
Getting
Started with
Pyparsing
by Paul McGuire

Copyright © 2008 O'Reilly Media, Inc.

ISBN: 9780596514235

Released: October 4, 2007

Need to extract data from a text file or a
web page? Or do you want to make your
application more flexible with user-de-
fined commands or search strings? Do
regular expressions and lex/yacc make
your eyes blur and your brain hurt?

Pyparsing could be the solution. Pypars-
ing is a pure-Python class library that
makes it easy to build recursive-descent
parsers quickly. There is no need to
handcraft your own parsing state ma-
chine. With pyparsing, you can quickly
create HTML page scrapers, logfile data
extractors, or complex data structure or
command processors. This Short Cut
shows you how!

Contents

What Is Pyparsing? 3
Basic Form of a Pyparsing
Program ... 5
"Hello, World!" on Steroids! 9
What Makes Pyparsing So
Special? .. 14
Parsing Data from a Table—Using
Parse Actions and ParseResults 17
Extracting Data from a Web
Page ... 26
A Simple S-Expression Parser 35
A Complete S-Expression
Parser .. 38
Parsing a Search String 48
Search Engine in 100 Lines of
Code .. 53
Conclusion 62
Index ... 63

Find more at shortcuts.oreilly.com

http://shortcuts.oreilly.com

"I need to analyze this logfile..."
"Just extract the data from this web page..."
"We need a simple input command processor..."
"Our source code needs to be migrated to the new API..."

Each of these everyday requests generates the same reflex response in any developer
faced with them: "Oh, *&#$*!, not another parser!"

The task of parsing data from loosely formatted text crops up in different forms
on a regular basis for most developers. Sometimes it is for one-off development
utilities, such as the API-upgrade example, that are purely for internal use. Other
times, the parsing task is a user-interface function to be built in to a command-
driven application.

If you are working in Python, you can tackle many of these jobs using Python's
built-in string methods, most notably split(), index(), and startswith().

What makes parser writing unpleasant are those jobs that go beyond simple string
splitting and indexing, with some context-varying format, or a structure defined
to a language syntax rather than a simple character pattern. For instance,
 y = 2 * x + 10

is easy to parse when split on separating spaces. Unfortunately, few users are so
careful in their spacing, and an arithmetic expression parser is just as likely to
encounter any of these:
 y = 2*x + 10
 y = 2*x+10
 y=2*x+10

Splitting this last expression on whitespace just returns the original string, with no
further insight into the separate elements y, =, 2, etc.

The traditional tools for developing parsing utilities that are beyond processing
with just str.split are regular expressions and lex/yacc. Regular expressions use
a text string to describe a text pattern to be matched. The text string uses special
characters (such as |, +, ., *, and ?) to denote various parsing concepts such as
alternation, repetition, and wildcards. Lex and yacc are utilities that lexically detect
token boundaries, and then apply processing code to the extracted tokens. Lex
and yacc use a separate token-definition file, and then generate lexing and token-
processing code templates for the programmer to extend with application-specific
behavior.

Getting Started with Pyparsing 2

 Historical note

These technologies were originally developed as text-processing and compiler
generation utilities in C in the 1970s, and they continue to be in wide use
today. The Python distribution includes regular expression support with the
re module, part of its "batteries included" standard library. You can download
a number of freely available parsing modules that perform lex/yacc-style pars-
ing ported to Python.

The problem in using these traditional tools is that each introduces its own spe-
cialized notation, which must then be mapped to a Python design and Python code.
In the case of lex/yacc-style tools, a separate code-generation step is usually re-
quired.

In practice, parser writing often takes the form of a seemingly endless cycle: write
code, run parser on sample text, encounter unexpected text input case, modify
code, rerun modified parser, find additional "special" case, etc. Combined with
the notation issues of regular expressions, or the extra code-generation steps of
lex/yacc, this cyclic process can spiral into frustration.

What Is Pyparsing?
Pyparsing is a pure Python module that you can add to your Python application
with little difficulty. Pyparsing's class library provides a set of classes for building
up a parser from individual expression elements, up to complex, variable-syntax
expressions. Expressions are combined using intuitive operators, such as + for se-
quentially adding one expression after another, and | and ^ for defining parsing
alternatives (meaning "match first alternative" or "match longest alternative").
Replication of expressions is added using classes such as OneOrMore, ZeroOrMore,
and Optional.

For example, a regular expression that would parse an IP address followed by a
U.S.-style phone number might look like the following:
(\d{1,3}(?:\.\d{1,3}){3})\s+(\(\d{3}\)\d{3}-\d{4})

In contrast, the same expression using pyparsing might be written as follows:
ipField = Word(nums, max=3)
ipAddr = Combine(ipField + "." + ipField + "." + ipField + "." + ipField)
phoneNum = Combine("(" + Word(nums, exact=3) + ")" +
 Word(nums, exact=3) + "−" + Word(nums, exact=4))
userdata = ipAddr + phoneNum

Getting Started with Pyparsing 3

Although it is more verbose, the pyparsing version is clearly more readable; it
would be much easier to go back and update this version to handle international
phone numbers, for example.

 New to Python?

I have gotten many emails from people who were writing a pyparsing appli-
cation for their first Python program. They found pyparsing to be easy to pick
up, usually by adapting one of the example scripts that is included with py-
parsing. If you are just getting started with Python, you may feel a bit lost going
through some of the examples. Pyparsing does not require much advanced
Python knowledge, so it is easy to come up to speed quickly. There are a
number of online tutorial resources, starting with the Python web site,
www.python.org [http://www.python.org].

To make the best use of pyparsing, you should become familiar with the basic
Python language features of indented syntax, data types, and for item in
itemSequence: control structures.

Pyparsing makes use of object.attribute notation, as well as Python's built-
in container classes, tuple, list, and dict.

The examples in this book use Python lambdas, which are essentially one-line
functions; lambdas are especially useful when defining simple parse actions.

The list comprehension and generator expression forms of iteration are useful
when extracting tokens from parsed results, but not required.

Pyparsing is:

• 100 percent pure Python—no compiled dynamic link libraries (DLLs) or shared
libraries are used in pyparsing, so you can use it on any platform that is Python
2.3-compatible.

• Driven by parsing expressions that are coded inline, using standard Python
class notation and constructs —no separate code generation process and no
specialized character notation make your application easier to develop, un-
derstand, and maintain.

Getting Started with Pyparsing 4

http://www.python.org
http://www.python.org

• Enhanced with helpers for common parsing patterns:
• C, C++, Java, Python, and HTML comments

• quoted strings (using single or double quotes, with \' or \" escapes)

• HTML and XML tags (including upper-/lowercase and tag attribute han-
dling)

• comma-separated values and delimited lists of arbitrary expressions

• Small in footprint—Pyparsing's code is contained within a single Python source
file, easily dropped into a site-packages directory, or included with your own
application.

• Liberally licensed—MIT license permits any use, commercial or non-commer-
cial.

Basic Form of a Pyparsing Program
The prototypical pyparsing program has the following structure:

• Import names from pyparsing module

• Define grammar using pyparsing classes and helper methods

• Use the grammar to parse the input text

• Process the results from parsing the input text

Import Names from Pyparsing
In general, using the form from pyparsing import * is discouraged among Python
style experts. It pollutes the local variable namespace with an unknown number
of new names from the imported module. However, during pyparsing grammar
development, it is hard to anticipate all of the parser element types and other py-
parsing-defined names that will be needed, and this form simplifies early grammar
development. After the grammar is mostly finished, you can go back to this state-
ment and replace the * with the list of pyparsing names that you actually used.

Define the Grammar
The grammar is your definition of the text pattern that you want to extract from
the input text. With pyparsing, the grammar takes the form of one or more Python
statements that define text patterns, and combinations of patterns, using pyparsing
classes and helpers to specify these individual pieces. Pyparsing allows you to use
operators such as +, |, and ̂ to simplify this code. For instance, if I use the pyparsing
Word class to define a typical programming variable name consisting of a leading

Getting Started with Pyparsing 5

alphabetic character with a body of alphanumeric characters or underscores, I
would start with the Python statement:
identifier = Word(alphas, alphanums+'_')

I might also want to parse numeric constants, either integer or floating point. A
simplistic definition uses another Word instance, defining our number as a "word"
composed of numeric digits, possibly including a decimal point:
number = Word(nums+".")

From here, I could then define a simple assignment statement as:
assignmentExpr = identifier + "=" + (identifier | number)

and now I have a grammar that will parse any of the following:
a = 10
a_2=100
pi=3.14159
goldenRatio = 1.61803
E = mc2

In this part of the program you can also attach any parse-time callbacks (or parse
actions) or define names for significant parts of the grammar to ease the job of
locating those parts later. Parse actions are a very powerful feature of pyparsing,
and I will also cover them later in detail.

Getting Started with Pyparsing 6

 Best Practice: Start with a BNF

Before just diving in and writing a bunch of stream-of-consciousness Python
code to represent your grammar, take a moment to put down on paper a
description of the problem. Having this will:

• Help clarify your thoughts on the problem

• Guide your parser design

• Give you a checklist of things to do as you implement your parser

• Help you know when you are done

Fortunately, in developing parsers, there is a simple notation to use to describe
the layout for a parser called Backus-Naur Form (BNF). You can find good
examples of BNF at http://en.wikipedia.org/wiki/backus-naur_form. It is
not vital that you be absolutely rigorous in your BNF notation; just get a clear
idea ahead of time of what your grammar needs to include.

For the BNFs we write in this book, we'll just use this abbreviated notation:

• ::= means "is defined as"

• + means "1 or more"

• * means "0 or more"

• items enclosed in []are optional

• succession of items means that matching tokens must occur in sequence

• | means either item may occur

Use the Grammar to Parse the Input Text
In early versions of pyparsing, this step was limited to using the parseString meth-
od, as in:
assignmentTokens = assignmentExpr.parseString("pi=3.14159")

to retrieve the matching tokens as parsed from the input text.

The options for using your pyparsing grammar have increased since the early ver-
sions. With later releases of pyparsing, you can use any of the following:

parseString

Applies the grammar to the given input text.

Getting Started with Pyparsing 7

http://en.wikipedia.org/wiki/backus-naur_form

scanString

Scans through the input text looking for matches; scanString is a generator
function that returns the matched tokens, and the start and end location within
the text, as each match is found.

searchString

A simple wrapper around scanString, returning a list containing each set of
matched tokens within its own sublist.

transformString

Another wrapper around scanString, to simplify replacing matched tokens with
modified text or replacement strings, or to strip text that matches the grammar.

For now, let's stick with parseString, and I'll show you the other choices in more
detail later.

Process the Results from Parsing the Input Text
Of course, the whole point of using the parser in the first place is to extract data
from the input text. Many parsing tools simply return a list of the matched tokens
to be further processed to interpret the meaning of the separate tokens. Pyparsing
offers a rich object for results, called ParseResults. In its simplest form, ParseRe
sults can be printed and accessed just like a Python list. For instance, continuing
our assignment expression example, the following code:
assignmentTokens = assignmentExpr.parseString("pi=3.14159")
print assignmentTokens

prints out:
['pi', '=', '3.14159']

But ParseResults can also support direct access to individual fields within the
parsed text, if results names were assigned as part of the grammar definition. By
enhancing the definition of assignmentExpr to use results names (such as lhs and
rhs for the left- and righthand sides of the assignment), we can access the fields as
if they were attributes of the returned ParseResults:
assignmentExpr = identifier.setResultsName("lhs") + "=" + \
 (identifier | number).setResultsName("rhs")
assignmentTokens = assignmentExpr.parseString("pi=3.14159")
print assignmentTokens.rhs, "is assigned to", assignmentTokens.lhs

prints out:
3.14159 is assigned to pi

Getting Started with Pyparsing 8

Now that the introductions are out of the way, let's move on to some detailed
examples.

"Hello, World!" on Steroids!
Pyparsing comes with a number of examples, including a basic "Hello, World!"
parser*. This simple example is also covered in the O'Reilly ONLamp.com [http://
onlamp.com] article "Building Recursive Descent Parsers with Python" (http://
www.onlamp.com/-pub/a/python/2006/01/26/pyparsing.html). In this sec-
tion, I use this same example to introduce many of the basic parsing tools in
pyparsing.

The current "Hello, World!" parsers are limited to greetings of the form:
word, word !

This limits our options a bit, so let's expand the grammar to handle more compli-
cated greetings. Let's say we want to parse any of the following:
Hello, World!
Hi, Mom!
Good morning, Miss Crabtree!
Yo, Adrian!
Whattup, G?
How's it goin', Dude?
Hey, Jude!
Goodbye, Mr. Chips!

The first step in writing a parser for these strings is to identify the pattern that they
all follow. Following our best practice, we write up this pattern as a BNF. Using
ordinary words to describe a greeting, we would say, "a greeting is made up of one
or more words (which is the salutation), followed by a comma, followed by one
or more additional words (which is the subject of the greeting, or greetee), and
ending with either an exclamation point or a question mark." As BNF, this de-
scription looks like:
greeting ::= salutation comma greetee endpunc
salutation ::= word+
comma ::= ,
greetee ::= word+
word ::= a collection of one or more characters, which are any alpha or ' or .
endpunc ::= ! | ?

* Of course, writing a parser to extract the components from "Hello, World!" is beyond overkill. But
hopefully, by expanding this example to implement a generalized greeting parser, I cover most of the
pyparsing basics.

Getting Started with Pyparsing 9

http://onlamp.com
http://onlamp.com
http://onlamp.com
http://www.onlamp.com/-pub/a/python/2006/01/26/pyparsing.html
http://www.onlamp.com/-pub/a/python/2006/01/26/pyparsing.html

This BNF translates almost directly into pyparsing, using the basic pyparsing ele-
ments Word, Literal, OneOrMore, and the helper method oneOf. (One of the trans-
lation issues in going from BNF to pyparsing is that BNF is traditionally a "top-
down" definition of a grammar. Pyparsing must build its grammar "bottom-up,"
to ensure that referenced variables are defined before they are used.)
word = Word(alphas+"'.")
salutation = OneOrMore(word)
comma = Literal(",")
greetee = OneOrMore(word)
endpunc = oneOf("! ?")
greeting = salutation + comma + greetee + endpunc

oneOf is a handy shortcut for defining a list of literal alternatives. It is simpler to
write:
endpunc = oneOf("! ?")

than:
endpunc = Literal("!") | Literal("?")

