intermediate code. The use of C has
several benefits: C is available on just about every platform; the language is sufficiently
low level to provide a good target format for a compiler; C compilers perform their own
extensive optimizations. Two further advantages deserve emphasis:

* Thanks to C generation you can use the environment cross-development
platform, by compiling the generated C on another platform. This is particularly
useful for the production of embedded systems development, which typically uses a
different platform for development and for final execution.

e The use of C as compilation technology helps implement the openness mechanisms
discussed earlier, in particular the interfaces to and from existing software written in
C and C++.

Finalized C code, once compiled, must be linked; at this stage it usruntime
systemn, a set of routines providing the interface with the operating system: file access,
signal handling, basic memory allocation.

In the case of cross development of embedded systems, it is possible to provide a
minimum form of the runtime, which, for example, does not include any I/O.

§36.4 TOOLS

1149

Analysis, design an
reverse engineering

Base (incl. Kernel)

General libraries

Vision, WEL, MEL ...
GUl libraries

Net
Client-server library, object exchakge

Lex, Parse

Lexical and parsing librarie

Math

Numerical and statistical libra

ObjEdit
Run-time object editin

Web

User-contributed reusable compone

Runtime system

é*k

—»

Web form processing library
Shelf /////)V'

+ + Graphic

Developer-defined
Classes

application builder

EXTERNAL
CODE (C, C++, ...)

Existing software,
libraries,

utility packages,
low-level

access routines
alsoCecillibrary (calls to O-O
facilities from C and other languages)

FAST RECOMPILATION
(MELTING ICE),
EXECUTION,
BROWSING,
AUTOMATIC
DOCUMENTATION,
DEBUGGING

Finalifzation
I(]%PTIMIZE COMPILATION

PORTABLE PORTABLE,

ANSI-C CODE INTERNET-
. DOWNLOADABLE

C Compilation BYTECODE

Linking

Executable
System

Downloadablé
Execution Engine

. STORABLE Store
Persistent - - Databases
Objects (Relational,
: 0-0)

APPLICATION RESULTS

1150 AN OBJECT-ORIENTED ENVIRONMENT §36.5

High-level tools

At the top of the figure on the preceding page, two high-level generation tools appear.

Build is an interactive application generator based on the Context-Event-Comnchapter32.
State model developed in an earlier chapter. You can use it to develop GUI (Grapiucai
User Interface) applications graphically and interactively.

Caseis an analysis and design workbench which provides the ability to reasoChapter2s.
systems at a high level of abstraction, and through graphical representatior
accordance with the principles skeamlessnessnd reversibility introduced in the
discussion of the software process, Case allows you both to:

e Devise system structures through graphical interaction — to produce visual
representations of classes (“bubbles”), specify their relations through client and
inheritance arrows, and group them into clusters —, relying on Case to generate the
corresponding software texts in the efahWard engineering).

« Process existing class texts to produce the corresponding graphical representations,
to facilitate exploring and restructuringeyerse engineering.

Particular attention has been devoted to making sure that developers can freely
alternate between forward and reverse engineering. In particular, you can make changes
on either the graphical or the textual form; Case providestanciliation mechanism
which will merge the two sets of changes and, in case of conflicts, take you through a step-
by-step decision process in which you will see the conflicting versions of a feature and
choose, in each case, the version to be retained. This part of the tool is key to ensuring true
reversibility, letting developers decide at each stage the level of abstraction and the
notation, graphical or textual, that they find most appropriate.

The conventions of Case are drawn from the Business Object Notation descrit“THE BUSINESS
an earlier chapter. BON supports in particular the tools’ facilities for abstraction ©BJECT NOTA-
zooming: itis essential, for large systems, to enable developers to work on an entire sygllcg)N 27.7, page

on a subsystem, on just a small cluster, choosing the exact level of abstraction they wcou ..

An example Case screen appears at the top of the facing page, showing a cluster from
a chemical plant description, the properties of one of its clas®€g,(and the properties
of one of the features of that clags$).

36.5 LIBRARIES

A number of libraries appear on the general environment diagram of the preceding page.
They play a considerable role in the software development process, providing developers
with a rich set (several thousand classes) of reusable components. They include:

« TheBaselibraries, about 200 classes covering the fundamental data structures (lists,
tables, trees, stacks, queues, files and so on). The most fundamental classes make up
theKernellibrary, governed by an international standard (ELKS).

e The graphical librariedZisionfor platform-independent GUI developmeWEL for
Windows,MEL for Motif, PEL for OS/2-Presentation Manager.

