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Disclaimer
	
The	information	provided	in	this	book	is	designed	to	provide	helpful	information
on	 the	 subjects	 discussed.	 The	 author’s	 books	 are	 only	 meant	 to	 provide	 the
reader	 with	 the	 basics	 knowledge	 of	 a	 certain	 topic,	 without	 any	 warranties
regarding	whether	the	student	will,	or	will	not,	be	able	to	incorporate	and	apply
all	the	information	provided.	Although	the	writer	will	make	his	best	effort	share
his	 insights,	 learning	 is	 a	 difficult	 task	 and	 each	 person	 needs	 a	 different
timeframe	 to	 fully	 incorporate	a	new	 topic.	This	book,	nor	any	of	 the	author’s
books	 constitute	 a	 promise	 that	 the	 reader	 will	 learn	 a	 certain	 topic	 within	 a
certain	timeframe.
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Introduction
What	is	R	Programming?
R	 is	 a	 free	open	 source	 software	program	used	 for	programming	 statistics	 and
graphics.	Statisticians,	scientists,	analysts,	data	miners,	and	mathematicians	use
R	 programming	 to	 make	 calculations,	 conduct	 polls	 and	 surveys.	 It	 is	 highly
powerful	 and	 extensible	 language	 with	 a	 programmable	 environment	 with
command-line	scripting.	This	makes	it	easier	for	other	users	to	verify	facts	and
errors,	 for	 example	 evaluating	 complicated	 formulas	 in	 a	 spreadsheet.	 It	 helps
with	extracting	important	statistical	data	out	of	data	set	out	of	graphics	and	then
making	it	easier	to	analyze.
R	 is	 considered	 a	 data	 analysis	 tool,	 a	 programming	 language,	 a	 statistics
analyzer,	 an	 open	 source	 software,	 and	 collaborative	mathematical	 application
for	statisticians	and	computer	scientists.
	
Here	is	a	brief	explanation	of	how	R	programming	is	categorized:

Data	 Analysis	 Tool	 –	 It	 is	 a	 tool	 used	 for	 analyzing	 statistics,	 data
visualization,	and	creating	data	models.
Programming	Language	–	It	is	used	to	write	scripts	and	functions.	Objects,
functions,	and	operators	are	used	to	process,	create	and	calculate	data.	Only
a	few	lines	of	code	are	required	to	complete	a	complex	calculation.
Statistics	 Analyzer	 –	 Functions	 are	 used	 daily	 to	 create	 graphics,	 data
models,	 and	 data.	 Methods	 are	 readily	 available	 to	 perform	 on-demand
statistical	research	and	modeling.
Open	Source	Software	–	Users	can	download	and	use	the	language	for	free,
as	well	as	use	and	modify	the	source	code.	This	means	that	anyone	can	use
the	methods	and	algorithms	with	other	applications	and	systems.
Collaborative	 Mathematical	 Application	 –	 It	 allows	 mathematicians,
statistician,	computer	scientists,	and	others	to	collaborate	online.	Users	from



various	 skill-sets	 and	 backgrounds	 can	 collaborate	 and	 communicate	 with
each	other	on	projects.
	

The	 R	 software	 suite	 is	 integrated	 with	 features	 for	 calculating,	 data
manipulation,	and	displaying	graphics.
	
R	include	the	following	features:

Effective	tools	for	handling	and	storing	data.
Effective	for	developing	methods	that	require	interactive	data	analysis.
A	collection	of	tools	for	analyzing	data.
Graphical	features	for	analyzing	data	and	displaying	it	on	the	computer
or	physically.
S	programming	 features,	 such	as	 conditionals,	 user	defined	 functions,
and	loops.
Supports	 matrix	 arithmetic	 and	 procedural	 programming	 with
functions.
It	 contains	 data	 structures	 that	 include	 vectors,	 matrices,	 arrays,	 data
frames,	and	lists.
It	 includes	 objects,	 such	 as	 regression	 models,	 time	 series,	 and	 geo-
spatial	coordinates.

	
In	 this	 Ebook,	 you	 will	 learn	more	 about	 these	 features	 in	 examples	 and
illustrated.



History	and	Background	of	R
R	 programming	 was	 created	 by	 Ross	 Ihaka	 and	 Robert	 Gentleman	 at	 the
University	of	Auckland	in	New	Zealand.	The	name	R	came	from	the	first	names
of	 the	creators,	Ross	and	Robert.	 	 It	was	developed	out	of	 the	S	programming
language,	which	 is	 still	 being	 developed	 by	 the	R	Development	Core	Team	 in
New	Zealand.
R	is	actually	a	GNU	(GNUs	Not	Unix)	project	that	was	written	with	C,	Fortran,
and	 R.	 It	 is	 available	 for	 free	 under	 the	 GNU	 General	 Public	 License.	 It	 is
available	to	run	on	Windows,	Mac	OS	X	and	Unix	operating	systems.



What	is	R	used	for?
R	 is	used	mostly	 for	 statistics	and	data	modeling,	but	 it	 is	 also	used	 to	extract
data	from	graphics	for	analysis.	It	contains	standard	and	recommended	packages
used	 for	 storing	 functions	 and	 data	 sets.	 R	 uses	 features	 from	 S,	 a	 statistical
system	that	is	commonly	used	by	statisticians.	S	processes	statistical	analysis	in
series	with	 only	 halfway	 results,	 but	 R	will	 provide	minimal	 output	 and	 store
results	for	assessment	later.
Although	 R	 uses	 the	 command-line	 to	 enter	 scripts,	 it	 also	 supports	 several
graphical	user	interfaces	(GUIs)	to	handle	graphics	and	data	models.	The	easiest
way	 to	 use	 it	 though	 is	 on	 a	 graphics	workstation	 that	 has	 a	window	 system.	
You	can	create	a	window	environment	on	a	Windows,	OS	X	or	a	Unix	system.
	
Now	 that	 you	 have	 some	 background	 knowledge	 of	 R,	 it	 is	 now	 time	 to	Get
Started!



Getting	 Started	 with	 R:	 Installing,
Starting	and	Stopping	R
Installing	R
To	 install	 R	 on	 your	 computer,	 you	 will	 need	 to	 download	 the	 software	 at:
http://www.r-project.org.

1.	 On	the	R-project	website	click	the	“CRAN”	link	under	the	“Download,
Packages”	heading.		You	will	see	a	list	of	CRAN	mirrors	to	the	right.
Select	 the	 CRAN	 Mirror	 link	 that	 is	 applicable	 to	 your	 region.	 The
“Comprehensive	R	Archive	Network”	page	will	open.

	

	
2.	 On	the	“Comprehensive	R	Archive	Network”	page,	select	one	of	the

following	 versions	 and	 then	 follow	 the	 directions	 to	 complete	 the
installation.	Select	the	version	that	applies	to	your	operating	system.

1.	 Download	R	for	Linux
2.	 Download	R	for	Mac	OS	X
3.	 Download	R	for	Windows

	

http://www.r-project.org


	
Note:	 If	 you	 are	 installing	 R	 on	 Windows,	 select	 the	 “base”
package.	 For	 Mac	 OS	 X,	 select	 the	 package	 that	 applies	 to	 the
version	of	your	operating	system.

	



Starting	and	Stopping	R
To	start	R,	double	 click	on	 the	 “R”	 icon	on	your	desktop.	The	R	console	will
open	with	 some	 introductory	 information.	Read	 the	 information	 to	 learn	more
about	R.

Just	below	the	introductory	information	you	will	see	a	prompt	or	cursor.	This	is
where	you	will	write	 the	 commands.	You	 can	 edit	 your	 command	use	 the	 left
and	right	arrow	keys.	To	stop	or	close	R,	type	“q(	)”.



File	Operations	and	File	Formats
R	 accesses	 data	 from	 .R,	 .txt,	 and	 .csv	 files.	 To	 retrieve	 the	 contents	 of	 the
“filename.R”	 file	 for	 example,	 you	 would	 write	 “source(filename.R)”	 at	 the
command	 line.	When	 the	file	 is	 retrieved,	 the	code	 that	 is	contained	 in	 the	 file
will	 run.	R	 commands	 are	written	 in	 plain	 text	 and	 saved	 in	 files	with	 the	 .R
extension.
You	can	run	the	codes	from	the	command	line	or	in	an	R	instance.	You	can	also
access	 external	 files	 that	 are	 not	 in	 the	 current	 folder	 by	writing	 for	 example,
“source(R	 folder/filename.R)”	 at	 the	 command	 line.	When	your	 create	R	 files,
use	meaningful	names,	for	example	“weekly_revenue.R”.
External	 files	 are	 used	 to	 store	 large	 data	 objects,	 which	 are	 read	 as	 values
during	an	R	session.	Input	files	can	be	modified	using	tools,	such	as	text	editors.



Writing	Code	and	Text	Editors
Writing	 good	 R	 code	 require	 practice	 and	 some	 guidance	 from	 reference
materials,	 such	 as	 Google’s	 R	 Style	 Guide	 and	 professional	 coders.	 It	 is	 also
easy	to	write	R	code	in	R	text	editors,	such	as	R	Studio,	because	they	help	with
managing	 large	 amounts	 of	 data.	 A	 statistician,	 can	 access	 programs	 for	 data
manipulation,	 reporting	 statistics,	 drawing	 plots	 and	 diagrams	 with	 just	 few
clicks.
Writing	R	Code
The	 first	 thing	 that	 you	 should	 remember	when	writing	 code,	 is	 to	 use	 proper
punctuation.	There	are	various	ways	to	punctuate	your	code,	but	you	should	be
consistent.	This	helps	other	 readers	 to	understand	your	style.	You	may	need	 to
adjust	your	style	to	meet	basic	standards	of	code	writing.
Here	are	some	tips	for	writing	good	code	in	R:

File	names	–	Filenames	should	end	with	the	R	extension,	for	example
“filename.r”	 and	 try	 not	 to	 capitalize	 unnecessarily	 because	 some
operating	systems	are	case	sensitive.	Files	that	need	to	run	in	sequence,
use	a	number	prefix	before	them,	for	example:

1_daily_revenue.R

2_weekly_revenue.R

3_monthly_revenue.R

	
Variable	and	Function	names	–	Write	variable	and	function	names	in
lowercase	letters	and	use	an	underscore	to	separate	words,	for	example	
“room_rate”.	 Variable	 names	 should	 be	 nouns	 and	 function	 names
should	 be	 verbs.	 Try	 not	 to	 use	 names	 of	 existing	 or	 predefined
functions	and	variables.	You	don’t	want	to	confuse	your	readers.
Spaces	 –	 Spaces	 are	 placed	 between	 infix	 operators	 (+,	 =,	 -),	 after	 a
comma,	before	 left	 parentheses	 (except	 in	 function	 calls),	 and	 always
put	 a	 space	 after	 a	 comma.	 It	 is	 ok	 to	 put	 extra	 spaces	 between

http://google-styleguide.googlecode.com/svn/trunk/Rguide.xml#Google's%20R%20Style%20Guide


assignments	 (<-)	 and	 equal	 signs	 (=)	 to	 make	 your	 code	 clear	 and
readable.	 Do	 not	 use	 spaces	 around	 code	 in	 parentheses,	 square
brackets,	:,	::,	and	:::.

Here	are	some	examples	of	when	to	use	spaces	and	when	not	to	use	spaces:
					sum(1,	3,	5)	–	No	spacing	in	function	calls,	except	after	commas.

23	+	5	-	4		-	Spaces	between	infix	operators.

														sum::get	–	No	spaces	with	colons	(:)	double	colons	(::)	or	triple	colons	(:::).

														total	=	a	+	b	+	c	–	Extra	spacing	to	improve	readability	and	alignment.	

														coordinates[5,1]	–	No	spaces	around	codes	in	brackets.

	
Curly	 braces	 –	 Opening	 and	 closing	 curly	 braces	 should	 have	 their
own	lines	and	must	be	followed	by	a	new	line.If	a	closing	curly	brace	is
followed	 by	 an else ,	 it	 does	 not	 need	 its	 own	 line.	 Codes	 in	 curly
braces	must	be	indented.

Here	is	an	example	of	how	to	write	code	with	curly	braces.
														if	(x	<	5	&&	sum)

														{			write("X	is	a	Coordinate")	}	

														if	(y	==	0)

														{			get(y)	}	else	{	x	>	y	}

	
Line	statements	–	You	can	write	short	statements	in	the	same	line,	but
try	to	limit	code	to	about	80	characters	per	line.

if	(x	<	5	&&	sum)	write("X	is	a	Coordinate")

Indenting	Code	–	Use	two	spaces	when	you	are	indenting	code	and	do
not	use	tabs	or	mix	tabs	and	spaces.	However,	 if	a	function	definition
uses	multiple	lines,	then	indent	the	second	line,	for	example:

calculate(x	=	"a	+	b",																																



																												y	=	"40	-	19",																															

																												z	=	"30	+	2	-	9")

Functions	–	Use	verbs	for	function	names,	use	the	return()	function	for
early	returns,	and	use	about	20	–	30	lines	maximum	on	a	single	screen.
Comments	 –	 Always	 comment	 each	 line	 of	 your	 code	 with	 the
comment	symbol	(#).	Use	multiple	dashes	(--)	or	(=)	to	divide	your	file,
so	it	can	be	readable.	You	can	place	comments	anywhere	in	the	file.

	

#	Calculate	weekly	numbers	----------

#	Plot	coordinates	----------------

Writing	code	correctly	comes	with	practice,	but	you	can	follow	these	simple	guidelines	to	get	you	started.

R	Text	Editors
It	is	much	easier	to	write	code	in	a	GUI	(Graphical	User	Interface)	because	it	is
much	 faster	 and	 simpler,	 although	 some	 statisticians	 and	 computer	 scientists
prefer	to	write	it	in	the	command	line	of	the	R	console.	For	those	who	prefer	to
write	R	in	a	separate	file,	this	is	when	a	text	editor	is	required.	A	text	editor	in
the	operating	 system	 is	often	used,	 but	 specialized	 editors	provide	 integrations
for	R	programming.
The	following	is	a	list	of	text	editors	for	R	programming:

Tinn-R	–	This	is	and	easy	to	use	GUI	text	editor	for	R	programming	in
Windows.
RKward	 –	 An	 easy	 to	 R	 text	 editor	 that	 works	 with	 GNU/Linux,
Windows,	 and	Mac	OS	X	 environments.	 It	 is	 an	 extensible	 IDE/GUI
for	R.
RStudio	–	This	 is	 a	 user-friendly	 tool	 that	 is	 similar	 to	RKward,	 but
easier	to	work	with.	It	also	works	on	Mac	OS	X,	Windows,	and	Linux
environments.
JGR	–	This	is	like	RStudio	with	similar	GUI	that	integrates	with	the	R
command	line	console.



Emacs	with	ESS	(“Emacs	Speaks	Statistics)	–	This	is	add	on	package
that	works	with	Unix,	Linux,	Windows	and	Mac	OS	X	environments.

There	are	several	 text	editors	 that	you	can	use	 to	write	R,	but	 these	are	widely
used	by	statisticians	and	computer	scientists.



Basic	R	Syntax
R	is	a	simple	syntax	that	is	an	expression	language.	It	is	a	UNIX	package	that	is
case	sensitive,	therefore	“ A” is	not	the	same	as	“ a” 	when	referring	to	variables.
The	 syntax	 symbols	may	vary	based	on	 the	 country	 and	 the	operating	 system.
All	alphanumeric	symbols	are	allowed	(this	includes	accent	letters	used	in	some
countries).
Simple	commands	are	either	expressions	or	assignments.

						1	+	1	–	This	is	an	expression.

							mean_average	<-	average(1,	5,	7,	19)	–	This	is	an	assignment

Commands	are	 separated	with	a	 semi-colon	or	 a	new	 line.	Simple	 commands	are	 typically	grouped	with

open	and	close	curly	braces	({	}).		When	a	command	is	incomplete,	R	will	insert	a	prompt	by	default.

	

The	following	are	different	types	of	expressions	used	in	R:
Constants	–	Constants	are	any	number	or	 text	 type	 in	 the	R	console.
There	are	five	types	of	constants;	integers,	logical,	string,	numeric,	and
complex.	
Here	is	an	example	of	a	string	constant:

"R	programming!"