You can call oneOf with a list of items, or with a single string of items separated by
whitespace.

Using our greeting parser on the set of sample strings gives the following results:
['Hello', ',', 'World', '!']
['Hi', ',', 'Mom', '!']
['Good', 'morning', ',', 'Miss', 'Crabtree', '!']
['Yo', ',', 'Adrian', '!']
['Whattup', ',', 'G', '?']
["How's", 'it', "goin'", ',', 'Dude', '?']
['Hey', ',', 'Jude', '!']
['Goodbye', ',', 'Mr.', 'Chips', '!']

Everything parses into individual tokens all right, but there is very little structure
to the results. With this parser, there is quite a bit of work still to do to pick out
the significant parts of each greeting string. For instance, to identify the tokens
that compose the initial part of the greeting—the salutation—we need to iterate
over the results until we reach the comma token:
for t in tests:
 results = greeting.parseString(t)
 salutation = []
 for token in results:
 if token == ",": break
 salutation.append(token)
 print salutation

Getting Started with Pyparsing 10

Yuck! We might as well just have written a character-by-character scanner in the
first place! Fortunately, we can avoid this drudgery by making our parser a bit
smarter.

Since we know that the salutation and greetee parts of the greeting are logical
groups, we can use pyparsing's Group class to give more structure to the returned
results. By changing the definitions of salutation and greetee to:
salutation = Group(OneOrMore(word))
greetee = Group(OneOrMore(word))

our results start to look a bit more organized:
[['Hello'], ',', ['World'], '!']
[['Hi'], ',', ['Mom'], '!']
[['Good', 'morning'], ',', ['Miss', 'Crabtree'], '!']
[['Yo'], ',', ['Adrian'], '!']
[['Whattup'], ',', ['G'], '?']
[["How's", 'it', "goin'"], ',', ['Dude'], '?']
[['Hey'], ',', ['Jude'], '!']
[['Goodbye'], ',', ['Mr.', 'Chips'], '!']

and we can use basic list-to-variable assignment to access the different parts:
for t in tests:
 salutation, dummy, greetee, endpunc = greeting.parseString(t)
 print salutation, greetee, endpunc

prints:
['Hello'] ['World'] !
['Hi'] ['Mom'] !
['Good', 'morning'] ['Miss', 'Crabtree'] !
['Yo'] ['Adrian'] !
['Whattup'] ['G'] ?
["How's", 'it', "goin'"] ['Dude'] ?
['Hey'] ['Jude'] !
['Goodbye'] ['Mr.', 'Chips'] !

Note that we had to put in the scratch variable dummy to handle the parsed comma
character. The comma is a very important element during parsing, since it shows
where the parser stops reading the salutation and starts the greetee. But in the
returned results, the comma is not really very interesting at all, and it would be
nice to suppress it from the returned results. You can do this by wrapping the
definition of comma in a pyparsing Suppress instance:
comma = Suppress(Literal(","))

There are actually a number of shortcuts built into pyparsing, and since this func-
tion is so common, any of the following forms accomplish the same thing:

Getting Started with Pyparsing 11

comma = Suppress(Literal(","))
comma = Literal(",").suppress()
comma = Suppress(",")

Using one of these forms to suppress the parsed comma, our results are further
cleaned up to read:
[['Hello'], ['World'], '!']
[['Hi'], ['Mom'], '!']
[['Good', 'morning'], ['Miss', 'Crabtree'], '!']
[['Yo'], ['Adrian'], '!']
[['Whattup'], ['G'], '?']
[["How's", 'it', "goin'"], ['Dude'], '?']
[['Hey'], ['Jude'], '!']
[['Goodbye'], ['Mr.', 'Chips'], '!']

The results-handling code can now drop the distracting dummy variable, and just
use:
for t in tests:
 salutation, greetee, endpunc = greeting.parseString(t)

Now that we have a decent parser and a good way to get out the results, we can
start to have fun with the test data. First, let's accumulate the salutations and
greetees into lists of their own:
salutes = []
greetees = []
for t in tests:
 salutation, greetee, endpunc = greeting.parseString(t)
 salutes.append((" ".join(salutation), endpunc))
 greetees.append(" ".join(greetee))

I've also made a few other changes to the parsed tokens:

• Used " ".join(list) to convert the grouped tokens back into simple strings

• Saved the end punctuation in a tuple with each greeting to distinguish the
exclamations from the questions

Now that we have collected these assorted names and salutations, we can use them
to contrive some additional, never-before-seen greetings and introductions.

After importing the random module, we can synthesize some new greetings:
for i in range(50):
 salute = random.choice(salutes)
 greetee = random.choice(greetees)
 print "%s, %s%s" % (salute[0], greetee, salute[1])

Now we see the all-new set of greetings:

Getting Started with Pyparsing 12

Hello, Miss Crabtree!
How's it goin', G?
Yo, Mr. Chips!
Whattup, World?
Good morning, Mr. Chips!
Goodbye, Jude!
Good morning, Miss Crabtree!
Hello, G!
Hey, Dude!
How's it goin', World?
Good morning, Mom!
How's it goin', Adrian?
Yo, G!
Hey, Adrian!
Hi, Mom!
Hello, Mr. Chips!
Hey, G!
Whattup, Mr. Chips?
Whattup, Miss Crabtree?
...

We can also simulate some introductions with the following code:
for i in range(50):
 print '%s, say "%s" to %s.' % (random.choice(greetees),
 "".join(random.choice(salutes)),
 random.choice(greetees))

And now the cocktail party starts shifting into high gear!
Jude, say "Good morning!" to Mom.
G, say "Yo!" to Miss Crabtree.
Jude, say "Goodbye!" to World.
Adrian, say "Whattup?" to World.
Mom, say "Hello!" to Dude.
Mr. Chips, say "Good morning!" to Miss Crabtree.
Miss Crabtree, say "Hi!" to Adrian.
Adrian, say "Hey!" to Mr. Chips.
Mr. Chips, say "How's it goin'?" to Mom.
G, say "Whattup?" to Mom.
Dude, say "Hello!" to World.
Miss Crabtree, say "Goodbye!" to Miss Crabtree.
Dude, say "Hi!" to Mr. Chips.
G, say "Yo!" to Mr. Chips.
World, say "Hey!" to Mr. Chips.
G, say "Hey!" to Adrian.
Adrian, say "Good morning!" to G.
Adrian, say "Hello!" to Mom.
World, say "Good morning!" to Miss Crabtree.
Miss Crabtree, say "Yo!" to G.
...

Getting Started with Pyparsing 13

So, now we've had some fun with the pyparsing module. Using some of the simpler
pyparsing classes and methods, we're ready to say "Whattup" to the world!

What Makes Pyparsing So Special?
Pyparsing was designed with some specific goals in mind. These goals are based
on the premise that the grammar must be easy to write, to understand, and to adapt
as the parsing demands on a given parser change and expand over time. The intent
behind these goals is to simplify the parser design task as much as possible and to
allow the pyparsing user to focus his attention on the parser, and not to be dis-
tracted by the mechanics of the parsing library or grammar syntax. The rest of this
section lists the high points of the Zen of Pyparsing.

The grammar specification should be a natural-looking part of the Python
program, easy-to-read, and familiar in style and format to Python
programmers

Pyparsing accomplishes this in a couple of ways:
• Using operators to join parser elements together. Python's support for de-

fining operator functions allows us to go beyond standard object construc-
tion syntax, and we can compose parsing expressions that read naturally.
Instead of this:

streetAddress = And([streetNumber, name,
 Or([Literal("Rd."), Literal("St.")])])

we can write this:
streetAddress = streetNumber + name + (Literal("Rd.") | Literal("St."))

• Many attribute setting methods in pyparsing return self so that several of
these methods can be chained together. This permits parser elements within
a grammar to be more self-contained. For example, a common parser ex-
pression is the definition of an integer, including the specification of its
name, and the attachment of a parse action to convert the integer string to
a Python int. Using properties, this would look like:

integer = Word(nums)
integer.Name = "integer"
integer.ParseAction = lambda t: int(t[0])

Using attribute setters that return self, this can be collapsed to:
integer = Word(nums).setName("integer").setParseAction(lambda t:int(t[0]))

Class names are easier to read and understand than specialized typography

This is probably the most explicit distinction of pyparsing from regular expres-
sions, and regular expression-based parsing tools. The IP address and phone

Getting Started with Pyparsing 14

number example given in the introduction allude to this idea, but regular ex-
pressions get truly inscrutable when regular expression control characters are
also part of the text to be matched. The result is a mish-mash of backslashes to
escape the control characters to be interpreted as input text. Here is a regular
expression to match a simplified C function call, constrained to accept zero or
more arguments that are either words or integers:

(\w+)\((((\d+|\w+)(,(\d+|\w+))*)?)\)

It is not easy to tell at a glance which parentheses are grouping operators, and
which are part of the expression to be matched. Things get even more compli-
cated if the input text contains \, ., *, or ? characters. The pyparsing version of
this same expression is:

Word(alphas)+ "(" + Group(Optional(Word(nums)|Word(alphas) +
 ZeroOrMore("," + Word(nums)|Word
(alphas)))) + ")"

In the pyparsing version, the grouping and repetition are explicit and easy to
read. In fact, this pattern of x + ZeroOrMore(","+x) is so common, there is a
pyparsing helper method, delimitedList, that emits this expression. Using
delimitedList, our pyparsing rendition further simplifies to:

Word(alphas)+ "(" + Group(Optional(delimitedList(Word(nums)|Word(alphas)))) + ")"

Whitespace markers clutter and distract from the grammar definition

In addition to the "special characters aren't really that special" problem, regular
expressions must also explicitly indicate where whitespace can occur in the
input text. In this C function example, the regular expression would match:

abc(1,2,def,5)

but would not match:
abc(1, 2, def, 5)

Unfortunately, it is not easy to predict where optional whitespace might or
might not occur in such an expression, so one must include \s* expressions
liberally throughout, further obscuring the real text matching that was inten-
ded:

(\w+)\s*\(\s*(((\d+|\w+)(\s*,\s*(\d+|\w+))*)?)\s*\)

In contrast, pyparsing skips over whitespace between parser elements by de-
fault, so that this same pyparsing expression:

Word(alphas)+ "(" + Group(Optional(delimitedList(Word(nums)|Word(alphas)))) + ")"

matches either of the listed calls to the abc function, without any additional
whitespace indicators.

Getting Started with Pyparsing 15

This same concept also applies to comments, which can appear anywhere in a
source program. Imagine trying to match a function in which the developer had
inserted a comment to document each parameter in the argument list. With
pyparsing, this is accomplished with the code:

cFunction = Word(alphas)+ "(" + \
 Group(Optional(delimitedList(Word(nums)|Word(alphas)))) + ")"
cFunction.ignore(cStyleComment)

The results of the parsing process should do more than just represent a nested
list of tokens, especially when grammars get complicated

Pyparsing returns the results of the parsing process using a class named ParseR
esults. ParseResults will support simple list-based access (such as indexing
using [], len, iter, and slicing) for simple grammars, but it can also represent
nested results, and dict-style and object attribute-style access to named fields
within the results. The results from parsing our C function example are:

['abc', '(', ['1', '2', 'def', '5'], ')']

You can see that the function arguments have been collected into their own
sublist, making the extraction of the function arguments easier during post-
parsing analysis. If the grammar definition includes results names, specific fields
can be accessed by name instead of by error-prone list indexing.

These higher-level access techniques are crucial to making sense of the results
from a complex grammar.

Parse time is a good time for additional text processing

While parsing, the parser is performing many checks on the format of fields
within the input text: testing for the validity of a numeric string, or matching a
pattern of punctuation such as a string within quotation marks. If left as strings,
the post-parsing code will have to re-examine these fields to convert them into
Python ints and strings, and likely have to repeat the same validation tests before
doing the conversion.
Pyparsing supports the definition of parse-time callbacks (called parse actions)
that you can attach to individual expressions within the grammar. Since the
parser calls these functions immediately after matching their respective pat-
terns, there is often little or no extra validation required. For instance, to extract
the string from the body of a parsed quoted string, a simple parse action to
remove the opening and closing quotation marks, such as:

quotedString.setParseAction(lambda t: t[0][1:−1])

Getting Started with Pyparsing 16

is sufficient. There is no need to test the leading and trailing characters to see
whether they are quotation marks—the function won't be called unless they
are.

Parse actions can also be used to perform additional validation checks, such as
testing whether a matched word exists in a list of valid words, and raising a
ParseException if not. Parse actions can also return a constructed list or appli-
cation object, essentially compiling the input text into a series of executable or
callable user objects. Parse actions can be a powerful tool when designing a
parser with pyparsing.

Grammars must tolerate change, as grammar evolves or input text becomes
more challenging

The death spiral of frustration that is so common when you have to write parsers
is not easy to avoid. What starts out as a simple pattern-matching exercise can
become progressively complex and unwieldy. The input text can contain data
that doesn't quite match the pattern but is needed anyway, so the parser gets a
minor patch to include the new variation. Or, a language for which the parser
was written gains a new addition to the language syntax. After this happens
several times, the patches begin to get in the way of the original pattern defini-
tion, and further patches get more and more difficult. When a new change
occurs after a quiet period of a few months or so, reacquiring the parser knowl-
edge takes longer than expected, and this just adds to the frustration.
Pyparsing doesn't cure this problem, but the grammar definition techniques and
the coding style it fosters in the grammar and parser code make many of these
problems simpler. Individual elements of the grammar are likely to be explicit
and easy to find, and correspondingly easy to extend or modify. Here is a won-
derful quote sent to me by a pyparsing user considering writing a grammar for
a particularly tricky parser: "I could just write a custom method, but my past
experience was that once I got the basic pyparsing grammar working, it turned
out to be more self documenting and easier to maintain/extend."