§36.5 LIBRARIES

1151

A cluster, class
and feature
under Case

(Here on a Sparc-
station with Motif,
but versions exist
for Windows and
other look-and-feel
variants)

“Storable format
variants”, page
1038

“Object-oriented
re-architecturing”,
page 441

T SYSTEM i
G e | =
SYSTEM] T S| d
=
E T > I:':A.T @E
} Cedive D {ez) P
= =
= 0O - ==] =
1
" ©| Class: VAT Cluster: CHEMICAL_PLANT_CLUSTER " E Feature: fill Class: VAT L
oo [var D OE [o v
Annotation fill n
ey d —— Fill the vat.
euse D require.
m > a: in—valveds open
ersistent b: out—valve.closed
W Det d El deferred
erre. ensure
W Comments a: in—valve.closed
_| Effective | Result b: out—valve.closed
c: is—full
I Root _| Rename
| Interfaced W Deferred
| VAT _| Effective
| Redefined ¥
Filename; | vate | Private =l =
= ++ =]
CIEEEE CIY

* Ne, for client-server development, allowing the transferral of arbitrarily complex

object structures over a network; the platforms may be the same or different (unc
independent_sto the format is platform-independent).

Lex, Parse for language analysis. Parse, in particular, provides an interestin
approach to parsing, based on a systematic application of object-oriented conce
to parsing (each production modeled by a class; see the bibliographical notes).
supporting public-domain tool, YOOCC, serves as front-end for Parse.

Math is a numerical library providing an object-oriented view of the fundamenta
techniques of numerical computation. It is based internally on the NAG library an
covers a large set of facilities. Some of its concepts were presented in an ear
chapter as an example of O-O re-architecturing of non-O-O mechanisms.

1152 AN OBJECT-ORIENTED ENVIRONMENT§36.6

» ObjEdit provides facilities for editing objects interactively during execution.

* Wel supports the processing of forms mitted by visitors to a Web site,
advantageously replacing the Perl or C “CGl scripts” sometimes used for this purpose.

The bottom part of the environment diagram shows libraries used for taking care of
persistence needs during execution:STORABL class and a few complementary tools,
discussed in earlier chapters, support storage, retrieval and network transmission of object
structures, self-contained through the application of the Persistence Closure principle; and
the Store library is the database interface, providing mechanisms for accessing and storing
data in relational databases (such as Oracle, Ingres, Sybase) and object-oriented databases.

This list is not exhaustive; other components are under development, and users of the
environment have provided their own libraries, either free or commercial.

A particularly interesting combination is the useNe', Vision andStore for building
client-server systems: a server can take care of the database aspects through Store, and of
the heaviest part the computation (possibly using Base, Math etc.); lean clients that only
handle the user interface part can rely on Vision (or just one of the platform-specific
libraries), and include little else.

36.6 INTERFACE MECHANISMS

To support the preceding concepts, the environment provides a visual interface, based on
an analysis of the needs of developers and of the requirements of various platforms.

This brief presentation will only mention some of the most original aspects of the
environment. Ample literature (see the bibliographic notes) is available on its other
facilities; the reader familiar with other modern development environments will have no
difficulty guessing some of the tools and possibilities not described here.

Platforms

The screenshots that follow were drawn from a session on a Sun Sparcstation, for no other
reason than convenience. Other platforms supported at the time of writing include
Windows 95 and Windows NT, Windows 3.1, OS/2, Digital's VMS (Alpha and Vax) and

all major brands of Unix (SunOS, Solaris, Silicon Graphics, IBM RS/6000, Unixware,
Linux, Hewlett-Packard 9000 Series etc.).

Although the general concepts are the same on every platform, and the environment
supports source-code compatibility, the exact look-and-feel adapts to the conventions of
each platform, especially for Windows which has its own distinctive culture.

The following screenshot shows a set of environment windows during a session.
Although printed in black and white in this book, the display makes extensive use of
colors, especially to distinguish the various parts of class texts (the default conventions,
user-changeable, are keywords in blue, identifiers in black, comments in red).