	
Arithmetic	 operators	 -	 	 Arithmetic	 operators,	 such	 a	 addition	 (+),
subtraction	(-),	division	(/),	multiplication	(*),	 integer	division	(%/%),
remainder	 for	 integer	 division	 (%%	 -	 modulo	 arithmetic)	 and
exponentiation	(^)	are	standard	operators	used	in	R	programming.
Here	is	an	example	of	an	addition	operation:

1	+	1

	
Logical	and	Comparison	operators	–	Logical	operators,	such	as	||	(or)
and	&&	 (and)	 are	 used	 to	 combine	 to	 logical	 values	 to	 get	 a	 logical



result.	 The	 !	 (not)	 is	 the	 negation	 of	 a	 logical	 value.	 Comparison
operators	 (<,	 >,	 <=,	 >=,	 ==,	 and	 !=)	 are	 used	 to	 compare	 values	 in
vectors	to	determine	if	one	vector	is	larger,	smaller	or	equal	to	another.
The	%in%	operator	is	use	to	determine	a	match	between	a	left	and	right
operand.	This	produces	a	logical	vector.
Here	is	an	example	of	a	greater	than	operation:

a	>	6

	
Function	calls	–	Function	calls	have	any	number	of	arguments	with	the
same	name,	for	example	functionName(argument1,	argument2).	
Here	is	an	example	of	a	function	call:

sqrt(7*3+3)

	
Symbols	and	assignments	–	 If	 it	 is	not	a	digit	or	a	 special	keyword,
then	it	is	a	symbol.	Values	can	be	assigned	with	the	<-	operator.	
Here	is	an	example	of	an	assignment:

combineA	<-	c(3,5,7,9)

	
Loops	-	A	loop	is	used	to	repeat	a	group	of	expressions.	For	loops	are
used	to	run	expressions	for	a	specific	number	of	times.	The	expressions
run	in	sequence.	While	 loops	run	until	 the	condition	becomes	FALSE
and	should	produce	a	single	logical	value.
Here	is	an	example	of	a	for	loop:

for	(x	in	1:20)

{	sqr[x]^2	}

	
Conditional	 expressions	–	Conditional	 expressions	 are	used	 to	make
expressions	dependent	on	a	condition.	The	condition	should	produce	a



single	 logical	 value	 and	 should	 only	 run	 if	 the	 condition	 is	 TRUE.
Curly	braces	may	or	may	not	be	use.	R	uses	if,	else	statements	to	write
conditional	expressions.
Here	is	an	example	of	a	conditional	expression:

if(	x	<	0.07)

{	x	<-	x	*	2					

sqrt(x)}

	



Files
Files	in	R	typically	have	extensions	on	the	filenames,	for	example	‘datafile.csv’.
The	 ‘.csv’	 is	 the	 extension.	 Although	 R	 does	 not	 recognize	 extensions	 it	 is
helpful	for	users	to	know	the	difference.	Some	primary	file	extensions	used	in	R
programming	include	‘.	rda’,	‘.r’,	‘.txt’,	and	‘.csv’.
	
Here	is	a	brief	explanation	of	the	different	file	types:

.RDA	files	–	These	are	saved	R	objects	that	are	used	to	attaching	and
loading	 files.	 They	 use	 the	 .rda	 or	 .RData	 extension.	 Files	 with	 the.
RData	and	the	.rda	extension	are	the	same.
	 .R	 files	 –	 These	 files	 are	 created	 inside	 the	 R	 editor	 by	 the	 dump
function.	They	include	R	commands.	Some	R	files	may	also	have	the	.q
extension.
.TXT	files	–	These	are	text	files	that	are	used	to	store	datasets.	R	uses
the read.table() function	 and	 the write.table() function.	 R	 uses
the read.table() 	 for	 data	 input	 and	 reading	 from	 text	 files.	 It	 then
automatically	creates	a	data	frame	with	it.	The write.table() 	function	on
the	other	hand	is	used	to	create	the	text	files.
.CSV	files	–	CSV	or	Comma	Separated	Values	files	are	common	data
file	typesinputted	with	the read.csv() 	function.

	
R	 files	 typically	 store	 large	 amounts	 of	 data	 or	 data	 objects	 instead	 of	 being
inputted	from	the	keyboard.	You	can	enter	small	data	objects	in	the	R	console	at
the	command	prompt,	but	it	is	best	to	store	large	data	objects	in	.rda,	.r,	.txt,	.csv,
and	other	data	files.	You	can	then	use	the	read	and	write	functions	to	read	and
write	data	into	R.



Reading	Files	with	Functions
R	reads	large	data	objects	as	values	from	external	files.	Although,	you	can	enter
small	 amounts	 of	 data	 at	 the	 keyboard	 in	 an	 R	 programming	 session,	 the
environment	is	very	simplistic	and	would	take	a	long	time	to	enter	large	amounts
of	 data.	 Therefore,	 it	 is	 better	 that	 you	modify	 input	 files	 using	 file	 editors	 to
accommodate	the	requirements	of	the	language.
Variables	and	other	 types	of	datashould	be	stored	in	data	frames	and	then	read
with	 the read.table() function	 or	 with	 the	 older	 input	 function	 called scan().
The read.table() 	 function	 is	more	 commonly	 used	 to	 read	 in	 rectangular	 data,
but	 it	 is	 recommended	 that	 you	 use	 the scan() 	 function	 to	 read	 very	 large
numerical	matrices.
In	the	followingsection,	you	will	learn	more	about	the read.table() 	function	and
how	to	use	it	with	different	arguments	to	read	various	types	of	datafiles.	We	will
also	look	at	how	to	use	the scan() and read.csv() 	functions.
If	you	would	like	to
Read.table()	function
The read.table() 	 function	 is	 used	 to	 read	 data	 from	 an	 external	 file	 into	 R.	 It
supports	 several	arguments,	but	 it	only	needs	 the	 filename	 to	 read	data	 into	R.
You	can	read	 the	entire	data	 from	an	external	 file	or	you	can	specify	how	you
would	like	to	read	the	data	using	arguments.
To	read	the	data	from	the	external	file,	you	will	need	to	ensure	that	 the	data	 is
displayed	in	a	specific	way.	The	first	line	of	the	data	must	have	the	name	of	each
variable	 in	 a	 row.	Below	 each	 variable	 name,	 you	 should	 have	 the	 values	 for
each	 of	 the	 variables.	 If	 the	 values	 are	 omitted,	 R	 assumes	 that	 this	 was
intentional.	 The	 numeric	 values	 in	 the	 data	 file	 are	 read	 as	 numeric	 and	 non-
numeric	variables.	You	can	always	change	it	if	necessary.
Here	is	an	example	of	an	external	data	file,	let	us	call	it	“Inventory.data”.	This
file	includes	a	column	with	row	labels	(example	01).
You	do	not	have	to	include	a	row	label	column.	Instead,	you	can	allow	R	to	use



the	default	row	labels.
Data	with	variable	names	and	row	labels	may	look	like	the	following	example:

Price																												Item																												Code																													Status	<-	This	is	the

variable	name

01														20.00																												Book																												010A																												Sold

02														1.00																												Pen																												9290																												Order

03														.50																												Eraser														30Q1																												Pending

To	read	the	entire	contents	of	the	data	file	“Inventory.data”,	you	would	use	the read.table() 	function	to	read

the	data	frame	directly	into	R,	using	the	following	statement.

>	InventoryStatus	<-	read.table(“Inventory.data”)

If	 you	 choose	 to	 omit	 the	 row	 label	 column	 from	 the	 data	 file,	 you	 would	 need	 to	 include	 the	 header

argument	when	reading	the	data.	This	is	how	you	would	read	the	data	with	the	header	and	a	separator.

>	InventoryStatus	<-	read.table(“Inventory.data”,	header=TRUE,	sep=””)

Both	statements	assign	the	contents	of	a	file	to	an	object.	The	data	in	the	“Inventory.data”	file	is	assigned	to

the	“InventoryStatus”	object.

	

Here	is	an	explanation	of	the	statements:
InventoryStatus	–	This	is	the	object	that	will	store	the	contents	of	the
“Inventory.data”.
read.table() 	 –	 The read.table() 	 function	 requires	 an	 external	 file.	 In
this	case	it	contains	the	“Inventory.data”	file.
header=TRUE	 –	 This	 is	 used	 if	 the	 file	 does	 not	 contain	 any	 row
labels,	but	has	the	names	of	the	variables	in	the	first	line.	The	variables
specify	 that	 the	 file	 contain	headings.	When	a	 file	does	not	 contain	 a
column	for	the	row	labels,	then	default	row	labels	are	assigned.
sep=””	–	This	is	the	field	separator	used	for	separating	the	files	in	the
file.	The	pair	of	quotations	represents	whitespaces	and	can	have	one	or
more	 spaces,	 lines,	 tabs,	 or	 carriage	 returns.	 You	 can	 use	 it	 in	 the



following	ways:
Space	delimited	data	–	Use	sep=”	“	for	space	delimited	data.
Tab	delimited	data	–	Use	sep=”\t”	for	tab	delimited	data.
New	 line	 delimited	 data	 –	 Use	 “sep=”\n”	 for	 new	 line
delimited	data.

Note:	Delimited	data	or	 text	 is	a	simple	file	format	that	 is	separated	by	certain	characters.

The	text	is	usually	individual	and	the	characters	used	are	called	delimiters.

	
Variations	of	read.table()
The read.table() 	 function	 is	 used	 in	 various	 ways	 to	 read	 data	 into	 R	 from	 a
rectangular	grid.	Various	arguments	are	used	 inside	 the	 function	 to	manipulate
different	types	of	data.
The	following	isa	list	of	variations	of	the read.table() 	function:

1.	 	 	 	 Encoding	 –	 When	 a	 file	 contains	 non-ASCII	 characters,	 you	 should
ensure	that	it	is	read	correctly.	If	you	are	reading	Latin-1	files	in	the	UTF-8
location,	 you	would	 need	 to	 use	 the	 following	 statement.	 It	will	work	 for
Latin-1	strings,	but	it	may	not	work	for	Chinese/Russian/Greek	and	similar
regions.	The	file	Encoding	argument	is	used	to	designate	these	types	of	files.
read.table(“Inventory.data",	fileEncoding="latin1")

	
2.	 	 	 	 Header	 –	 The	 header	 argument	 should	 be	 used	 when	 the	 file	 only
contains	 variable	 names.	When	R	 recognizes	 that	 there	 are	 no	 row	 labels,
then	 it	will	set	header	=	TRUE.	If	you	have	a	 file	without	 row	labels,	you
can	read	the	data	with	something	similar	to	the	following	statement.
read.table(“Inventory.data”,	header=TRUE,	row.names=1)

	
3.	 	 	 	Separator	 –	 The	 default	 separators,	 sep	 =””	 and	 sep	 =”\t”,	 is	 used	 to
create	white	spaces	in	files.	This	is	used	to	create	spaces,	tabs,	or	newlines.
The	 type	 of	 separator	 used	 will	 determine	 the	 input	 based	 on	 the	 quote



argument.	The	following	statement	uses	the	new	line	separator.	This	means
the	when	the	data	is	read	into	R,	each	value	will	be	placed	on	a	new	line.
InventoryStatus	<-	read.table(“Inventory.data”,	header=TRUE,	sep=”/n”)

	
4.	 	 	 	Missing	Values	–	It	is	assumed	by	default	that	the	file	contains	missing
values	and	uses	NA	to	represent	 those	missing	values.	 If	 there	are	missing
numeric	values	in	the	columns,	the	NaN,	Inf,	and	the	–Inf	character	strings
are	displayed.
Empty	fields	or	missing	values	maybe	displayed	like	the	following:
Price																												Item																												Code																													Status

01														20.00																												Book																												010A																												Sold

02														1.00																												Pen																												NaN																												NA

03														.50																												Eraser														30Q1																												Pending

	
5.	 	 	 	Unfilled	lines	–	When	a	file	is	exported	from	a	spreadsheet,	there	might
be	some	empty	fields	with	missing	separators.	To	read	these	files,	use	set	fill
=	TRUE.
InventoryStatus	<-	read.table(“Inventory.data”,	header=TRUE,	fill=TRUE)

	
6.				White	spaces	–	If	there	is	a	separator,	leading,	or	a	trailing	whites	spaces
in	 a	 character	 field,	 you	 can	 strip	 the	 space	with	 the	 strip.white	 =	 TRUE
argument.
InventoryStatus	<-	read.table(“Inventory.data”,	header=TRUE,	strip.white=TRUE)

	
7.	 	 	 	Blank	 lines	–	The	 read.table()	 function	 ignores	empty	 lines	by	default,
but	 you	 can	 change	 it	 by	 declaring	 blank.lines.skip=FALSE.	 This	 only
works	with	fill=TRUE.
InventoryStatus	 <-	 read.table(“Inventory.data”,	 header=TRUE,	 fill=TRUE,



blank.lines.skip=FALSE)

	
8.	 	 	 	 Classes	 –	 The read.table() by	 default	 reads	 the	 columns	 as	 character
vectors	 and	 then	 choose	 a	 class	 for	 each	variable	 in	 the	 file.	 It	 checks	 for
integers,	 logical	 numbers,	 numeric	 values,	 and	 complex	 variables.	 If	 there
are	 missing	 entries,	 then	 the	 variables	 are	 converted	 to	 a	 factor.	 The
colClasses	used	 in	 the	following	statement	 to	convert	 the	character	vectors
to	factors	in	the	“Inventory.data”	file.

read.table("Inventory.data",	header	=	TRUE,	colClasses	=	classes)

	
9.	 	 	 	Comments	–	The read.table() 	function	by	default	uses	the	‘#’	to	create
comments.	When	R	sees	the	‘#’	in	a	quoted	string,	it	ignores	the	rest	of	the
line.	If	there	are	white	spaces	with	a	comment,	the	comment	is	treated	as	a
blank	 line.	When	 there	 are	 no	 comments	 in	 the	 file,	 the	 comment.char=””
syntax	is	used	like	how	it	is	used	in	the	following	statement.
	

read.table(“Inventory.data”,	comment.char="#")

	
10.																								Escape	and	Backslash	–	Operating	systems	have	different	ways	of
using	 the	backslash	and	escape	keys	 in	 text	 files.	However,	Windows	uses
the	 backslash	 in	 path	 names.	 In	 R,	 the	 backslash	 is	 optional	 in	 data
files.When read.table() 	 uses	 allowEscapes,	 which	 is	 false	 by	 default,	 the
backslashes	 are	 then	 interpreted	 as	 escapes	 quotes.	 Escape	 arguments	 are
interpreted	with	control	characters,	such	as	\a,	\b,	\f,	\n,	and	\r.
	
11.																								Convenience	functions–	The read.csv() and read.delim() functions
provide	 arguments	 to	 the read.table() function	 for	 tab	 delimited	 and	 CSV
files	that	are	exported	from	spreadsheets	in	English	speaking	locations.

Read.csv()	function



The read.csv() 	 function	 is	 used	 to	 read	 a	 data	 file	with	 the	 “comma	 separated
values”	 (csv)	 format.	 CSV	 files	 contain	 values	 with	 numbers	 and	 letters
separated	with	a	comma.	The	first	 row	of	 the	file	usually	contains	 label	names
for	differentiating	the	columns	for	the	values.
Here	is	an	example	of	a	CSV	with	some	data.	It	contains	three	columns	and	three
rows	 of	 data.	 The	 data	 file	 is	 called	 “products.csv”.	 The	 columns	 are	 labeled
“Product”,	 “Price”,	 and	 “Quantity”.	 It	 is	 assumed	 that	 the	 rows	 have	 three
products,	“Book”,	“Stationary”,	and,	“Toy”.
Here	is	how	the	data	file	might	look	with	the	data.

Product														Price																												Quantity

Book																												9.99																												2

Stationary														3.00																												6

Toy																												24.00																												3

	
To	read	the	data	file,	you	will	need	to	use	the	“read.csv”	command.	The	command	must	have	at	least	one

argument,	but	you	can	have	 three	or	more	arguments.	 In	 the	following	example,	 the	first	argument	 is	 the

name	of	the	data	file,	the	second	argument	the	first	row	for	the	labels,	and	the	third	argument	specifies	that

there	is	a	comma	between	each	line.

Here	is	how	you	can	read	the	data	and	assign	it	to	the	“inventoryinfo”	variable
with	three	arguments.

>	inventoryinfo	<-	read.csv(file="products.csv",head=TRUE,sep=",")

	
The	variable	“inventoryinfo”	contains	three	columns	with	data.	A	name	is	assigned	to	each	column.	The

column	names	are	on	the	first	line	within	the	file.	To	access	each	column,	use	the	“$”	to	differentiate	the

names	of	the	columns.	For	example,	if	you	would	like	to	access	the	data	in	the	“Price”	column,	you	would

use	the	following	command:

>	inventoryinfo$Price

	



If	you	are	not	sure	which	column	in	the	data	file	you	would	like	to	access	use	“names”	command	to	list	all

the	 names	 of	 the	 columns	 in	 the	 data	 file.	 Here	 is	 an	 example	 of	 how	 you	 would	 use	 the	 “names”

command:

>	names(inventoryinfo)

	
The	“summary”	command	can	also	be	used	to	call	the	data	from	a	CSV	data	file.	It	is	used	after	the	data

file	is	assigned	to	a	variable.	Here	is	how	you	would	use	the	‘summary’	command.