Parsing Data from a Table—Using Parse Actions and ParseResults
As our first example, let's look at a simple set of scores for college football games
that might be given in a datafile. Each row of text gives the date of each game,
followed by the college names and each school's score.
09/04/2004 Virginia 44 Temple 14
09/04/2004 LSU 22 Oregon State 21
09/09/2004 Troy State 24 Missouri 14
01/02/2003 Florida State 103 University of Miami 2

Getting Started with Pyparsing 17

Our BNF for this data is simple and clean:
digit ::= '0'..'9'
alpha ::= 'A'..'Z' 'a'..'z'
date ::= digit+ '/' digit+ '/' digit+
schoolName ::= (alpha+)+
score ::= digit+
schoolAndScore ::= schoolName score
gameResult ::= date schoolAndScore schoolAndScore

We begin building up our parser by converting these BNF definitions into pypars-
ing class instances. Just as we did in the extended "Hello, World!" program, we'll
start by defining the basic building blocks that will later get combined to form the
complete grammar:
nums and alphas are already defined by pyparsing
num = Word(nums)
date = num + "/" + num + "/" + num
schoolName = OneOrMore(Word(alphas))

Notice that you can compose pyparsing expressions using the + operator to com-
bine pyparsing expressions and string literals. Using these basic elements, we can
finish the grammar by combining them into larger expressions:
score = Word(nums)
schoolAndScore = schoolName + score
gameResult = date + schoolAndScore + schoolAndScore

We use the gameResult expression to parse the individual lines of the input text:
tests = """\
 09/04/2004 Virginia 44 Temple 14
 09/04/2004 LSU 22 Oregon State 21
 09/09/2004 Troy State 24 Missouri 14
 01/02/2003 Florida State 103 University of Miami 2""".splitlines()

for test in tests:
 stats = gameResult.parseString(test)
 print stats.asList()

Just as we saw in the "Hello, World!" parser, we get an unstructured list of strings
from this grammar:
['09', '/', '04', '/', '2004', 'Virginia', '44', 'Temple', '14']
['09', '/', '04', '/', '2004', 'LSU', '22', 'Oregon', 'State', '21']
['09', '/', '09', '/', '2004', 'Troy', 'State', '24', 'Missouri', '14']
['01', '/', '02', '/', '2003', 'Florida', 'State', '103', 'University', 'of',
'Miami', '2']

The first change we'll make is to combine the tokens returned by date into a single
MM/DD/YYYY date string. The pyparsing Combine class does this for us by simply
wrapping the composed expression:

Getting Started with Pyparsing 18

date = Combine(num + "/" + num + "/" + num)

With this single change, the parsed results become:
['09/04/2004', 'Virginia', '44', 'Temple', '14']
['09/04/2004', 'LSU', '22', 'Oregon', 'State', '21']
['09/09/2004', 'Troy', 'State', '24', 'Missouri', '14']
['01/02/2003', 'Florida', 'State', '103', 'University', 'of', 'Miami', '2']

Combine actually performs two tasks for us. In addition to concatenating the match-
ed tokens into a single string, it also enforces that the tokens are adjacent in the
incoming text.

The next change to make will be to combine the school names, too. Because
Combine's default behavior requires that the tokens be adjacent, we will not use it,
since some of the school names have embedded spaces. Instead we'll define a rou-
tine to be run at parse time to join and return the tokens as a single string. As
mentioned previously, such routines are referred to in pyparsing as parse actions,
and they can perform a variety of functions during the parsing process.

For this example, we will define a parse action that takes the parsed tokens, uses
the string join function, and returns the joined string. This is such a simple parse
action that it can be written as a Python lambda. The parse action gets hooked to
a particular expression by calling setParseAction, as in:
schoolName.setParseAction(lambda tokens: " ".join(tokens))

Another common use for parse actions is to do additional semantic validation,
beyond the basic syntax matching that is defined in the expressions. For instance,
the expression for date will accept 03023/808098/29921 as a valid date, and this is
certainly not desirable. A parse action to validate the input date could use
time.strptime to parse the time string into an actual date:
time.strptime(tokens[0],"%m/%d/%Y")

If strptime fails, then it will raise a ValueError exception. Pyparsing uses its own
exception class, ParseException, for signaling whether an expression matched or
not. Parse actions can raise their own exceptions to indicate that, even though the
syntax matched, some higher-level validation failed. Our validation parse action
would look like this:
def validateDateString(tokens):
 try
 time.strptime(tokens[0], "%m/%d/%Y")
 except ValueError,ve:
 raise ParseException("Invalid date string (%s)" % tokens[0])
date.setParseAction(validateDateString)

Getting Started with Pyparsing 19

If we change the date in the first line of the input to 19/04/2004, we get the ex-
ception:
pyparsing.ParseException: Invalid date string (19/04/2004) (at char 0), (line:1, col:1)

Another modifier of the parsed results is the pyparsing Group class. Group does not
change the parsed tokens; instead, it nests them within a sublist. Group is a useful
class for providing structure to the results returned from parsing:
score = Word(nums)
schoolAndScore = Group(schoolName + score)

With grouping and joining, the parsed results are now structured into nested lists
of strings:
['09/04/2004', ['Virginia', '44'], ['Temple', '14']]
['09/04/2004', ['LSU', '22'], ['Oregon State', '21']]
['09/09/2004', ['Troy State', '24'], ['Missouri', '14']]
['01/02/2003', ['Florida State', '103'], ['University of Miami', '2']]

Finally, we will add one more parse action to perform the conversion of numeric
strings into actual integers. This is a very common use for parse actions, and it also
shows how pyparsing can return structured data, not just nested lists of parsed
strings. This parse action is also simple enough to implement as a lambda:
score = Word(nums).setParseAction(lambda tokens : int(tokens[0]))

Once again, we can define our parse action to perform this conversion, without
the need for error handling in case the argument to int is not a valid integer string.
The only time this lambda will ever be called is with a string that matches the
pyparsing expression Word (nums), which guarantees that only valid numeric
strings will be passed to the parse action.

Our parsed results are starting to look like real database records or objects:
['09/04/2004', ['Virginia', 44], ['Temple', 14]]
['09/04/2004', ['LSU', 22], ['Oregon State', 21]]
['09/09/2004', ['Troy State', 24], ['Missouri', 14]]
['01/02/2003', ['Florida State', 103], ['University of Miami', 2]]

At this point, the returned data is structured and converted so that we could do
some actual processing on the data, such as listing the game results by date and
marking the winning team. The ParseResults object passed back from parse
String allows us to index into the parsed data using nested list notation, but for
data with this kind of structure, things get ugly fairly quickly:
for test in tests:
 stats = gameResult.parseString(test)
 if stats[1][1] != stats[2][1]:
 if stats[1][1] > stats[2][1]:

Getting Started with Pyparsing 20

 result = "won by " + stats[1][0]
 else:
 result = "won by " + stats[2][0]
 else:
 result = "tied"
 print "%s %s(%d) %s(%d), %s" % (stats[0], stats[1][0], stats[1][1],
 stats[2][0], stats[2][1], result)

Not only do the indexes make the code hard to follow (and easy to get wrong!),
the processing of the parsed data is very sensitive to the order of things in the
results. If our grammar included some optional fields, we would have to include
other logic to test for the existence of those fields, and adjust the indexes accord-
ingly. This makes for a very fragile parser.

We could try using multiple variable assignment to reduce the indexing like we
did in '"Hello, World!" on Steroids!':
for test in tests:
 stats = gameResult.parseString(test)
 gamedate,team1,team2 = stats # <- assign parsed bits to individual variable names
 if team1[1] != team2[1]:
 if team1[1] > team2[1]:
 result = "won by " + team1[0]
 else:
 result = "won by " + team2[0]
 else:
 result = "tied"
 print "%s %s(%d) %s(%d), %s" % (gamedate, team1[0], team1[1], team2[0], team2[1],
 result)

 Best Practice: Use Results Names

Use results names to simplify access to specific tokens within the parsed re-
sults, and to protect your parser from later text and grammar changes, and
from the variability of optional data fields.

But this still leaves us sensitive to the order of the parsed data.

Instead, we can define names in the grammar that different expressions should use
to label the resulting tokens returned by those expressions. To do this, we insert
calls to setResults-Name into our grammar, so that expressions will label the tokens
as they are accumulated into the Parse-Results for the overall grammar:
schoolAndScore = Group(
schoolName.setResultsName("school") +
 score.setResultsName("score"))

Getting Started with Pyparsing 21

gameResult = date.setResultsName("date") + schoolAndScore.setResultsName("team1") +
 schoolAndScore.setResultsName("team2")

And the code to process the results is more readable:
 if stats.team1.score != stats.team2.score
 if stats.team1.score > stats.team2.score:
 result = "won by " + stats.team1.school
 else:
 result = "won by " + stats.team2.school
 else:
 result = "tied"
 print "%s %s(%d) %s(%d), %s" % (stats.date, stats.team1.school, stats.team1.
score,
 stats.team2.school, stats.team2.score, result)

This code has the added bonus of being able to refer to individual tokens by name
rather than by index, making the processing code immune to changes in the token
order and to the presence/absence of optional data fields.

Creating ParseResults with results names will enable you to use dict-style seman-
tics to access the tokens. For example, you can use ParseResults objects to supply
data values to interpolated strings with labeled fields, further simplifying the out-
put code:
print "%(date)s %(team1)s %(team2)s" % stats

This gives the following:
09/04/2004 ['Virginia', 44] ['Temple', 14]
09/04/2004 ['LSU', 22] ['Oregon State', 21]
09/09/2004 ['Troy State', 24] ['Missouri', 14]
01/02/2003 ['Florida State', 103] ['University of Miami', 2]

ParseResults also implements the keys(), items(), and values() methods, and
supports key testing with Python's in keyword.

Getting Started with Pyparsing 22

 Coming Attractions!

The latest version of Pyparsing (1.4.7) includes notation to make it even easier
to add results names to expressions, reducing the grammar code in this ex-
ample to:

schoolAndScore =
 Group(schoolName("school") +
 score("score"))
gameResult = date("date") +
 schoolAndScore("team1") +
 schoolAndScore("team2")

Now there is no excuse for not naming your parsed results!

For debugging, you can call dump() to return a string showing the nested token list,
followed by a hierarchical listing of keys and values. Here is a sample of calling
stats.dump() for the first line of input text:
print stats.dump()

['09/04/2004', ['Virginia', 44],
['Temple', 14]]
- date: 09/04/2004
- team1: ['Virginia', 44]
 - school: Virginia
 - score: 44
- team2: ['Temple', 14]
 - school: Temple
 - score: 14

Finally, you can generate XML representing this same hierarchy by calling
stats.asXML() and specifying a root element name:
print stats.asXML("GAME")

<GAME>
 <date>09/04/2004</date>
 <team1>
 <school>Virginia</school>
 <score>44</score>
 </team1>

Getting Started with Pyparsing 23

 <team2>
 <school>Temple</school>
 <score>14</score>
 </team2>
</GAME>

There is one last issue to deal with, having to do with validation of the input text.
Pyparsing will parse a grammar until it reaches the end of the grammar, and then
return the matched results, even if the input string has more text in it. For instance,
this statement:
word = Word("A")
data = "AAA AA AAA BA AAA"
print OneOrMore(word).parseString(data)

will not raise an exception, but simply return:
['AAA', 'AA', 'AAA']

 Helpful Tip – end your grammar with stringEnd

Make sure there is no dangling input text by ending your grammar with
stringEnd, or by appending stringEnd to the grammar used to call parse
String. If the grammar does not match all of the given input text, it will raise
a ParseException at the point where the parser stopped parsing.

even though the string continues with more "AAA" words to be parsed. Many
times, this "extra" text is really more data, but with some mismatch that does not
satisfy the continued parsing of the grammar.

To check whether your grammar has processed the entire string, pyparsing pro-
vides a class StringEnd (and a built-in expression stringEnd) that you can add to
the end of the grammar. This is your way of signifying, "at this point, I expect there
to be no more text—this should be the end of the input string." If the grammar
has left some part of the input unparsed, then StringEnd will raise a ParseE
xception. Note that if there is trailing whitespace, pyparsing will automatically skip
over it before testing for end-of-string.

In our current application, adding stringEnd to the end of our parsing expression
will protect against accidentally matching
09/04/2004 LSU 2x2 Oregon State 21

as:
09/04/2004 ['LSU', 2] ['x', 2]

Getting Started with Pyparsing 24

treating this as a tie game between LSU and College X. Instead we get a ParseE
xception that looks like:
pyparsing.ParseException: Expected stringEnd (at char 44), (line:1, col:45)

Here is a complete listing of the parser code:
from pyparsing import Word, Group, Combine, Suppress, OneOrMore, alphas, nums,\
 alphanums, stringEnd, ParseException
import time
num = Word(nums)
date = Combine(num + "/" + num + "/" + num)

def validateDateString(tokens):
 try:
 time.strptime(tokens[0], "%m/%d/%Y")
 except ValueError,ve:
 raise ParseException("Invalid date string (%s)" % tokens[0])
date.setParseAction(validateDateString)

schoolName = OneOrMore(Word(alphas))
schoolName.setParseAction(lambda tokens: " ".join(tokens))
score = Word(nums).setParseAction(lambda tokens: int(tokens[0]))
schoolAndScore = Group(schoolName.setResultsName("school") + \
 score.setResultsName("score"))
gameResult = date.setResultsName("date") + schoolAndScore.setResultsName("team1") + \
 schoolAndScore.setResultsName("team2")

tests = """\
 09/04/2004 Virginia 44 Temple 14
 09/04/2004 LSU 22 Oregon State 21
 09/09/2004 Troy State 24 Missouri 14
 01/02/2003 Florida State 103 University of Miami 2""".splitlines()

for test in tests:
 stats = (gameResult + stringEnd).parseString(test)

 if stats.team1.score != stats.team2.score:
 if stats.team1.score > stats.team2.score:
 result = "won by " + stats.team1.school
 else:
 result = "won by " + stats.team2.school
 else:
 result = "tied"
 print "%s %s(%d) %s(%d), %s" % (stats.date, stats.team1.school, stats.team1.score,
 stats.team2.school, stats.team2.score, result)
 # or print one of these alternative formats
 #print "%(date)s %(team1)s %(team2)s" % stats
 #print stats.asXML("GAME")

Getting Started with Pyparsing 25

Extracting Data from a Web Page
The Internet has become a vast source of freely available data no further than the
browser window on your home computer. While some resources on the Web are
formatted for easy consumption by computer programs, the majority of content
is intended for human readers using a browser application, with formatting done
using HTML markup tags.