INTERFACE MECHANISMS 1153

TOOIS] Project: /dakar2/dinov/Test i] Clickable form of class TEST N
File Edit Compile Debug Formats Special Windows Help | File Edit Formats Special Windows Help |
clSe0jEsa] PV R[@a[EA] ||el0[e] e EIE P
Il 2] e &1 4|@| [Guckmet] —i =z i r| Short form of class LIST [G]
P =28 Ul
Stepped in object (0 42F14] m Tl s S e e |
Class: TEST call_this_routine
Feature; slop #_tis_routite end: !IEILSIZI LIST EIEI&I ﬂl
Reasons Stop point reached S — —
feature —— Update EEEE BN =R
Local entities: Iy
this_local: STRING [0x742F201 = “this_local” call_this routing is feature — Status report
Io
Call stack: this iocal: STRING afier: BOGLEAN
PP —— Is there no valid qursor positicn to the right of
Object Class Routine this_incal = "fis_iocal
stog in, fhis_rowtine before: BOOLEAN
- —— Is there no valid cursor positicn to the Left of ¢
= Statistics of system tes
i feature — Cur i
& Fie Edt Formsts Special Windows Help ||7euineis eature Ser meveme
fa] & 3] fort
=] ilil_lm_'lﬂ = | l;Jl l;Jl |J —— Mowe to next position; if no next position,
5 “ -— ensure that ezhansted will be true I
2 R [e - -
4 conpilation for systen. [Edit Formats Speci meved_frthr indaz= ol oz +]] ﬂ
== =&t = par E
EREEBEE l"T 73 clusters in the systen. = T
59 classes in the sustem, :lglgl :I '—_‘—rl';[?n T T ERRET ;| ﬂl
0 melted classes in the system,
call_this_routing is [= =i
i e HERHEE]
this_local: STRING » ARRAY
do INg
this_local = “thiz_local”;) oo
stop in_thiz routine rce
end; 5
4 ear_representation
=)) |
T fron ARRAYED LIST
ARRAYED_LIST'
ingert .
J‘l 1

An environment consists of tools. In many cases those tooffunctiona tools, in the
sense of being devoted to functions: a browser tool to browse, a debugger tool to dek
a pretty-printer tool to produce formated versions of software texts. A recent environme
such as Sun’s Java Workshop (as demonstrated in September of 1996) still conform:
this traditional pattern; to find the ancestors of a class (its parent, grandparent etc.) \
start a special “browser” tool.

The disadvantage of this approach is thatmoda: it forces you to select first what
you want to do, then what you want to do it to. The practice of software development
different. During the course of a debugging session, you may suddenly need a brows
facility: for example you discover that a routine causing trouble is a redefined version, a
you want to see the original. If you see that original you may next want to see the enclos
class, its short form, and so on. Modal environments do not let you do this: you will ha
to go away from the “debugger tool” to a “browser tool” and restart from scratch to loo
for the item of interest (the routine) even though you had it in the other window.

Here too the object-oriented method provides a better approach. In the same way
we learned to trust object types rather than functions to define our software architectur
we can base our tools on the typedevelopment object that developers manipulate. So
we will have no debugger or browser window, but instead a Class Tool, a Feature Too
System Tool, a Project Tool, an Object Tool, corresponding to the abstractions that O
software developers deal with day in and day out: classes, features, systems (assem
of classes), projects, and, at run-time, class instances (“objects” in the strict sense).

1154

AN OBJECT-ORIENTED ENVIRONMENT§36.6

A Project Tool, for example, WI|| keep track of your overall project. You use itamong

other applications to perform a M &

, & Freeze or a Finalize; I a Project Tool
captured during a compilation, with a progress bar showing the percentage done:

rLI New project: /dakar2z/dinov/Test E
File Edit Compie Debug Formats Special Windows Help |
2| e 5-|1|¢ @ « |

Compilation Progress Rk A
Degree: -2
Class: FILE
Classes to go: 40
— 2%
i~ i
A Class Tool will betargeted to a particular class such LIST:
= Clickable form of class LIST [G]
File Edit Formats Special Windows Help |
o|0®| “ "||_§_LIST P
=[+ 5)z) 8] o=z 8] [| 21/ 2] $9]
indexing o

inherit
CHAIN [G]
redefine

Jorth
end

forthis

deferved
ensure

end

deseriphion: "Sequential lists, without commitment to a parficular representation’;
shatua "See nofice at end of claas’;
names: list, sequence;

access Wdex, cuwrgor, mambership;
CONBENLT genaiic;

date: "§Date - 3"

revigion: "ERevizion. B

deferred class LIST [F]

feature —— Cursor movement

—— Move to next position; if no next position,
—— enzure that exfaunied will be true.