>	summary(inventoryinfo)

	
If	the	file	is	located	in	a	specific	directory	or	folder,	you	will	need	to	specify	the	directory	and	the	folder

name	 to	 retrieve	 the	 file.	 The	 naming	 conventions	 for	 retrieving	 files	 from	 folders	 and	 directories	 are

located	in	the	help	folder.	To	view	the	list	of	options	for	retrieving	files,	use	the	help(read.csv)	command.

	

Note:	If	you	are	using	a	Windows	operating	system,	you	will	need	to	use	two	backslashes

(“\\”)	to	access	the	file.

	
If	 you	 are	 unable	 to	 find	 the	 file,	 you	maybe	 looking	 in	 the	 wrong	 folder	 or
directory.	Use	the	dir()	command	to	locate	the	file,	as	well	as	identify	a	file,	if
you	 forgot	 the	 filename.	The	getwd()	 command	will	 display	 the	 directory	 that
you	are	currently	working	with.
If	 you	 have	 data	 in	 an	 excel	 spreadsheet,	 you	 can	 covert	 it	 to	 a	CSV	 file,	 by
removing	 the	 top	 row	of	 the	 spreadsheet	 file	 and	 then	 save	 it	 as	 a	 “.csv”	 file.
Excel	allows	you	to	save	its	spreadsheets	as	CSV	files.	To	better	understand	how
R	stores	data,	open	the	CSV	file	in	Excel.
After	you	convert	the	spreadsheet	into	a	CSV	file,	you	can	read	it	into	a	variable
as	 normal.	 For	 example,	 if	 you	 converted	 an	 Excel	 file	 called
“datainventory.xls”	into	“datainventory.csv”,	you	can	read	it	into	the	variable
“data”	by	using	the	following	command:

>	data	<-	read.csv(file="datainventory.csv",header=TRUE,sep=",");



	
This	 example	 creates	 a	new	variable	 called	 “data”.	When	you	enter	 “data”	 at
the	prompt,	all	the	data	stored	in	the	variable	will	be	displayed.

Note:	R	keeps	track	of	data	in	various	ways	when	you	use	the	“read.csv”	command.	It	uses

the	“data	frame”	variable	type	that	stores	all	 the	data	 in	a	data	frame	format	with	separate

columns.	To	verify	the	type	of	variable	that	you	have,	use	the	attributes	command.

													
Here	is	how	you	would	use	the	“attributes”	command	to	determine	the	“data”
variable	 type,	 for	 example.	 This	 will	 list	 the	 different	 ways	 R	 describes	 the
variable.

>	attributes	(data)

	
Scan()	function
The	 scan()	 function	 is	 used	 to	 read	 various	 types	 of	 data	 or	 data	 objects,	 for
example	 data	 vectors.	 You	 can	 customize	 the	 command	 to	 read	 specific	 data.
The	command	waits	for	input	from	the	user	and	then	returns	the	value	entered	at
the	prompt.	To	read	three	data	vectors	from	a	data	file	called	“datavectors.dat”,
you	would	use	the	following	command	with	the	“datav”	variable,	for	example.

>	datav	<-	scan(“datavectors.dat”,	list(“”,1,1))

	
The	second	argument,	list(“”,0,0)	is	a	dummy	or	false	structure	for	creating	the	three	vectors	that	will	be

read	 into	 the	 “datav”	 variable.	 The	 data	 items	 are	 separated	 into	 the	 three	 vectors,	 using	 the	 following

command:

>	datalabel	<-	datav[[1]];	x	<-	datav[[2]];	y	<-	datav[[3]]

	
Notice	 that	 the	 three	 vectors	 are	 stored	 in	 the	 “datalabel”	 variable,	 which	 will	 be	 used	 to	 read	 in	 the

vectors.	This	is	how	you	would	access	the	vectors	with	the	scan()	function.

>	datav	<-	scan("datavectors.dat",	list(id="",	x=1,	y=1))



	
To	access	the	variables	separately,	use	the	“$”	symbol.

>	datalabel	<-	datav$id;	x	<-	datav$x;	y	<-	datav$y



Importing	&	Reading	Files
There	are	various	file	formats	that	can	be	imported	into	R.	Earlier	we	discussed
reading	CSV	and	XLS	 files	 into	R.	Here	we	will	 revisit	 these	 files,	 as	well	 as
other	file	formats.	We	will	discuss	importing	file	formats	such	as	Minitab,	SPSS,
and	TXT	files.
Excel	Files
Most	of	the	time	the	data	that	you	would	like	to	import	is	in	Excel	format.	Since
most	 organizations	 use	 Excel	 files,	 you	 will	 need	 to	 understand	 how	 to	 use
various	methods	for	importing	Excel	data	in	R.	These	methods	will	import	Excel
data	 into	 R	 before	 you	 start	 using	 it.	 They	 have	 their	 advantages	 and
disadvantages,	but	 they	all	 read	data	 from	an	Excel	 spreadsheet	 and	 return	 the
data	in	a	data	frame	into	R.
Here	is	an	overview	of	the	some	of	the	methods	used	to	read	data	from	an	Excel
spreadsheet	into	R.

Save	Excel	files	as	Text	–	You	can	save	Excel	files	into	CSV	format	in	an
Excel	spreadsheet	or	with	an	external	tool	that	allow	batch	processing.	You
can	 then	 use	 the	 “read.table()”	 function	 to	 import	 the	 text	 format	 (that	 is
CSV).
>	txt	<-	read.table(“textfile.csv”,	header	=	TRUE)

	
Copy	and	Paste	Data	 from	Excel	–	This	 is	one	of	 the	easiest	 solution	or
method,	but	you	will	need	 to	open	 the	Excel	 file,	 select	 the	data,	and	 then
copy	with	the	copy	and	paste	commands	or	with	the	copy	and	paste	options
available	 in	 Excel.	 You	 can	 use	 this	method	when	 you	would	 like	 to	 get
things	done	quickly.	This	requires	the	“read.table()”	function.
>	txt	<-	read.table(“clipboard”)

	
Excel	ODBC	driver	 –	 This	method	 requires	 the	 installation	 of	 the	 Excel
Open	 Database	 Connectivity	 (ODBC)	 driver.	 This	 method	 is	 not	 well



recommended	because	 it	 requires	 several	 lines	of	 code	 to	 install	 the	drive,
connect	 with	 the	 Excel	 file,	 and	 read	 the	 file.	 This	 method	 is	 used	 with
Microsoft	Windows	and	32-bit	R.
The	 following	 example	 shows	 how	 to	 establish	 a	 connection,	 get	 the	 data
sheet,	and	close	the	connection	to	the	Excel	file.	
First,	open	a	connection	to	the	Excel	file.
>	require(RODBC)

>	connFile	<-	odbcConnectExcel(“excelFile.xlsx”)	#open	a	connection

														Second,	display	and	read	the	data	sheet.
>	sqlTables(connFile)	$tableName,	“Sheet1”)													

>	txt	<-	sqlFetch(connFile,”Sheet1”)	#	display	all	data	sheets

>	txt	<-	sqlQuery(connFile,	“select	*	from	[Sheet1	$]”)	#	read	data	sheet

														Third,	close	the	connection	to	the	file.
>	close(connFile)	#	close	the	connection

													

gdata	package
The	gdata	package	is	a	cross	platform	solution	that	works	on	Windows,	Mac
OS,	 and	 Linux	 operating	 systems.	 The	 gdata	 package	 requires	 that	 you
install	Perl	 libraries,	which	should	already	be	available	on	Linux	and	Max
systems.	However,	it	may	require	additional	steps	for	Windows	platforms.
>	require(gdata)

>	txt	<-	read.xls(“excelFile.xlsx”,	datasheet	=	1,	header	=	TRUE)

	
xlsReadWrite	package
The	xlsReadWrite	package	does	not	 support	xlsx	 files	and	 it	 is	not	widely
use	these	days,	but	it	 is	a	method	that	can	used.	It	requires	the	use	of	third
party	code	from	GitHub	and	CRAN	and	only	works	on	Windows	platforms.
>	require(xlsReadWrite)



>	xls.getshlib()

>	txt	<-	read.xls(“excelFile.xlsx”,	datasheet	=	1)

	

XLConnect	package
The	XLConnect	 package	 that	 is	 a	 Java	 based	 solution	 that	works	 across	most
platforms.	This	works	best	with	 small	data	 sets.	 If	you	are	working	with	 large
data	sets,	it	may	take	a	long	time.

>	require(XLConnect)

>	xlsFile	<-	loadWorkbook(“excelFile.xlsx”)

>	txt	<-	readWroksheet(xlsFile,	datasheet	=	“Sheet1”,	header	=	TRUE)

	

It	 is	 preferable	 to	 import	 Excel	 files	 as	 CSV	 files	 using	 the	 “read.table()”
function	mentioned	in	(1)	and	in	the	“Reading	Files	with	Functions”	section.	It
is	 the	easiest	way	 to	 import	xlsx	files	 into	R.	However,	 if	you	have	small	data
sets,	you	can	use	the	XLConnect	method.
Minitab	Files

Minitab	 files	 contain	 data	 stored	 as	 the	Minitab	Portable	Worksheet	 format.	 It
uses	 the	 “read.mtp”	 file	 to	 read	 the	 xlsx	 file.	 The	 file	 returns	 a	 list	with	 one
component	 for	 each	 column,	 matrix,	 or	 constant	 that	 is	 stored	 in	 the	Minitab
worksheet.	The	process	 requires	 that	you	 first	 load	 the	“foreign”	package,	call
the	“read.mtp”	function,	and	then	read	in	the	“.mtp”	file.
First,	load	the	“foreign”	package.

>	library(foreign)

Second,	call	the	“read.mtp”	file.
>	help(read.mtp)

Third,	read	the	“.mtp”	file.
>	myfile	<-	read.mtp(“myfile.mtp”)

	



SPSS	File
An	SPSS	file	or	Statistical	Package	for	the	Social	Sciences	is	a	file	format	used
to	store	data	for	statistical	analysis.	The	file	is	stored	with	the	“.sav”	extension.
SPSS	files	are	data	files	that	are	opened	with	the	“read.spps”	function	from	the
“foreign”	package.	The	“to.data.frame”	argument	is	used	inside	the	function	to
determine	if	a	data	frame	will	be	returned.
The	following	process	shows	how	to	load,	access,	and	read	spss	files.
First,	load	the	“foreign”	package.

>	library(foreign)	

Second,	access	the	“read.spss	function.
>	help(read.spss)

Third,	read	the	“.sav”	file.
myfile	<-	read.spss(“dataFile.sav”,	to.data.frame=TRUE)



	
Built-in	datasets
There	are	over	100	built-in	datasets	listed	in	the	“datasets”	package.	To	see	the
list	of	datasets,	enter	data()”	at	the	command	prompt.	This	will	list	the	data	sets
by	their	names	in	alphabetic	order.	It	will	also	load	the	data	sets	into	memory	for
statistical	analysis.	For	example,	if	you	would	like	to	load	the	“infert”	data	set
into	memory,	you	would	enter	the	following	at	the	command	prompt.

>	data(infert)

	



Symbols	and	Assignments
R	Symbols
When	you	create	a	new	variable,	it	must	have	a	name	that	typically	references	a
value.	The	name	is	actually	a	symbol,	which	evaluates	the	value	that	is	returned.
A	symbol	is	also	an	R	object	and	can	be	manipulated	the	same	way	as	objects.
Symbols	refer	to	an	R	object	and	the	name	of	an	R	object	is	a	symbol.

The	following	example	shows	the	symbol	“x”	and	the	value	“6”	that	is	assigned
or	associated	with	the	symbol	or	variable.

x	<-	6

x

[1]	6

You	can	also	use	a	symbol	to	create	functions.	In	other	words,	functions	can	be
assigned	to	a	symbol,	but	it	is	not	necessary.	Symbols	in	a	function	can	be	bound
or	 unbound.	 There	 three	 types	 of	 symbols	within	 a	 function.	 They	 are	 formal
parameters	 or	 formal	 arguments,	 local	 variable,	 and	 free	 variables.	 Formal
arguments	within	a	function	are	called	bound	symbols.	They	are	within	the	body
of	 the	 function.	 All	 other	 symbols	 in	 the	 body	 are	 either	 local	 or	 unbound
variables.

Since	R	is	an	expression	language	that	is	case	sensitive,	you	need	to	be	careful
when	using	different	symbols,	such	as	variable	names.	You	should	also	consider
the	type	of	operating	system	and	country	that	you	reside	when	using	a	set	of	R
symbols.	Typically,	alphanumeric	symbols	such	as	periods	(.),	and	underscores
(_)	are	allowed.	However,	there	are	restrictions.	A	name	must	start	with	a	period
(.)	or	a	letter.	If	a	name	starts	with	a	period	(.),	 then	the	second	character	must
not	be	a	number.	You	can	have	name	that	is	unlimited	in	length.

Objects	can	be	 referred	with	 symbols,	which	are	actually	objects.	A	symbol	 is
considered	an	object	in	R.	Symbols	can	be	used	in	the	same	way	as	other	objects
and	 are	 also	 considered	 variable	 names.	 In	 an	 environment,	 there	 is	 a	 set	 of



symbol-value	 pairs	 and	 R	 looks	 for	 symbols	 within	 the	 frame	 of	 the
environment.	The	 symbols	within	 the	 environment	 contain	 a	 search	 list	 that	 is
searched	sequentially	for	a	matching	symbol.	If	 the	symbol	is	 located,	 then	the
value	 is	 returned.	 Therefore,	 if	 you	 assign	 the	 same	 environment	 to	 many
symbols	and	change	one	of	them,	the	other	symbols	will	be	changed	as	well.

When	you	create	a	variable	name,	you	actually	create	a	symbol.	The	name	is	the
symbol.	They	usually	 contain	 a	 value,	which	 is	 evaluated	 and	 returned.	 In	 the
following	example	“x”	has	the	value	”3”,	where	“x”	is	the	symbol	and	“3”	is	the
value.	The	value	here	is	assigned	to	the	symbol.

>	x	<-	3

Values	returned	with	“for”,	“while”,	and	“repeat”	loops	can	assign	their	results
to	 symbols.	 Also,	 argument	 lists	 or	 formal	 arguments	 in	 functions	 can	 be
considered	symbols.	In	this	case,	symbols	are	expressions.
R	Assignments
R	assignments	evaluate	expressions	and	passes	values	to	variables.	However,	the
result	is	not	automatically	displayed.	You	have	to	call	the	variable	name	to	see
the	results.
In	R,	most	actions	performed	 in	R	are	caused	by	 function	calls.	Function	calls
return	a	value	and	often	requires	a	name	to	be	assigned	to	that	value.	There	are
two	ways	that	you	can	assign	a	value.	You	can	assign	a	value	using	assignment
operators.	The	less	than	and	minus	sign	together	(<-)	and	the	equal	sign	(=)	are
the	assignment	operators	used	to	assign	values	to	variable	names.
The	=	operator	is	an	alternative	to	using	the	less	than	and	minus	(<-)	assignment	operators.	The	<-	operator

can	be	used	any	place	in	R,	but	the	=	operator	can	only	be	used	in	an	expression	entered	at	the	command

line	 or	 in	 a	 sub	 expression	with	 brackets.	 Both	 operators,	 point	 to	 the	 object	 receiving	 the	 value	 in	 the

expression	and	are	assigned	into	the	environment	where	they	are	evaluated.

Here	 is	an	example	of	how	you	would	create	an	assignment	with	 the	 less	 than
and	minus	(<-)	assignment	operators.

>	squarey	<-	sqrt(x*x+2)



	
Here	is	how	you	would	create	an	assignment	with	the	equal	sign	(=).

>	squarey	=	sqrt(x*x+2)

	

In	both	cases,	the	value	of	the	“sqrt(x*x+2)”	expression	is	stored	in	the	variable
name	“squarey”.	When	 the	variable	 “squarey”	 is	 executed,	 it	will	 become	an
object	within	the	environment.	It	does	not	matter	which	assignment	symbol	you
use,	 it	 is	up	to	you	and	based	on	your	preference.	You	can	use	either	one.	Just
remember	that	R	is	case-sensitive.	So	if	you	use	“squareY”,	it	will	be	different
from	“squarey”.	These	two	names	are	different	in	the	eyes	of	R.
You	 should	 also	 be	 aware	 that	 R	 does	 not	 display	 any	 information	when	 you
make	 an	 assignment.	 You	 will	 need	 to	 enter	 the	 name	 of	 the	 variable	 at	 the
command	 line	and	press	enter.	For	example,	 if	you	want	 to	display	 the	 results
you	will	need	to	do	the	following:

squarey	<-	sqrt(1*2+2)

squarey

[1]	2

	

After	you	assign	the	variable,	you	call	the	variable	name	to	display	the	value	that	is	assigned	to	the	variable.

