
Tutorial on Threads Programming with Python

Norman Matloff and Francis Hsu∗

University of California, Davis
c©2003-2007, N. Matloff

April 11, 2007

Contents

1 Why Use Threads? 3

2 What Are Threads? 3

2.1 Processes . 3

2.2 Threads Are Process-Like, But with a Big Difference . 4

3 Python Threads Modules 4

3.1 The thread Module . 5

3.2 The threading Module . 9

4 Condition Variables 12

4.1 General Ideas . 12

4.2 Event Example . 13

4.3 Other threading Classes . 14

5 The Effect of Timesharing 15

5.1 Code Analysis . 16

5.2 Execution Analysis . 17

6 The Queue Module 18
∗Francis, a graduate student, wrote most of Section 6.

1

7 Threads Internals 21

7.1 Kernel-Level Thread Managers . 21

7.2 User-Level Thread Managers . 21

7.3 Comparison . 21

7.4 The Python Thread Manager . 21

7.4.1 How the GIL Works . 22

7.4.2 Implications for Randomness and Need for Locks 23

7.4.3 The Dreaded GIL . 23

A Debugging Threaded Programs 23

A.1 Using PDB . 23

A.2 RPDB2 and Winpdb . 24

B Non-Pre-emptive Threads in Python 25

C Looking at the Python Virtual Machine 25

2

1 Why Use Threads?

Threads play a major role in applications programming today. For example, most Web servers are threaded,
as are many Java GUI programs.

Here are the major reasons for using threads:

• parallel computation:

If one has a multiprocessor machine and one’s threading system allows it, threads enable true parallel
processing, with the goal being substantial increases in processing speed. Threading has become the
standard approach to programming on such machines.1

• parallel I/O:

I/O operations are slow relative to CPU speeds. A disk seek, for instance, takes milliseconds, while
a machine instruction takes nanoseconds. While waiting for a seek to be done, we are wasting CPU
time, when we could be executing literally millions of machine instructions.

By putting each one of several I/O operations in a different thread, we can have these operations done
in parallel, both with each other and with computation, which does use the CPU.

• asynchronous I/O events:

Many threaded applications is that they deal with asynchronous actions. In a GUI program, for
instance, we may not know whether the user’s next action will be to use the mouse or use the keyboard.
By having a separate thread for each action—a separate thread for the mouse and keyboard, etc.—we
may be able to write code which is clearer, more convenient and more efficient than the alternative,
which is to use nonblocking I/O.

2 What Are Threads?

2.1 Processes

If your knowledge of operating systems is rather sketchy, you may find this section useful.

Modern operating systems (OSs) use timesharing to manage multiple programs which appear to the user to
be running simultaneously. Assuming a standard machine with only one CPU, that simultaneity is only an
illusion, since only one program can run at a time, but it is a very useful illusion. This is changing, as for
example dual-core CPU chips have become common in home PCs. But even then, the principle is the same,
as there typically will be more processes than CPUs, so that some of the simultaneity is illusory.

Each program that is running counts as a process in Unix terminology (or a task in Windows). Multiple
copies of a program, e.g. running multiple simultaneous copies of the vi text editor, count as multiple
processes. The processes “take turns” running, of fixed size, say for concreteness 30 milliseconds. After
a process has run for 30 milliseconds, a hardware timer emits an interrupted which causes the OS to run.
We say that the process has been pre-empted. The OS saves the current state of the interrupted process so
it can be resumed later, then selects the next process to give a turn to. This is known as a context switch;

1As will be explained in Section 7.4, however, Python cannot be used for this purpose at the present time.

3

the context in which the CPU is running has switched from one process to another. This cycle repeats. Any
given process will keep getting turns, and eventually will finish. A turn is called a quantum or timeslice.

The OS maintains a process table, listing all current processes. Each process will be shown as currently
being in either Run state or Sleep state. Let’s explain the latter first. Think of an example in which the
program reaches a point at which it needs to read input from the keyboard. Since user programs make calls
to the OS to do I/O, that causes a jump to the OS, prematurely ending this process’ turn. The OS marks
the process as being in Sleep state, meaning not currently eligible for turns, since it is waiting for the I/O to
occur. So, being in Sleep state means that the process is waiting for some event to occur; we say that the
process is blocked.

Being in Run state does not mean that the process is currently running. It merely means that this process is
ready to run, i.e. eligible for a turn. Each time a turn ends, the OS will choose one of the processes in Run
state to be given the next turn. If a process is in Sleep state but the event it was waiting for occurs, the OS
will change its state to Run.

Note carefully that a process may also be in Sleep state if it is waiting for some non-I/O event to occur.
There are calls one can make from a process in which we say, “Don’t run this process again until some other
process has set a certain variable” or the like.

If you wish to get more information on processes in operating systems, see http://heather.cs.
ucdavis.edu/˜matloff/50/PLN/OSOverview.pdf.

2.2 Threads Are Process-Like, But with a Big Difference

A thread is like a process, and may even be a process, depending on the thread system. In fact, threads are
sometimes called “lightweight” processes, because threads occupy much less memory, and take less time to
create, than do processes.

Also, just as processes can be interrupted at any time, the same is generally true for threads. I say “generally”
because there are various kinds of qualifying statements and exceptions to this, to be discussed in Section
7, but the point is that in general one must be very careful in this regard. In particular, proper use of lock
variables is crucial, as we will see.

Also, just as one process may create one or more child processes, e.g. using fork() in Unix, with threading,
our program creates one or more child threads. By the way, the parent is also a thread.

On the other hand, a major difference between ordinary processes and threads is that although each thread
has its own local variables, just as is the case for a process, the global variables of the parent program in a
threaded environment are shared by all threads, and serve as the main method of communication between
the threads.2

3 Python Threads Modules

Python threads are accessible via two modules, thread.py and threading.py. The former is more primitive,
thus easier to learn from, so we will start with it.

2It is possible to share globals among Unix processes, but very painful.

4

http://heather.cs.ucdavis.edu/~matloff/50/PLN/OSOverview.pdf
http://heather.cs.ucdavis.edu/~matloff/50/PLN/OSOverview.pdf

3.1 The thread Module

The example here involves a client/server pair.3 As you’ll see from reading the comments at the start of the
files, the program does nothing useful, but is a simple illustration of the principles. We set up two invocations
of the client; they keep sending letters to the server; the server concatenates all the letters it receives.

Only the server needs to be threaded. It will have one thread for each client.