maved_jorth: index= old index + I

feature —— Status report

after: BOOLEANis

=

Project Tool
during a
compilation

A Class Toolin
default format

8§36.6 INTERFACE MECHANISMS 1155

A Feature Tool, here attached to a Project Tool as part of a debugging session, sh
both a feature and the progress of the execution, with mechanisms for step-by-step execu
displaying the call stacks (see the local entities’ values in the Project Tool). The Feature T
is targeted to featureall this routineof classTEST

. rLI Project: /dakar2/dinov/Test
IF:)rOJteCt a_lr_]d | Fle Edit Compile Debug Formats Speclal Windows Help |
r =
f eadube 09 ¢ |E o+ DlEl:‘l .l >| vl &l @ | Gk, |
or aebugging 2| e 4 sti@ « |

Goup one level[S

Stopped in object [0x742F78]
Classy TEST
Feature: sfop i this routine
Reazon: Stop point reached

Local entitiesy

this_localy STRING [0x742F201 = “this_local”
Call stack:

Object Class Routine

s+ [OxF42F1 81 TEST *3top i his routing

iy

:: [0x742F181 TE make

*o| o

E_ca]l_this_routina from; TEST &l

I.rlli"r El

call thiz routing is
local
thiz_local: STRING
do
kd thiz_local = “this_local";
kd stop i this routine
o end;

)

i~ i

During an execution, you can also see an individual object through an Object Toc

An object and Al attributes of object at 0x18CAG4 -
its fields File Edit Formats Special Windows Help |
captured =] B3
during E3al %
execution PERSON [10:18CA54]

address; STRING [0x78CAS8] = "3456 B 34th Street West"
agey INTEGER = 32

guardian; PERSON 102 80 A54]

ranks STRING [0x78CASC] = "senior engineer”

fpouIe: MOME = Yoid

1156 AN OBJECT-ORIENTED ENVIRONMENT §36.6

This shows the various fields of the objects. One of thgmrdian denotes a non-
void reference; you can see the corresponding object by following the link, as we will
shortly see.

You can of course have as many Class Tools, Feature Tools and Object Tools as you
like, although there is only one System Tool and one Project Tool during a session.

Retargeting and browsing

Various techniques are available to change the target of a tool, for example to retarget the
preceding Class Tool fromSTto ARRAY One way is simply to type the new class name

in the corresponding field (possibly with wild card characters @s:iR] to get a menu

of matching names if you do not exactly remember).

But you can also used thgck-and-throw mechanism briefly introduced in arsee the figure enti-
earlier chapter. If you right-click on a class name, sucltidg\IN in the Class Tool tled“F:lck-and-
targeted td_IST throw”, page 534

e e Typed pick-

revz'.s‘ior;: "S‘Re;z's"ion.' g
and-throw
deferred class LI5T [7]

iW The pebble being dragged

redefine
forth
end

feature —— Cursor movement

the cursor changes intopebble of elliptical form, indicating that what you have picked

is a class. The ellipse corresponds to the form of the htﬂssﬂ; find the Class Tool

that you want to retarget (the same or another), and drop the pebble into the hole, by right-
clicking into it, to retarget the tool to the chosen class. For convenience you can actually
drop it more or less anywhere into the tool, globally considered as a big hole. Rather than
pick, drag and throw, you can control-right-click on an object — class, featureto

start a new tool of the appropriate type, targeted to the object.

The pick-and-throw mechanism is a generalization of common drag-and-drop.
Instead of having to maintain the button pressed, however, you work in three steps: the
first right-click selects the object; you release the button immediately. Then you are in
drag mode, where moving the mouse will cause the line attached to the original element
(as on the above figure) to follow the pebble. Finally, you right-click again in the
destination hole. This has three advantages over common drag-and-drop:

§36.6

INTERFACE MECHANISMS 1157

Having to keep the mouse button pressed during the whole process, althou
acceptable for occasional drag-and-drop operations such as moving an element ir
interface builder, can cause considerable muscle fatigue at the end of the day wi
you use it frequently.

It is all too easy to slacken off the pressure for a split second and drop on the wro
place, often with unpleasant or even catastrophic consequences. (This has happe
to me on Windows 95 while drag-and-dropping an icon representing a file;
involuntarily dropped it at a quite unintended place and had atimaedfinding out
what the operating system had done with the file.)