Assignment	statements	may	only	include	a	single	expression	without	a	function.

Here	is	an	example	of	an	assignment	with	a	single	expression.

y	<-	10	+	2

Assignments	are	also	made	in	another	way,	by	changing	the	direction	of	the	less
than	and	minus	operators	 (<-)	 to	 (->).	An	assignment	with	 the	operators	 in	 the
other	direction	may	look	like	the	following	statement:

>	10	+	2	->	y

An	 assignment	 evaluates	 expressions	 and	 passes	 the	 values	 to	 variables,	 but	 it	 is	 not	 necessarily

automatically	 displayed	 or	 printed.	 Assignment	 statements	 with	 functions	 can	 have	 any	 number	 of



arguments.	The	following	example	shows	an	assignment	statement	with	several	arguments.	It	shows	the	w()

function	with	4	numbers.

>	x	<-	w(23,	3,	4,	1)

The	assignment	operator	(<-)	in	this	case	can	be	substituted	for	the	equal	(=)	operator.	Assignments	can	also

be	used	with	the	assign()	function.	This	is	the	same	as	the	assignment	statement	with	the	w()	function.

	

The	 following	 example	 shows	 you	 how	 to	 used	 the	 assign()	 function.	 This	 is	 an	 alternative	 method	 or

equivalent	method	to	the	w()	function.

>	assign(“x”,	f(23,	3,	4,	1))

The	 left	 assignment	 operator	 (<-)	 is	 considered	 the	 short	 to	 using	 the	 assign()	 function.	 As	 previously

learned,	assignment	operators	can	be	used	in	the	opposite	direction.	For	example,	instead	of	using	the	left

assignment	operator	(<-),	you	can	use	the	right	assignment	operator.

	

The	following	example	shows	you	how	to	use	the	right	assignment	(->)	operator	for	the	w()	function.

>	w(23,	3,	4,	1)	->	x

	
Assignments	with	Functions
The	 assignment	 operators	 <<-	 and	 ->>	 are	 used	 to	 create	 assignments	 with
functions	 only.	 They	 are	 also	 used	 to	 search	 for	 the	 same	 definition	 with	 the
same	variable	name	within	a	parent	environment.	If	the	variable	is	found	and	it
is	 not	 locked,	 then	 the	 value	 is	 redefined.	 If	 the	 variable	 is	 not	 found,	 the
assignment	will	be	used	in	the	global	environment.
To	use	the	<<-	operators,	you	would	type	the	following,	for	example:

y	<<-	mean(10	+	2)

To	use	the	->>	operators,	you	would	type	the	following,	for	example:

mean(10	+	2)	->>	y

	
Note:	Any	assignments	performed	within	the	function	are	local	and	temporary.	This	means



that	 they	are	 lost	 after	 the	user	exits	 the	 function.	Therefore,	 the	assignment	Y	<-	 sqrt(Y)

will	not	affect	the	value	of	the	argument	when	it	is	called.

	
Super,	Subset	and	Complex	Assignments
Super	assignment	operators	are	used	to	create	global	and	permanent	assignments
within	functions.	The	super	assignment	operator	(<<-)	or	the	assign9)	function	is
used	under	these	circumstances.

When	it	comes	to	subset	assignments,	 it	can	be	complex	in	specific	cases.	The
following	statement	is	an	example	of	a	complex	assignment:

x[1:4]	<-	22:12

The	result	from	this	statement	is	similar	to	the	following:

‘*prm*‘	<-	x

x	<-	"[<-"(‘*prm*‘,	1:4,	value=22:12)

val(‘*prm*‘)

	
In	 the	 above	 statement,	 you	will	 see	 that	 the	 index	 is	 converted	 to	 a	 numeric
index	and	then	replaced	with	a	sequential	numeric	 index.	The	existing	variable
“*prm*”	will	be	overwritten	and	deleted,	but	the	variable	name	must	not	be	used
in	the	code.

You	do	not	have	 to	use	 the	open	bracket	 ([)	with	 the	 left	assignment	operator.
Instead,	you	can	use	 a	 replacement	 function	with	 the	 left	 assignment	operator.
The	last	argument	with	the	val()	function	is	the	value	that	will	be	assigned.

The	following	example	shows	how	you	can	use	a	replacement	function:
numbers(x)	<-	c("a","b")

	
The	result	from	the	function	statement	is	similar	to	the	following:

‘*prm*‘	<-	x



x	<-	"numbers<-"(‘*prm*‘,	value=c("a","b"))

val(‘*prm*‘)

	
Complex	assignments	can	be	evaluated	recursively	with	nesting.

Here	is	a	complex	assignment	that	uses	nesting:

numbers(x)[4]	<-	“Four”

This	statement	is	similar	to	the	following:

‘*prm*‘	<-	x

		x	<-	"numbers<-"(‘*prm*‘,	value="[<-"(numbers(‘*prm*‘),	4,	value="Four"))

		val(‘*prm*‘)

	
You	can	also	use	the	double	left	super	assignment	(<<-)	instead	of	the	single	left
single	assignment	(<-)	to	create	a	complex	assignment.

numbers(x)[4]	<<-	“Four”

This	statement	is	equivalent	to	the	following:
‘*prm*‘	<<-	get(x,	envir=parent.env(),	inherits=TRUE)

					numbers(‘*prm*‘)[4]	<-	"Four"

					x	<<-	‘*prm*‘

					val(‘*prm*‘)



Control	Structures
Control	structures	are	used	 to	control	 the	flow	of	statements	 to	be	executed	by
the	 R	 interpreter.	 They	 include	 conditional	 statements	 and	 loops.	 R	 computes
these	 statements	by	 sequentially	 evaluating	 each	one.	Statements	 can	be	 either
separated	by	a	semi-colon	or	a	new	line.	Semi-colons	are	used	to	create	separate
statements.	They	help	the	interpreter	to	differentiate	the	statements	and	make	the
statements	 more	 understandable	 and	 readable	 to	 the	 programmer.	 Both	 semi-
colons	 and	 new	 lines	 designate	 the	 end	 of	 a	 statement.	 If	 the	 statements	 are
incomplete,	 the	 interpreter	 ignores	 it	 and	 if	 the	 programming	 session	 is
interactive,	the	prompt	changes	from	the	right	arrow	(>)	to	the	plus	sign	(+).
The	following	example	shows	how	a	session	reacts	when	it	is	interactive.

					>	x	<-	0;	x	+	7

					[1]	7

	
When	 the	 interpreter	detects	a	complete	 statement,	 it	evaluates	 it	and	 returns	a
value.	The	result	 that	 is	 returned	 is	considered	 the	value	of	 the	statement.	This
value	can	be	assigned	to	a	symbol.

Statements	within	control	structures	are	grouped	with	open	braces	({)	and	closed
braces	(}).	Statements	enclosed	in	braces	are	called	blocks.	Blocks	are	read	after
a	closing	brace	and	a	single	statement	is	read	when	a	new	line	is	created	at	the
end	 of	 a	 complete	 statement.	 In	 a	 nutshell,	 statements	 are	 referred	 to	 a	 single
statements	or	a	block.

Here	is	an	example	of	a	statement	that	is	enclosed	in	braces.

>	{	x	<-	0

>	+	x	+	4	}

[1]	4

R	uses	if,	if/else,	while,	repeat,	and	for	control	structures	to	produce	results	for



conditional	and	repetitive	statements.

The	 following	 syntaxes	 will	 show	 you	 how	 to	 write	 the	 applicable	 control
structures:

if	--	if	(condition)	expression;	for	example:

if(x>y)

{	print	(X	is	greater	than	Y)	}

if/else	–	if	(condition)	expression1	else	expression2;	for	example:

if	(2==1)	

{print(Yes)}

else	print(No)

while	–	while(condition)	expression;	for	example:

x	<-	1

while(x	<	4)	

{	x	<-	x	+	2	print(x)}

repeat	–	repeat	expression;	for	example:

x	<-	1

repeat	{	x	<-	x	+	1

print(z)	break()	}

for	–	for	(variables	in	sequence)	statement;	for	example

for	(value	in	seq(0,1,by=0.3))	

{					result(value,"\n");	}

These	 expressions	 in	 the	 above	 control	 structure	 are	 normally	 referred	 to	 as
compound	expressions.	In	the	while,	repeat	and	for	loop	constructs	you	can	use	a
break	to	terminate	the	loop	and	next	to	go	to	the	next	iteration	(repetition	of	the
process).

The	constructs	 for	 “if”,	 “while”,	 “repeat”,	 “for”,	 “break”,	 and	“next”	control
structures	are	stored	internally	as	functions.



Conditional	and	Repetitive	Executions
R	uses	 conditional	 and	 repetitive	 constructions	 to	 evaluate	 single	 and	multiple
values.	 It	uses	“if”	and	“if/else”	 statements	 to	evaluate	 single	 logical	values	 to
produce	valid	results.

Conditional	Execution
Conditional	 executions	 are	 conditional	 constructions	 that	 uses	 the	 following
syntax:

if	(expression1)	expression2	

else	expression3

The	 “if/else”	 syntax	 shows	 that	 “expression1”	 must	 be	 evaluated	 to	 a	 single
value.

The	operators	AND(&&)	and	OR(||)	are	often	used	in	“if”	statements.	The	single
AND(&)	 and	 OR(|)	 operators	 on	 the	 other	 hand	 applies	 to	 vectors	 based	 on
elements.	The	AND	(&&)	and	OR	(||)	operators,	however	apply	to	vectors	of	a
single	length,	and	only	evaluates	the	second	expression	if	necessary.

R	 uses	 a	 vector	 based	 if/else	 construct	 called	 an	 ifelse	 function.	 It	 uses	 the
following	syntax:

ifelse(condition,	x,	y)

The	“ifelse”	function	returns	a	vector	with	the	length	of	the	longest	argument.	It
contains	elements	a[i]	and	b[i],	where	[i]	is	true,	else	execute	b[i].

Repetitive	Execution
Repetitive	executions	involve	for	loops,	repeat	and	while	constructions.

The	“for”	loop	uses	the	following	syntax:

for	(variable_name	in	expression1)	expression2

The	“for”	loop	syntax	has	the	loop	variable	as	“variable_name”	and	the	vector
expression	as	“	expression1”.	The	vector	expression	often	has	a	 sequence	 that
looks	1:20(1	row;	20	vectors).	The	grouped	expression	is	“expression2”,	which



is	evaluated	repeatedly	through	the	values	of	the	vector	result	of	“expression1”.

If	you	have	an	example	and	you	have	“vec”	as	a	vector	of	class	indicators.	If	you
wish	to	produce	separate	x	and	y	plots	in	the	classes,	you	could	use	the	coplot()
function.	This	will	produce	an	array	of	plots	that	corresponds	to	each	level	of	the
factor.	You	could	also	do	this,	by	using	all	the	plots	on	one	display.

The	following	example	shows	how	to	use	all	the	plots	on	one	display:

		>	xc	<-	split(x,	vec)

				>	yc	<-	split(y,	vec)

						for	(i	in	1:length(yc))	

							{	plot(xc[[i]],	yc[[i]])

						abline(lsfit(xc[[i]],	yc[[i]]))	}

The	 split()	 function	produces	 a	 list	 of	vectors	 that	 is	 obtained	by	 splitting	 the	 larger	vector	based	on	 the

classes	specified	by	the	vector.	This	function	is	often	used	in	boxplots.

	

Important:	In	R	code,	“for”	loops	are	not	used	regularly	in	compiled	languages.	Codes	that

look	at	the	entire	object	are	apparently	better	and	faster.

	
Other	types	of	loops	used	in	R	includes	repeat	and	while	statements.	The	break
statement	 is	used	with	 loops	 to	 terminate/end	an	action.	 It	 is	 the	only	way	 that
you	 can	 terminate	 repeat	 loops.	 The	 next	 statement	 is	 used	 to	 end	 a	 specific
cycle	and	move	to	the	“next”.

Note:	Control	statements	are	typically	used	with	functions.



Iteration
In	 this	section	you	will	briefly	 learn	about	 iteration.	This	 is	an	 important	 topic
for	 programmers	 because	 it	 is	 used	 to	 control	 the	 flow	 of	 elements	 within	 a
program,	as	well	as	analyzing	data.	In	data	analysis	iterative	statements	powers
procedures	 for	 calculating	 complex	 datasets	 and	 advanced	 mathematical
calculations	relating	to	statistics.

Loops	and	Vectorization
R	allows	you	to	create	loops	and	calculate	vectors	using	iteration	in	R.	Loops	are
used	 to	 repeat	 an	 operation	 for	 a	 specific	 number	 of	 times.	 In	 the	 following
example,	you	will	see	how	a	simple	for	loop	is	created.

>	for	(i	in	1:n)	

>	{	cat("Name	#",	i,	"\n")	}	

[1]	Name	#	1		Name	#	2		Name	#	3		Name	#	4

	

In	the	above	example	of	the	for	loop,	the	counter	is	set	and	the	loop	runs	for	“n”
number	 of	 times.	 The	 result	 shows	 that	 the	 loop	 iterated	 4	 times.	 The	 loop
actually	 created	one	 line	of	output	 for	 each	value	of	n=(1,	 2,	 3)	 that	 is	 passed
through	the	index	“I”.	The	final	element	in	the	in	the	string	concatenation	is	“\n”
–	a	new	line	break	is	implemented.
This	example	shows	how	iteration	works	with	a	 for	 loop.	You	will	 learn	more
about	“for”	loops	later	on	in	this	chapter.
The	example	can	be	replaced	by	applying	the	function	with	the	three	elements	of
the	vector	I,	 ,	2,	3.	4.	You	can	do	this	because	the	paste()	function	is	vectored.
This	method	can	be	used	to	substitute	looping	in	many	situations.	In	the	above
example,	you	would	replace	“cat("Name	#",	i,	"\n")”	with	“paste(Country	#”,
1:4)”.	This	is	vectored	approach.
The	while	loop	is	similar	to	the	“for”	loop	and	uses	iteration	until	a	condition	is
either	true	or	false.	You	may	also	say	that	the	while	loop	condition	is	true	until	it



is	 not.	 Pay	 close	 attention	 when	 writing	 the	 conditions,	 because	 the	 loop	 can
iterate	 indefinitely.	 An	 indefinite	 loop	 is	 only	 necessary	 under	 special
circumstances.

Here	is	an	example	of	a	while	loop:

i	<-	5

while	(i	>	0)	{	print(i	<-	i	-	1)	}

[1]	4	[1]	3	[1]	2	[1]	1	[1]	0	//	output

	

In	the	above	example	of	the	while	loop,	the	counter	is	set	(i<-5)	and	is	decreased
by	1	until	it	gets	to	0.
	

There	are	more	complex	ways	to	solve	problems	with	while	loops,	like	searching
for	the	solution	to	a	“finding-the-number”	fame.	This	is	called	the	“brute	force”
approach	(no	shortcuts).		You	will	learn	more	about	writing	while	loops	later	on
in	this	chapter.
There	 are	 other	 loops	 that	 are	 sequentially	 exhaustive	 and	 can	 become	 very
intensive	 to	 calculate	when	 they	 iterate	 through	 arrays	with	 values.	When	 this
happens,	 you	 may	 need	 to	 optimize	 the	 code	 and	 use	 several	 processors	 to
reduce	the	response	time	of	the	loop.
	
You	 can	 iteratively	 execute	 a	 loop	 or	 vectorize	 the	 loop.	 Most	 loops	 can	 be
replaced	with	vectorization	because	 it	 is	more	efficient	 to	manage	the	data	 this
way.	Vectorized	functions	are	used	 in	R	because	 they	run	faster	 than	memory-
intensive	loops	with	built-in	code.	The	idea	is	to	apply	a	specific	function	instead
of	instructing	R	to	apply	the	function	separately.
	
The	 following	 examples	 will	 show	 you	 how	 to	 write	 an	 iterative	 loop	 and	 a
vectorized	loop.
	

//	An	iterative	loop



square	i,	

square	i	+	1,

square	i	+	2,

for	(i	in	1:2)	print(i^2)	

[1]	1	[1]	4

	

//	A	vectorized	loop

define	i	=	{	1,	2	}	

(1:2)^2	

[1]	1	4	

	

In	the	above	example,	the	vector	is	1,	2.	The	square	function	is	used	to	evaluate
the	vectors,	which	returns	the	results	for	the	vector.	Be	aware	that	many	of	the
functions	 in	R	accept	vectors	as	arguments,	which	makes	 it	easier	 to	calculate.
This	helps	to	resolve	potential	conflicts.	In	the	following	examples,	you	will	see
how	combination	vectors	are	used.
	

