
Python

Python and IRC
Contributed by Peyton McCullough
2005−02−16
[Send Me Similar Content When Posted]

[Add Developer Shed Headlines To Your Site]

DISCUSS NEWS SEND PRINT PDF

Article Index: IRC is becoming an increasingly popular medium for communication. In this article, Peyton
McCullough explains how to make Python and IRC work together.

Introduction

I’m sure you’ve all heard of it – the modern miracle known as Internet Relay Chat, or IRC. It
allows geeks, such as myself, to converse with other people from around the globe. While
you can connect to it with a vanilla client, you can also connect to it with another miracle –
Python.

Python can connect to a channel and act as anything you like – a calculator, a weatherman, a
scribe or a silent occupant. In addition, it is fairly simple to make Python and IRC get along,
contrary to what you might be thinking right now, and this article will explain exactly how to
do it. By the end of this article, you should have a basic understanding of the IRC protocol
and how to use it in your Python scripts.

To understand this article, you will need an understanding of the Python language and an
understanding of sockets. You should also be familiar with IRC.

Our first task is to connect to an IRC network. To do this, we must first create a socket.
Then, we must connect to the network, and, finally, we must complete a few short steps to
become eligible to interact with other users.

import socket

network = 'irc.insert.a.network.here'
port = 6667
irc = socket.socket (socket.AF_INET,
socket.SOCK_STREAM)

Dev Shed 03/15/2005 11:58:45 AM

1/7

http://www.devshed.com/c/a/Python/Python-and-IRC/
http://www.devshed.com/cp/bio/Peyton-McCullough/
http://www.developershed.com/devalert.php
http://www.developershed.com/devtext.php
http://www.developershed.com/newsletter.php
http://www.developershed.com/newsletter.php
http://ads.developershed.com/phpAdsNew/adclick.php?n=a34892ba
http://ads.developershed.com/phpAdsNew/adclick.php?n=acadc577

irc.connect ((network, port))
irc.send ('NICK PyIRC\r\n')
irc.send ('USER PyIRC PyIRC PyIRC :Python IRC\r\n'
)
irc.send ('QUIT\r\n')
irc.close()

Although the code demonstrates the absolute basics, it doesn't do anything special. In fact,
the server you connect to might not even acknowledge the data you send it until after a few
seconds – which we do not allow for in the script. Don't worry though, we will soon take a
look at a fully functional script after we tackle the very basics.

The first piece of data we send to it sets our nickname. Notice how we suffix each outgoing
message with a carriage return and line feed ("\r\n"). Take note of this because it is very
important. We then specify our username ("PyIRC"), host name ("PyIRC"), server name (
"PyIRC") and real name ("Python IRC") in the next outgoing line. Finally, we issue the
"QUIT" command and close the connection.

You should also take note of the colon before "Python IRC." Colons tell the server that the
attribute will possibly be made up of multiple words.

We will use and develop this skeleton throughout the remainder of the article, so it is
important that you understand it.

Now that we know how to connect, our next task is joining a channel and sending a message
to its occupants. This is suprisingly easy.

import socket

network = 'irc.insert.a.network.here'
port = 6667
irc = socket.socket (socket.AF_INET,
socket.SOCK_STREAM)
irc.connect ((network, port))
irc.send ('NICK PyIRC\r\n')
irc.send ('USER PyIRC PyIRC PyIRC :Python IRC\r\n'
)
irc.send ('JOIN #pyirc\r\n')
irc.send ('PRIVMSG #pyirc :Can you hear me?\r\n')
irc.send ('PART #pyirc\r\n')
irc.send ('QUIT\r\n')
irc.close()

Note that, again, the code will probably not perform the instructions we gave it, for the same
reason as last time. However, the above code would ideally join the channel #pyirc and say
"Can you hear me?" Let's break the code down to see how it works. The first few lines
should already look familiar, and the last few lines should look familiar as well. We wrote
them in the previous section. However, the "JOIN," "PRIVMGS," and "PART" lines are
new. They simply join the channel, send a message to the channel and leave the channel,
respectively.