Here is the client code, clnt.py:

1 # simple illustration of thread module
2

3 # two clients connect to server; each client repeatedly sends a letter,
4 # stored in the variable k, which the server appends to a global string
5 # v, and reports v to the client; k = ’’ means the client is dropping
6 # out; when all clients are gone, server prints the final string v
7

8 # this is the client; usage is
9

10 # python clnt.py server_address port_number
11

12 import socket # networking module
13 import sys
14

15 # create Internet TCP socket
16 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
17

18 host = sys.argv[1] # server address
19 port = int(sys.argv[2]) # server port
20

21 # connect to server
22 s.connect((host, port))
23

24 while(1):
25 # get letter
26 k = raw_input(’enter a letter:’)
27 s.send(k) # send k to server
28 # if stop signal, then leave loop
29 if k == ’’: break
30 v = s.recv(1024) # receive v from server (up to 1024 bytes)
31 print v
32

33 s.close() # close socket

And here is the server, srvr.py:

1 # simple illustration of thread module
2

3 # multiple clients connect to server; each client repeatedly sends a
4 # letter k, which the server adds to a global string v and echos back
5 # to the client; k = ’’ means the client is dropping out; when all
6 # clients are gone, server prints final value of v
7

8 # this is the server
9

10 import socket # networking module
11 import sys
12

3It is preferable here that the reader be familiar with basic network programming. See my tutorial at http://heather.
cs.ucdavis.edu/˜matloff/Python/PyNet.pdf. However, the comments preceding the various network calls would
probably be enough for a reader without background in networks to follow what is going on.

5

http://heather.cs.ucdavis.edu/~matloff/Python/PyNet.pdf
http://heather.cs.ucdavis.edu/~matloff/Python/PyNet.pdf

13 import thread
14

15 # note the globals v and nclnt, and their supporting locks, which are
16 # also global; the standard method of communication between threads is
17 # via globals
18

19 # function for thread to serve a particular client, c
20 def serveclient(c):
21 global v,nclnt,vlock,nclntlock
22 while 1:
23 # receive letter from c, if it is still connected
24 k = c.recv(1)
25 if k == ’’: break
26 # concatenate v with k in an atomic manner, i.e. with protection
27 # by locks
28 vlock.acquire()
29 v += k
30 vlock.release()
31 # send new v back to client
32 c.send(v)
33 c.close()
34 nclntlock.acquire()
35 nclnt -= 1
36 nclntlock.release()
37

38 # set up Internet TCP socket
39 lstn = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
40

41 port = int(sys.argv[1]) # server port number
42 # bind lstn socket to this port
43 lstn.bind((’’, port))
44 # start listening for contacts from clients (at most 2 at a time)
45 lstn.listen(5)
46

47 # initialize concatenated string, v
48 v = ’’
49 # set up a lock to guard v
50 vlock = thread.allocate_lock()
51

52 # nclnt will be the number of clients still connected
53 nclnt = 2
54 # set up a lock to guard nclnt
55 nclntlock = thread.allocate_lock()
56

57 # accept calls from the clients
58 for i in range(nclnt):
59 # wait for call, then get a new socket to use for this client,
60 # and get the client’s address/port tuple (though not used)
61 (clnt,ap) = lstn.accept()
62 # start thread for this client, with serveclient() as the thread’s
63 # function, with parameter clnt; note that parameter set must be
64 # a tuple; in this case, the tuple is of length 1, so a comma is
65 # needed
66 thread.start_new_thread(serveclient,(clnt,))
67

68 # shut down the server socket, since it’s not needed anymore
69 lstn.close()
70

71 # wait for both threads to finish
72 while nclnt > 0: pass
73

74 print ’the final value of v is’, v

Make absolutely sure to run the programs before proceeding further.4 Here is how to do this:
4You can get them from the .tex source file for this tutorial, located wherever your picked up the .pdf version.

6

I’ll refer to the machine on which you run the server as a.b.c, and the two client machines as u.v.w and
x.y.z.5 First, on the server machine, type

python srvr.py 2000

and then on each of the client machines type

python clnt.py a.b.c 2000

(You may need to try another port than 2000, anything above 1023.)

Input letters into both clients, in a rather random pattern, typing some on one client, then on the other, then
on the first, etc. Then finally hit Enter without typing a letter to one of the clients to end the session for that
client, type a few more characters in the other client, and then end that session too.

The reason for threading the server is that the inputs from the clients will come in at unpredictable times. At
any given time, the server doesn’t know which client will sent input next, and thus doesn’t know on which
client to call recv(). One way to solve this problem is by having threads, which run “simultaneously” and
thus give the server the ability to read from whichever client has sent data.6.

So, let’s see the technical details. We start with the “main” program.7

vlock = thread.allocate_lock()

Here we set up a lock variable which guards v. We will explain later why this is needed. Note that in order
to use this function and others we needed to import the thread module.

nclnt = 2
nclntlock = thread.allocate_lock()

We will need a mechanism to insure that the “main” program, which also counts as a thread, will be passive
until both application threads have finished. The variable nclnt will serve this purpose. It will be a count of
how many clients are still connected. The “main” program will monitor this, and wrap things up later when
the count reaches 0.

thread.start_new_thread(serveclient,(clnt,))

Having accepted a a client connection, the server sets up a thread for serving it. This is done via thread.start new thread().
The first argument is the name of the application function which the thread will run, in this case serveclient().
The second argument is a tuple consisting of the set of arguments for that application function. As noted in
the comment, this set is expressed as a tuple, and since in this case our tuple has only one component, we
use a comma to signal the Python interpreter that this is a tuple.

5You could in fact run all of them on the same machine, with address name localhost or something like that, but it would be
better on separate machines.

6Another solution is to use nonblocking I/O. See this example in that context in http://heather.cs.ucdavis.edu/
˜matloff/Python/PyNet.pdf

7Just as you should write the main program first, you should read it first too, for the same reasons.

7

http://heather.cs.ucdavis.edu/~matloff/Python/PyNet.pdf
http://heather.cs.ucdavis.edu/~matloff/Python/PyNet.pdf

So, here we are telling Python’s threads system to call our function serveclient(), supplying that function
with the argument clnt. The thread becomes “active” immediately, but this does not mean that it starts
executing right away. All that happens is that the threads manager adds this new thread to its list of threads,
and marks its current state as runnable, as opposed to being in a state of waiting for some event.

By the way, this gives us a chance to show how clean and elegant Python’s threads interface is compared to
what one would need in C/C++. For example, in pthreads, the function analogous to thread.start new thread()
has the signature

pthread_create (pthread_t *thread_id, const pthread_attr_t *attributes,
void *(*thread_function)(void *), void *arguments);

What a mess! For instance, look at the types in that third argument: A pointer to a function whose argument
is pointer to void and whose value is a pointer to void (all of which would have to be cast when called).
It’s such a pleasure to work in Python, where we don’t have to be bothered by low-level things like that.