Common drag-and-drop does notlet you cancel the operation! Once you have picl
an object, younustdrop it somewhere; but there may not be such an acceptabl
somewhere if you have changed your mind. With the pick-and-throw mechanism,
left-click will cancel the entire operation at any time before throwing.

Also note that the mechanism tigoed: it will only let you drop a pebble into a

matching hole. There is some tolerance: in the same way that polymorphism le
you attach eRECTANGLEobject to aPOLYGONentity, you can drop a feature

pebble into a class hole (and see the enclosing class, with the feature highlighte
Again the environment’s interaction mechanisms directly apply, for convenienc
and consistency, the concepts of the method. (Here the difference with comm
drag-and-drop mechanisms is not crucial, as some of them do have a limited fo

of typing.)

These, however, are just user interface issues. More important is the role of pick-al

throw, combined with other mechanisms of the environment, to provide an integrated :
of mechanisms for all tasks of software development. If you look back at the Class Tc
targeted td_IST, a deferred class from the Base libraries, you will note a row of forma
buttons (the second row of buttons from the top). They include:

Class tex & .
Ancestors®| .
Short formg| .
Routines #| .

Deferred routineg .

and so on. Clicking on one of them will display the class text in the corresponding form:
For example if you click on Ancestors the Class Tool will display the inheritance structu
leading toLISTin the Base libraries:

1158 AN OBJECT-ORIENTED ENVIRONMENT §36.6

The ancestry of
a class

rLI Ancestors of class LIST [G]

Fle Edit Formats Speclal Windows Help |

@0 e < ~|[st PR
EEEHBREI=EE] 88| #| #| 3| [3]
A

LIST 5]
CHAIN 6]
CURSOR_STRUCTURE 151
ACTIVE (61
BAG 0]
COLLECTION 151
CONTAINER (G
ANY
INDEXABLE 16, W -> INFEGER]
TABLE [G, H]
BAG [61...
SEQUENCE (6]
ACTIVE [G1...
BILINEAR 5]
LINEAR [
TRAVERSABLE 6]
CONTAINER [G1...
LINEAR [G1...
FINITE (6]
BOX 0]
CONTAINER [G1...
SEQUENCE [G1...

- !

In such a display, as in every other tool displayerything of importance is
clickable. This means that if for example you notice cl@$$RSOR_STRUCTUR&nd
want to learn more about it, you can just right-click on it and use pick-and-throw to
retarget this tool, or another, to the chosen class. Then you can choose another format,
such as Short Form. If in that format you see the name of an interesting routine, you can
again apply pick-and-throw to target a Feature Tool to it. In the Feature Tool, the available
format buttons includenistory which shows all the adventures of a feature in the
inheritance games: all the versions it has in various classes, after renaming, effecting,
redefinition; and whenever it lists a class or a feature in showing this information, the
environment will let you pick-and-throw the element.

Similarly, the debugging session shown earlier showed class and feature names in
various places; to find out information on any of them, just use pick-and-throw. To see an
object, such a®X142F18o0n the previous example (an internal identifier, by itself
meaningless but clickable), control-right-click on it to start an Object Tool similar to the
one we saw, displaying an instanceREERSON In that tool, all fields are identified by
their class names — clickable — and references are also clickable, so that you can easily
explore the run-time data structures, however complex.

§36.6 INTERFACE MECHANISMS 1159

For each of the available formats, you can produce output in various forms such
HTML, TEX, Microsoft's Rich Text Format, FrameMaker MML, troff and so on (a small
descriptive language enables you to define your own output forms or adapt an exist
one). The output can be displayed, stored with the class files, or, if you want to prodt
on-line documentation for an entire project or cluster, stored in a separate directory.

These browsing mechanisms do not make any difference between built-in librari
and developer-defined classes. If an element of your softwarINTEGEF, you can just
control-right-click or use pick-and-throw to see that basic class in a Class Tool, in al
available format. (As noted, the author of a precompiled library may elect to make tl
source unavailable, but you will still have access to the short and flat-short forms, wi
usual clickability properties.) This is of course in line with this book’s general principle
of uniformity and seamlessness, attempting as much as possible to use a single s¢
concepts throughout software development activities.