//	This	example	shows	two	possible	conflicts	in	a	single	combination.

prod(1:2)/prod(1:2)	

[1]	1

	

//	This	example	shows	3	possible	combinations.

prod(1:3)/(prod(1:2)	*	prod(1:1))	

[1]	3

	

//This	example	shows	6	possible	combinations.

prod(1:4)/(prod	(1:2)	*	prod(1:2))	

[1]	6

	

The	structure	of	 this	 function	 is	 called	 the	“explosive	roommate	 function”.	 It
looks	at	the	number	of	potential	conflicts	that	is	possible	with	each	“roommate”



that	 is	 affecting	 the	 other.	 The	 code	 calculates	 the	 value	 using	 the	 following
equation:	\(\frac{n!}{k!(n-k)!}\),	where	\(n\)	is	the	number	of	roommates	and	\(k
=	2\).	The	 function	can	be	used	 to	calculate	 increasing	numbers.	You	can	also
plot	 part	 of	 the	 function	 by	 creating	 a	 vector	 of	 values	 and	 apply	 the
combinations.	 It	 is	 done	 by	 using	 the	 sapply()	 function.	This	 is	 the	 vectorized
equivalent	of	the	“for”	loop.
	

The	 following	 example	 shows	 the	 “explosive	 roommate	 function”	written	 by
Francis	Smart.
	

//	Explosive	roommates	function.

explosive_roommates	=	function(n)	prod(1:n)	/	(prod(1:2)	*	prod(1:max(n	-	2,	1)))

	

The	“explosive	roommates	function”	is	applied	first	when	returning	a	vector	of
results.	The	sapply()	function	is	 then	used	to	go	through	the	vector	of	values	x
and	 return	 a	 vector	 of	 results	 y.	 This	 is	 demonstrated	 below	 in	 the	 following
examples.
	

Step	1:	The	vector	of	the	x	value	is	defined.
	

x	=	2:20

	
Step	2:	The	sapply()	function	is	used	to	establish	vectors	of	y	values.
	

y 	= 	sapply(x , explosive_roommates)

	
Step	3:	The	function	plots	y	against	x.
	

qplot(x,	 y,	 geom	 =	 c("line",	 "point"))	 +	 	 	 labs(y	 =	 "Number	 of	 potential	 conflicts",	 x	 =

"Number	of	roommates")

	

Note:	You	can	test	 the	above	steps	in	R	to	see	the	results.	Make	sure	that	you	declare	the



“explosive	roommates	function”	before	you	enter	them.



Looping
Looping	 is	 an	 advanced	 concept	 in	R	 and	 can	 be	 challenge	 for	 those	who	 are
new	 to	 programming.	 R	 has	 looping	 structures	 like	 any	 other	 programming
language	 that	 requires	 time	 and	 effort	 to	 master.	 Looping	 is	 a	 repeated
evaluation	for	a	block	of	statements.	The	traditional	for,	while,	and	repeat	loops
are	 used	 to	 evaluate	 statements,	 but	 there	 are	 other	 constructs	 that	 are	 used	 to
control	the	evaluations.

There	 is	 an	 unconventional	 repeat	 loop	 and	 a	 family	 of	 loops	 called	 “apply”,
“sapply”,	 “lapply”,	 and	 “tapply”.	 These	 are	 used	 for	 implicit	 looping.
Traditional	loops	like	for	and	while	loops	are	used	for	repetitive	actions,	but	the
Apply	loop	family	are	used	in	specific	circumstances,	such	as	in	ragged	arrays.
You	can	 also	use	 loops	within	 loops,	 for	 example	you	 can	use	 a	 “while”	 loop
within	a	“for”	loop.

The	for,	while,	and	repeat	loops	are	used	in	R	for	explicit	looping.	To	control	the
loops	 R	 uses	 the	 next	 and	 break	 built-in	 constructs	 during	 an	 evaluation.	 The
break	statement	allows	you	to	exit	the	loop	that	is	currently	being	executed.	The
next	statement	allows	you	to	return	to	 the	beginning	of	 the	 loop	to	execute	 the
next	 iteration	 of	 the	 loop.	Any	 statements	 that	 are	 below	 the	 statement	 in	 this
instance	will	not	be	evaluated.

After	 an	 evaluation,	 loops	will	 return	 the	 value	 of	 the	 last	 statement	 that	was
evaluated.	 You	 can	 also	 assign	 the	 results	 from	 the	 for,	 while,	 and	 repeat
statements	to	a	symbol.	Looping	is	not	necessary	in	all	operations.	You	can	use
vectors	 that	do	not	 require	a	 loop.	Values	 that	 are	 returned	by	 loop	statements
are	always	NULL,	which	is	not	generally	noticeable.

Here	 is	some	background	information	 that	will	help	you	understand	how	loops
work	in	R:

1.	 Loops	are	slow	in	R.	Although	they	are	slow	loops	will	accomplish	the
task	in	reasonable	time	unless	you	are	working	with	a	large	dataset.	If



you	are	working	with	lots	of	data,	there	ways	to	get	around	it.
2.	 R	 is	written	 in	a	C	or	 some	variant	of	C++	 type	 language.	When	you

execute	 an	 R	 code,	 you	 are	 actually	 executing	 C	 code.	 R	 uses	 the
underlying	C	code	to	run	loops	with	or	without	vectors.

3.	 R	provides	alternative	functions	that	you	can	use	instead	of	using	loops.
The	 “apply”	 function	 for	 example,	 works	 faster	 than	 the	 “for”	 loop
because	 it	 actually	 has	 built-in	 for	 loop	 written	 in	 R.	 There	 are	 also
other	functions	in	the	apply	family	that	runs	faster	than	loops.	However,
a	well-constructed	loop	can	run	just	as	fast	as	apply	functions.

When	programming	 in	R,	 you	may	 encounter	 a	 problem	within	 a	 loop.	 If	 this
happens	refer	to	the	following	key	points:

1.		 	 	 	 	 	Reset	the	set	values	–	You	may	have	to	reset	the	value	or	a	vector
within	the	loop.	It	is	possible	that	you	may	have	used	a	statement	within
the	“for”	loop	that	has	a	value	that	needs	to	reset.
2.		 	 	 	 	 	Missing	brackets	–	Sometimes	you	may	have	forgotten	to	put	in
your	square	brackets	or	curly	braces	within	the	counter	or	to	the	left	or
right	of	the	statement.



If/Else	Statement
The	 if/else	 statement	 is	conditional	and	evaluates	 two	or	more	statements.	The
arguments	within	the	if”	statement	is	a	logical	expression.	It	is	a	single	block	of
code,	 where	 more	 blocks	 can	 be	 added	 after	 the	 else	 statement.	 It	 is	 used	 to
evaluate	a	logical	value.	If	the	value	is	valid,	the	first	statement	is	evaluated,	and
if	 the	 first	 statement	 is	NOT	TRUE,	 then	 the	second	statement	 is	evaluated.	A
value	is	then	returned.

The	following	is	the	syntax	for	the	if/else	statement:

>	if	(	statement1=TRUE)	

>					(result1)

>	else		

>					result3

Here	is	an	example	of	an	“if/else”	statement.
>	x	<-	3

>	if(x	==	5)	{	print(1)	}	

>	else	{		print(2)	}

[1]	2	

	

The	first	“if”	statement	(x	==	5)	in	the	above	example	is	evaluated	to	produce	a
value.	If	the	value	is
TRUE	in	the	first	statement,	the	second	statement	(print	(1))	is	evaluated.	If	the
first	statement	(x==5)	is	FALSE,	the	second	statement	(print(1))	is	ignored	and
the	third	statement	(print(2))	is	evaluated.	If	the	value	is	not	logical	or	valid,	an
error	is	returned.
If/else	statements	are	used	to	prevent	numeric	problems,	such	as	the	logarithm	of
a	negative	number.	Since	if/else	statements	are	the	same	as	other	statements	you
can	assign	values	to	them.

In	the	following	“if/else”	examples,	both	statements	produce	the	same	results.



if(	any(y	<=	1)	)	y	<-	log(1+y)

else	x	<-	log(y)

	
x	<-	if(	any(y	<=	1)	)	log(1+y)

else	log(y)

	
The	 else	 clause	 in	 both	 examples	 is	 optional.	 Instead,	 the	 statement	 if
(any(y<=1))	y	<-	y[y	<=	1]	can	be	used	without	the	else	clause.	When	the	“if“
statement	 is	 not	 within	 the	 block	 and	 the	 else	 is	 present,	 you	 must	 have	 the
second	 statement	 on	 the	 same	 line.	 If	 not,	 the	 new	 line	 at	 the	 end	 of	 second
statement	 completes	 the	 “if“	 statement	 and	 returns	 a	 complete	 evaluated
statement.	The	easiest	way	to	resolve	this	is	to	insert	open	and	close	braces	({	})
for	compound	statements	and	by	placing	the	else	on	the	same	line	as	the	closing
brace	(}).	The	closing	brace	specifies	the	end	of	the	statement.
The	following	‘if/else”	syntax	shows	how	you	would	nest	compound	or	multiple
statements:

if	(	statement1	)

{	statement2	}	else	if	(	statement3	)	{	statement4

}	else	statement6

	
The	even	numbered	statements	in	the	example	are	evaluated	and	return	a	value.
If	 the	 else	 clause	 is	 ignored	 and	 the	 odd	 numbered	 statements	 return	 FALSE,
then	no	other	statements	are	evaluated	and	a	NULL	value	is	returned.
The	odd	numbered	 statements	 are	 evaluated	 in	order	until	 one	of	 them	 returns
TRUE.	The	even	numbered	statements	are	then	evaluated.	In	the	above	example,
statement4	is	only	evaluated	if	statement1	returns	FALSE.

R	allows	you	 to	write	multiple	“if”	statements	 in	a	conditional	 form.	The	 first



statement/expression	 is	 evaluated	 and	 returns	 a	 single	 logical	 value.	 It	 allows
you	 to	 use	 double	AND	 (&&)	 and	OR	 (||)	 operators	with	 the	 conditional	 “if”
statements.

You	can	use	the	following	operators	to	produce	“TRUE”	or	“FALSE”,	“T”	or
“F”,	“1”	or	“0”	results	in	if	statements.

x	==	y	--	This	means	x	is	equal	to	y,	for	example:
if	(10	==	5	+	5)	print(Yes)

x	!=	y	--	This	means	x	is	not	equal	to	y,	for	example:
if	(10	!	=	5	+	5)	print(No)

x	>	y	--	This	means	x	is	greater	than	y,	for	example:
if	(10	>	5	)	print(It	is	greater)

x	<	y	--	This	means	x	is	less	than	y,	for	example:
if	(10	<	5)	print(It	is	not	greater)

x	<=	y	--	This	means	x	is	less	than	or	equal	to	y,	for	example:
if	(10	<=	5	+	5)	print	(It	is	equal)

x	>=	y	--	This	means	x	is	greater	than	or	equal	to	y,	for	example:
if	(5	>=	10)	print	(It	is	less)

The	“else”	statement	on	 the	other	hand	 is	 an	alternate	option.	 Ideally,	 the	else
statement	much	be	written	on	the	same	line	as	the	closing	brace	for	the	previous
“if”	block.

R	provides	a	vector	version	for	the	“if/else”	statement.	It	is	the	“if/else”	function.
The	following	syntax	is	used	to	write	the	if/else	function.

ifelse(condition,	x,	y)

This	function	returns	vectors	of	various	lengths	and	holds	the	longest	argument.
It	contains	 the	elements	x[i]	 if	condition	[i]	 is	TRUE,	else	y[i].	The	arguments
use	 vectors	 of	 various	 lengths.	 The	 “condition”	 argument	 is	 used	 to	 test,	 x	 is
assessed	as	a	“TRUE”	value,	and	y	is	assessed	a	“FALSE”	value.



The	following	example	is	an	“ifelse”	function	that	displays	5	vectors.

x	<-	1:5	

ifelse(x<5	|	x>5,	x,	0)

[1]		1		2	4	4	0

The	 ifelse()	 function	 takes	 the	 first	 condition,	 and	 then	 takes	 the	 second
condition	 if	 the	 first	 is	 TRUE	 and	 the	 third	 if	 the	 condition	 is	 FALSE.	 The
condition	can	be	a	vector	in	this	case.	In	this	example,	the	results	show	a	vector
sequence	of	numbers	 from	1	 to	5.	All	 the	values	displayed	are	 less	 than	5	and
greater	than	5.



Repeat	Statement
The	 repeat	 statement	 is	 used	 to	 repeat	 an	 evaluation	 for	 a	 body	 of	 statements
until	 a	 break	 is	 implemented.	 The	 body	 of	 statements	 is	 also	 called	 a	 block.
Before	you	use	it,	you	should	conduct	some	calculations	and	test	to	determine	a
break	is	required	from	the	two	statements.	When	using	the	repeat	statement,	you
need	to	be	careful	because	it	can	cause	an	infinite	loop.

The	following	syntax	is	used	for	the	repeat	loop:

repeat	statement

The	repeat	statement	is	frequently	used,	just	like	the	“for”	and	“while”	loops.	It
is	used	for	executing	repetitive	statements	until	a	condition	is	met,	like	with	the
“while”	loop.	The	break	statement	helps	to	terminate	the	repeat	loop.
The	 repeat	 loop	 with	 the	 break	 statement	 looks	 something	 like	 the	 following
syntax:

repeat	{	if	(constraint	condition)

{break	}	}

The	following	information	shows	how	the	repeat	loop	works:
1.							The	repeat	statement	uses	the	“repeat”	keyword	to	start	the	repeat
loop.
2.							The	statements	within	the	curly	brackets	are	the	execution
statements	for	the	repeat	loop.
3.							The	“if	(constraint	condition)”	specifies	the	constraint	condition
repeat	loop.
4.							The	break	statement	inside	the	repeat	loop	is	used	to	terminate	the
repeat	loop.
5.							When	the	constraint	condition	is	fulfilled,	the	code	inside	the	“If”
condition	checks	for	the	break	statement.
6.							If	the	break	statement	exists,	the	repeat	loop	is	terminated.

	

The	following	example	will	help	you	better	understand	the	repeat	loop:



	

>	total	<-	1	repeat

>	{	total	<-	total	+	3;	print(total);	

>	if	(total	>	10)	break;	}

	

This	 program	 is	 designed	 to	 repeatedly	 add	 2	 to	 the	 total	 until	 the	 required
number	 reaches	 to	 10.	 In	 the	 example,	 the	 total	 is	 greater	 than	 the	 10.	 The
constraint	“total	>	10”	is	a	constraint	condition	that	 is	used	with	 the	“if”	 loop.
The	“if”	 loop,	 has	 a	 break	 statement	 that	 terminates	 the	 repeat	 loop	when	 the
condition	is	fulfilled.
The	 repeat	 loop	 has	 similar	 functionality	 to	 the	 “for”	 and	 “while”	 loops.
However,	 it	 is	used	when	the	user	already	knows	the	constraint	conditions	and
does	not	want	to	use	the	“for”	or	“while”	loop	because	of	complexities.
The	 repeat	 loop	 is	 used	 like	 the	 do/while	 loop	 in	 various	 situations	 in	 the	 R
language.	When	you	use	the	repeat	loop,	you	will	notice	that	it	behaves	similar
to	the	do/while	loop	because	it	executes	statements	until	the	constraint	condition
is	met.
When	implementing	the	repeat	loop,	you	should	consider	the	following:

1.		 	 	 	 	 	Ensure	 that	 the	 constraint	 condition	 variable	 for	 terminating	 the
repeat	loop	is	within	the	repeat	loop.
2.		 	 	 	 	 	The	break	statement	within	the	if	loop	is	the	only	way	to	terminate
the	repeat	loop.
3.							The	repeat	loop	can	also	be	used	as	a	do/while	loop.

Bear	 in	 mind	 that	 the	 repeat	 loop	 is	 similar	 to	 the	 while	 loop.	 However,	 the
repeat	loop	begins	the	loop.	The	while	loop	on	the	other	hand	will	only	start	if
the	condition	is	true	when	it	is	evaluated	the	first	time.	The	repeat	loop	will	only
terminate	the	statement	if	there	is	break	statement.	This	means	that	you	need	to
execute	the	break	to	come	out	of	the	loop.	The	loop	is	repeated	until	the	break	is
specified	and	requires	a	second	statement	to	determine	whether	or	not	 to	break
from	the	loop.