Sometimes you have your own Python script that needs to use tabular or reference
data from a web page. If the data has not already been converted to easily processed
comma-separated values or some other digestible format, you will need to write a
parser that "reads around" the HTML tags and gets the actual text data.

It is very common to see postings on Usenet from people trying to use regular
expressions for this task. For instance, someone trying to extract image reference
tags from a web page might try matching the tag pattern "". Unfortunately, since HTML tags can contain many optional
attributes, and since web browsers are very forgiving in processing sloppy HTML
tags, HTML retrieved from the wild can be full of surprises to the unwary web
page scraper. Here are some typical "gotchas" when trying to find HTML tags:

Tags with extra whitespace or of varying upper-/lowercase

, , and <img src =
"sphinx.jpeg" > are all equivalent tags.

Tags with unexpected attributes

The IMG tag will often contain optional attributes, such as align, alt, id,
vspace, hspace, height, width, etc.

Tag attributes in varying order

If the matching pattern is expanded to detect the attributes src, align, and
alt, as in the tag <img src="sphinx.jpeg" align="top" alt="The Great
Sphinx">, the attributes can appear in the tag in any order.

Tag attributes may or may not be enclosed in quotes

 can also be represented as
or .

Pyparsing includes the helper method makeHTMLTags to make short work of defining
standard expressions for opening and closing tags. To use this method, your pro-
gram calls makeHTMLTags with the tag name as its argument, and makeHTMLTags
returns pyparsing expressions for matching the opening and closing tags for the

Getting Started with Pyparsing 26

given tag name. But makeHTMLTags("X") goes far beyond simply returning the ex-
pressions Literal("<X>") and Literal("</X>"):

• Tags may be upper- or lowercase.

• Whitespace may appear anywhere in the tag.

• Any number of attributes can be included, in any order.

• Attribute values can be single-quoted, double-quoted, or unquoted strings.

• Opening tags may include a terminating /, indicating no body text and no
closing tag (specified by using the results name 'empty').

• Tag and attribute names can include namespace references.

But perhaps the most powerful feature of the expressions returned by
makeHTMLTags is that the parsed results include the opening tag's HTML attributes
named results, dynamically creating the results names while parsing.

Here is a short script that searches a web page for image references, printing a list
of images and any provided alternate text:

Note

The standard Python library includes the modules HTMLParser and htmllib for
processing HTML source, although they intolerant of HTML that is not well
behaved. A popular third-party module for HTML parsing is BeautifulSoup.
Here is the BeautifulSoup rendition of the tag extractor:

from BeautifulSoup import BeautifulSoup

soup = BeautifulSoup(html)
imgs = soup.findAll("img")
for img in imgs:
 print "'%(alt)s' : %(src)s" % img

BeautifulSoup works by processing the entire HTML page, and provides a
Pythonic hybrid of DOM and XPATH structure and data access to the parsed
HTML tags, attributes, and text fields.

from pyparsing import makeHTMLTags
import urllib

read data from web page
url = "https://www.cia.gov/library/"\
 "publications/the-world-"\
 "factbook/docs/refmaps.html"
html = urllib.urlopen(url).read()

Getting Started with Pyparsing 27

define expression for tag
imgTag,endImgTag = makeHTMLTags("img")

search for matching tags, and
print key attributes
for img in imgTag.searchString(html):
 print "'%(alt)s' : %(src)s" % img

Notice that instead of using parseString, this script searches for matching text with
searchString. For each match returned by searchString, the script prints the values
of the alt and src tag attributes just as if they were attributes of the parsed tokens
returned by the img expression.

This script just lists out images from the initial page of maps included in the online
CIA Factbook. The output contains information on each map image reference, like
this excerpt:
'Africa Map' : ../reference_maps/thumbnails/africa.jpg
'Antarctic Region Map' : ../reference_maps/thumbnails/antarctic.jpg
'Arctic Region Map' : ../reference_maps/thumbnails/arctic.jpg
'Asia Map' : ../reference_maps/thumbnails/asia.jpg
'Central America and Caribbean Map' : ../reference_maps/thumbnails/central_america.jpg
'Europe Map' : ../reference_maps/thumbnails/europe.jpg
...

The CIA Factbook web site also includes a more complicated web page, which
lists the conversion factors for many common units of measure used around the
world. Here are some sample data rows from this table:

ares square meters 100

ares square yards 119.599

barrels, US beer gallons 31

barrels, US beer liters 117.347 77

barrels, US petroleum gallons (British) 34.97

barrels, US petroleum gallons (US) 42

barrels, US petroleum liters 158.987 29

barrels, US proof spirits gallons 40

barrels, US proof spirits liters 151.416 47

bushels (US) bushels (British) 0.968 9

bushels (US) cubic feet 1.244 456

bushels (US) cubic inches 2,150.42

Getting Started with Pyparsing 28

The corresponding HTML source for these rows is of the form:
<TR align="left" valign="top" bgcolor="#FFFFFF">
 <td width=33% valign=top class="Normal">ares </TD>
 <td width=33% valign=top class="Normal">square meters </TD>
 <td width=33% valign=top class="Normal">100 </TD>
 </TR>
 <TR align="left" valign="top" bgcolor="#CCCCCC">
 <td width=33% valign=top class="Normal">ares </TD>
 <td width=33% valign=top class="Normal">square yards </TD>
 <td width=33% valign=top class="Normal">119.599 </TD>
 </TR>
 <TR align="left" valign="top" bgcolor="#FFFFFF">
 <td width=33% valign=top class="Normal">barrels, US beer </TD>
 <td width=33% valign=top class="Normal">gallons </TD>
 <td width=33% valign=top class="Normal">31 </TD>
 </TR>
 <TR align="left" valign="top" bgcolor="#CCCCCC">
 <td width=33% valign=top class="Normal">barrels, US beer </TD>
 <td width=33% valign=top class="Normal">liters </TD>
 <td width=33% valign=top class="Normal">117.347 77 </TD>
 </TR>
...

Since we have some sample HTML to use as a template, we can create a simple
BNF using shortcuts for opening and closing tags (meaning the results from
makeHTMLTags, with the corresponding support for HTML attributes):
entry ::= <tr> conversionLabel conversionLabel conversionValue </tr>
conversionLabel ::= <td> text </td>
conversionValue ::= <td> readableNumber </td>

Note that the conversion factors are formatted for easy reading (by humans, that
is):

• Integer part is comma-separated on the thousands

• Decimal part is space-separated on the thousandths

We can plan to include a parse action to reformat this text before calling float()
to convert to a floating-point number. We will also need to post-process the text
of the conversion labels; as we will find, these can contain embedded
 tags for
explicit line breaks.

From a purely mechanical point of view, our script must begin by extracting the
source text for the given URL. I usually find the Python urllib module to be suf-
ficient for this task:
import urllib
url = "https://www.cia.gov/library/publications/" \

Getting Started with Pyparsing 29

 "the-world-factbook/appendix/appendix-g.html"
html = urllib.urlopen(url).read()

At this point we have retrieved the web page's source HTML into our Python
variable html as a single string. We will use this string later to scan for conversion
factors.

But we've gotten a little ahead of ourselves—we need to set up our parser's gram-
mar first! Let's start with the real numbers. Looking through this web page, there
are numbers such as:
200
0.032 808 40
1,728
0.028 316 846 592
3,785.411 784

Here is an expression to match these numbers:
decimalNumber = Word(nums, nums+",") + Optional("." + OneOrMore(Word(nums)))

Notice that we are using a new form of the Word constructor, with two arguments
instead of just one. When using this form, Word will use the first argument as the
set of valid starting characters, and the second argument as the set of valid body
characters. The given expression will match 1,000, but not ,456. This two-argu-
ment form of Word is useful when defining expressions for parsing identifiers from
programming source code, such as this definition for a Python variable name:
Word(alphas+"_", alphanums+"_").

Since decimalNumber is a working parser all by itself, we can test it in isolation before
including it into a larger, more complicated expression.

 Best Practice: Incremental Testing

Test individual grammar elements to avoid surprises when merging them into
the larger overall grammar.

Using the list of sampled numbers, we get these results:
['200']
['0', '.', '032', '808', '40']
['1,728']
['0', '.', '028', '316', '846', '592']
['3,785', '.', '411', '784']

In order to convert these into floating-point values, we need to:

Getting Started with Pyparsing 30

• Join the individual token pieces together

• Strip out the commas in the integer part

While these two steps could be combined into a single expression, I want to create
two parse actions to show how parse actions can be chained together.

The first parse action will be called joinTokens, and can be performed by a lambda:
joinTokens = lambda tokens : "".join(tokens)

The next parse action will be called stripCommas. Being the next parse action in the
chain, stripCommas will receive a single string (the output of joinTokens), so we will
only need to work with the 0th element of the supplied tokens:
stripCommas = lambda tokens : tokens[0].replace(",", "")

And of course, we need a final parse action to do the conversion to float:
convertToFloat = lambda tokens : float(tokens[0])

Now, to assign multiple parse actions to an expression, we can use the pair of
methods, setParseAction and addParseAction:
decimalNumber.setParseAction(joinTokens)
decimalNumber.addParseAction(stripCommas)
decimalNumber.addParseAction(convertToFloat)

Or, we can just call setParseAction listing multiple parse actions as separate ar-
guments, and these will be defined as a chain of parse actions to be executed in
the same order that they are given:
decimalNumber.setParseAction(joinTokens, stripCommas, convertToFloat)

Next, let's do a more thorough test by creating the expression that uses decimal
Number and scanning the complete HTML source.
tdStart,tdEnd = makeHTMLTags("td")
conversionValue = tdStart + decimalNumber + tdEnd

for tokens,start,end in conversionValue.scanString(html):
 print tokens

scanString is another parsing method that is especially useful when testing gram-
mar fragments. While parseString works only with a complete grammar, begin-
ning with the start of the input string and working until the grammar is completely
matched, scanString scans through the input text, looking for bits of the text that
match the grammar. Also, scanString is a generator function, which means it will
return tokens as they are found rather than parsing all of the input text, so your
program begins to report matching tokens right away. From the code sample, you

Getting Started with Pyparsing 31

can see that scanString returns the tokens and starting and ending locations for
each match.

Here are the initial results from using scanString to test out the conversionValue
expression:
['td', ['width', '33%'], ['valign', 'top'], ['class', 'Normal'], False,
40.468564223999998, '</td>']
['td', ['width', '33%'], ['valign', 'top'], ['class', 'Normal'], False,
0.40468564223999998, '</td>']
['td', ['width', '33%'], ['valign', 'top'], ['class', 'Normal'], False, 43560.0,
'</td>']
['td', ['width', '33%'], ['valign', 'top'], ['class', 'Normal'], False,
0.0040468564224000001, '</td>']
['td', ['width', '33%'], ['valign', 'top'], ['class', 'Normal'], False,
4046.8564224000002, '</td>']
['td', ['width', '33%'], ['valign', 'top'], ['class', 'Normal'], False,
0.0015625000000000001, '</td>']
['td', ['width', '33%'], ['valign', 'top'], ['class', 'Normal'], False, 4840.0,
'</td>']
...

Well, all those parsed tokens from the attributes of the <TD> tags are certainly
distracting. We should clean things up by adding a results name to the decimal
Number expression and just printing out that part:
conversionValue = tdStart + decimalNumber.setResultsName("factor") + tdEnd

for tokens,start,end in conversionValue.scanString(html):
 print tokens.factor

Now our output is plainly:
40.468564224
0.40468564224
43560.0
0.0040468564224
4046.8564224
0.0015625
4840.0
100.0
...

Also note from the absence of quotation marks that these are not strings, but con-
verted floats. On to the remaining elements!

We've developed the expression to extract the conversion factors themselves, but
these are of little use without knowing the "from" and "to" units. To parse these,
we'll use an expression very similar to the one for extracting the conversion factors:

Getting Started with Pyparsing 32

fromUnit = tdStart + units.setResultsName("fromUnit") + tdEnd
toUnit = tdStart + units.setResultsName("toUnit") + tdEnd

But how will we define the units expression itself? Looking through the web page,
this text doesn't show much of a recognizable pattern. We could try something
like OneOrMore (Word(alphas)), but that would fail when trying to match units of
"barrels, US petroleum" or "gallons (British)." Trying to add in punctuation marks
sets us up for errors when we overlook a little-used mark and unknowingly skip
over a valid conversion factor.

One thing we do know is that the units text ends when we reach the closing </
TD> tag. With this knowledge, we can avoid trying to exhaustively define the pattern
for units, and use a helpful pyparsing class, SkipTo. SkipTo collects all the inter-
vening text, from the current parsing position to the location of the target expres-
sion, into a single string. Using SkipTo, we can define units simply as:
units = SkipTo(tdEnd)

We may end up having to do some post-processing on this text, such as trimming
leading or trailing whitespace, but at least we won't omit some valid units, and we
won't read past any closing </TD> tags.