Now consider our statement

while nclnt > 0: pass

The statement says that as long as at least one client is still active, do nothing. Sounds simple, and it is, but
you should consider what is really happening here.

Remember, the three threads—the two client threads, and the “main” one—will take turns executing, with
each turn lasting a brief period of time. Each time “main” gets a turn, it will loop repeatedly on this line. But
all that empty looping in “main” is wasted time. What we would really like is a way to prevent the “main”
function from getting a turn at all until the two clients are gone. There are ways to do this which you will
see later, but we have chosen to remain simple for now.

Now consider the function serveclient(). Any thread executing this function will deal with only one partic-
ular client, the one corresponding to the connection c (an argument to the function). So this while loop does
nothing but read from that particular client. If the client has not sent anything, the thread will block on the
line

k = c.recv(1)

This thread will then be marked as being in Sleep state by the thread manager, thus allowing the other client
thread a chance to run. If neither client thread can run, then the “main” thread keeps getting turns. When a
user at one of the clients finally types a letter, the corresponding thread unblocks, and resumes execution.

Next comes the most important code for the purpose of this tutorial:

vlock.acquire()
v += k
vlock.release()

Here we are worried about a race condition. Suppose for example v is currently ’abx’, and Client 0 sends
k equal to ’g’. The concern is that this thread’s turn might end in the middle of that addition to v, say right
after the Python interpreter had formed ’abxg’ but before that value was written back to v. This could be a

8

big problem. The next thread might get to the same statement, take v, still equal to ’abx’, and append, say,
’w’, making v equal to ’abxw’. Then when the first thread gets its next turn, it would finish its interrupted
action, and set v to ’abxg’—which would mean that the ’w’ from the other thread would be lost.

All of this hinges on whether the operation

v += k

is interruptible. Could a thread’s turn end somewhere in the midst of the execution of this statement? If
not, we say that the operation is atomic. If the operation were atomic, we would not need the lock/unlock
operations surrounding the above statement. I did this, using the methods described in Section 7.4, and it
appears to me that the above statement is not atomic.

Moreover, it’s safer not to take a chance, especially since Python compilers could vary or the virtual machine
could change; after all, we would like our Python source code to work even if the machine changes.

So, we need the lock/unlock operations:

vlock.acquire()
v += k
vlock.release()

The lock, vlock here, can only be held by one thread at a time. When a thread executes this statement, the
Python interpreter will check to see whether the lock is locked or unlocked right now. In the latter case, the
interpreter will lock the lock and the thread will continue, and will execute the statement which updates v.
It will then release the lock, i.e. the lock will go back to unlocked state.

If on the other hand, when a thread executes acquire() on this lock when it is locked, i.e. held by some other
thread, its turn will end and the interpreter will mark this thread as being in Sleep state, waiting for the lock
to be unlocked. When whichever thread currently holds the lock unlocks it, the interpreter will change the
blocked thread from Sleep state to Run state.

Note that if our threads were non-preemptive, we would not need these locks.

Note also the crucial role being played by the global nature of v. Global variables are used to communicate
between threads. In fact, recall that this is one of the reasons that threads are so popular—easy access to
global variables. Thus the dogma so often taught in beginning programming courses that global variables
must be avoided is wrong; on the contrary, there are many situations in which globals are necessary and
natural.8

The same race-condition issues apply to the code

nclntlock.acquire()
nclnt -= 1
nclntlock.release()

3.2 The threading Module

The program below treats the same network client/server application considered in Section 3.1, but with the
more sophisticated threading module. The client program stays the same, since it didn’t involve threads in

8I think that dogma is presented in a far too extreme manner anyway. See http://heather.cs.ucdavis.edu/
˜matloff/globals.html.

9

http://heather.cs.ucdavis.edu/~matloff/globals.html
http://heather.cs.ucdavis.edu/~matloff/globals.html

the first place. Here is the new server code:

1 # simple illustration of threading module
2

3 # multiple clients connect to server; each client repeatedly sends a
4 # value k, which the server adds to a global string v and echos back
5 # to the client; k = ’’ means the client is dropping out; when all
6 # clients are gone, server prints final value of v
7

8 # this is the server
9

10 import socket # networking module
11 import sys
12 import threading
13

14 # class for threads, subclassed from threading.Thread class
15 class srvr(threading.Thread):
16 # v and vlock are now class variables
17 v = ’’
18 vlock = threading.Lock()
19 id = 0 # I want to give an ID number to each thread, starting at 0
20 def __init__(self,clntsock):
21 # invoke constructor of parent class
22 threading.Thread.__init__(self)
23 # add instance variables
24 self.myid = srvr.id
25 srvr.id += 1
26 self.myclntsock = clntsock
27 # this function is what the thread actually runs; the required name
28 # is run(); threading.Thread.start() calls threading.Thread.run(),
29 # which is always overridden, as we are doing here
30 def run(self):
31 while 1:
32 # receive letter from client, if it is still connected
33 k = self.myclntsock.recv(1)
34 if k == ’’: break
35 # update v in an atomic manner
36 srvr.vlock.acquire()
37 srvr.v += k
38 srvr.vlock.release()
39 # send new v back to client
40 self.myclntsock.send(srvr.v)
41 self.myclntsock.close()
42

43 # set up Internet TCP socket
44 lstn = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
45 port = int(sys.argv[1]) # server port number
46 # bind lstn socket to this port
47 lstn.bind((’’, port))
48 # start listening for contacts from clients (at most 2 at a time)
49 lstn.listen(5)
50

51 nclnt = int(sys.argv[2]) # number of clients
52

53 mythreads = [] # list of all the threads
54 # accept calls from the clients
55 for i in range(nclnt):
56 # wait for call, then get a new socket to use for this client,
57 # and get the client’s address/port tuple (though not used)
58 (clnt,ap) = lstn.accept()
59 # make a new instance of the class srvr
60 s = srvr(clnt)
61 # keep a list all threads
62 mythreads.append(s)
63 # threading.Thread.start calls threading.Thread.run(), which we
64 # overrode in our definition of the class srvr
65 s.start()

10

66

67 # shut down the server socket, since it’s not needed anymore
68 lstn.close()
69

70 # wait for all threads to finish
71 for s in mythreads:
72 s.join()
73

74 print ’the final value of v is’, srvr.v

Again, let’s look at the main data structure first:

class srvr(threading.Thread):

The threading module contains a class Thread, which represent one thread. A typical application will sub-
class this class, for two reasons. First, we will probably have some application-specific variables or methods
to be used. Second, the class Thread has a member method run() which is almost always overridden, as
you will see below.