While	Loop
The	 While	 loop	 is	 simple	 and	 is	 one	 of	 the	 best	 ways	 to	 execute	 repeated
statements.	 The	 structure	 is	 widely	 used	 by	 R	 programmers,	 as	 well	 as	 other
programmers.	 It	 consists	 of	 a	 constraint	 condition	 that	 follows	 the	 “while”
keyword.	 Following	 the	 constraint	 condition,	 programming	 statements	 are
written	within	 the	 loop	 brackets.	Repetitive	 conditions	 are	 performed	 until	 the
constraint	conditions	are	met.

The	 while	 statement	 is	 similar	 to	 the	 repeat	 statement	 but	 uses	 the	 following
syntax.

while	(constraint	condition)	

statement1

The	while	statement,	“constraint	condition”	is	evaluated	to	 test	 if	 the	value	is
TRUE.	 When	 the	 “constraint	 condition”	 is	 evaluated,	 “statement1”	 is	 then
evaluated.	 The	 evaluation	 process	 continues	 until	 “constraint	 condition”	 is
evaluated	to	FALSE.	It	can	be	used	to	repeat	a	set	of	instructions	when	you	do
not	know	how	the	statements	will	be	executed.

The	while	loop	is	also	similar	to	the	“for”	loop,	but	the	iterations	are	controlled
by	a	conditional	statement.

The	following	is	an	example	of	a	while	loop:

x	<-	0

while(x	<	6)

{			x	<-	x	+	1

				print(x)		}

	
The	following	syntax	will	further	explain	the	while	loop	as	it	is	used	in	R:

while	(constraint	condition)

//	while	is	a	keyword;	It	returns	a	true	or	false	value



{	//opening	curly	brackets	//Statements	within	the	curly	brackets

}	//	closing	curly	brackets

The	output	or	the	results	of	the	constraint	condition	is	a	Boolean	(true	or	false)
value.	This	Boolean	 value	 is	 controlled	 by	 the	 code	 that	will	 enter	 or	 quit	 the
loop	 to	 execute	 the	 statement.	 If	 the	 constraint	 condition	 is	 not	met,	 the	 code
control	(program)	will	go	within	the	loop	and	execute	the	statements	within	the
loop.	 An	 execution	 within	 a	 while	 loop	 is	 considered	 an	 iteration.	 When	 the
iteration	is	complete,	the	code	control	will	return	to	the	beginning	and	reevaluate
the	constraint	condition	within	the	while	loop.
	

A	while	 loop	may	 have	multiple	 statements	 that	 may	 look	 like	 the	 following
syntax:
	

while	(constraint	condition)

{	statement1;

		statement2;

		statement3;	}

	

Here	is	an	explanation	of	how	the	while	loop	works	in	R:
1.		 	 	 	 	 	Initialization	–	Initialization	of	the	constraint	variable	is	the	first
step	in	the	loop.	At	this	point	the	constraint	condition	is	initialized.	It	is
essential	 that	you	 initialize	 the	constraint	variable	before	you	use	 it	 in
the	while	loop.	If	you	do	not	initialize	it,	the	program	may	crash	or	the
while	loop	will	go	into	an	indefinite	loop	because	it	picks	up	an	invalid
value	from	memory.
2.		 	 	 	 	 	Evaluate	Constraint	Condition	and	Statements	–	The	constraint
condition	 within	 the	 while	 loop	 is	 responsible	 for	 termination.	 The
program	 evaluates	 the	 value	 of	 the	 constraint	 condition	 and	 if	 the
constraint	condition	is	met,	the	code	control	goes	into	the	“while”	loop



and	 execute	 the	 statements	 within	 the	 code.	While	 loops	 are	 iterated
until	the	condition	is	met.
3.							Loop	Termination	–	When	the	constraint	condition	is	satisfied,	the
loop	is	terminated.	The	code	control	will	stop	executing	the	while	loop.

The	while	loop	can	get	moderately	complex.	A	moderately	complex	while	loop
may	look	similar	to	the	following	example:

x<-0;

while	(x	<	5)

{	x<-	x+1;	print	(x);	}

	

Here	is	an	explanation	of	the	above	example:
1.	 x	<-	0	(Initialization)	–	The	statement	“x<-	0”	shows	the	initialization

of	the	constraint	variable.
	

2.	 x	 <	 5	 (Evaluate	 Condition)	 –	 The	 statement	 “x	 <	 5”	 shows	 the
constraint	condition.
	

3.	 x	 +	 1;	 and	 print(x)	 (Evaluate	 Statements)	 -	 	 The	 “x	 +	 1”	 and
“print(x)”	are	the	execution	statements	within	the	loop.

In	 the	above	example,	 the	first	 iteration	evaluates	 the	constraint	condition.	The
constraint	condition	is	not	met	since	x	is	not	initialized	to	0.	Therefore,	the	code
control	will	go	within	the	while	loop	and	execute	the	statements.	When	the	while
loop	is	iterated	the	third	time,	the	value	of	x	will	be	3.	When	the	final	iteration
occurs,	the	while	loop	will	terminate.
Sometimes	you	may	not	know	where	to	implement	a	while	loop	or	how	to	create
the	 right	 constraint	 condition	because	you	may	not	 know	what	 the	 results	will
look	like.	In	these	circumstances,	you	can	set	the	constraint	conditions	to	“true”.
The	following	syntax	shows	how	to	set	the	constraint	conditions	to	“true”	within
a	while	loop:
	

while	(true)



{	statement1;

statement2;	}

	
The	while	loop	with	the	constraint	condition	“true”	is	also	used	with	for	loops.
This	saves	helps	with	loop	performance	with	dynamically	allocated	vectors.
Constraint	conditions	are	used	to	break	or	terminate	the	while	loop,	but	it	is	not
the	only	way.	You	can	also	use	the	break	and	next	statements.
	
The	 following	 example	 shows	 how	 to	 use	 the	 break	 statement	within	 a	while
loop.

x<-0;	while	(x	<	5)

{					x	<-	x	+	1;	print	(x);		

						if	(	x	=	4)				

{					break;					}	}

	

The	above	example	shows	that	the	“while”	loop	will	terminate	when	the	value	of
x	 is	 4.	 The	 break	 statement	 in	 the	while	 loop	 terminates	 before	 the	 constraint
condition	is	met.
Sometimes	 there	 are	 errors	 with	 the	 while	 loop.	 They	 often	 occur	 within	 the
constraint	conditions.	They	are	 semantic	and	 therefore	difficult	 to	detect.	They
may	 produce	 false	 results.	 To	 avoid	 these	 errors,	 you	 must	 ensure	 that	 the
constraint	variables	are	performed	within	the	“while”	loop	because	they	can	lead
to	indefinite	execution.
Although	the	while	loop	exhibit	errors,	it	is	widely	accepted	by	R	programmers
as	an	option	to	execute	infinite	conditions	in	real	world	scenarios.
When	implementing	the	while	loop,	you	should	adhere	to	following	key	points:

1.		 	 	 	 	 	Learn	 the	 basic	 concepts	 of	 the	 while	 loops	 and	 how	 they	 are
implemented	 in	 R	 programming.	 You	 should	 start	 off	 with	 learning
how	the	“while”	loop	works.



2.		 	 	 	 	 	Ensure	 that	you	initialize	 the	constraint	condition	variable	before
executing	 the	while	 loop.	 If	 not,	 the	 constraint	 variable	will	 detect	 an
invalid	 value	 from	 the	 memory	 location	 and	 create	 an	 infinite	 while
loop.
3.		 	 	 	 	 	Ensure	that	you	have	a	constraint	variable	within	the	while	loop	to
prevent	an	indefinite	execution	of	the	while	loop.
4.		 	 	 	 	 	The	while	 loop	 is	 the	widely	 accepted	method	 of	 executing	 the
infinite	 loops	 across	 various	 programming	 languages	 and	 in	 the	 real
world.
5.							You	can	exit	the	while	loop	with	the	constraint	condition	and	break
statements.

These	key	points	will	help	you	better	understand	how	the	“while”	loop	work	and
know	how	to	carefully	use	it.



For	Loop
If	 you	 program	 and	 develop	 software	 applications	 in	 other	 programming
languages,	you	should	understand	how	a	for	loop	works.	A	for	loop	in	R,	is	not
any	different	from	other	for	loops	in	other	programming	languages.	It	is	used	to
repeat	a	set	of	instructions,	but	it	is	also	used	to	help	you	to	know	the	values	a
loop	variable	will	have	before	the	loop	is	executed.	The	for	loop	syntax	is	very
simple	and	looks	like	the	following:

for	(variable	in	sequence)	

{	statement1;

		statement2;	}

The	 sequence	 in	 the	 above	 syntax	 refers	 to	 a	 list	 or	 a	 specific	value.	For	 each
variable	in	the	sequence,	there	is	a	variable	name	that	is	set	to	the	value	for	that
element	 and	 then	 statement1	 is	 evaluated.	One	 issue	 is	 that	 the	 variable	 name
will	still	exist	when	the	 loop	is	 terminated	and	 the	value	of	 the	 last	element	of
the	sequence.

For	loops	can	be	controlled	by	a	looping	vector.	Whenever	the	loop	is	iterated,	a
single	value	is	designated	in	the	looping	vector	and	assigned	to	a	variable.	The
value	 can	be	 used	within	 the	 statements	 of	 the	 loop.	The	number	 of	 times	 the
loop	is	iterated	is	specified	by	the	values	saved	in	the	looping	vector.	The	values
are	processed	in	the	same	order	that	it	is	saved	in	the	looping	vector.

The	 for	 loop	 can	 be	 controversial,	 but	 with	 proper	 use	 it	 will	 provide	 results
when	a	specific	task	is	executed	a	few	times.	In	the	following	example	you	will
see	how	the	for	loop	works.

val	=	(1,	50,	by=2)

val.squared	=	NULL

for	(i	in	1:25	)	{

val.squared[i]	=	val[i]^2	}

The	above	example	creates	a	for	loop	that	squares	every	value	of	the	dataset	by



using	 the	 “val”	 object.	 It	 contains	 the	 odd	 integers	 from	 1	 to	 50.	When	 you
create	a	new	vector,	you	must	set	up	a	vector	to	save	into	before	you	execute	the
loop.	 In	 this	case,	 it	 is	“val.squared	=	NULL“.	An	empty	vector	 is	created	 to
insert	items.	It	is	not	the	most	efficient,	but	effective.	Following	the	creation	of
the	 vector,	 the	 “for”	 loop	 is	 executed.	 At	 this	 point	 the	 for	 loop	 will	 run	 25
times(1:25).	The	counter	 that	 is	established	in	this	 instance	is	“i”.	This	letter	 is
used	for	the	variable	name,	but	you	can	choose	any	letter	that	you	would	like.

Sometimes	you	may	encounter	some	problems	with	 the	“for”	 loop	like	putting
the	right	statement	within	the	loop,	forgetting	to	put	the	subscript	in	a	vector,	or
missing	 a	 bracket	 on	 the	 left	 or	 right	 side.	 All	 these	 and	 other	 mistakes	 are
possible.	 Therefore,	 before	 running	 the	 “for”	 loop,	 revisit	 the	 constraint
condition	and	the	statements	within	the	loop.

If	you	are	writing	a	for	loop	within	a	large	program,	bear	in	mind	the	number	of
times	you	would	like	to	loop	based	on	the	length	of	a	vector	or	other	factors.	In
this	 case	 set	 the	 counter	 to	 a	 specific	 length.	 The	 following	 example	 shows	 a
“for”	loop	that	designates	the	number	of	times	based	on	a	specific	length.

for	(i	in	1:length(val))	{

#statements	that	specifies	the	number	of	times	of	the	val	length.	}

There	 are	various	ways	 that	 you	 can	write	 a	 “for”	 loop.	 it	 depends	on	various
factors.	Here	are	two	key	points	that	will	help	you	create	the	appropriate	for	loop
within	your	program.

1.	 Limit	 Statements	 -	 	 A	 well	 constructed	 loop	 do	 not	 have	 a	 lot	 of
“stuff”	inside.	Try	and	write	most	statements	outside	the	loop.	If	there
are	 any	 statements	 or	 vectors	 that	 can	 be	 performed	outside	 the	 loop,
put	them	outside.

2.	 Minimize	Growing	an	Object	–	Since	we	are	not	sure	of	the	results,	it
is	better	to	use	a	loop	without	all	the	meaningless	statements.

You	can	create	condition	within	a	“for”	loop	with	an	if/else	statement.	Here	is



an	example	of	how	you	would	write	a	for	loop	with	an	if/else	condition.
for(i	in	seq(along=x))	{	if(x[i]	<	5)	{	

								y	<-	c(y,	x[i]	-	1)	}	else	{	

								y	<-	c(y,	x[i]	/	x[i])		}	}	y

	

You	can	also	create	a	stop	condition	and	execute	an	error	message	within	a	“for”
loop.	This	is	how	you	would	write	a	for	loop	that	ends	a	condition	and	print	an
error	message.	

for(i	in	seq(along=x))	{	

				if	(x[i]<5)	{	y	<-	c(y,x[i]-1)		

				}	else	{	stop("Error:	Values	must	be	less	than	<5")}	}

	

In	 the	above	example,	 the	“for”	 loop	shows	an	example	of	how	you	can	use	a
stop	statement	with	an	error	message	within	a	for	loop.



Switch	Statement
The	Switch	statement	is	actually	a	function,	but	the	form	is	closer	to	the	control
structures	of	programming	 languages	 like	C	and	C++.	 It	 typically	evaluates	an
expression	and	returns	a	value	in	a	list,	based	on	the	same	index.	The	results	are
based	on	the	data	type	of	the	expression.

The	basic	syntax	for	the	switch	statement	looks	like	the	following:

switch	(statement,	list);

Here	is	also	another	way	that	you	can	view	the	switch	syntax:

switch(statement,	item1	,item2,item3,...,itemN).

The	first	thing	that	happens	within	the	switch	statement	is	the	evaluation	of	the
“statement”	to	produce	results.	The	elements	within	the	list	are	named.

Here	is	an	example	of	how	you	will	write	the	switch	statement:

x	<-	as.integer(2)	>	x	[1]	2	>

z	=	switch(x,1,2,3,4,5)	>	z	[1]	2	>	x	<-	3.5	>

z	=	switch(x,1,2,3,4,5)	>	z	[1]	3

	
The	expression	within	the	switch	statement	is	viewed	as	an	integer,	if	it	is	not	an
integer.	If	the	result	of	the	expression	on	the	other	hand	is	a	string,	then	the	items
in	the	list	will	have	the	form	“valueN	=	resultN”.

The	 switch	 statements	 can	 be	 fairly	 basic,	 but	 can	 also	 be	 complex.	 The
following	example	shows	a	more	complex	switch	statement.

				switch(6,	2+2,	mean(1:10),	rnorm(5))

					NULL

The	above	 switch	 statement	 evaluates	 a	value	 that	 is	 s	between	1	 and	10.	The
element	relating	to	the	list	is	then	evaluated	and	a	result	is	returned.	If	the	value
is	too	small	or	large,	NULL	is	returned.	In	this	case,	the	value	is	too	large.	This



means	that	the	value	was	not	specified	and	no	match	was	found.

Another	 way	 to	 use	 the	 switch	 statement	 is	 produce	 results	 according	 to	 the
character	value	of	one	of	the	arguments	within	the	function.

Here	is	how	you	can	create	a	switch	statement	based	on	a	character	value.

				>	y	<-	"furniture"

					>	switch(y,	furniture	=	"bed",	appliance	=	"radio",	"Neither")

					[1]	"bed”

The	 above	 example	 produces	 the	 final	 result	 by	 taking	 the	 object	 “y”	 and
evaluating	 its	 value	within	 the	 switch	 statement.	 It	 compared	 the	 value	 of	 “y”
with	list	to	determine	the	correct	character	value,	which	is	“bed”.



Break	and	Next	Statements
The	“break”	statement	is	used	to	terminate	loops.	This	is	actually	the	only	way
to	 terminate	 repeat	 loops.	 The	 execution	 of	 the	 current	 loop	 is	 stopped	 and
exited.

The	“next”	statement	on	the	other	hand	is	for	discontinuing	a	specific	sequence
and	 the	 skip	 to	 the	 next	 one.	 It	 is	 used	 to	 skip	 the	 following	 statements	 and
restart	 the	 current	 loop.	 When	 a	 for	 loop	 is	 present,	 the	 next	 statement	 will
perform	an	update	of	the	loop	variable.

Here	is	an	example	of	how	the	break	and	next	statement	is	used	within	a	“for”
loop	and	if	condition.	T

>	for(myloop	in	x)		{			if	(myloop	>	2.0)		next	if(	(myloop<0.6)	&&	(myloop	>	0.5))		

>	break	cat("The	value	of	my	loop	is	",myloop,"\n");		}

			The	value	of	my	loop	is	1.416993

			The	value	of	my	loop	is		-0.01571884

In	the	above	example	the	next	and	the	break	statements	are	implemented	within
the	”for”	loop.	There	is	also	a	conditional	if	statement	inside	the	“for”	loop.	You
can	 test	 the	 break	 and	 next	 statements	with	 any	 for	 loop.	 Just	 ensure	 that	 you
follow	the	proper	structure.