We are just about ready to complete our expression for extracting unit conversions,
adding expressions for the "from" and "to" unit expressions:
conversion = trStart + fromUnits + toUnits + conversionValue + trEnd

Repeating the test scanning process, we get the following:
for tokens,start,end in conversion.scanString(html):
 print "%(fromUnit)s : %(toUnit)s : %(factor)f" % tokens

acres : ares : 40.468564
acres : hectares : 0.404686
acres : square feet : 43560.000000
acres : square kilometers : 0.004047
acres : square meters : 4046.856422
...

This doesn't seem too bad, but further down the list, there are some formatting
problems:
barrels, US petroleum : liters : 158.987290
barrels, US proof
 spirits : gallons : 40.000000
barrels, US proof
 spirits : liters : 151.416470
bushels (US) : bushels (British) : 0.968900

And even further down, we find these entries:

Getting Started with Pyparsing 33

tons, net register : cubic feet of permanently enclosed space

 for cargo and passengers : 100.000000
tons, net register : cubic meters of permanently enclosed space

 for cargo and passengers : 2.831685

A Note on Web Page Scraping

As helpful as much of this data is on the Internet, it is usually provided under
certain Terms of Service (TOS) that do not always permit automated gathering
of data items with HTML processing scripts. Usually these terms are intended
to deter someone from taking a web site's data for the purpose of creating a
competing or derivative site. But in other cases, the terms are there to ensure
that the web site is used fairly by the Internet's human users, that the site's
servers aren't unduly loaded down with automated page scrapers, and that the
web site owner gets fairly compensated for providing the site's content. Most
TOS do allow for extraction of the data for one's own personal use and refer-
ence. Always check the site's Terms of Service before just helping yourself to
its data.

For the record, the content of the CIA Factbook web site is in the public do-
main (see https://www.cia.gov/about-cia/site-policies/index.html#link1).

So, to clean up the units of measure, we need to strip out newlines and extra spaces,
and remove embedded
 tags. As you may have guessed, we'll use a parse action
to do the job.

Our parse action has two tasks:

• Remove
 tags

• Collapse whitespace and newlines

The simplest way in Python to collapse repeated whitespace is to use the str type's
methods split followed by join. To remove the
 tags, we will just use
str.replace("
"," "). A single lambda for both these tasks will get a little dif-
ficult to follow, so this time we'll create an actual Python method, and attach it to
the units expression:
def htmlCleanup(t):
 unitText = t[0]
 unitText = unitText.replace("
"," ")
 unitText = " ".join(unitText.split())
 return unitText

units.setParseAction(htmlCleanup)

Getting Started with Pyparsing 34

https://www.cia.gov/about-cia/site-policies/index.html#link1

With these changes, our conversion factor extractor can collect the unit conversion
information. We can load it into a Python dict variable or a local database for
further use by our program.

Here is the complete conversion factor extraction program:
import urllib
from pyparsing import *

url = "https://www.cia.gov/library/" \
 "publications/the-world-factbook/" \
 "appendix/appendix-g.html"
page = urllib.urlopen(url)
html = page.read()
page.close()

tdStart,tdEnd = makeHTMLTags("td")
trStart,trEnd = makeHTMLTags("tr")
decimalNumber = Word(nums+",") + Optional("." + OneOrMore(Word(nums)))
joinTokens = lambda tokens : "".join(tokens)
stripCommas = lambda tokens: tokens[0].replace(",","")
convertToFloat = lambda tokens: float(tokens[0])
decimalNumber.setParseAction(joinTokens, stripCommas, convertToFloat)

conversionValue = tdStart + decimalNumber.setResultsName("factor") + tdEnd

units = SkipTo(tdEnd)
def htmlCleanup(t):
 unitText = t[0]
 unitText = " ".join(unitText.split())
 unitText = unitText.replace("
","")
 return unitText
units.setParseAction(htmlCleanup)

fromUnit = tdStart + units.setResultsName("fromUnit") + tdEnd
toUnit = tdStart + units.setResultsName("toUnit") + tdEnd
conversion = trStart + fromUnit + toUnit + conversionValue + trEnd

for tokens,start,end in conversion.scanString(html):
 print "%(fromUnit)s : %(toUnit)s : %(factor)s" % tokens

A Simple S-Expression Parser
S-expressions are a plain ASCII form for representing complex data structures.
They can be used to serialize data to send over a communication path, to persist
into a database, or to otherwise use as a string representation of a hierarchical data
element. When displayed in indented form, S-expressions are even suitable for
human comprehension, providing a simple and intuitive nesting syntax, with pa-

Getting Started with Pyparsing 35

rentheses used as the nesting operators. Here is a sample S-expression describing
an authentication certificate:
(certificate
 (issuer
 (name
 (public-key
 rsa-with-md5
 (e |NFGq/E3wh9f4rJIQVXhS|)
 (n |d738/4ghP9rFZ0gAIYZ5q9y6iskDJwASi5rEQpEQq8ZyMZeIZzIAR2I5iGE=|))
 aid-committee))
 (subject
 (ref
 (public-key
 rsa-with-md5
 (e |NFGq/E3wh9f4rJIQVXhS|)
 (n |d738/4ghP9rFZ0gAIYZ5q9y6iskDJwASi5rEQpEQq8ZyMZeIZzIAR2I5iGE=|))
 tom
 mother))
(not-after "1998-01-01_09:00:00")
 (tag
(spend (account "12345678") (* numeric range "1" "1000"))))

The attraction of S-expressions is that they consist purely of lists of basic character
or numeric strings, with structure represented using nested parentheses.

The languages Lisp and Scheme use S-expressions as their actual program syntax.
Here is a factorial function written in Common Lisp:
(defun factorial (x)
 (if (zerop x) 1
 (* x (factorial (- x 1)))))

The online Wikipedia article (http://en.wikipedia.org/wiki/s-expression) has
more background and additional links for further information on S-expressions.

In computer science classes, it is common to assign as homework the development
of an S-expression parser. Doing so with pyparsing is actually a fairly straightfor-
ward task. This is also our first case of a recursive grammar, in which some
expressions can be written in terms of other expressions of the same type.

Let's start with a very simple S-expression form, in which an expression can be a
single alphabetic word or integer, or a sequence of alphabetic words or integers
enclosed in parentheses. Following our standard practice, we start by defining the
BNF for an S-expression:
alphaword ::= alphas+
integer ::= nums+
sexp ::= alphaword | integer | '(' sexp* ')'

Getting Started with Pyparsing 36

http://en.wikipedia.org/wiki/s-expression

The first two expressions are nothing new, and you can see how we would use
pyparsing's Word class to define them:
alphaword = Word(alphas)
integer = Word(nums)

But sexp is more difficult. Our dilemma is that the definition for sexp includes
sexp itself, but to define sexp we need to refer to sexp!

To resolve this "chicken-and-egg" problem, pyparsing provides the Forward class,
which allows you to "forward" declare an expression before you can fully define
it. The first step is to declare sexp as an empty Forward:
sexp = Forward()

At this point, sexp has no grammar definition yet. To assign the recursive definition
of sexp into sexp, we use the << shift operator:
LPAREN = Suppress("(")
RPAREN = Suppress(")")
sexp << (alphaword | integer | (LPAREN + ZeroOrMore(sexp) + RPAREN)

The << operator "injects" the definition into the existing sexp variable. sexp now
safely contains a reference to itself as part of its recursive definition.

Let's test this simple S-expression parser all by itself:
tests = """\
 red
 100
 (red 100 blue)
 (green ((1 2) mauve) plaid ())""".splitlines()

for t in tests:
 print t
 print sexp.parseString(t)
 print

This gives us the following results:
red
['red']

100
['100']

(red 100 blue)
['red', '100', 'blue']

(green (1 2 mauve) plaid ())
['green', '1', '2', 'mauve', 'plaid']

Getting Started with Pyparsing 37

This successfully parses all of the expressions, but that last test case is a little dis-
appointing. There is no representation of the subexpressions defined within the
nested parentheses. Once again, the Group class provides the missing link.

Remember that Group causes the matched tokens to be enclosed within their own
sublist. By changing the definition of sexp to:
sexp << (alphaword | integer | Group(LPAR + ZeroOrMore(sexp) + RPAR))

the elements within nested parentheses end up within a nested sublist in the results.
And, since this Group construct is defined within the recursive part of the grammar,
this nesting will work recursively as deeply nested as the parenthesis nesting in the
original string. With this change, our results become:
red
['red']

100
['100']

(red 100 blue)
[['red', '100', 'blue']]

(green ((1 2) mauve) plaid ())
[['green', [['1', '2'], 'mauve'], 'plaid', []]]

Much better!

A Complete S-Expression Parser
As it turns out, there is a formal definition for S-expressions to handle many ap-
plications requiring the representation of hierarchical data. You can imagine that
this goes beyond data represented as words and integers—the authentication cer-
tificate sample in the previous section requires a variety of different field types.

The Internet Draft describing S-expressions for data representation can be found
at http://people.csail.mit.edu/rivest/sexp.txt. Fortunately, the draft defines the
BNF for us:
<sexp> :: <string> | <list>
<string> :: <display>? <simple-string> ;
<simple-string> :: <raw> | <token> | <base-64> | <hexadecimal> | <quoted-string> ;
<display> :: "[" <simple-string> "]" ;
<raw> :: <decimal> ":" <bytes> ;
<decimal> :: <decimal-digit>+ ;
 -- decimal numbers should have no unnecessary leading zeros
<bytes> -- any string of bytes, of the indicated length
<token> :: <tokenchar>+ ;
<base-64> :: <decimal>? "|" (<base-64-char> | <whitespace>)* "|" ;

Getting Started with Pyparsing 38

http://people.csail.mit.edu/rivest/sexp.txt

<hexadecimal> :: "#" (<hex-digit> | <white-space>)* "#" ;
<quoted-string> :: <decimal>? <quoted-string-body>
<quoted-string-body> :: "\"" <bytes> "\""
<list> :: "(" (<sexp> | <whitespace>)* ")" ;
<whitespace> :: <whitespace-char>* ;
<token-char> :: <alpha> | <decimal-digit> | <simple-punc> ;
<alpha> :: <upper-case> | <lower-case> | <digit> ;
<lower-case> :: "a" | ... | "z" ;
<upper-case> :: "A" | ... | "Z" ;
<decimal-digit> :: "0" | ... | "9" ;
<hex-digit> :: <decimal-digit> | "A" | ... | "F" | "a" | ... | "f" ;
<simple-punc> :: "−" | "." | "/" | "_" | ":" | "*" | "+" | "=" ;
<whitespace-char> :: " " | "\t" | "\r" | "\n" ;
<base-64-char> :: <alpha> | <decimal-digit> | "+" | "/" | "=" ;

Wait! Did I say "fortunately"? This seems like a lot to digest, but going step by step,
we can implement even a complex BNF such as this by converting each of these
expressions to pyparsing elements. In fact, some of them are already built in to
pyparsing, so we can just use them as is. Deep breath...OK, let's begin.

Since the published BNF is a "top-down" definition, we should work from the
"bottom-up" in defining our pyparsing grammar. We need to do this since Python
requires us to define elements before referencing them.

With some observation, we can see that the bottom half of this BNF consists mostly
of defining sets of characters, rather than actual parsing expressions. In pyparsing,
we will convert these definitions into strings that can be used in composing Word
elements. This BNF also explicitly indicates whitespace in places. Since pyparsing
skips over whitespace by default, we can leave these terms out where they are
separators, and make sure that we accommodate whitespace when it is expressly
part of an expression definition.

So, to begin expressing the sets of valid characters, let's review what pyparsing
already provides us (a reminder, these are strings, not expressions, to be used in
defining Word expressions):

alphas

The characters A-Z and a-z
nums

The characters 0–9
alphanums

The combination of alphas and nums

Getting Started with Pyparsing 39

hexnums

The combination of nums and the characters A-F and a-f
printables

All 7-bit ASCII characters that are not whitespace or control characters

If need be, we could also use the pyparsing function srange (for "string range"),
which borrows the range syntax from regular expressions; for example, srange
("[A-Z]") returns a string containing the uppercase letters A-Z.

We can now implement these basic character sets, working bottom-up, for com-
posing our Word elements:
#<base-64-char> :: <alpha> | <decimal-digit> | "+" | "/" | "=" ;
base_64_char = alphanums + "+/="

#<whitespace-char> :: " " | "\t" | "\r" | "\n" ;
not needed

#<simple-punc> :: "−" | "." | "/" | "_" | ":" | "*" | "+" | "=" ;
simple_punc = "-./_:*+="

#<hex-digit> :: <decimal-digit> | "A" | ... | "F" | "a" | ... | "f" ;
use hexnums

#<decimal-digit> :: "0" | ... | "9" ;
use nums

#<alpha> :: <upper-case> | <lower-case> | <digit> ;
#<lower-case> :: "a" | ... | "z" ;
#<upper-case> :: "A" | ... | "Z" ;
use alphanums

#<token-char> :: <alpha> | <decimal-digit> | <simple-punc> ;
token_char = alphanums + simple_punc

Once again looking ahead at the next set of expressions, we can see that we will
need some punctuation defined. The punctuation will be important during the
parsing process, but I plan to convert the indicated fields during the parsing process
using parse actions, so the punctuation itself will not be needed in the returned
results. Using Python's list-to-variable assignment and the map function, we can
define all our punctuation in a single compact statement:
LPAREN, RPAREN, LBRACK, RBRACK = map(Suppress, "()[]")

We can now visit the top half of the list, and implement those expressions that are
defined in terms of the character sets and punctuation that have been defined:

Getting Started with Pyparsing 40

<bytes> -- any string of bytes, of the indicated length
bytes = Word(printables)

<decimal> :: <decimal-digit>+ ;
-- decimal numbers should have no unnecessary leading zeros
decimal = "0" | Word(srange("[1–9]"), nums)

<quoted-string-body> :: "\"" <bytes> "\""
not needed, use dblQuotedString

<quoted-string> :: <decimal>? <quoted-string-body>
quoted_string = Optional(decimal) + dblQuotedString

<hexadecimal> :: "#" (<hex-digit> | <white-space>)* "#" ;
hexadecimal = "#" + ZeroOrMore(Word(hexnums)) + "#"

<base-64> :: <decimal>? "|" (<base-64-char> | <whitespace>)* "|" ;
base_64 = Optional(decimal) + "|" + ZeroOrMore(Word(base_64_char)) + "|"

<token> :: <tokenchar>+ ;
token = Word(tokenchar)

<raw> :: <decimal> ":" <bytes> ;
raw = decimal + ":" + bytes

<simple-string> :: <raw> | <token> | <base-64> | <hexadecimal> | <quoted-string> ;
simple_string = raw | token | base_64 | hexadecimal | quoted_string

<display> :: "[" <simple-string> "]" ;
display = LBRACK + simple_string + RBRACK

<string> :: <display>? <simple-string> ;
string_ = Optional(display) + simple_string

As I mentioned before, the published BNF describes elements in a general "top-
down" order, or most complex expression to simplest expression. In developing
these expressions in Python, we have to define the simple expressions first, so that
they can be used in composing the more complicated expressions to follow.