Consistent with OOP philosophy, we might as well put the old globals in as class variables:

v = ’’
vlock = threading.Lock()

Note that class variable code is executed immediately upon execution of the program, as opposed to when
the first object of this class is created. So, the lock is created right away.

id = 0

This is to set up ID numbers for each of the threads. We don’t use them here, but they might be useful in
debugging or in future enhancement of the code.

def __init__(self,clntsock):
...
self.myclntsock = clntsock

‘‘main’’ program
...

(clnt,ap) = lstn.accept()
s = srvr(clnt)

The “main” program, in creating an object of this class for the client, will pass as an argument the socket for
that client. We then store it as a member variable for the object.

def run(self):
...

As noted earlier, the Thread class contains a member method run(). This is a dummy, to be overridden with
the application-specific function to be run by the thread. It is invoked by the method Thread.start(), called
in the main program. As you can see above, it is pretty much the same as the previous code in Section 3.1
which used the thread module, adapted to the class environment.

One thing that is quite different in this program is the way we end it:

11

for s in mythreads:
s.join()

The join() method in the class Thread blocks until the given thread exits. The overall effect of this loop,
then, is that the main program will wait at that point until all the threads are done. They “join” the main
program. This is a much cleaner approach than what we used earlier, and it is also more efficient, since the
main program will not be given any turns in which it wastes time looping around doing nothing, as in the
program in Section 3.1 in the line

while nclnt > 0: pass

Here we maintained our own list of threads. However, we could also get one via the call threading.enumerate().
If placed after the for loop in our server code above, for instance as

print threading.enumerate()

we would get output like

[<_MainThread(MainThread, started)>, <srvr(Thread-1, started)>,
<srvr(Thread-2, started)>]

4 Condition Variables

4.1 General Ideas

We saw in the last section that threading.Thread.join() avoids the need for wasteful looping in main(),
while the latter is waiting for the other threads to finish. In fact, it is very common in threaded programs to
have situations in which one thread needs to wait for something to occur in another thread. Again, in such
situations we would not want the waiting thread to engage in wasteful looping.

The solution to this problem is condition variables. As the name implies, these are variables used by code
to wait for a certain condition to occur. Most threads systems allow these, with Python’s threading package
being no exception.

The pthreads package, for instance, has a type pthread cond for such variables, and has functions pthread cond wait(),
which a thread calls to wait for an event to occur, and pthread cond signal(), which another thread calls to
announce that the event now has occurred.

But as is typical with Python in so many things, it is easier for us to use condition variables in Python
than in C. At the first level, there is the class threading.Condition, which corresponds well to the condition
variables available in most threads systems. However, at this level condition variables are rather cumbersome
to use, as not only do we need to set up condition variables but we also need to set up exttra locks to guard
them. This is necessary in any threading system, but it is a nuisance to deal with.

So, Python offers a higher-level class, threading.Event, which is just a wrapper for threading.Condition,
but which does all the lock operations behind the scenes, alleviating the programmer from having to do this
work.

12

4.2 Event Example

Following is an example of the use of threading.Event. It searches a given network host for servers at
various ports on that host. (This is called a port scanner.) As noted in a comment, the threaded operation
used here would make more sense if many hosts were to be scanned, rather than just one, as each connect()
operation does take some time. But even on the same machine, if a server is active but busy enough that
we never get to connect to it, it may take a long for the attempt to timeout. It is common to set up Web
operations to be threaded for that reason. We could also have each thread check a block of ports on a host,
not just one, for better efficiency.

The use of threads is aimed at checking many ports in parallel, one per thread. The program has a self-
imposed limit on the number of threads. If main() is ready to start checking another port but we are at the
thread limit, the code in main() waits for the number of threads to drop below the limit. This is accomplished
by a condition wait, implemented through the threading.Event class.

1 # portscanner.py: checks for active ports on a given machine; would be
2 # more realistic if checked several hosts at once; different threads
3 # check different ports; there is a self-imposed limit on the number of
4 # threads, and the event mechanism is used to wait if that limit is
5 # reached
6

7 # usage: python portscanner.py host maxthreads
8

9 import sys, threading, socket
10

11 class scanner(threading.Thread):
12 tlist = [] # list of all current scanner threads
13 maxthreads = int(sys.argv[2]) # max number of threads we’re allowing
14 evnt = threading.Event() # event to signal OK to create more threads
15 lck = threading.Lock() # lock to guard tlist
16 def __init__(self,tn,host):
17 threading.Thread.__init__(self)
18 self.threadnum = tn # thread ID/port number
19 self.host = host # checking ports on this host
20 def run(self):
21 s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
22 try:
23 s.connect((self.host, self.threadnum))
24 print "%d: successfully connected" % self.threadnum
25 s.close()
26 except:
27 print "%d: connection failed" % self.threadnum
28 # thread is about to exit; remove from list, and signal OK if we
29 # had been up against the limit
30 scanner.lck.acquire()
31 scanner.tlist.remove(self)
32 print "%d: now active --" % self.threadnum, scanner.tlist
33 if len(scanner.tlist) == scanner.maxthreads-1:
34 scanner.evnt.set()
35 scanner.evnt.clear()
36 scanner.lck.release()
37 def newthread(pn,hst):
38 scanner.lck.acquire()
39 sc = scanner(pn,hst)
40 scanner.tlist.append(sc)
41 scanner.lck.release()
42 sc.start()
43 print "%d: starting check" % pn
44 print "%d: now active --" % pn, scanner.tlist
45 newthread = staticmethod(newthread)
46

47 def main():

13

48 host = sys.argv[1]
49 for i in range(1,100):
50 scanner.lck.acquire()
51 print "%d: attempting check" % i
52 # check to see if we’re at the limit before starting a new thread
53 if len(scanner.tlist) >= scanner.maxthreads:
54 # too bad, need to wait until not at thread limit
55 print "%d: need to wait" % i
56 scanner.lck.release()
57 scanner.evnt.wait()
58 else:
59 scanner.lck.release()
60 scanner.newthread(i,host)
61 for sc in scanner.tlist:
62 sc.join()
63

64 if __name__ == ’__main__’:
65 main()

As you can see, when main() discovers that we are at our self-imposed limit of number of active threads, we
back off by calling threading.Event.wait(). At that point main()—which, recall, is also a thread—blocks.
It will not be given any more timeslices for the time being. When some active thread exits, we have it call
threading.Event.set() and threading.Event.clear(). The threads manager reacts to the former by moving
all threads which had been waiting for this event—in our case here, only main()—from Sleep state to Run
state; main() will eventually get another timeslice.

The call to threading.Event.clear() is crucial. The word clear here means that threading.Event.clear()
is clearing the occurence of the event. Without this, any subsequent call to threading.Event.wait() would
immediately return, even though the condition has not been met yet.

