
D
A glossary of object technology
gy,
,
.

o all

nts,

ect’s

he
This glossary provides brief definitions of the principal terms of object technolo
discussed in detail in the rest of this book. Italics font in a definition marks a term or phrase
other than the ubiquitous “class” and “object”, that is itself the subject of another definition

Abstract class
See deferred class.

Abstract data type (ADT)
A set of mathematical elements specified by listing the functions applicable t
these elements and the formal properties of these functions.

Abstract object
An element of an ADT.

Ancestor (of a class)
The class itself, or one of its direct or indirect parents.

Assertion
A formal condition describing the semantic properties of software eleme
especially routines and loops. Used in expressing contracts. Assertions include in
particular preconditions, postconditions, class invariants and loop invariants.

Assignment attempt
An operation that conditionally attaches an object to a reference, only if the obj
type conforms to the type declared for the corresponding entity.

Asynchronous call
A call which lets its caller proceed before it completes. Antonym: synchronous call.

Attribute
The description of a field present in all the instances of a class. Along with t
routine, one of the two forms of feature.

Behavior class
A class, usually deferred, describing a set of adaptable behaviors through effective
routines relying on some components (usually deferred features) that may be
redeclared to capture specific variants of the general behaviors.

A GLOSSARY OF OBJECT TECHNOLOGY§D1194

 and
y all

 by

trary
t.

ects.

rted
 global

 to

 most
Class
A partially or totally implemented abstract data type. Serves both as a module and as
a type (or type pattern if the class is generic.)

Class invariant
An assertion which must be satisfied on creation of every instance of a class,
preserved by every exported routine of the class, so that it will be satisfied b
instances of the class whenever they are externally observable.

Client
A class that uses the features of another, its supplier, on the basis of the supplier’s
interface specification (contract).

Cluster
A group of related classes or, recursively, of related clusters.

Component
See reusable software component.

Concurrent
Able to use two or more processors. Antonym: sequential.

Conformance
A relation between types. A type conforms to another if it is derived from it
inheritance.

Constrained genericity
A form of genericity where a formal generic parameter represents not an arbi
type, but one that is required to conform to a certain type, known as the constrain
See constrained genericity.

Container data structure
An object whose primary use is to provide access to a number of other obj
Examples include lists, queues, stacks, arrays.

Contract
The set of precise conditions that govern the relations between a supplier class and
its clients. The contract for a class includes individual contracts for the expo
routines of the class, represented by preconditions and postconditions, and the
class properties, represented by the class invariant. See also Design by Contract.

Contravariance
The policy allowing a feature redeclaration to change the signature so that a new
result type will conform to the original but the original argument types conform
the new. See also: covariance, novariance.

Covariance
The policy allowing a feature redeclaration to change the signature so that the new
types of both arguments and result conform to the originals. See also: contravariance,
novariance.

Current object (or: current instance)
During the execution of an object-oriented software system, the target of the
recently started routine call.

§D A GLOSSARY OF OBJECT TECHNOLOGY 1195

any
ormed

 May

ion of

ked

y
m:

 not
Defensive programming
A technique of fighting potential errors by making every module check for m
possible consistency conditions, even if this causes redundancy of checks perf
by clients and suppliers. Contradicts Design by Contract.

Deferred class
A class which has at least one deferred feature. Antonym: effective class.

Deferred feature
A feature which, in a certain class, has a specification but no implementation.
be declared as deferred in the class itself, or inherited as deferred and not effected in
the class. Antonym: effective feature.

Descendant (of a class)
The class itself, or one of its direct or indirect heirs.

Design by Contract
A method of software construction that designs the components of a system so that
they will cooperate on the basis of precisely defined contracts. See also: defensive
programming.

Direct instance (of a class)
An object built according to the mold defined by the class.

Dynamic
Occurring during the execution of a system. See also run time. Antonym: static.

Dynamic binding
The guarantee that every execution of an operation will select the correct vers
the operation, based on the type of the operation’s target.

Dynamic typing
The policy whereby applicability of operations to their target objects is only chec
at run time, prior to executing each operation.

Effect
A class effects a feature if it inherits it in deferred form and provides an effecting
for that feature.

Effecting
A redeclaration which provides an implementation (as attribute or routine) of a
feature inherited in deferred form.