Apply	Loop	Family
The	Apply	Loop	family	is	alternative	to	writing	traditional	loops	like	the	for	and
while	loops.	While	and	for	loops	are	easy	to	write	but	can	be	tedious	and	quite
difficult	 to	write	 on	 the	 command	 line.	 Therefore,	 R	 provides	 some	 functions
that	allow	you	to	implement	loops	to	make	it	easier.	These	functions	have	built
in	 for	 loops	 written	 in	 R.	 These	 functions	 are	 under	 the	 apply	 loop	 family
category.	They	are	apply,	lapply,	sapply,	and	tapply	loops.

Here	is	some	additional	information	about	the	apply	loops:

1.	 apply	loop:	The	“apply”	loop	is	used	to	process	array	margins.	
	

2.	 lapply	loop:	The	“lapply”	loop	is	for	a	 list	and	to	evaluate	a	function
with	elements.	
	

3.	 sapply	 loop:	 The	 “sapply”	 is	 similar	 to	 the	 lapply	 and	 it	 is	 used	 to
enhance	results	in	simple	formats.	
	

4.	 tapply	loop:	The	“tapply”	loop	is	a	function	used	for	processing	vector
subsets.

In	 following	 sections,	 you	 will	 learn	 more	 about	 the	 apply	 loops	 through
examples.
Apply	Loop
The	apply	 loop	 is	 for	 evaluating	 anonymous	 functions	over	 the	 array	margins,
but	it	is	mostly	used	to	apply	a	loop	for	matrix	columns	and	rows.	They	can	also
be	used	over	the	arrays.	This	means	that	it	can	be	used	to	calculate	the	average
of	matrices	arrays.	It	is	not	necessarily	faster	than	a	traditional	loop,	but	it	can	be
written	on	just	one	line.
The	apply	loop	is	actually	a	function,	and	basically	can	be	written	as	a	function.
The	following	example	shows	how	you	can	write	the	apply	loop	as	a	function:

str	(apply)

function	(A,	NUM,	FUNCTION,	...)

In	the	above	example,	the	arguments	are	explained	as	follows:



“A”	is	used	to	represent	an	array.
“NUM”	is	used	to	represent	an	integer	vector	for	the	required	margin.
“FUNCTION”	is	the	function	or	function	name	to	apply.
“.	 .	 .”	 refers	 to	 additional	 arguments	 that	 will	 be	 passed	 within	 the
“FUNCTION”.

To	better	understand	 the	apply	 loop,	here	 two	examples	 to	 show	you	how	you
can	use	the	apply	loop.

1.	 	 	 	Find	Mean	Values:	The	 apply	 loop	 shows	 how	 to	measure	 the	mean
values	of	a	matrix	that	is	stored	in	x.
>	x	<-	matrix	(rnorm	(100),	10,	5)

>	apply	(x,	2,	mean)

2.	 	 	 	Summation	of	Matrix:	The	following	example	shows	how	to	calculate
the	summation	of	a	matrix	stored	in	x.
>	x	<-	matrix	(rnorm	(100),	10,	5)

>	apply(x,	1,	sum)

You	can	enter	the	commands	in	the	command	line	of	the	R	program	to	see	the
results.

Lapply	Loop

The	next	loop	to	be	discussed	in	the	apply	loop	family	is	the	“lapply”	loop.	The
lapply	 loop	 is	 specified	 for	 lists.	 This	 means	 that	 it	 is	 used	 to	 evaluate	 the
elements	within	a	list.
Here	is	the	syntax	for	the	lapply	loop:

>	lapply

>	function	(A,	FUNCTION,	...)

	

>	{	FUNCTION	<-	sport.fun(FUNCTION)

>	if	(!is.vector(A)	||	is.object(A))

>	A	<-	as.list(x).Internal(lapply(A,	FUN))	}



As	previously	mentioned,	most	of	the	code	that	belongs	to	R	comes	from	the	C
language	and	the	actual	loop	for	the	lapply	was	coded	in	C.	Therefore,	the	output
created	looks	similar	to	the	results	that	you	will	see	in	C.	The	“lapply”	outputs
its	results	in	a	list,	regardless	of	the	input	class	used.														
Here	is	are	two	examples	of	how	the	“lapply”	functionality	works:

1.	 	 	 	Extract	Mean	Values:	The	 lapply	 is	used	 in	 the	 following	example	 to
extract	 the	mean	values	 from	 the	 list	 that	holds	 the	x	variable.	The	output
will	always	be	in	a	list	format.
>	x	<-	list(i	=	1:5,	n	=	rnorm(10))

>	lapply	(x,	mean)

2.	 	 	 	Count	Characters:	In	the	following	example,	the	lapply	is	used	to	count
the	character	for	each	string.
>	x	<-	c(“fruit”,	“veg”,	“i”,	“plant”)

>	lapply	(x,	nchar)

3.	 	 	 	Extract	Columns:	The	 lapply	 is	 used	 here	 to	 extract	 the	 first	 column
from	a	matrix.
>	lapply	(y,	function(abc)	abc[,1])

The	lapply	examples	above	can	be	tested	in	the	command	line	of	the	R	program.
Test	them	to	see	the	results.
Sapply	Loop
The	 sapply	 is	 the	 next	 loop	 in	 the	 apply	 loop	 family	 that	 you	will	 learn	more
about.	As	previously	mentioned,	it	is	used	to	simplify	the	output.	If	the	result	is
in	a	list	form	with	an	element	of	length	1	for	each,	then	the	sapply	will	attempt	to
return	the	output	in	a	vector	form.
The	sapply	syntax	looks	like	the	following:

>	sapply

>	function	(A,	FUNCTION,	...)

The	 following	 example	 shows	 how	 the	 sapply	 function	 is	 used	 to	 create	 the



output	of	a	string.		
To	 better	 understand	 the	 sapply	 function,	 the	 following	 example	 you	will	 see
how	it	.

>	x	<-	c(“fruit”,	“veg”,	“i”,	“plant”)

>	sapply(x,	nchar)

The	output	for	the	above	example	would	look	like	the	following:
fruit	veg	i	plant

	5						3		1			5

	
Tapply	Loop
The	tapply	is	 the	last	 loop	in	the	apply	family.	As	you	previously	learned,	 it	 is
used	to	process	the	vector	subsets.	It	is	also	used	with	arrays	that	have	variable
lengths.	The	grouping	of	the	tapply	loop	is	specified	by	the	factor.
The	following	syntax	defines	the	tapply	loop:

>		str(tapply)

>	function	(V,	FACTOR,	FUNCTION	=	NULL,	...,	simple	=	TRUE)

	

Here	is	an	explanation	of	the	arguments	within	the	function:
V	–	This	is	the	vector.
FACTOR	–	This	is	the	list	of	factor	or	a	single	factor.
FUNCTION	–	This	is	the	function	that	was	previously	used.
…	–	This	specifies	the	arguments	for	the	function.
Simple	–	This	determines	if	the	simplified	results	are	necessary.

Here	are	some	examples	of	the	tapply	loop:
>	x	<-	a(rnorm(5),	runif(5),	rnorm(5,	1))

>	b	<-	gl(3,	5)

>	f

	



>	tapply(y,	b,	mean)

	

>	tapply(y,	b,	mean,	simplify	=	FALSE)

Here	are	some	valuable	key	points	that	you	should	consider	when	implementing
the	Apply	Loop	family:

1.	 	 	 	The	loops	in	the	apply	loop	family	represents	functions	implemented	as
loops.

2.				The	apply	loop	family	helps	programmers	avoid	writing	complex	loops	at
the	command	line.

3.	 	 	 	Using	a	 specific	 loop	 in	 the	apply	 loop	 family	 is	based	on	 the	variable
used	for	input.

Using	Tapply()	Function
R	 uses	 the	 tapply()	 function	 for	 various	 calculations,	 such	 as	 calculating	 the
mean,	 calculating	 standard	 errors,	 and	 calculating	 vectors.	 Vectors	 that	 are
combined	are	called	ragged	arrays.
The	 following	 examples	 will	 show	 you	 how	 to	 use	 the	 tapply()	 function	 to
perform	different	calculations:

Mean	Calculation:	The	tapply()	function	can	be	used	to	calculate	the
mean	income	for	example.	The	following	example	calculates	the	mean
income.

>	incmeans	<-	tapply(incomes,	statef,	mean)

The	tapply()	is	used	to	apply	a	function	with	the	“mean()”	function	for	each
group	 of	 components.	 Within	 the	 function	 “incomes”	 and	 “statef”	 are
implemented	 as	 if	 they	 are	 separate	 vector	 structures.	 The	 result	 has	 the
structure	with	the	same	length	as	the	levels	attribute	for	the	factor.

Calculate	Standard	Errors	–	You	can	write	an	R	function	to	calculate
the	standard	errors	for	any	vector.	R	has	a	built-in	function	called	var()
for	 calculating	 the	 sample	 variance.	 This	 is	 a	 very	 simple	 one-line



function.	 The	 following	 example	 shows	 how	 to	 assign	 the	 var()	 and
then	use	the	tapply()	function	to	calculate	the	errors.
Here	 is	 how	you	 could	 assign	 the	 var()	 function	 and	 use	 the	 tapply()
function	to	calculate	standard	errors:

>	stderr	<-	function(x)	sqrt(var(x)/length ( x))

You	can	also	use	the	tapply()	function	to	find	the	confidence	limits	for	a	state’s
mean	 income,	 for	 example.	 	 In	 this	 case,	 you	would	 use	 the	 tapply()	 function
with	the	length()	function	to	determine	the	sample	sizes	and	the	qt()	function	to
calculate	the	percentage	points	of	the	t-distributions.
Additionally,	the	tapply()	function	is	capable	of	handling	complex	indexing	for
vectors	within	various	categories.	You	can	use	it	to	separate	the	tax	accountants
by	state	and	sex.	In	this	instance,	the	values	of	the	vector	are	collected	in	groups
relating	 to	 the	 entries.	 The	 tapply()	 function	 is	 applied	 to	 each	 group,
individually.	The	results	would	be	a	vector	with	the	levels	attribute	label.
When	the	vector	and	the	labeling	factor	are	combined,	it	is	called	a	ragged	array
because	 the	 subclass	 sizes	 are	 irregular.	 If	 the	 subclass	 sizes	 are	 the	 same,	 the
indexing	is	done	implicitly	and	more	efficiently.



Sequences
There	are	various	accommodations	within	R	for	creating	popular	sequences.	You
could	have	1:20	that	represents	the	vector	v(1,2,	3,	…	19,20).	The	colon	operator
is	 considered	 top	 priority	 for	 the	 expression.	 If	 the	 you	 have	 2*1:10	 for	 the
vector	v(2,	4,	6,	…,	18,	20),	you	could	put	n	<-	10	and	compare	the	sequences
1:n-1	 and	 1(n-1).	 You	 may	 also	 create	 a	 backward	 sequence	 using	 the
construction	20:1.	This	means	the	result	would	be	a	backward	sequence.

R	 also	 uses	 the	 function	 “seq()”	 normally	 to	 create	 sequences.	 The	 function
carries	 five	arguments,	but	only	some	of	 them	can	be	defined	with	one	call.	 If
the	two	first	arguments	are	provided,	they	would	specify	the	beginning	and	the
end	 of	 the	 sequence.	 If	 these	 are	 the	 only	 two	 arguments	within	 the	 function,
then	the	result	 is	 the	same	as	 the	colons.	If	 the	sequence	function	is	defined	as
seq(2:20),	then	it	is	the	same	vector	as	2:20.

The	 arguments	 for	 the	 seq()	 function	 and	 other	R	 function	 are	 also	 defined	 in
name	form.	This	means	that	the	order	of	appearance	is	irrelevant.	The	first	two
arguments	in	the	function	could	have	“from=value”	and	“to=value”.	Therefore
seq(1,20),	seq(from=1,	to=20,	and	seq(to=30,	from=1)	means	the	same	as	1:20.
The	following	two	arguments	relating	to	the	seq()	function	can	be	by=value	and
length=value.	This	means	a	step	size	and	the	length	of	the	sequence	separately.
If	none	of	these	are	given,	then	by=1	is	assumed	by	default.

The	 following	 examples	 show	 how	 the	 seq()	 function	 is	 create	 a	 sequence	 of
vectors	and	other	operations:

>	seq1	<-	seq(-3,	3,	by=.2)

This	example	has	three	arguments	with	the	vector	v(-3.0,	-2.8,	-2.6,	….,
2.6,	2.8,	3.0)	stored	in	seq1.

>	seq2	<-	(length=31,	from=-3,	by=.2)

This	example	is	similar	to	the	above,	but	generates	the	vector	in	seq2.
The	third	argument	may	also	be	called	along=vector.	This	 is	 typically



used	 as	 a	 single	 argument	 to	 create	 the	 sequence	 1,	 2,	 3,	 …
length(vector)	or	have	an	empty	sequence	if	the	vector	is	empty.

There	 is	 also	 another	 function	 that	 is	 similar	 to	 the	 seq()	 function.	 The	 rep()
function	is	used	for	duplicating	an	object	in	complex	ways.

The	simplest	form	for	the	rep()	function	may	look	like	the	following:

>	s3	<-	rep(x,	qty=3)

This	example	will	put	three	copies	of	x	into	s3.

There	is	also	another	version	that	you	can	use	that	looks	like	the	following:

>	s4	<-	rep(x,	each=3)

This	 example	 repeats	 each	 element	 about	 three	 times	 before	 going	 to
the	next.

Sequence	Generation
To	help	 you	better	 understand	 sequences,	 you	will	 learn	 some	 addition	 details
about	sequence	generation	in	this	section,	such	as	usage	and	arguments	used.

The	 seq()	 function	 is	 standard	 generic	 sequence	 which	 is	 a	 default	 method.
However,	there	are	derivatives	that	are	faster	and	have	fewer	restrictions.	These
include	“seq.int”,	“seq_along”,	and	“seq_len”	functions.

The	 sequence	 function	 provides	 different	 formats	 to	 manipulate	 and	 calculate
different	data	types.
The	sequence	function	uses	the	following	syntaxes:

seq(...)		//	This	is	the	default	method.

	

seq(from	=	1,	 to	=	1,	by	=	((to	-	from)/(length.out	-	1)),	 length.out	=	NULL,	along.with	=

NULL,	...)	

	

seq.int(from,	to,	by,	length.out,	along.with,	...)	

	

seq_along(along.with)	seq_len(length.out)



	
Here	 is	 an	 explanation	 of	 the	 arguments	 used	 inside	 the	 seq,	 seq.int(),	 and
seq_along()	functions	above.

…	 -	 This	 is	 used	 inside	 the	 seq()	 and	 seq.int()	 functions	 are	 arguments
passed	to	or	from	methods.
from,	to	–	The	“from,	to”	argument	 in	 the	seq()	and	seq.int()	 functions	 is
the	 starting	 and	 greatest	 end	 values	 of	 the	 sequence.	 It	 is	 length	 1	 unless
“from”	is	only	used	as	an	unnamed	argument.
by	–	The	“by”	argument	in	the	seq()	and	seq.int()	functions	is	used	to	set	the
number	of	increments	for	the	sequence.
length.out	 –	 The	 “length.out”	 argument	 in	 the	 seq(),	 seq.int(),	 and
seq.along()	 functions	 is	 the	desired	 length	of	 the	 sequence.	 It	 is	 a	 positive
number	and	in	the	case	of	the	seq	and	seq.int	functions	will	be	rounded	up	if
it	is	a	fraction.
along.with	-		The	“along.with”	argument	has	the	length	of	the	length	of	the
argument.

Here	is	some	additional	details	about	the	arguments	inside	the	seq()	functions:
from	–	This	is	the	starting	value	of	the	sequence.
	
to	–	This	is	the	maximal	or	greatest	end	value	of	the	sequence.
	
by	–	This	is	the	increment	of	the	sequence.
	
length.out	–	This	is	the	desired	length	of	the	sequence.
	
along.with	 –	 This	 is	 the	 length	 starting	 from	 the	 length	 of	 the	 current
argument.
	

a,	b	–	These	are	factors	with	the	same	length.
	

Additional	Details
The	 input	 numbers	 should	 always	 be	 finite.	 This	means	 that	 the	 numbers	 that
you	 use	 must	 not	 be	 infinite,	 NaN(Not	 a	 Number)	 or	 NA.	 The	 unnamed



arguments	 for	 the	 seq()	 and	 seq.int()	 are	 not	 standard,	 therefore	 it	 is
recommended	 that	 you	 always	 name	 your	 arguments	 when	 you	 are
programming.