Note carefully the use of locks. The main() thread adds items to tlist, while the other threads delete items
(delete themselves, actually) from it. These operations must be atomic, and thus must be guarded by locks.

I’ve put in a lot of extra print statements so that you can get an idea as to how the threads’ execution is
interleaved. Try running the program.9 But remember, the program may appear to hang for a long time if a
server is active but so busy that the attempt to connect times out.

4.3 Other threading Classes

The function Event.set() “wakes” all threads that are waiting for the given event. That didn’t matter in our
example above, since only one thread (main()) would ever be waiting at a time in that example. But in more
general applications, we sometimes want to wake only one thread instead of all of them. For this, we can
revert to working at the level of threading.Condition instead of threading.Event. There we have a choice
between using notify() or notifyAll().

The latter is actually what is called internally by Event.set(). But notify() instructs the threads manager to
wake just one of the waiting threads (we don’t know which one).

The class threading.Semaphore offers semaphore operations. Other classes of advanced interest are thread-
ing.RLock and threading.Timer.

9Disclaimer: Not guaranteed to be bug-free.

14

5 The Effect of Timesharing

Our earlier examples were I/O-bound, meaning that most of its time is spent on input/output. This is a very
common type of application of threads.

As mentioned before, another common use for threads is to parallelize compute-bound programs, i.e. pro-
grams that do a lot of computation. This is useful if one has a multiprocessor machine. Unfortunately, as
also mentioned, this parallelization is not possible in Python at the moment. However, the compute-bound
example here will serve to illustrate the effects of timesharing.

Following is a Python program that finds prime numbers using threads. Note carefully that it is not claimed
to be efficient at all; it is merely an illustration of the concepts. Note too that we are using the simple thread
module, rather than threading.

1 #!/usr/bin/env python
2

3 import sys
4 import math
5 import thread
6

7 def dowork(tn): # thread number tn
8 global n,prime,nexti,nextilock,nstarted,nstartedlock,donelock
9 donelock[tn].acquire()

10 nstartedlock.acquire()
11 nstarted += 1
12 nstartedlock.release()
13 lim = math.sqrt(n)
14 nk = 0
15 while 1:
16 nextilock.acquire()
17 k = nexti
18 nexti += 1
19 nextilock.release()
20 if k > lim: break
21 nk += 1
22 if prime[k]:
23 r = n / k
24 for i in range(2,r+1):
25 prime[i*k] = 0
26 print ’thread’, tn, ’exiting; processed’, nk, ’values of k’
27 donelock[tn].release()
28

29 def main():
30 global n,prime,nexti,nextilock,nstarted,nstartedlock,donelock
31 n = int(sys.argv[1])
32 prime = (n+1) * [1]
33 nthreads = int(sys.argv[2])
34 nstarted = 0
35 nexti = 2
36 nextilock = thread.allocate_lock()
37 nstartedlock = thread.allocate_lock()
38 donelock = []
39 for i in range(nthreads):
40 d = thread.allocate_lock()
41 donelock.append(d)
42 thread.start_new_thread(dowork,(i,))
43 while nstarted < 2: pass
44 for i in range(nthreads):
45 donelock[i].acquire()
46 print ’there are’, reduce(lambda x,y: x+y, prime) - 2, ’primes’
47

48 if __name__ == ’__main__’:
49 main()

15

5.1 Code Analysis

So, let’s see how the code works.

The algorithm is the famous Sieve of Erathosthenes: We list all the numbers from 2 to n, then cross out all
multiples of 2 (except 2), then cross out all multiples of 3 (except 3), and so on. The numbers which get
crossed out are composite, so the ones which remain at the end are prime.

Line 32: We set up an array prime, which is what we will be “crossing out.” The value 1 means “not crossed
out,” so we start everything at 1. (Note how Python makes this easy to do, using list “multiplication.”)

Line 33: Here we get the number of desired threads from the command line.

Line 34: The variable nstarted will show how many threads have already started. This will be used later,
in Lines 43-45, in determining when the main() thread exits. Since the various threads will be writing this
variable, we need to protect it with a lock, on Line 37.

Lines 35-36: The variable nexti will say which value we should do “crossing out” by next. If this is, say,
17, then it means our next task is to cross out all multiples of 17 (except 17). Again we need to protect it
with a lock.

Lines 39-42: We create the threads here. The function executed by the threads is named dowork(). We also
create locks in an array donelock, which again will be used later on as a mechanism for determining when
main() exits (Line 44-45).

Lines 43-45: There is a lot to discuss here. To start, first look back at Line 50 of srvr.py, our earlier
example. We didn’t want the main thread to exit until the two child threads were done.10 So, Line 50 was a
busy wait, repeatedly doing nothing (pass). That’s a waste of time—each time the main thread gets a turn
to run, it repeatedly executes pass until its turn is over.

We’d like to avoid such waste in our primes program, which we do in Lines 43-45. To understand what
those lines do, look at Lines 10-12. Each child thread increments a count, nstarted; meanwhile, on Line
43 the main thread is wasting time executing pass.11 But as soon as the last thread increments the count,
the main thread leaves its busy wait and goes to Line 44.12 So, even though we do have a busy wait here, it
finishes quickly and thus is not an issue. But we want to avoid having such a wait at the end of the program,
which we do as follows.

Back in each child thread, the thread acquires its donelock lock on Line 9, and doesn’t release it until Line
27, when the thread is done. Meanwhile, the main thread is waiting for those locks, in Lines 44-45. This is
very different from the wait it did on Line 43. In the latter case, the main thread just spun around, wasting
time by repeatedly executing pass. By contrast, in Lines 44-45, the main thread isn’t wasting time—because
it’s not executing at all.

To see this, consider the case of i = 0. The call to acquire in Line 45 will block. From this point on, the
thread manager will not give the main thread any turns, until finally child thread 0 executes Line 27. At that
point, the thread manager will notice that the lock which had just been released was being awaited by the
main thread, so the manager will “waken” the main thread, i.e. resume giving it turns. Of course, then i will

10The effect of the main thread ending earlier would depend on the underlying OS. On some platforms, exit of the parent may
terminate the child threads, but on other platforms the children continue on their own.

11In reading the word meanwhile here, remember that the threads are taking turns executing, 100 Python virtual machine instruc-
tions per turn. Thus the word meanwhile only refers to concurrency among the threads, not simultaneity.

12Again, the phrase as soon as should not be taken literally. What it really means is that after the count reaches nthreads, the
next time the main thread gets a turn, it goes to Line 44.

16

become 1, and the main thread will “sleep” again.

Note carefully the roles of Lines 9-12 and 43. Without them, the main thread might be able to execute
Line 45 with i = 0 before child thread 0 executes Line 12. If the same thing happened with i = 1, then the
main thread would exit prematurely. This is an example of a typical threaded programming bug.