In contrast, | tried in the aforementioned demo of Java Workshop to get some information
about a redefined feature of a certain class, picked at random, but was told that there was
no way the “browser tool” could handle that feature, since it turned out to come from a
class of the predefined graphical library. The only way to get any information at all was
to go to another tool and bring up the documentation — which had a one-line description
of the feature.INTEGEF would probably also not be browsable since basic types are not
classes in Java.)

The run-time mechanisms, in particular the debugging facilities (single-steppin
stop points and so on) all follow from these basic concepts. For example to put a stop pt
on an instruction or a routine you just drag-and-drop the chosen stop point location t
Stop Point hol¢#@].

Some holes, known as “buttonholes”, double up as buttons. For example clicking
a Stop Point hole, treated as a button, will display in the Project Tool information abo
all the currently active stop points; such information being again clickable, you can eas
remove existing stop points or add new ones to the list.

The systematic application of these techniques makes up a mechanism
proximity browsing where everything of interest is hyperlinked — far preferable, in m
experience, to modal environments which force you to ask at each step “Am | browsin
Oh no, | am debugging, so | must start a browser tool. And what tool should | start
get the class documentation?”.

You are neither debugging nor browsing nor documenting nor editing; you are usil
and building software, and the tools should let you do what you want on all the objects y
want,at an\ time yw want.

1160 AN OBJECT-ORIENTED ENVIRONMENT §36.7

36.7 BIBLIOGRAPHICAL NOTES

For an up-to-date summary of the benefits of the environmen{MeE996b], also
available on lindM-Web] along with many other technical documents and descriptions
of actual projects.

A collective volume describing a set of industrial applications produced with the
environment over the years, whose chapters are written by the project leaders in the
companies involved, was published[ss1993].

Among the publications that have described various aspects of the environments at
successive stages of its evolutions §k&:1985c], [M 1987b], [M 1987c], [M 1988],
[M 1988a] [M 1988d], [M 1988f], [M 1989], [M 1993d], [M 1997].

The reference on the languag¢hNts1992]. The bookReusable Softwarl®l 1994a]
contains, along with a discussion of library design principles, a detailed description of the
Base libraries.

Another book[M 1994] presents the environment as a wh@i¢.1995c] describes
the Case analysis and design workbench,[6hd995e]the Build graphical application
builder. The interface principles were presentefiMri993d].

The YOOC compiler generator was developed by Christine Mingins, Jon Avotins,
Heinz Schmidt and Glenn Maughan of Monash Univefgitsotins 1995]and is available
from Monash’s FTP site. The object-oriented parsing techniques of the underlying Parse
library, initially presented ifiM 1989d], are covered ifiM 1994a]

The Math library was developed by Paul Dubois and is describjgtllmis 1997]

Many people have participated in the development of the environment. Some of the
principal contributions are due to Eric Bezault (to whom | am also grateful for
proofreading parts of this book), Reynald Bouy, Fred Deramat, Fred Dernbach (who built
the original architecture of the current compiler), Sylvain Dufour, Fabrice Franceschi,
Dewi Jonker, Patrice Khawam, Vince Kraemer, Philippe Lahire, Frédéric Lalanne, Guus
Leeuw, Olivier Mallet, Raphaél Manfredi (who established the basis for the current
runtime system), Mario Menger, Joost De Moel, David Morgan, Jean-Marc Nerson
(especially for the initial versions), Robin van Ommeren, Jean-Pierre Sarkis, Glen Smith,
Philippe Stephan (who originated many of the interface principles), Terry Tang, Dino
Valente, Xavier Le Vourch, Deniz Yuksel. It is impossible to cite even a small part of the
environment users who also helped through their feedback and suggestions

	36 36 An object-oriented environment
	36.1 COMPONENTS
	36.2 THE LANGUAGE
	Evolution
	Openness

	36.3 THE COMPILATION TECHNOLOGY
	Compilation challenges
	The Melting Ice Technology
	The Frozen and the Melted

	Dependency analysis
	Precompilation
	Remote execution
	Optimization

	36.4 TOOLS
	Bench and the development process
	High-level tools

	36.5 LIBRARIES
	A cluster, class and feature under Case
	(Here on a Sparc�station with Motif, but versions ...

	36.6 INTERFACE MECHANISMS
	Platforms
	Tools
	Tools
	Project Tool during a compilation
	A Class Tool in default format
	Project and Feature Tool for debugging
	An object and its fields captured during execution...

	Retargeting and browsing
	Typed pick- and-throw
	The ancestry of a class

	36.7 BIBLIOGRAPHICAL NOTES