Here are some other points in developing these next-level expressions:

• The definition of decimal states that there should be no extra leading zeros. We
implemented this by using Word's two-argument constructor, specifying the
non-zero digits as the set of valid leading characters, and the set of all digits as
the set of valid body characters.

• Most BNF's use the conventions of + for "1 or more," * for "zero or more,"
and ? for "zero or one." For the most part, we can map these to pyparsing classes
OneOrMore, ZeroOrMore, and Optional. (The exception is when the BNF indicates

Getting Started with Pyparsing 41

OneOrMore of a set of characters; in this case, use the Word class, as shown with
token being made up of token_char+.)

• This BNF includes optional whitespace as possible characters in the
hexadecimal and base-64 expressions. One way to implement this is to define
an expression such as hexadecimal as Word(hexnums+" "). Instead, I've chosen
to define this as ZeroOrMore(Word(hexnums)), which will give us a list of the parts
composed of hex digits, and implicitly skip over the interior whitespace.

At this point, the remaining expressions are:
<sexp> :: <string> | <list>
<list> :: "(" (<sexp> | <whitespace>)* ")" ;

Here we have come to the recursive part of the BNF. In this case, sexp is defined
in terms of list, but list is defined using sexp. To break this cycle, we'll define
sexp as a Forward (and also rename list to list_, so as not to mask the Python
built-in type):
<list> :: "(" (<sexp> | <whitespace>)* ")" ;
sexp = Forward()
list_ = LPAREN + Group(ZeroOrMore(sexp)) + RPAREN

And to close the loop, we define the body of sexp as (string_ | list_). Remember,
we cannot just use a Python assignment statement or else the definition of sexp
will not be used as the contents of list_. Instead, we use the << shift operator to
insert the definition into the previously defined sexp:
<sexp> :: <string> | <list>
sexp << (string_ | list_)

Now we have completed the basic syntax definition of the S-expression BNF. Let's
try it out on our previous example, the authentication certificate:

 Helpful Tip

To get nested output like this, I use Python's pprint pretty-printing module.
You have to call the asList() method of the returned ParseResults to convert
the ParseResults object into a simple nested list, which is understandable to
the pprint.pprint method.

print sexp.parseString(certificateExpr)

gives us the results:
[['certificate',
 ['issuer',

Getting Started with Pyparsing 42

 ['name',
 ['public-key',
 'rsa-with-md5',
 ['e','|', 'NFGq/E3wh9f4rJIQVXhS','|'],
 ['n',
 '|',
 'd738/4ghP9rFZ0gAIYZ5q9y6iskDJwAS
 i5rEQpEQq8ZyMZeIZzIAR2I5iGE=',
 '|']],
 'aid-committee']],
 ['subject',
 ['ref',
 ['public-key',
 'rsa-with-md5',
 ['e','|', 'NFGq/E3wh9f4rJIQVXhS','|'],
 ['n',
 '|',
 'd738/4ghP9rFZ0gAIYZ5q9y6iskDJwASi5rEQpEQq8ZyMZeIZzIAR2I5iGE=',
 '|']],
 'tom',
 'mother']],
 ['not-after', '"1998-01-01_09:00:00"'],
 ['tag',
 ['spend',
 ['account', '"12345678"'],
 ['*', 'numeric', 'range', '"1"', '"1000"']]]]]

Before leaving this parser, there are just a few more parse actions to add:

• Removal of the quotation marks on quoted strings.

• Conversion of the base64 data to binary data.

• Validation of the data length values, when specified.

The quotation marks on the quoted strings are simply there to enclose some body
of text into a single string. The dblQuotedString expression already does this for
us so that the leading and trailing quotation marks themselves are not needed in
the results. This task is so common that pyparsing includes a method for just this
purpose, removeQuotes:
dblQuotedString.setParseAction(removeQuotes)

To convert the base64 data field, we'll add a short parse action to call b64decode,
defined in Python's base64 module:
base_64 = Optional(decimal) + "|" + \
 OneOrMore(Word(base_64_char)).setParseAction(lambda t:b64decode("".join(t))) + "|"

Getting Started with Pyparsing 43

This parse action does two tasks in one: it joins together the multiple tokens re-
turned from the OneOrMore expression, and then calls b64decode to convert that
data back to its original form.

Lastly, we'll implement the length validation for the base-64, quoted-string, and
raw expressions. These expressions all include an optional leading decimal element
to be used as an expected character count in the attached base64 or character string
data. We can use a parse action to verify that these data length values are correct.
We'll design the validation parse action to look for two named results in the input
tokens: the length field will be named length, and the content field will be named
data. Here is how that parse action will look:
def validateDataLength(tokens):
 if tokens.length != "":
 if len(tokens.data) != int(tokens.length):
 raise ParseFatalException \
 ("invalid data length, %d specified, found %s (%d chars)" %
 (int(tokens.length), tokens.data, len(tokens.data)))

At the start, validateDataLength checks to see whether a length field is given. If
the length field is not present, retrieving the length attribute will return an empty
string. If a length field is present, we then see whether the length of the data field
matches it. If not, our parse action will a raise a different kind of ParseException,
a ParseFatalException. Unlike the Parse-Exception, which simply signals a failed
syntax match, ParseFatal-Exception will cause parsing to stop immediately at the
current location.

For this parse action to work, we'll need to go back and attach results names to
the appropriate elements of the base_64, quoted_string, and raw expressions:
raw = decimal.setResultsName("length") + ":" + Word(bytes).setResultsName("data")

dblQuotedString.setParseAction(removeQuotes)
quoted_string = Optional(decimal.setResultsName("length")) + \
 dblQuotedString.setResultsName("data")

base_64_body = OneOrMore(Word(base_64_char))
base_64_body.setParseAction(lambda t:b64decode("".join(t)))
base_64 = Optional(decimal.setResultsName("length")) + "|" + \
 base_64_body.setResultsName("data") + "|"

The base_64 expression was getting rather complicated, so I broke out the content
field as its own expression, base_64_body.

With these changes in place, here is our final parser, with test cases:
from pyparsing import *
from base64 import b64decode

Getting Started with Pyparsing 44

import pprint

LPAREN, RPAREN, LBRACK, RBRACK = map(Suppress, "()[]")

base_64_char = alphanums + "+/="
simple_punc = "-./_:*+="
token_char = alphanums + simple_punc
bytes = Word(printables)
decimal = ("0" | Word(srange("[1-9]"), nums)).setParseAction(lambda t: int(t[0]))

token = Word(token_char)
hexadecimal = "#" + ZeroOrMore(Word(hexnums)) + "#"

dblQuotedString.setParseAction(removeQuotes)
quoted_string = Optional(decimal.setResultsName("length")) + \
 dblQuotedString.setResultsName("data")

base_64_body = OneOrMore(Word(base_64_char))
base_64_body.setParseAction(lambda t:b64decode("".join(t)))
base_64 = Optional(decimal.setResultsName("length")) + \
 "|" + base_64_body.setResultsName("data") + "|"

raw = (decimal.setResultsName("length") + ":" +
 bytes.setResultsName("data"))
simple_string = raw | token | base_64 | hexadecimal | quoted_string
display = LBRACK + simple_string + RBRACK
string_ = Optional(display) + simple_string

sexp = Forward()
list_ = Group(LPAREN + ZeroOrMore(sexp) + RPAREN)
sexp << (string_ | list_)

def validateDataLength(tokens):
 if tokens.length != "":
 if len(tokens.data) != int(tokens.length):
 raise ParseFatalException \
 ("invalid data length, %d specified, found %s (%d chars)" %
 (int(tokens.length), tokens.data, len(tokens.data)))

quoted_string.setParseAction(validateDataLength)
base_64.setParseAction(validateDataLength)
raw.setParseAction(validateDataLength)

######### Test data ###########
test0 = """(snicker "abc" (#03# |YWJj|))"""
test1 = """(certificate
 (issuer
 (name
 (public-key
 rsa-with-md5

Getting Started with Pyparsing 45

 (e |NFGq/E3wh9f4rJIQVXhS|)
 (n |d738/4ghP9rFZ0gAIYZ5q9y6iskDJwASi5rEQpEQq8ZyMZeIZzIAR2I5iGE=|))
 aid-committee))
 (subject
 (ref
 (public-key
 rsa-with-md5
 (e |NFGq/E3wh9f4rJIQVXhS|)
 (n |d738/4ghP9rFZ0gAIYZ5q9y6iskDJwASi5rEQpEQq8ZyMZeIZzIAR2I5iGE=|))
 tom
 mother))
 (not-after "1998-01-01_09:00:00")
 (tag
 (spend (account "12345678") (* numeric range "1" "1000"))))
"""
test2 = """\
(defun factorial (x)
 (if (zerop x) 1
 (* x (factorial (- x 1)))))
 """
test3 = """(3:XX "abc" (#30# |YWJj|))"""

Run tests
for t in (test0, test1, test2, test3):
 print '-'*50
 print t
 try:
 sexpr = sexp.parseString(t)
 pprint.pprint(sexpr.asList())
 except ParseFatalException, pfe:
 print "Error:", pfe.msg
 print line(pfe.loc,t)
 print pfe.markInputline()
 print

The test output is:
--
(snicker "abc" (#03# |YWJj|))
[['snicker', 'abc', ['#', '03', '#', '|', 'abc', '|']]]

--
(certificate
 (issuer
 (name
 (public-key
 rsa-with-md5
 (e |NFGq/E3wh9f4rJIQVXhS|)
 (n |d738/4ghP9rFZ0gAIYZ5q9y6iskDJwASi5rEQpEQq8ZyMZeIZzIAR2I5iGE=|))
 aid-committee))
 (subject

Getting Started with Pyparsing 46

 (ref
 (public-key
 rsa-with-md5
 (e |NFGq/E3wh9f4rJIQVXhS|)
 (n |d738/4ghP9rFZ0gAIYZ5q9y6iskDJwASi5rEQpEQq8ZyMZeIZzIAR2I5iGE=|))
 tom
 mother))
 (not-after "1998-01-01_09:00:00")
 (tag
 (spend (account "12345678") (* numeric range "1" "1000"))))

[['certificate',
 ['issuer',
 ['name',
 ['public-key',
 'rsa-with-md5',
 ['e', '|', '4Q\xaa\xfcM\xf0\x87\xd7\xf8\xac\x92\x10UxR', '|'],
 ['n',
 '|',
 "w\xbd\xfc\xff\x88!?\xda\xc5gH\x00!\x86y\xab\xdc\xba\x8a\xc9\x03'\
 x00\x12\x8b\x9a\xc4B\x91\x10\xab\xc6r1\x97\x88g2\x00Gb9\x88a",
 '|']],
 'aid-committee']],
 ['subject',
 ['ref',
 ['public-key',
 'rsa-with-md5',
 ['e', '|', '4Q\xaa\xfcM\xf0\x87\xd7\xf8\xac\x92\x10UxR', '|'],
 ['n',
 '|',
 "w\xbd\xfc\xff\x88!?\xda\xc5gH\x00!\x86y\xab\xdc\xba\x8a\xc9\x03'\
 x00\x12\x8b\x9a\xc4B\x91\x10\xab\xc6r1\x97\x88g2\x00Gb9\x88a",
 '|']],
 'tom',
 'mother']],
 ['not-after', '1998-01-01_09:00:00'],
 ['tag',
 ['spend',
 ['account', '12345678'],
 ['*', 'numeric', 'range', '1', '1000']]]]]

--
(defun factorial (x)
 (if (zerop x) 1
 (* x (factorial (- x 1)))))

[['defun',
 'factorial',
 ['x'],
 ['if', ['zerop', 'x'], '1', ['*', 'x', ['factorial', ['-', 'x', '1']]]]]]

Getting Started with Pyparsing 47

--
(3:XX "abc" (#30# |YWJj|))
Error: invalid data length, 3 specified, found XX (2 chars)
(3:XX "abc" (#30# |YWJj|))
>!<

Parsing a Search String
The explosion of data made possible by the technologies of the Internet and the
World Wide Web has led to the emergence of applications and services for search-
ing and organizing that mass of data. A typical interface to a search service is a
string of keywords that is used to retrieve web pages of interest to the searcher.
Services such as Google have very simplified search interfaces, in which each sep-
arate word is assumed to be a potential keyword, and the search engine will look
for pages containing any of the given keywords (perhaps ranking the pages by the
number of keywords present on the page).

In this application, I am going to describe a more elaborate search string interface,
with support for AND, OR, and NOT keyword qualifiers. Keywords may be single
words delimited by whitespace, or a quoted string for keywords that contain spaces
or non-alphanumeric characters, or for a search keyword or phrase that includes
one of the special qualifier words AND, OR, or NOT. Here are a few sample search
phrases for us to parse:
 wood and blue or red
 wood and (blue or red)
 (steel or iron) and "lime green"
 not steel or iron and "lime green"
 not(steel or iron) and "lime green"

describing objects in the simple universe depicted in this figure.