So, we’ve avoided premature exit while at the same time allowing only minimal time wasting by the main
thread.

Line 13: We need not check any “crosser-outers” that are larger than
√

n.

Lines 15-25: We keep trying “crosser-outers” until we reach that limit (Line 20). Note the need to use the
lock in Lines 16-19. In Line 22, we check the potential “crosser-outer” for primeness; if we have previously
crossed it out, we would just be doing duplicate work if we used this k as a “crosser-outer.”

5.2 Execution Analysis

Note that I put code in Lines 21 and 26 to measure how much work each thread is doing. Here k is the
“crosser-outer,” i.e. the number whose multiples we are crossing out. Line 21 tallies how many values of k
this thread is handling. Let’s run the program and see what happens.

% python primes.py 100 2
thread 0 exiting; processed 9 values of k
thread 1 exiting; processed 0 values of k
there are 25 primes
% python primes.py 10000 2
thread 0 exiting; processed 99 values of k
thread 1 exiting; processed 0 values of k
there are 1229 primes
% python primes.py 10000 2
thread 0 exiting; processed 99 values of k
thread 1 exiting; processed 0 values of k
there are 1229 primes
% python primes.py 100000 2
thread 1 exiting; processed 309 values of k
thread 0 exiting; processed 6 values of k
there are 9592 primes
% python primes.py 100000 2
thread 1 exiting; processed 309 values of k
thread 0 exiting; processed 6 values of k
there are 9592 primes
% python primes.py 100000 2
thread 1 exiting; processed 311 values of k
thread 0 exiting; processed 4 values of k
there are 9592 primes
% python primes.py 1000000 2
thread 1 exiting; processed 180 values of k
thread 0 exiting; processed 819 values of k
there are 78498 primes
% python primes.py 1000000 2
thread 1 exiting; processed 922 values of k
thread 0 exiting; processed 77 values of k
there are 78498 primes
% python primes.py 1000000 2
thread 0 exiting; processed 690 values of k
thread 1 exiting; processed 309 values of k
there are 78498 primes

This is really important stuff. For the smaller values of n like 100, there was so little work to do that thread
0 did the whole job before thread 1 even got started. Thread 1 got more chance to run as the size of the

17

job got longer. The imbalance of work done, if it occurrs on a multiprocessor system with truly concurrent
threads (not ours here), is known as the load balancing problem.

Note also that even for the larger jobs there was considerable variation from run to run. How is this possible,
given that the size of a turn is fixed at a certain Python byte code instructions? The answer is that although
the turn size is constant, the delay before a thread is created is random, due to the fact that the Python threads
system makes use of an underlying threads system (in this case pthreads on Linux). In many of the runs
above, for instance, thread 0 was started first and thus did the lion’s share of the work, but in some cases
thread 1 was started first.

6 The Queue Module

Threaded applications often have some sort of work queue data structure. When a thread becomes free, it
will pick up work to do from the queue. When a thread creates a task, it will add that task to the queue.

Clearly one needs to guard the queue with locks. But Python provides the Queue module to take care of all
the lock creation, locking and unlocking, and so on, so that we don’t have to bother with it.

Here is an example of its use:

1 # pqsort.py: threaded quicksort
2 # sorts an array with a fixed pool of worker threads
3

4 # disclaimer: does NOT produce a speedup, even on multiprocessor
5 # machines, as Python threads cannot run simultaneously
6

7 # adapted by Francis Hsu from Prof. Norm Matloff’s
8 # Shared-Memory Quicksort in Introduction to Parallel Programming
9 # http://heather.cs.ucdavis.edu/˜matloff/158/PLN/ParProc.pdf

10

11 import threading, Queue, random
12

13 class pqsort:
14 ’’’ threaded parallel quicksort ’’’
15 nsingletons = 0 # used to track termination
16 nsingletonslock = None
17

18 def __init__(self, a, numthreads = 5):
19 ’’’ quicksorts array a in parallel with numthreads threads ’’’
20 jobs = Queue.Queue() # job queue
21 pqsort.pqsorter.numthreads = 0 # thread creation count
22 self.threads = [] # threads
23 pqsort.nsingletons = 0 # count of positions that are sorted
24 # done sorting when == to len(a)
25 pqsort.nsingletonslock = threading.Lock()
26

27 jobs.put((0,len(a)))
28

29 for i in range(numthreads): # spawn threads
30 t = pqsort.pqsorter(a, jobs)
31 self.threads.append(t)
32 t.start()
33

34 for t in self.threads: # wait for threads to finish
35 t.join()
36

37 def report(self):
38 for t in self.threads:
39 t.report()

18

40

41 class pqsorter(threading.Thread):
42 ’’’ worker thread for parallel quicksort ’’’
43 numthreads = 0 # thread creation count
44

45 def __init__(self, a, jobs):
46 self.a = a # array being handled by this thread
47 self.jobs = jobs # Queue of sorting jobs to do
48 pqsort.pqsorter.numthreads += 1 # update count of created threads
49 self.threadid = self.numthreads # unique id of this thread
50 self.loop = 0 # work done by thread
51

52 threading.Thread.__init__(self)
53

54 def run(self):
55 ’’’ thread loops taking jobs from queue until none are left ’’’
56 while pqsort.nsingletons < len(self.a):
57 try:
58 job = self.jobs.get(True,1) # get job
59 # Queue handles the locks for us
60 except:
61 continue
62

63 if job[0] >= job[1]: # partitioning an array of 1
64 pqsort.nsingletonslock.acquire()
65 pqsort.nsingletons+=1
66 pqsort.nsingletonslock.release()
67 continue
68

69 self.loop +=1
70 m = self.separate(job) # partition
71

72 self.jobs.put((job[0], m)) # create new jobs to handle the
73 self.jobs.put((m+1, job[1])) # new left and right partitions
74

75 def separate(self, (low, high)):
76 ’’’ quicksort partitioning with first element as pivot ’’’
77 pivot = self.a[low]
78 last = low
79 for i in range(low+1,high):
80 if self.a[i] < pivot:
81 last += 1
82 self.a[last], self.a[i] = self.a[i], self.a[last]
83 self.a[low], self.a[last] = self.a[last], self.a[low]
84 return last
85

86 def report(self):
87 print "thread", self.threadid, "visited array", self.loop , "times"
88

89 def main():
90 ’’’ pqsort timesharing analysis ’’’
91 for size in range(10):
92 a = range(100*(size+1))
93 shufflesort(a)
94

95 def shufflesort(a):
96 #shuffle array
97 for i in range(len(a)):
98 r = random.randint(i, len(a)-1)
99 (a[i], a[r]) = (a[r], a[i])