Effective class
A class which only has effective features (that is to say, does not introduce an
deferred feature, and, if it inherits any deferred feature, effects it). Antony
deferred class.

Effective feature
A feature declared with an implementation — either as a routine which is
deferred, or as an attribute. Antonym: deferred feature.

Encapsulation
See information hiding.

A GLOSSARY OF OBJECT TECHNOLOGY§D1196

e by
 rather

s.
ll

es

oices

 to
king

g any

hat
require

usable
Entity
A name in the software text that denotes a run-time value (object or reference).

Event-driven computation
A style of software construction where developers define the control structur
listing possible external events and the system’s response to each of them,
than by specifying a pre-ordained sequence of steps.

Exception
The inability of a routine to achieve its contract through one of its possible strategie
May result in particular from a failure of a routine called by the original routine. Wi
be treated as resumption, organized panic or false alarm.

Exporting a feature
Making the feature available to clients. Exports may be selective (to specified class
only) or general.

Extendibility
The ability of a software system to be changed easily in response to different ch
of requirements, architecture, algorithms or data structures.

Failure
The inability of a routine’s execution to fulfill the routine’s contract. Must trigger
an exception.

False alarm
Along with resumption and organized panic, one of the three possible responses
an exception; resumes the execution of the current strategy, possibly after ta
some corrective action.

Feature renaming
The attribution, by a class, of a new name to an inherited feature, not changin
other property. See also redeclaration.

Field
One of the values making up an object.

Function
A routine which returns a result. (The other form of routine is the procedure.)

Garbage collection
A facility provided by the runtime to recycle the memory space used by objects t
have become useless. Garbage collection is automatic, that is to say does not
any change to the text of the systems whose objects are being recycled.

Generalization
The process of turning specialized program elements into general-purpose, re
software components.

Generating class
Same as generator.

Generator (of an object)
The class of which the object is a direct instance.

§D A GLOSSARY OF OBJECT TECHNOLOGY 1197

 type

lly, in

 their

oper

t not
 as an

nd

 of a
.

Generic class
A class having formal parameters representing types. Such a class will yield a
only through generic derivation.

Generic derivation
The process of providing a type for each formal generic parameter of a generic class,
yielding a type as a result.

Genericity
The support, by a software notation, for type-parameterized modules; specifica
an O-O notation, for generic classes. Can be unconstrained or constrained.

Heir (of a class)
A class that inherits from the given class. Antonym: parent.

Identity
See object identity.

Information hiding
The ability to prevent certain aspects of a class from being accessible to its clients,
through an explicit exporting policy and through reliance on the short form as the
primary vehicle for class documentation.

Inheritance
A mechanism whereby a class is defined in reference to others, adding all
features to its own.

Instance (of a class)
An object built according to the mold defined by the class or any one of its pr
descendants. See also direct instance, proper descendant, generator.

Instance variable
Smalltalk term for attribute.

Interface (of a class)
See contract, abstract data type.

Invariant
See class invariant, loop invariant.

Iterator
A control structure describing preordained sequencing of some actions bu
defining the actions themselves. Iterators often apply to data structures, such
iterator describing the traversal of a list or a tree.

Loop invariant
An assertion which must be satisfied prior to the first execution of a loop, a
preserved by every iteration, so that it will hold on loop termination.

Loop variant
An integer expression which must be non-negative prior to the first execution
loop, and decreased by every iteration, so that it will garantee loop termination

Message
Routine call.

A GLOSSARY OF OBJECT TECHNOLOGY§D1198

ovide

er of

f

ents

d

sis
urrent

 an
on in
Metaclass
A class whose instances are classes themselves.

Method
Smalltalk term for routine.

Module
A unit of software decomposition. In the object-oriented approach, classes pr
the basic form of module.

Multiple inheritance
The unrestricted form of inheritance, whereby a class may have any numb
parents. Antonym: single inheritance.

Non-separate
Antonym of separate.

Novariance
The policy allowing prohibiting any feature redeclaration from changing the
signature. See also: contravariance, covariance.

Object
A run-time data structure made of zero or more values, called fields, and serving as
the computer representation of an abstract object. Every object is an instance o
some class.

Object identity
A property that uniquely identifies an object independently of its current cont
(fields).

Object-oriented
Built from classes, assertions, genericity, inheritance, polymorphism and dynamic
binding.

Object-oriented analysis
The application of object-oriented concepts to the modeling of problems an
systems from both software and non-software domains.