Dev Shed 03/15/2005 11:58:45 AM

2/7

To join multiple channels, just issue the "JOIN" command again. When sending a message,
be sure to specify the name of the channel in the "PRIVMSG" command. You can also
message another user with the "PRIVMSG" command.

import socket

network = 'irc.insert.a.network.here'
port = 6667
irc = socket.socket (socket.AF_INET,
socket.SOCK_STREAM)
irc.connect ((network, port))
irc.send ('NICK PyIRC\r\n')
irc.send ('USER PyIRC PyIRC PyIRC :Python IRC\r\n'
)
irc.send ('PRIVMSG Jimbo :Can you hear me?\r\n')
irc.send ('QUIT\r\n')
irc.close()

So far, we can connect to an IRC network and send a message to a given channel. We can
also send a message to another user. Now we will accept messages from both the server and
from other users.

Every once in a while, the server will send us a "PING" command to check on us. To stay
connected, we must send the server a "PONG" command. Let's build a script that does just
that.

import socket

network = 'irc.insert.a.network.here'
port = 6667
irc = socket.socket (socket.AF_INET,
socket.SOCK_STREAM)
irc.connect ((network, port))
print irc.recv (4096)
irc.send ('NICK PyIRC\r\n')
irc.send ('USER PyIRC PyIRC PyIRC :Python IRC\r\n'
)
irc.send ('JOIN #pyirc\r\n')
irc.send ('PRIVMSG #pyirc :Hello.\r\n')
while True:
 data = irc.recv (4096)
 if data.find ('PING') != −1:
 irc.send ('PONG ' + data.split() [1] +
'\r\n')
 print data

As you can see, we've changed our skeleton a bit in this script. We have replaced the bottom
section with an infinite loop. The loop receives data, and if a "PING" command is present, it
replies with a "PONG" command. Feel free to test the script out.

Let's modify our script to accept messages. Messages come in a form similar to this:

Dev Shed 03/15/2005 11:58:45 AM

3/7

:Nick!user@host PRIVMSG destination :Message

Here's an example:

:Peyton!~peyton@python.org PRIVMSG #pyrc :Hey!

In our new script, we will break down the above form of data.

import socket

network = 'irc.insert.a.network.here'
port = 6667
irc = socket.socket (socket.AF_INET,
socket.SOCK_STREAM)
irc.connect ((network, port))
trash = irc.recv (4096)
irc.send ('NICK PyIRC\r\n')
irc.send ('USER PyIRC PyIRC PyIRC :Python IRC\r\n'
)
irc.send ('JOIN #pyirc\r\n')
irc.send ('PRIVMSG #pyirc :Hello.\r\n')
while True:
 data = irc.recv (4096)
 if data.find ('PING') != −1:
 irc.send ('PONG ' + data.split() [1] +
'\r\n')
 elif data.find ('PRIVMSG') != −1:
 nick = data.split ('!') [0].replace (
':', '')
 message = ':'.join (data.split (':') [2:
])
 print nick + ':', message

We've added a few lines to the script. If the "PRIVMSG" command is found inside the line
of data, we pull the line apart to get the nickname of the person who sent it and the message
by using the split() function. Run the script, join #pyirc on the specified network and test out
the script.

Now we need our script to discriminate between messages in different channels and private
messages. This can be done easily by extracting the destination from the "PRIVMSG"
command.

import socket

network = 'irc.insert.a.network.here'
port = 6667
irc = socket.socket (socket.AF_INET,
socket.SOCK_STREAM)
irc.connect ((network, port))
irc.recv (4096)
irc.send ('NICK PyIRC\r\n')

Dev Shed 03/15/2005 11:58:45 AM

4/7

irc.send ('USER PyIRC PyIRC PyIRC :Python IRC\r\n'
)
irc.send ('JOIN #pyirc\r\n')
irc.send ('PRIVMSG #pyirc :Hello.\r\n')
while True:
 data = irc.recv (4096)
 if data.find ('PING') != −1:
 irc.send ('PONG ' + data.split() [1] +
'\r\n')
 elif data.find ('PRIVMSG') != −1:
 nick = data.split ('!') [0].replace (
':', '')
 message = ':'.join (data.split (':') [2:
])
 destination = ''.join (data.split (':') [
:2]).split (' ') [−2]
 if destination == 'PyIRC':
 destination = 'PRIVATE'
 print '(', destination, ')', nick + ':',
message

Test out the script like before and see the result. You should see something similar to this:

(#pyirc) Peyton: Test

(PRIVATE) Peyton: This is a private message.