100

101 #sort array
102 s = pqsort(a)
103 print "For sorting an array of size", len(a)
104 s.report()
105

106 if __name__ == ’__main__’:
107 main()

19

By the way, let’s see how the load balancing went:

% python pqsort.py
For sorting an array of size 100
thread 1 visited array 88 times
thread 2 visited array 12 times
thread 3 visited array 0 times
thread 4 visited array 0 times
thread 5 visited array 0 times
For sorting an array of size 200
thread 1 visited array 189 times
thread 2 visited array 0 times
thread 3 visited array 11 times
thread 4 visited array 0 times
thread 5 visited array 0 times
For sorting an array of size 300
thread 1 visited array 226 times
thread 2 visited array 74 times
thread 3 visited array 0 times
thread 4 visited array 0 times
thread 5 visited array 0 times
For sorting an array of size 400
thread 1 visited array 167 times
thread 2 visited array 112 times
thread 3 visited array 41 times
thread 4 visited array 58 times
thread 5 visited array 22 times
For sorting an array of size 500
thread 1 visited array 249 times
thread 2 visited array 125 times
thread 3 visited array 100 times
thread 4 visited array 17 times
thread 5 visited array 9 times
For sorting an array of size 600
thread 1 visited array 87 times
thread 2 visited array 185 times
thread 3 visited array 120 times
thread 4 visited array 105 times
thread 5 visited array 103 times
For sorting an array of size 700
thread 1 visited array 295 times
thread 2 visited array 278 times
thread 3 visited array 54 times
thread 4 visited array 32 times
thread 5 visited array 41 times
For sorting an array of size 800
thread 1 visited array 291 times
thread 2 visited array 217 times
thread 3 visited array 52 times
thread 4 visited array 204 times
thread 5 visited array 36 times
For sorting an array of size 900
thread 1 visited array 377 times
thread 2 visited array 225 times
thread 3 visited array 113 times
thread 4 visited array 128 times
thread 5 visited array 57 times
For sorting an array of size 1000
thread 1 visited array 299 times
thread 2 visited array 233 times
thread 3 visited array 65 times
thread 4 visited array 249 times
thread 5 visited array 154 times

20

7 Threads Internals

The thread manager acts like a “mini-operating system.” Just like a real OS maintains a table of processes, a
thread system’s thread manager maintains a table of threads. When one thread gives up the CPU, or has its
turn pre-empted (see below), the thread manager looks in the table for another thread to activate. Whichever
thread is activated will then resume execution where it had left off, i.e. where its last turn ended.

Just as a process is either in Run state or Sleep state, the same is true for a thread. A thread is either ready
to be given a turn to run, or is waiting for some event. The thread manager will keep track of these states,
decide which thread to run when another has lost its turn, etc.

7.1 Kernel-Level Thread Managers

Here each thread really is a process, and for example will show up on Unix systems when one runs the
appropriate ps process-list command, say ps axH. The threads manager is then the OS.

The different threads set up by a given application program take turns running, among all the other processes.

This kind of thread system is is used in the Unix pthreads system, as well as in Windows threads.

7.2 User-Level Thread Managers

User-level thread systems are “private” to the application. Running the ps command on a Unix system will
show only the original application running, not all the threads it creates. Here the threads are not pre-empted;
on the contrary, a given thread will continue to run until it voluntarily gives up control of the CPU, either by
calling some “yield” function or by calling a function by which it requests a wait for some event to occur.13

A typical example of a user-level thread system is pth.

7.3 Comparison

Kernel-level threads have the advantage that they can be used on multiprocessor systems, thus achieving
true parallelism between threads. This is a major advantage.

On the other hand, in my opinion user-level threads also have a major advantage in that they allow one to
produce code which is much easier to write, is easier to debug, and is cleaner and clearer. This in turn
stems from the non-preemptive nature of user-level threads; application programs written in this manner
typically are not cluttered up with lots of lock/unlock calls (details on these below), which are needed in the
pre-emptive case.

7.4 The Python Thread Manager

Python “piggybacks” on top of the OS’ underlying threads system. A Python thread is a real OS thread. If
a Python program has three threads, for instance, there will be three entries in the ps output.

13In typical user-level thread systems, an external event, such as an I/O operation or a signal, will also also cause the current
thread to relinquish the CPU.

21

However, Python imposes further structure on top of the OS threads. Most importantly, there is a global
interpreter lock, the famous (or infamous) GIL. It is set up to ensure that (a) only one thread runs at a time,
and (b) that the ending of a thread’s turn is controlled by the Python interpreter rather than the external event
of the hardware timer interrupt. Both (a) and (b) are important here; unfortunately the Python literature
does not explain this clearly.

7.4.1 How the GIL Works

To see this, suppose we have a C program with three threads, which I’ll call X, Y and Z. Say currently Y
is running. After 30 milliseconds (or whatever the quantum size has been set to), Y will be interrupted by
the timer, and the OS will start some other process. Say the latter, which I’ll call Q, is a different, unrelated
program. Eventually Q’s turn will end too, and let’s say that the OS then gives X a turn. From the point of
view of our X/Y/Z program, i.e. ignoring Q, control has passed from Y to X. The key point is that the point
within Y at which that event occurs is random (with respect to where Y is at the time), based on the time of
the hardware interrupt.

By contrast, say my Python program has three threads, U, V and W. Say V is running. The hardware timer
will go off at a random time, and again Q might be given a turn, but definitely neither U nor W will be given
a turn, because the Python interpreter had earlier made a call to the OS which makes U and W wait for the
GIL to become unlocked.

Let’s look at this a little closer. The key point to note is that the Python interpreter itself is threaded, say using
pthreads. For instance, in our X/Y/Z example above, when you ran ps axH, you would see three Python
processes/threads. I just tried that on my program thsvr.py, which creates two threads, with a command-line
argument of 2000 for that program. Here is the relevant portion of the output of ps axH:

28145 pts/5 Rl 0:09 python thsvr.py 2000
28145 pts/5 Sl 0:00 python thsvr.py 2000
28145 pts/5 Sl 0:00 python thsvr.py 2000

What has happened is the Python interpreter has spawned two child threads, one for each of my threads in
thsvr.py, in addition to the interpreter’s original thread, which runs my main(). Let’s call those threads UP,
VP and WP. Again, these are the threads that the OS sees, while U, V and W are the threads that I see—or
think I see, since they are just virtual.

The GIL is a pthreads lock. Say V is now running. Again, what that actually means on my real machine
is that VP is running. VP keeps track of how long V has been executing, in terms of the number of Python
byte code instructions that have executed.14 When that reaches a certain number, by default 100, UP will
release the GIL by calling pthread mutex unlock() or something similar.