Object-oriented database
A repository of persistent objects, permitting their storage and retrieval on the ba
of object-oriented concepts, and supporting database properties such as conc
access, locking and transactions.

Object-oriented design
The process of building the architecture of systems through object-oriented concepts.

Object-oriented implementation
The process of building executable software systems through object-oriented
concepts. Differs from object-oriented design primarily by the level of abstraction.

Organized panic
Along with resumption and false alarm, one of the three possible responses to
exception; abandons the execution of the current strategy, triggering an excepti
the caller, after restoring the class invariant for the current object.

§D A GLOSSARY OF OBJECT TECHNOLOGY 1199

ion of

jects

twork)

f two

body
t

or to

ical
ask or
Overloading
The ability to let a feature name denote two or more operations.

Package
A module of non-object-oriented languages such as Ada, providing encapsulat
a set of variables and routines.

Parallel
See concurrent.

Parameterized class
See generic class.

Parent (of a class)
A class from which the given class inherits. Antonym: heir.

Persistence
The ability of a software development environment or language to make ob
persistent and support the retrieval of persistent objects for use by systems.

Persistent object
An object that (through storage in a file or database or transmission across a ne
survives executions of systems that create or manipulate it. Antonym: transient
object.

Polymorphic data structure
A container data structure hosting objects of two or more possible types.

Polymorphism
The ability for an element of the software text to denote, at run time, objects o
or more possible types.

Postcondition
An assertion attached to a routine, which must be guaranteed by the routine’s
on return from any call to the routine if the precondition was satisfied on entry. Par
of the contract governing the routine.

Precondition
An assertion attached to a routine, which must be guaranteed by every client pri
any call to the routine. Part of the contract governing the routine.

Predicate
See assertion.

Procedure
A routine which does not return a result. (The other form of routine is the function.)

Processor
A mechanism providing a single thread of computation. May be a phys
device, such as the CPU of a computer, or a software device, such as a t
thread of an operating system.

Program
See system.

A GLOSSARY OF OBJECT TECHNOLOGY§D1200

some

 of
ted as

 to

an be
ocess

ct the

an
n that

Along
Proper ancestor (of a class)
A direct or indirect parent of the class.

Proper descendant (of a class)
A direct or indirect heir of the class.

Redeclaration
A feature declaration which, instead of introducing a new feature, adapts
properties (such as the signature, precondition, postcondition, implementation,
deferred/effective status, but not the name) of a feature inherited from a parent. A
redeclaration may be a redefinition or an effecting. See also feature renaming.

Redefinition
A redeclaration which is not an effecting, that is to say, changes some properties
a feature inherited as effective, or changes the specification of a feature inheri
deferred while leaving it deferred.

Reference
A run-time value that uniquely identifies an object.

Renaming
See feature renaming.

Retrying
Along with organized panic and false alarm, one of the three possible responses
an exception; tries a new strategy for achieving the routine’s contract.

Reusability
The ability of a software development method to yield software elements that c
used in many different applications, and to support a software development pr
relying on pre-existing reusable software components.

Reusable software component
An element of software that can be used by many different applications.

Reversible development
A software development process that lets insights gained in later phases affe
results obtained in earlier phases. Normally part of a seamless development process.

Root class
The generator of a system’s root object. Executing the system means creating
instance of the root class (the root object), and calling a creation procedure o
instance.

Root object
The first object created in the execution of a system.

Routine
A computation defined in a class, and applicable to the instances of that class.
with the attribute, one of the two forms of feature.

Runtime (noun, one word)
Any set of facilities supporting the execution of systems. See also next entry.

§D A GLOSSARY OF OBJECT TECHNOLOGY 1201

en,

ation
sign,

rface

udes
 each.

arent.

,

ce
Run time (noun, two words)
The time when a system is being executed. Also used as an adjective, with a hyph
as in “the run-time value of an entity”. See also dynamic and previous entry.

Schema evolution
Change to one or more classes of which some persistent instances exist.

Seamless development
A software development process which uses a uniform method and not
throughout all activities, such as problem modeling and analysis, de
implementation and maintenance. See also reversible development.

Selective export
See exporting a feature.

Separate
Handled by a different processor. Antonym: non-separate.

Sequential
Running on only one processor. Antonym: concurrent.