Let's apply our knowledge to something useful – a Python−powered IRC bot that performs
basic mathematical functions. Let's make the bot perform arithmetic calculations and a few
trigonometric functions: sine, cosine and tangent.

We will first create a file to perform the calculations for us. Create a file named ircMath.py
and insert the following code.

import math

def arithmatic (args):

 args [0] = args [0].replace ('\r\n', '')
 for letter in 'abcdefghijklmnopqrstuvwxyz':
 args [0] = args [0].replace (letter, ''
)
 solution = str (eval (args [0], {
'__builtins__' : {} }))
 return solution

def sine (args):

 solution = str (math.sin (float (args [0])
* (2 * math.pi) / 360))
 return solution

Dev Shed 03/15/2005 11:58:45 AM

5/7

def cosine (args):

 solution = str (math.cos (float (args [0])
* (2 * math.pi) / 360))
 return solution

def tangent (args):

 solution = str (math.tan (float (args [0])
* (2 * math.pi) / 360))
 return solution

The guts of ircMath.py aren't too important, and the code should be pretty straightforward, so
I won't get into detail.

We will now create the bot. Its code will be a modified version of the last section's script.
We will search the incoming message for the string "%PyIRC" to discriminate between
messages we do and do not need. We will then split up the message into a function and
arguments. Finally, we will call the appropriate function.

import ircMath
import socket

network = 'irc.insert.a.network.here'
port = 6667
irc = socket.socket (socket.AF_INET,
socket.SOCK_STREAM)
irc.connect ((network, port))
irc.recv (4096)
irc.send ('NICK PyIRC\r\n')
irc.send ('USER PyIRC PyIRC PyIRC :Python IRC\r\n'
)
irc.send ('JOIN #pyirc\r\n')
irc.send ('PRIVMSG #pyirc :Hello.\r\n')
while True:
 data = irc.recv (4096)
 if data.find ('PING') != −1:
 irc.send ('PONG ' + data.split() [1] +
'\r\n')
 elif data.find ('PRIVMSG') != −1:
 message = ':'.join (data.split (':') [2:
])
 if message.lower().find ('%pyirc') == 0:
 nick = data.split ('!') [0].replace (
':', '')
 destination = ''.join (data.split (':')
[:2]).split (' ') [−2]
 function = message.split (' ') [1]
 if function == 'calc':
 try:
 args = message.split (' ') [2:]

Dev Shed 03/15/2005 11:58:45 AM

6/7

 solution = ircMath.arithmatic (args
)
 irc.send ('PRIVMSG ' + destination
+ ' :' + nick + ': ' + solution + '\r\n')
 except:
 pass
 if function == 'sin':
 try:
 args = message.split (' ') [2:]
 solution = ircMath.sine (args)
 irc.send ('PRIVMSG ' + destination
+ ' :' + nick + ': ' + solution + '\r\n')
 except:
 pass
 if function == 'cos':
 try:
 args = message.split (' ') [2:]
 solution = ircMath.cosine (args)
 irc.send ('PRIVMSG ' + destination
+ ' :' + nick + ': ' + solution + '\r\n')
 except:
 pass
 if function == 'tan':
 try:
 args = message.split (' ') [2:]
 solution = ircMath.tangent (args)
 irc.send ('PRIVMSG ' + destination
+ ' :' + nick + ': ' + solution + '\r\n')
 except:
 pass

Start up the script and enter the specified channel on the specified network. Try saying these
lines:

%PyIRC calc 2+2
%PyIRC calc 8+10
%PyIRC sin 30
%PyIRC cos 45
%PyIRC tan 27

Our bot should give us the answer to each of the problems. Pretty neat, huh?

Conclusion

You should now know the basics of Python and IRC connectivity. Try to expand on the
examples provided in this article to create your own unique scripts. If you would like to learn
more about the IRC protocol, the protocol is documented here:

http://www.irchelp.org/irchelp/rfc

Dev Shed 03/15/2005 11:58:45 AM

7/7

http://www.irchelp.org/irchelp/rfc