The OS then says, “Oh, were any threads waiting for that lock?” It then basically gives a turn to UP or WP
(we can’t predict which), which then means that from my point of view U or W starts, say U. Then VP and
WP are still in Sleep state, and thus so are my V and W.

So you can see that it is the Python interpreter, not the hardware timer, that is determining how long a
thread’s turn runs, relative to the other threads in my program. Again, Q might run too, but within this
Python program there will be no control passing from V to U or W simply because the timer went off; such
a control change will only occur when the Python interpreter wants it to. This will be either after the 100
byte code instructions or when U reaches an I/O operation or other wait-event operation.

14This is the “machine language” for the Python virtual machine.

22

So, the bottom line is that while Python uses the underlying OS threads system as its base, it superimposes
further structure in terms of transfer of control between threads.

7.4.2 Implications for Randomness and Need for Locks

I mentioned in Section 7.2 that non-pre-emptive threading is nice because one can avoid the code clutter of
locking and unlocking (details of lock/unlock below). Since, barring I/O issues, a thread working on the
same data would seem to always yield control at exactly the same point (i.e. at 100 byte code instruction
boundaries), Python would seem to be deterministic and non-pre-emptive. However, it will not quite be so
simple.

First of all, there is the issue of I/O, which adds randomness. There may also be randomness in how the OS
chooses the first thread to be run, which could affect computation order and so on.

Finally, there is the question of atomicity in Python operations: The interpreter will treat any Python virtual
machine instruction as indivisible, thus not needing locks in that case. But the bottom line will be that unless
you know the virtual machine well, you should use locks at all times.

7.4.3 The Dreaded GIL

Python’s GIL is the subject of much controversy. As you can see, it prevents running true parallel Python on
multiprocessor machines, thus limiting performance. That might not seem to be too severe a restriction—
after all if you really need the speed, you probably won’t use a scripting language in the first place. But a
number of people take the point of view that, given that they have decided to use Python no matter what,
they would like to get the best speed subject to that restriction. So, it’s possible that the GIL will be removed
from future versions of Python.

A Debugging Threaded Programs

Debugging is always tough with parallel programs, including threads programs. It’s especially difficult
with pre-emptive threads; those accustomed to debugging non-threads programs find it rather jarring to see
sudden changes of context while single-stepping through code. Tracking down the cause of deadlocks can
be very hard. (Often just getting a threads program to end properly is a challenge.)

Another problem which sometimes occurs is that if you issue a “next” command in your debugging tool,
you may end up inside the internal threads code. In such cases, use a “continue” command or something
like that to extricate yourself.

A.1 Using PDB

Unfortunately, threads debugging is even more difficult in Python, at least with the basic PDB debugger.
One cannot, for instance, simply do something like this:

pdb.py buggyprog.py

23

because the child threads will not inherit the PDB process from the main thread. You can still run PDB in
the latter, but will not be able to set breakpoints in threads.

What you can do, though, is invoke PDB from within the function which is run by the thread, by calling
pdb.set trace() at one or more points within the code:

import pdb
pdb.set_trace()

In essence, those become breakpoints.

For example, in our program above, we could add a PDB call at the beginning of the loop in serveclient():

while 1:
import pdb
pdb.set_trace()
receive letter from client, if it is still connected
k = c.recv(1)
if k == ’’: break

You then run the program directly through the Python interpreter as usual, NOT through PDB, but then the
program suddenly moves into debugging mode on its own. At that point, one can then step through the code
using the n or s commands, query the values of variables, etc.

PDB’s c (“continue”) command still works. Can one still use the b command to set additional breakpoints?
Yes, but it might be only on a one-time basis, depending on the context. A breakpoint might work only once,
due to a scope problem. Leave the scope where we invoked PDB causes removal of the trace object.

Of course, you can get fancier, e.g. setting up “conditional breakpoints,” something like:

debugflag = int(sys.argv[1])
...
if debugflag == 1:

import pdb
pdb.set_trace()

Then, the debugger would run only if you asked for it on the command line. Or, you could have multiple
debugflag variables, for activating/deactivating breakpoints at various places in the code.

Moreover, once you get the (Pdb) prompt, you could set/reset those flags, thus also activating/deactivating
breakpoints.

Note that local variables which were set before invoking PDB, including parameters, are not accessible to
PDB.

Make sure to insert code to maintain an ID number for each thread. This really helps when debugging.

A.2 RPDB2 and Winpdb

The Winpdb debugger (www.digitalpeers.com/pythondebugger/),15 is very good. Among
other things, it can be used to debug threaded code, curses-based code and so on, which many debug-
gers can’t. Winpdb is a GUI front end to the text-based RPDB2, which is in the same package. I have a
tutorial on both at http://heather.cs.ucdavis.edu/˜matloff/winpdb.html.

15No, it’s not just for Microsoft Windows machines, in spite of the name.

24

www.digitalpeers.com/pythondebugger/
http://heather.cs.ucdavis.edu/~matloff/winpdb.html

B Non-Pre-emptive Threads in Python

Pre-emptive threading is a pain.

It is possible to use Python generators to implement non-pre-emptive threads systems in Python. One ex-
ample of this is the SimPy discrete-event system, http://simpy.sourceforge.net/.

C Looking at the Python Virtual Machine

One can inspect the Python virtual machine code for a program. For the program srvr.py in Section 3.1, I
did the following:

Running Python in interactive mode, I first imported the module dis (“disassembler”). I then imported the
program, by typing

import srvr

(I first needed to add the usual if name == ’ main ’ code, so that the program wouldn’t execute upon
being imported.)

I then ran

>>> dis.dis(srvr)

How do you read the code? You can get a list of Python virtual machine instructions in Python: the Complete
Reference, by Martin C. Brown, pub. by Osborne, 2001. But if you have background in assembly language,
you can probably guess what the code is doing anyway.

25

http://simpy.sourceforge.net/

	Why Use Threads?
	What Are Threads?
	Processes
	Threads Are Process-Like, But with a Big Difference

	Python Threads Modules
	The thread Module
	The threading Module

	Condition Variables
	General Ideas
	Event Example
	Other threading Classes

	The Effect of Timesharing
	Code Analysis
	Execution Analysis

	The Queue Module
	Threads Internals
	Kernel-Level Thread Managers
	User-Level Thread Managers
	Comparison
	The Python Thread Manager
	How the GIL Works
	Implications for Randomness and Need for Locks
	The Dreaded GIL

	Debugging Threaded Programs
	Using PDB
	RPDB2 and Winpdb

	Non-Pre-emptive Threads in Python
	Looking at the Python Virtual Machine