We would also like to have our parser return the parsed results in a hierarchical
structure based on the precedence of operations among the AND, OR, and NOT

Figure 1. The universe of all possible things

Getting Started with Pyparsing 48

qualifiers. In normal programming practice, the hierarchy of these operations is
defined as:

• NOT has the highest precedence, and is evaluated first

• AND has the next highest precedence

• OR has the lowest precedence, and is evaluated last

So, the phrase "wood and blue or red" is interpreted as "retrieve any item that is
both wood and blue, OR any item that is red no matter what it is made of."

Parentheses can be used to override this precedence of operations, so that the
phrase "wood and (blue or red)" will be interpreted as "only retrieve items that are
made of wood AND are either blue or red."

Following our best practice, here is a BNF for this simple search string parser:
searchExpr ::= searchTerm [(AND | OR) searchTerm]...
searchTerm ::= [NOT] (single-word | quotedString | '(' searchExpr ')')

However, this BNF will not evaluate any precedence between AND and OR ex-
pressions. To do this, we must separate the AND and OR operations so that the
precedence of evaluation will be represented in the parsed token structure.

Figure 2. Things in the universe that are "wood and blue or red"

Figure 3. Things in the universe that are "wood and (blue or red)"

Getting Started with Pyparsing 49

To define a BNF that recognizes the precedence of operations, we must define a
sequence of expressions in which each operation from lowest precedence to high-
est is parsed. The uppermost expression will define the operator with the lowest
precedence, using as operands an expression that defines the operator with the
next lowest precedence, and so on. At parsing time, the parser will recursively
evaluate the expressions, so that through recursion, the highest precedence oper-
ator found in the input text will be recognized and evaluated first.

In this version of the BNF, AND expressions will be parsed ahead of OR expres-
sions, and NOT expressions will be parsed ahead of AND expressions.
searchExpr ::= searchAnd [OR searchAnd]...
searchAnd ::= searchTerm [AND searchTerm]...
searchTerm ::= [NOT] (single-word | quotedString | '(' searchExpr ')')

This grammar can be implemented directly into pyparsing expressions:
searchExpr = Forward()
searchTerm = Optional(not_) + (Word(alphas) |
 quotedString.setParseAction(removeQuotes) | \
 Group(LPAREN + searchExpr + RPAREN))
searchAnd = Group(searchTerm + ZeroOrMore(and_ + searchTerm))
searchExpr << Group(searchAnd + ZeroOrMore(or_ + searchAnd))

Using this grammar, our parsing examples evaluate as:
wood and blue or red
[[['wood', 'and', 'blue'], 'or', ['red']]]

wood and (blue or red)
[[['wood', 'and', [[['blue'], 'or', ['red']]]]]]

(steel or iron) and "lime green"
[[[[[['steel'], 'or', ['iron']]], 'and', 'lime green']]]

not steel or iron and "lime green"
[[['not', 'steel'], 'or', ['iron', 'and', 'lime green']]]

not(steel or iron) and "lime green"
[[['not', [[['steel'], 'or', ['iron']]], 'and', 'lime green']]]

These results can now be evaluated using a depth-first recursive method, and the
AND, OR, and NOT expressions will be evaluated in the proper precedence.

Defining and evaluating expressions with operators of various precedence is a
common application for parsers, and pyparsing includes a method named opera
torPrecedence to simplify the definition of such grammars.

Getting Started with Pyparsing 50

To use operatorPrecedence, you must first define a parse expression for the most
basic operand. For this search application, the smallest operand is a search term
given as a single word or quoted string:
searchTerm = Word(alphas) | quotedString.setParseAction(removeQuotes))

Using this base operand, you then compose the search expression by calling opera
torPrecedence with this operand, and a list of operator descriptions. For each op-
erator or set of operators with the same precedence level, you define:

• An expression to match the operator or set of operators

• The integer value 1 or 2 to indicate whether this is a unary or binary operator

• The pyparsing constant opAssoc.LEFT or opAssoc.RIGHT to describe whether this
operator is left- or right-associative

• An optional parse action to be performed when an operation is matched

To define the NOT, AND, and OR operations for search terms, we can call opera
torPrecedence using:
searchExpr = operatorPrecedence(searchTerm,
 [
 (not_, 1, opAssoc.RIGHT),
 (and_, 2, opAssoc.LEFT),
 (or_, 2, opAssoc.LEFT),
])

More Examples

The pyparsing wiki includes two other examples using operatorPrecedence:

• simpleBool: Evaluates Boolean logic expressions.

• simpleArith: Evaluates arithmetic expressions with the operations of ad-
dition, subtraction, multiplication, division, exponentiation, and factorial.

You can view them online, or find them in the examples directory of the py-
parsing source and docs distributions.

Not only is this simpler to define, it also creates internal grouping, so that the test
strings now parse to the simpler structures:
wood and blue or red
[[['wood', 'and', 'blue'], 'or', 'red']]

wood and (blue or red)
[['wood', 'and', ['blue', 'or', 'red']]]

Getting Started with Pyparsing 51

(steel or iron) and "lime green"
[[['steel', 'or', 'iron'], 'and',
 'lime green']]

not steel or iron and "lime green"
[[['not', 'steel'], 'or', ['iron', 'and',
 'lime green']]]

not(steel or iron) and "lime green"
[[['not', ['steel', 'or', 'iron']], 'and',
 'lime green']]

Here is the complete parser code for our simple search expression parser:
from pyparsing import *

and_ = CaselessLiteral("and")
or_ = CaselessLiteral("or")
not_ = CaselessLiteral("not")
searchTerm = Word(alphanums) | quotedString.setParseAction(removeQuotes)
searchExpr = operatorPrecedence(searchTerm,
 [
 (not_, 1, opAssoc.RIGHT),
 (and_, 2, opAssoc.LEFT),
 (or_, 2, opAssoc.LEFT),
])

tests = """\
 wood and blue or red
 wood and (blue or red)
 (steel or iron) and "lime green"
 not steel or iron and "lime green"
 not(steel or iron) and "lime green"""".splitlines()

for t in tests:
 print t.strip()
 print searchExpr.parseString(t)[0]
 print

Results:
wood and blue or red
[['wood', 'and', 'blue'], 'or', 'red']

wood and (blue or red)
['wood', 'and', ['blue', 'or', 'red']]

(steel or iron) and "lime green"
[['steel', 'or', 'iron'], 'and', 'lime green']

not steel or iron and "lime green"

Getting Started with Pyparsing 52

[['not', 'steel'], 'or', ['iron', 'and', 'lime green']]

not(steel or iron) and "lime green"
[['not', ['steel', 'or', 'iron']], 'and', 'lime green']

Search Engine in 100 Lines of Code
Let's build on the previous example and create an actual search engine. We can
use parse actions to compile the search string into an intermediate data structure,
and then use that structure to generate and evaluate Python sets to extract match-
ing items by keyword.

The example data set this time will not be all the wooden, steel, or iron things in
the universe that are red, blue, or lime green, but a collection of recipes with their
respective ingredients.

These will be defined using simple Python lists:
recipes = "Tuna casserole/Hawaiian pizza/Chicken a la King/"\
 "Pepperoni pizza/Baked ham/Tuna melt/Eggs Benedict"\
 .split("/")
ingredients = "eggs/pineapple/pizza crust/pepperoni/ham/bacon/"\
 "English muffins/noodles/tuna/cream of mushroom soup/chicken/"\
 "mixed vegetables/cheese/tomato sauce/mayonnaise/Hollandaise sauce"\
 .split("/")

The contents of each recipe will be defined using a list of tuples, each tuple mapping
the index of a recipe to the index of one of its ingredients:
recipe_ingredients_map = [
 (0,8),(0,9),(0,7),(1,2),(1,1),(1,4),(2,7),(2,9),(2,10),(2,11),
 (3,3),(3,2),(3,12),(3,13),(4,1),(4,4),(5,6),(5,8),(5,14),(5,12),
 (6,6),(6,0),(6,12),(6,4),(6,15),
]

So, recipe 0 ("Tuna casserole") contains ingredients 8, 9, and 7 ("tuna," "cream of
mushroom soup," and "noodles"). Not exactly the Cordon Bleu, but enough to get
us started.

Our search engine will focus on finding recipes that contain given ingredients, so
we'll define a Python dict named recipesByIngredient, which will serve as our
database index, to make it easier to find which recipes reference a particular in-
gredient:
recipesByIngredient = dict((i,[]) for i in ingredients)
for recIndex,ingIndex in recipe_ingredients_map:
 recipesByIngredient[ingredients[ingIndex]].append(recipes[recIndex])

With our basic data reference established, we can work on applying the search
string parser to extract data by search string.

Getting Started with Pyparsing 53

The BNF for the search string is exactly as before, and we can reuse the operator
Precedence implementation as is:
searchExpr ::= searchAnd [OR searchAnd]...
searchAnd ::= searchTerm [AND searchTerm]...
searchTerm ::= [NOT] (single-word | quotedString | '(' searchExpr ')')

and_ = CaselessLiteral("and")
or_ = CaselessLiteral("or")
not_ = CaselessLiteral("not")
searchTerm = Word(alphanums) | quotedString.setParseAction(removeQuotes)
searchExpr = operatorPrecedence(searchTerm,
 [
 (not_, 1, opAssoc.RIGHT),
 (and_, 2, opAssoc.LEFT),
 (or_, 2, opAssoc.LEFT),
])

The next step is to modify the operation descriptions in the operator-Precedence
definition to add parse actions to perform the creation of the search data structure.
These parse actions will be different from previous parse actions we have created.
Instead of modifying the string tokens or returning new string tokens, these parse
actions will be class constructors that take a ParseResults object and return an
object that will perform some form of data search evaluation. Each of the three
operators NOT, AND, and OR will have its own search evaluation class,
SearchNot, SearchAnd, and SearchOr.

Let's abstract the construction of these objects into two classes, BinaryOperation
and UnaryOperation. The purpose of these classes will simply be to have an initial-
izer that pulls the correct arguments from the tokens passed to a parse action, and
saves them to suitable instance attributes:
class UnaryOperation(object):
 def __init__(self, tokens):
 self.op, self.a = tokens[0]

This simple initializer will extract the operator into an attribute named op, and the
argument into attribute a.
class BinaryOperation(object):
 def __init__(self, t):
 self.op = tokens[0][1]
 self.operands = tokens[0][0::2]

The initializer for BinaryOperation looks a little more complicated. Binary opera-
tions in operatorPrecedence can return multiple operation/operands if multiple
operations of the same precedence level occur together. For instance, a binary
operation for addition will parse "a+b+c" as ['a', '+', 'b', '+', 'c'], not

Getting Started with Pyparsing 54

[['a', '+', 'b'], '+', 'c'], so BinaryOperation needs to be able to recognize
and process a chain of like operations, not just a simple a op b operation.

The Python [0::2] slicing notation indicates that the operands will be taken from
the list of tokens beginning with the 0th element, and then stepping by 2 until the
end of the list. So, this will process a token list such as ['a', '+', 'b', '+',
'c'], and give us the tokens ['a', 'b', 'c'].

For each operator type, we create a handler class that will derive from one of these
classes. For now, let's just define handler classes that can display their own repr
strings:
class SearchAnd(BinaryOperation):
 def __repr__(self):
 return "AND:(%s)" % (",".join(str(oper) for oper in self.operands))

class SearchOr(BinaryOperation):
 def __repr__(self):
 return "OR:(%s)" % (",".join(str(oper) for oper in self.operands))

class SearchNot(UnaryOperation):
 def __repr__(self):
 return "NOT:(%s)" % str(self.a)

To construct these objects during a parse action, you might consider creating parse
actions that look something like:
def makeSearchAnd(tokens):
 searchAnd = SearchAnd(tokens)
 return searchAnd
...

and then pass makeSearchAnd, etc., into the operatorPrecedence call:
searchExpr = operatorPrecedence(searchTerm,
 [
 (not_, 1, opAssoc.RIGHT, makeSearchNot),
 (and_, 2, opAssoc.LEFT, makeSearchAnd),
 (or_, 2, opAssoc.LEFT, makeSearchOr),
])

In fact, the classes themselves are sufficient objects to pass as parse actions, since
their initializers already have the proper argument lists to accept the arguments
passed to a parse action. So, we can discard the makeSearchXXX methods, and just
pass the classes directly as the parse actions for operatorPrecedence:
searchExpr = operatorPrecedence(searchTerm,
 [
 (not_, 1, opAssoc.RIGHT, SearchNot),

Getting Started with Pyparsing 55

 (and_, 2, opAssoc.LEFT, SearchAnd),
 (or_, 2, opAssoc.LEFT, SearchOr),
])

For completeness, we will create one more class, to be added as a parse action for
the base operand search terms themselves:
class SearchTerm(object):
 def __init__(self, tokens):
 self.term = tokens[0]
 def __repr__(self):
 return self.term

searchTerm.setParseAction(SearchTerm)

If we add these classes and the modified operatorPrecedence call to the existing
parser code, we can visualize the search expressions data structures now being
built. Once again, we will need some sample search strings to test the parser:
pineapple
pineapple and 'pizza crust'
noodles and tuna or ham
noodles and (tuna or ham)
pineapple and noodles
tuna or ham or pineapple
tuna or (ham and not pineapple)
not tuna
not (pineapple or tuna)

Since our returned objects implement suitable repr methods, we can just print the
ParseResults object returned from calling parseString, and see the data structures
that are created:
pineapple -> pineapple
pineapple and 'pizza crust' -> AND:(pineapple,pizza crust)
noodles and tuna or ham -> OR:(AND:(noodles,tuna),ham)
noodles and (tuna or ham) -> AND:(noodles,OR:(tuna,ham))
pineapple and noodles -> AND:(pineapple,noodles)
tuna or ham or pineapple -> OR:(tuna,ham,pineapple)
tuna or (ham and not pineapple) -> OR:(tuna,AND:(ham,NOT:(pineapple)))
not tuna -> NOT:(tuna)
not (pineapple or tuna) -> NOT:(OR:(pineapple,tuna))

Now that we are parsing the search string into a data structure of objects, we can
put those objects to work searching for matching data.