Short form (of a class)
A form of class documentation generated from the class text, showing only inte
properties of the class. The short form documents the contract attached to the class
and the underlying abstract data type.

Signature (of a feature)
The type part of the feature’s specification. For an attribute or a function, incl
the result type; for a routine, includes the number of arguments and the type of

Single inheritance
A restricted form of inheritance whereby each class may have at most one p
Antonym: multiple inheritance.

Software component
See reusable software component.

Specification (of a class)
The short form of the class.

Specification (of a feature)
The properties of a feature that are relevant to a client. Includes the name, signature,
header comment and contract of the feature.

Subcontract
The ability of a class to let some proper descendant handle some of its feature calls
thanks to redeclaration and dynamic binding.

Supplier
A class that provides another, its client, with features to be used through an interfa
specification (contract).

Static
Applying to the text of a system, not to a particular execution. Antonym: dynamic.

A GLOSSARY OF OBJECT TECHNOLOGY§D1202

 and

 of a
 that

s it.

ject-

ype.
Static binding
The premature choice of operation variant, resulting in possibly wrong results
(in favorable cases) run-time system crash.

Static typing
The ability to check, on the basis of the software text alone, that no execution
system will ever try to apply to an object an operation that is not applicable to
object.

Synchronous call
A call which forces the caller to wait until it completes. Antonym: asynchronous
call.

System
A set of classes that can be assembled to produce an executable result.

Template
C++ term for generic class (for unconstrained genericity only).

Traitor
A reference to a separate object, associated in the software text with an entity that is
declared as non-separate.

Transient object
An object that exists only during the execution of the system that create
Antonym: persistent object.

Type
The description of a set of objects equipped with certain operations. In the ob
oriented approach every type is based on a class.

Type checking, typing
See static typing, dynamic typing.

Unconstrained genericity
A form of genericity where a formal generic parameter represents an arbitrary t
See constrained genericity.

Variant
See loop variant.

	D D A glossary of object technology
	Abstract class
	Abstract data type (ADT)
	Abstract object
	Ancestor (of a class)
	Assertion
	Assignment attempt
	Asynchronous call
	Attribute
	Behavior class
	Class
	Class invariant
	Client
	Cluster
	Component
	Concurrent
	Conformance
	Constrained genericity
	Container data structure
	Contract
	Contravariance
	Covariance
	Current object (or: current instance)
	Defensive programming
	Deferred class
	Deferred feature
	Descendant (of a class)
	Design by Contract
	Direct instance (of a class)
	Dynamic
	Dynamic binding
	Dynamic typing
	Effect
	Effecting
	Effective class
	Effective feature
	Encapsulation
	Entity
	Event-driven computation
	Exception
	Exporting a feature
	Extendibility
	Failure
	False alarm
	Feature renaming
	Field
	Function
	Garbage collection
	Generalization
	Generating class
	Generator (of an object)
	Generic class
	Generic derivation
	Genericity
	Heir (of a class)
	Identity
	Information hiding
	Inheritance
	Instance (of a class)
	Instance variable
	Interface (of a class)
	Invariant
	Iterator
	Loop invariant
	Loop variant
	Message
	Metaclass
	Method
	Module
	Multiple inheritance
	Non-separate
	Novariance
	Object
	Object identity
	Object-oriented
	Object-oriented analysis
	Object-oriented database
	Object-oriented design
	Object-oriented implementation
	Organized panic
	Overloading
	Package
	Parallel
	Parameterized class
	Parent (of a class)
	Persistence
	Persistent object
	Polymorphic data structure
	Polymorphism
	Postcondition
	Precondition
	Predicate
	Procedure
	Processor
	Program
	Proper ancestor (of a class)
	Proper descendant (of a class)
	Redeclaration
	Redefinition
	Reference
	Renaming
	Retrying
	Reusability
	Reusable software component
	Reversible development
	Root class
	Root object
	Routine
	Runtime (noun, one word)
	Run time (noun, two words)
	Schema evolution
	Seamless development
	Selective export
	Separate
	Sequential
	Short form (of a class)
	Signature (of a feature)
	Single inheritance
	Software component
	Specification (of a class)
	Specification (of a feature)
	Subcontract
	Supplier
	Static
	Static binding
	Static typing
	Synchronous call
	System
	Template
	Traitor
	Transient object
	Type
	Type checking, typing
	Unconstrained genericity
	Variant