The design we will implement will be very similar to the one used in the Venn
diagrams that illustrated the search results matching the test strings in the first
search string example. Each region in the diagram represents a set of objects. We
will use Python sets to model these separate groups. For each SearchXXX class, we

Getting Started with Pyparsing 56

will generate a fragment Python set expression, using Python set operations such
as & for intersection, | for union, and - for negation. The concatenation of these
fragments will give us an overall set expression, which can be evaluated using the
Python eval command. The results of the evaluated set expression will be the
desired results of the original search string. We will in essence have compiled the
search string into a Python expression, which we then execute to get the requested
search results.

SearchTerm is the simplest to implement and will set the stage for the more complex
operations. When a term such as "pineapple" is included in the search string, we
would like to select all of the recipes that include "pineapple" as one of their in-
gredients. Given the in-memory mini-database we created at the beginning of this
section, we can find the set of all recipes directly from the global dict variable
recipesByIngredient:
set(recipesByIngredient['pineapple'])

We should also guard against searches for ingredients that are not in the database
so that if a term is not in recipesByIngredient, we return an empty set.

So, the implementation of generateSetExpression for SearchTerm is:
 def generateSetExpression(self):
 if self.term in recipesByIngredient:
 return "set(recipesByIngredient['%s'])" % self.term
 else:
 return "set()"

SearchAnd and SearchOr are almost as easy. Since these binary operations have an
operands attribute initialized to contain the terms or subexpressions that are to be
"and"ed or "or"ed, the generateSetExpression method for SearchAnd and
SearchOr can be the results of the operands' generateSetExpression methods,
joined by & and |, respectively:
class SearchAnd
 def generateSetExpression(self):
 return "(%s)" % \
 " & ".join(oper.generateSetExpression() for oper in self.operands)

class SearchOr
 def generateSetExpression(self):
 return "(%s)" % \
 " | ".join(oper.generateSetExpression() for oper in self.operands)

SearchNot is a bit more difficult. The set expression for the set of items that are not
in set X is the set of all items minus X. In Python, we would implement ∼X as:
set(everything) - set(X)

Getting Started with Pyparsing 57

To implement generateSetExpression for SearchNot, we will return the negation
of the operand's set expression as the operand's set subtracted from the set of all
recipes:
class SearchNot
 def generateSetExpression(self):
 return "(set(recipes) - %s)" % self.a.generateSetExpression()

That completes the work on the search classes. Let's rerun the tests to see how the
generated set expressions look:
pineapple ->
 set(recipesByIngredient['pineapple'])

pineapple and 'pizza crust' ->
 (set(recipesByIngredient['pineapple']) & set(recipesByIngredient['pizza crust']))

noodles and tuna or ham ->
 ((set(recipesByIngredient['noodles']) & set(recipesByIngredient['tuna']))
| set(recipesByIngredient['ham']))

noodles and (tuna or ham) ->
 (set(recipesByIngredient['noodles']) & (set(recipesByIngredient['tuna']) |
set(recipesByIngredient['ham'])))

pineapple and noodles ->
 (set(recipesByIngredient['pineapple']) & set(recipesByIngredient['noodles']))

tuna or ham or pineapple ->
 (set(recipesByIngredient['tuna']) | set(recipesByIngredient['ham']) |
set(recipesByIngredient['pineapple']))

tuna or (ham and not pineapple) ->
 (set(recipesByIngredient['tuna']) | (set(recipesByIngredient['ham']) &
(set(recipes) - set(recipesByIngredient['pineapple']))))

not tuna ->
 (set(recipes) - set(recipesByIngredient['tuna']))

not (pineapple or tuna) ->
 (set(recipes) - (set(recipesByIngredient['pineapple']) |
set(recipesByIngredient['tuna'])))

anchovies ->
 set()

(I added the last search string as a test of the nonexistent ingredient search.)

Getting Started with Pyparsing 58

The only remaining step for each search string is to evaluate its Python set expres-
sion, and list out the resulting items. The following code lists the complete parser,
including test data initialization and test search strings:
from pyparsing import *

populate ingredients->recipes "database"
recipes = "Tuna casserole/Hawaiian pizza/Chicken a la King/"\
 "Pepperoni pizza/Baked ham/Tuna melt/Eggs Benedict"\
 .split("/")
ingredients = "eggs/pineapple/pizza crust/pepperoni/ham/bacon/"\
 "English muffins/noodles/tuna/cream of mushroom soup/chicken/"\
 "mixed vegetables/cheese/tomato sauce/mayonnaise/Hollandaise sauce"\
 .split("/")
recipe_ingredients_map = [
 (0,8),(0,9),(0,7),(1,2),(1,1),(1,4),(2,7),(2,9),(2,10),(2,11),
 (3,3),(3,2),(3,12),(3,13),(4,1),(4,4),(5,6),(5,8),(5,14),(5,12),
 (6,6),(6,0),(6,12),(6,4),(6,15),
]
recipesByIngredient = dict((i,[]) for i in ingredients)
for recIndex,ingIndex in recipe_ingredients_map:
 recipesByIngredient[ingredients[ingIndex]].append(recipes[recIndex])

classes to be constructed at parse time, from intermediate ParseResults
class UnaryOperation(object):
 def __init__(self, t):
 self.op, self.a = t[0]

class BinaryOperation(object):
 def __init__(self, t):
 self.op = t[0][1]
 self.operands = t[0][0::2]

class SearchAnd(BinaryOperation):
 def generateSetExpression(self):
 return "(%s)" % \
 " & ".join(oper.generateSetExpression() for oper in self.operands)
 def __repr__(self):
 return "AND:(%s)" % (",".join(str(oper) for oper in self.operands))

class SearchOr(BinaryOperation):
 def generateSetExpression(self):
 return "(%s)" % \
 " | ".join(oper.generateSetExpression() for oper in self.operands)
 def __repr__(self):
 return "OR:(%s)" % (",".join(str(oper) for oper in self.operands))

class SearchNot(UnaryOperation):
 def generateSetExpression(self):
 return "(set(recipes) - %s)" % self.a.generateSetExpression()

Getting Started with Pyparsing 59

 def __repr__(self):
 return "NOT:(%s)" % str(self.a)

class SearchTerm(object):
 def __init__(self, tokens):
 self.term = tokens[0]
 def generateSetExpression(self):
 if self.term in recipesByIngredient:
 return "set(recipesByIngredient['%s'])" % self.term
 else:
 return "set()"
 def __repr__(self):
 return self.term

define the grammar
and_ = CaselessLiteral("and")
or_ = CaselessLiteral("or")
not_ = CaselessLiteral("not")
searchTerm = Word(alphas) | quotedString.setParseAction(removeQuotes)
searchTerm.setParseAction(SearchTerm)
searchExpr = operatorPrecedence(searchTerm,
 [
 (not_, 1, opAssoc.RIGHT, SearchNot),
 (and_, 2, opAssoc.LEFT, SearchAnd),
 (or_, 2, opAssoc.LEFT, SearchOr),
])

test the grammar and selection logic
test = """\
 pineapple
 pineapple and 'pizza crust'
 noodles and tuna or ham
 noodles and (tuna or ham)
 pineapple and noodles
 tuna or ham or pineapple
 tuna or (ham and not pineapple)
 not tuna
 not (pineapple or tuna)
 anchovies""".splitlines()

for t in test:
 try:
 evalStack = (searchExpr + stringEnd).parseString(t)[0]
 except ParseException, pe:
 print "Invalid search string"
 continue
 print "Search string:", t
 # print "Eval stack: ", evalStack
 evalExpr = evalStack.generateSetExpression()
 # print "Eval expr: ", evalExpr

Getting Started with Pyparsing 60

 matchingRecipes = eval(evalExpr)
 if matchingRecipes:
 for r in matchingRecipes: print "-", r
 else:
 print " (none)"
 print

And here are the test results:
Search string: pineapple
- Baked ham
- Hawaiian pizza

Search string: pineapple and 'pizza crust'
- Hawaiian pizza

Search string: noodles and tuna or ham
- Baked ham
- Eggs Benedict
- Hawaiian pizza
- Tuna casserole

Search string: noodles and (tuna or ham)
- Tuna casserole

Search string: pineapple and noodles
 (none)

Search string: tuna or ham or pineapple
- Eggs Benedict
- Tuna melt
- Hawaiian pizza
- Tuna casserole
- Baked ham

Search string: tuna or (ham and not pineapple)
- Eggs Benedict
- Tuna melt
- Tuna casserole

Search string: not tuna
- Pepperoni pizza
- Baked ham
- Eggs Benedict
- Hawaiian pizza
- Chicken a la King

Search string: not (pineapple or tuna)
- Pepperoni pizza
- Eggs Benedict
- Chicken a la King

Getting Started with Pyparsing 61

Search string: anchovies
 (none)

At the end, we find that we have created a complete search engine in less than 100
lines of code—time to go chase some venture capital!

Conclusion
When I gave my presentation on pyparsing at PyCon '06, one of the questions after
my talk was, "Is there anything you can't do with pyparsing?" This may have been
a response to some of my posts to comp.lang.python, in which I recommended
using pyparsing in many nontraditional applications, and often as an alternative
to using regular expressions. I stammered a bit, and I mentioned that pyparsing is
not always the best-suited tool— some data is already pretty well structured, and
is better parsed using string indexing and str.split(). I also do not recommend
pyparsing for processing XML—there are already parsing and data access utilities
out there, and applications that need XML typically need better performance than
pyparsing will deliver.

But I think pyparsing is an excellent tool for developing command processors, web
page scrapers, and parsers of text datafiles (such as logfiles or analysis output files).
Pyparsing has been embedded in several popular Python add-on modules; go to
the pyparsing wiki (http://pyparsing.wikispaces.com/whosusingpyparsing) for
links to the latest ones.

I've written some documentation for pyparsing, but I have probably spent more
time developing code examples that demonstrate various pyparsing code techni-
ques. My experience has been that many developers want to see a selection of
source code, and then adapt it to their problem at hand. Recently, I've started
getting email asking for more formal usage documentation, so I hope this Short
Cut helps those who want to get going with pyparsing.

Getting Started with Pyparsing 62

http://pyparsing.wikispaces.com/whosusingpyparsing

For More Help
There are a growing number of online resources for pyparsing users:

• Pyparsing wiki (http://pyparsing.wikispaces.com): This wiki is the pri-
mary source for all news about pyparsing. It includes download informa-
tion, FAQs, and links to projects that are using pyparsing for their
integrated parsers. An Examples page gives a variety of "how to" cases,
including parsers for arithmetic expressions, chess game notation, JSON
data, and SQL statements (these are also included in the pyparsing source
distribution). Pyparsing releases, presentations, and other events are pos-
ted on the News page. And the discussion threads on the main home page
are an easy-to-use resource for posting questions or browsing the points
raised by other pyparsing users.

• Pyparsing mailing list (pyparsing-users@lists.sourceforge.net): Another
general resource for posting pyparsing questions. An archive of previous
list messages can be found at the pyparsing SourceForge project page,
http://sourceforge.net/projects/pyparsing.

• comp.lang.python: This Usenet group is a general-purpose Python dis-
cussion group, but an occasional pyparsing-related thread will crop up
here. This is a good group for posting questions related to Python usage,
or to locate specialized modules for a particular application or field of
study. If you Google "pyparsing" in this list, you will find a number of
archived threads on a variety of applications.

Index
BeautifulSoup................................ 25

BNF (Backus-Naur Form) 6, 8, 9, 16, 26, 36, 39, 46

lex... 2, 3

pprint module................................ 40

pyparsing built-in expressions

cStyleComment.......................... 14

dblQuotedString......................... 40

stringEnd.................................... 22

pyparsing built-in parse actions

removeQuotes....................... 40, 47

Getting Started with Pyparsing 63

http://pyparsing.wikispaces.com
http://sourceforge.net/projects/pyparsing

pyparsing classes

Combine..................................... 17

Forward..................................... 34

Group............................. 10, 18, 35

Literal... 9

OneOrMore............. 3, 9, 30, 39, 41

Optional.................................. 3, 39

ParseException.......... 15, 18, 22, 41

ParseFatalException.................... 41

ParseResults 7, 15, 19, 20, 21, 40, 50, 52

SkipTo....................................... 30

StringEnd................................... 22

Suppress.................................... 10

Word...... 5, 9, 19, 27, 36, 37, 38, 39

ZeroOrMore........................... 3, 39

pyparsing methods

delimitedList............................... 14

makeHTMLTags......................... 24

oneOf... 9

operatorPrecedence......... 47, 50, 51

srange... 37

pyparsing strings

alphanums.................................. 37

alphas... 37

hexnums............................... 37, 39

nums.. 37

printables.................................... 37

regular expressions 2, 3, 13, 14, 24, 37, 58

S-expressions................................ 33

Getting Started with Pyparsing 64

strptime... 18

time module................................... 18

urllib module................................. 27

yacc.. 2, 3

Zen of Pyparsing, the..................... 13

Getting Started with Pyparsing 65

	What Is Pyparsing?
	Basic Form of a Pyparsing Program
	Import Names from Pyparsing
	Define the Grammar
	Use the Grammar to Parse the Input Text
	Process the Results from Parsing the Input Text

	"Hello, World!" on Steroids!
	What Makes Pyparsing So Special?
	Parsing Data from a Table—Using Parse Actions and ParseResults
	Extracting Data from a Web Page
	A Simple S-Expression Parser
	A Complete S-Expression Parser
	Parsing a Search String
	Search Engine in 100 Lines of Code
	Conclusion
	Index