Seq()	 -	The	seq()	 function	 is	generic,	as	previously	mentioned,	 therefore	 it
dispatches	on	the	class	of	the	first	argument	regardless	of	the	names	of	the
arguments.	This	can	have	unintentional	consequences	if	it	is	called	with	only
a	 single	 argument	when	 used	with	 the	 along.with()	 function.	 Instead,	 it	 is
better	to	use	the	seq_along()	function.
seq.int()	 –	 The	 seq.int()	 function	 is	 an	 internally	 generic	 function	 for	 the
seq()	function	based	on	the	class	for	the	first	given	argument.

The	 seq()	 function	 have	 different	 usages.	 The	 typical	 usages	 include	 the
following:

seq(from,	 to)	 –	The	“seq(from,to)”	 function	creates	 the	 sequence	“from”,
“from	+/-1”,	…	to.	This	is	the	same	as	from:to.
	

seq(1,10)

seq(from,	to,	by=)	–	The	“seq(from,to,by=)”	creates	from,	from+/-1,	…	up
to	the	sequence	number	that	is	less	than	or	equal	to	“to”.	When	you	specify
to,	from,	and	by	with	opposite	signs	is	incorrect.	The	calculated	value	may
go	above	the	“to”,	to	allow	a	rounding	error,	but	it	is	truncated	to	the	“to”.
seq(1,	6,	by	=	pi)			

seq(from,	 to,	 length.out=)	 –	 The	 “seq(from,	 to,	 length.out=)”	 format
creates	a	length.out	sequence	that	has	equal	values	from	“from”	to	“to”.	The
length.out	argument	normally	is	abbreviated	from	length	to	len.	It	is	actually
faster	to	write	seq_len.
seq(along.with=)	 –	 The	 “seq(along.with=)”	 format	 creates	 the	 integer
sequence	 of	 1,	 2,	 3,	…..	 length(along.with).	 The	 along.width	 is	 typically
abbreviated	to	along.	It	is	actually	faster	to	write	seq_along.
seq(stats::rnorm(20)))				

seq(from)	 –	 The	 “seq(from)”	 format	 creates	 the	 sequence	 1,	 2,	 3,	 ….



length(from).	 It	 acts	 as	 if	 the	 argument	 along.with	 is	 defined.	 When	 the
argument.
seq(17)

seq(length.out)	–	The	“seq(length.out)”	format	creates	the	integer	sequence
1,	2,	3,	…	length.out=0,	when	it	generates	integer(0).
seq(0,	1,	length.out	=	11)

	
Note:	 The	 seq.int()	 and	 the	 default	 seq()	 function	with	 numeric	 arguments	will	 return	 an

integer	 or	 double	 vector.	 The	 seq_along()	 and	 seq_len()	 functions	 will	 return	 an	 integer

vector,	unless	the	vector	is	of	type	long.



Data	Manipulation
R	uses	objects	to	generate	and	manipulate	variables,	array	of	numbers,	functions,
characters,	 and	 other	 structures.	 	When	 in	 an	R	 session,	R	 creates	 objects	 and
store	them	with	a	name.	The	command	may	look	like	the	following	syntaxes.

objects()

or

Is()

The	Is()	function	can	be	used	to	display	most	of	the	names	for	the	objects	stored
in	 R.	 The	 collection	 of	 objects	 is	 known	 as	 workspace.	 If	 you	 would	 like	 to
remove	any	of	the	objects,	the	“rm()”	function	can	be	used.

Here	is	an	example	of	how	you	would	use	the	“rm()”	function.
>	rm(a,	b,	c,	res,	temp,	num,	com

All	the	objects	stored	in	an	R	session	is	permanently	stored	for	future	use.	When
the	session	ends,	you	have	the	option	of	saving	all	the	objects	that	are	currently
available.	When	you	confirm	this	option,	the	objects	are	saved	in	the	.RData	file
within	the	current	directory.	The	command	lines	that	are	used	in	the	session	are
saved	 in	 the	“.Rhistory”	 file.	When	R	 is	 restarted	 from	the	same	directory,	 the
workspace	 reloads	 from	 the	 file.	 The	 commands	 used	 previously	 will	 also
reload.
When	you	are	doing	analyses,	it	is	recommended	that	you	use	different	working
directories.	 Objects	 with	 x	 and	 y	 names	 are	 commonly	 created	 during	 these
analyses.	The	names	are	worthwhile,	but	can	be	difficult	 to	determine	 the	 time
the	analyses	are	conducted	within	the	same	directory.



Data	Structures
R	uses	 named	data	 structures,	 such	 as	 numeric	 vectors.	A	 numeric	 vector	 is	 a
single	entity	that	contains	a	collection	of	ordered	numbers.	If	you	would	like	to
create	a	vector	with	the	name	y	that	contains	five	numbers,	namely	2.4,	3.5,	4.7,
1.3,	and	20.8,	R	you	would	use	the	following	statement:

>	y	<-	v(2.4,	3.5,	4.7,	1.3,	20.8)

This	 v()	 function	 in	 the	 above	 example	 is	 assigned	 to	 the	 y	 variable.	 The
function	 used	 in	 this	 context	 takes	 any	 random	 number	 with	 the	 vector
arguments	and	have	a	vector	value	that	was	obtained	through	concatenating	the
arguments.	The	number	that	occurs	independently	in	a	statement	has	the	vector
length	of	one.
	
The	assignment	operator	(<-)	in	the	above	example	contains	two	characters,	the
less	 than	 (<)	 and	minus	 (-)	 signs	 that	 are	 close	 together.	 It	 is	 a	 short	 cut	 for
creating	 assignments.	 It	 points	 to	 the	 object	 that	 is	 storing	 the	 expression	 or
statement.	As	mentioned	earlier,	the	equal	sign(=)	can	be	used	as	an	alternative
in	 most	 cases.	 You	 may	 also	 use	 the	 assign()	 function	 to	 assign	 functions	 to
variables.
Here	is	how	you	would	use	the	assign()	function	to	perform	an	assignment:

>	assign("y",	v(2.4,	3.5,	4.7,	1.3,	20.8))

Earlier,	it	was	also	noted	that	assignments	can	be	made	in	the	opposite	direction.
You	 only	 need	 to	 put	 the	 variable	 to	 the	 right	 and	 switch	 the	 position	 of	 the
assignment	operator.

This	is	how	you	would	create	an	assignment	in	the	opposite	direction:

>	v(2.4,	3.5,	4.7,	1.3,	20.8	)	->	y

When	an	expression	is	a	complete	statement,	the	value	is	printed	and	lost.	If	you
use	the	following	statement,	the	reciprocals	for	the	five	values	would	be	printed
to	the	command	line	and	the	value	of	y	would	not	change.
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Vector	Manipulation
R	uses	vectors	in	arithmetic	expressions,	where	the	operations	are	performed	an
element	at	a	 time.	The	vectors	 inside	 the	same	expression	do	not	have	 to	have
the	 same	 length.	 When	 the	 length	 is	 not	 the	 same,	 then	 the	 value	 of	 the
expression	would	have	the	same	length	as	the	longest	vector	of	the	expression.
Shorter	 vectors	 on	 the	 other	 hand	 are	 recycled	 until	 a	 match	 for	 the	 longest
vector	is	found.
In	the	following	example,	the	vector	x	contains	11	entries	that	contains	2	copies
of	y	and	0.

x	<-	v(y,	0,	y)

In	the	above	assignment,	you	can	use	the	following	statement	to	generate	a	new
vector	with	the	length	of	11.

v	<-	2*x+y+1

The	 above	 example	 is	 constructed	 by	 adding	 each	 element	 at	 a	 time.	 The
statement	 2	 *	 x	 is	 repeated	2.2	 times,	 y	 is	 repeated	once	 and	1	 is	 repeated	11
times.	Other	commonly	used	arithmetic	functions	such	as	log,	exp,	sin,	cos,	tan,
and	 sqrt	 can	 also	 be	 used	 to	 calculate	 vectors	 in	 R.	 They	 all	 have	 different
meanings.

max()	 	 -	 The	max()	 function	 selects	 the	 largest	 vector	 or	 arguments,
even	with	several	arguments.	A	similar	function	is	the	pmax()	function
which	returns	a	vector	that	is	equal	to	the	vector.	It	contains	the	largest
element	of	any	input	vector.
min()	–	 	The	min()	 function	selects	 the	 smallest	vector	or	arguments,
even	with	several	arguments.		A	similar	function	is	the	pmin()	function
which	 returns	 a	 vector	 that	 is	 equal	 to	 the	 vector.	 It	 contains	 the
smallest	element	of	any	input	vector.
range()	 –	 The	 range()	 function	 has	 a	 vector	 value	 of	 length	 two,
namely	c(min(x),	max(x),	max(x))



length(x)	–	The	length()	function	is	number	of	elements	in	x.
sum(x)	–	The	sum()	function	provides	the	total	element	for	x.
prod(x)	–	The	prod()	function	provides	the	product	for	x.
sort(x)	–	The	sort()	 function	returns	a	vector	with	 the	same	size	as	x.
The	elements	are	arranged	in	increasing	order,	but	there	are	also	other
more	flexible	sorting	options	with	 the	order()	and	sort.list()	 functions.
They	production	a	variation	for	sorting	elements.

R	also	provides	two	statistical	functions.	They	are:
mean(x)	 –	 This	 calculates	 the	 sample	 mean.	 It	 is	 the	 same	 as
sum(x)/length(x).
	
var(x)	 –	 This	 results	 in	 results	 in	 sum((x-mean(x))^2/length(x)-1)	 or
sample	variance.	If	the	argument	for	var()	is	an	n-by-p	matrix,	then	the
value	 is	 a	 p-by-p	 sample	 that	 the	 covariance	 matrix	 received	 with
regard	to	the	rows	as	independent	p-variant	sample	vectors.

In	most	cases,	users	are	not	concerned	with	the	data	type	of	the	numeric	vector.
If	 a	numeric	vector	 is	an	 integer,	 real	or	complex,	 the	 internal	calculations	are
calculated	 as	 double	 precision	 real	 numbers	 or	 double	 precision	 complex
numbers(if	the	input	data	is	complex).
If	you	are	working	with	complex	numbers,	provide	an	explicit	complex	solution,
like	the	one	used	in	the	following	example:

sqrt(-17+0i)

The	above	example	will	compute	complex	numbers,	but	if	you	use	the	following
example,	you	will	receive	a	NaN	(Not	a	Number)	warning.

sqrt(-17)



Object	Manipulation
R	uses	three	types	of	language	objects	for	modifications;	expressions,	calls,	and
functions.	However,	in	this	ebook	you	will	learn	about	call	objects.	Call	objects
are	also	called	“unevaluated	expressions”.	The	best	way	to	obtain	a	call	object	is
by	using	the	quote()	function	with	an	expression	argument.

The	following	examples	use	the	quote()	function	with	expression	arguments:

>	obj1	<-	quote(2	+	2)

	
>	obj2	<-	quote(plot(x,	y))

The	 arguments	 are	 not	 evaluated,	 but	 the	 results	 are	 parsed	 arguments.	 In	 the
above	example,	obj1	and	obj2	can	also	be	evaluated	with	using	eval	or	 just	be
manipulated	as	data.	Obviously,	obj2	uses	“call”	because	a	call	 is	made	 to	 the
plot	function	with	the	x	and	y	arguments.	The	“obj1”	object	also	uses	the	same
structure	as	a	call	to	the	binary	operator	along	with	two	arguments.
This	following	example	explains	the	structure:

>	quote("+"(2,	2))	2+2

The	contents	of	the	call	object	are	accessed	with	a	list	type	syntax,	which	can	be
convert	 to	 and	 from	 lists	 with	 the	 “as.list”	 and	 “as.call”.	When	 the	 keyword
argument	matching	is	used	in	the	following	ways,	the	keywords	can	be	used	as
list	tags:

>	obj3	<-	quote(plot(x	=	age,	y	=	weight))

>	obj3$x

age

	
>	obj3$y	weight

The	 contents	 of	 the	 call	 object	 have	 the	 “name”	mode,	 based	 on	 the	 previous



example.	The	identifiers	in	the	calls	are	true,	but	the	contents	within	the	call	are
constants.	Constants	can	be	of	any	type,	but	the	first	content	must	be	a	function
if	the	call	is	successfully	evaluated.

Objects	 with	 the	 mode	 name	 maybe	 created	 from	 character	 strings	 using
as.name.

This	is	how	you	would	modify	the	obj2	using	as.name:

obj2[[1]]	<-	as.name("+")	>	obj2x+y

The	following	example	shows	that	subexpressions	are	actually	calls:

>	obj1[[2]]	<-	obj2	>	obj1x+y+2

The	 grouped	 parentheses	 inputted	 are	 saved	 in	 parsed	 expressions.	 They
represent	functions	with	one	argument,	therefore	4	–	(2-2)	results	in	"-"(4,	"("	("-
"(2,	2)))	in	prefix	notation.	The	open	brace	(‘(‘)	operator	in	this	case	returns	an
argument.	 This	 can	 be	 an	 issue,	 but	 it	 can	 be	 challenging	 to	 write	 a
parser/deparser	 that	 saves	 the	 user	 input,	 store	 it	 minimally,	 and	 ensure	 that
parsing	the	deparsed	expression	returns	the	same	expression.

Noticeably,	 the	 parser	 in	 R	 is	 not	 really	 invertible	 or	 the	 deparser	 as	 the
following	examples	will	show:

>	str(quote(c(1,2)))

		language	c(1,	2)

	
>	str(c(1,2))

		val	[1:2]	1	2

	
>	deparse(quote(c(1,2)))

			[1]	"c(1,	2)"

	
>	deparse(c(1,2))



[1]	"c(1,	2)"

	

>	quote("-"(2,	2))	2-2

>	quote(2	-	2)	2-2

Deparsed	expressions	should	evaluate	to	equal	values	to	the	original	expression.

The	 internal	 part	 of	 an	 expression	 does	 not	 need	 modifications	 regularly.
However,	 the	 user	 may	 want	 to	 get	 an	 expression	 to	 deparse	 and	 use	 it	 for
labeling	plots.

Here	is	example	of	how	this	can	be	done:

>	xlabel	<-	if	(!missing(x))

>	deparse(substitute(x))

	
In	the	above	example	the	variable	or	expression	with	the	x	argument	will	be	used
for	labeling	the	x	axis.	The	substitute()	function	is	used	to	achieve	this.	It	takes
the	x	expression	and	substitutes	the	expression	that	was	passed	previously	with
the	 x	 argument.	 This	 will	 happen	 when	 x	 carries	 the	 information	 about	 the
expression	creating	the	value.
A	formal	argument	intends	for	an	object	to	have	the	following	three	slots:

1.	 A	slot	for	the	expression	that	defines	the	object.
2.	 A	slot	for	the	environment	to	evaluate	the	expression.
3.	 A	slot	for	the	value	for	the	expression	that	was	already	evaluated.

If	 a	 substitute	was	 invoked	within	 the	 function,	 the	 local	 variable	will	 also	 be
open	to	substitution.	The	substitution	argument	does	not	necessarily	have	to	be	a
simple	identifier.	Instead	it	can	be	an	expression	that	involves	several	variables
and	 substitutions.	 The	 substitute	 function	 also	 has	 an	 additional	 argument	 that
can	be	an	environment	or	a	list.	The	following	example	shows	how	this	works.

>		substitute(x	+	y,	list(x	=	1,	y	=	quote(a)))	1+a



In	the	above	example,	quoting	is	used	to	substitute	x.	This	example	works	well
in	circumstances	where	math	expressions	are	required	to	create	graphs,	as	shown
in	the	following	example:

>	plot(0)

>	for	(i	in	1:4)

+			text(1,	0.2	*	i,

+			substitute(x[ix]	==	y,	list(ix	=	i,	y	=	pnorm(i))))

	
The	 substitutions	 are	 purely	 verbiage	 and	 there	 is	 no	 testing	 to	 see	 if	 the	 call
objects	make	sense	when	they	are	evaluated.	The	substitute(x	<-	x	+	1,	list(x=2))
will	return	2	<-	2	+	1.	It	is	important	to	note	that	R	sets	its	own	rules	and	execute
expressions	based	on	what	makes	sense.	If	an	expression	does	not	make	sense,	R
might	still	some	use	for	 them.	Using	some	mathematical	expressions	 in	graphs
for	 example	 may	 involve	 some	 constructions	 that	 are	 constructed	 correctly,
however	 can	 be	 meaningless	 when	 it	 is	 evaluated,	 for	 example,	 “{}	 >=	 20	 *
“years”’.
Substitute	 does	 not	 evaluate	 the	 first	 argument,	which	 can	 be	 confusing	when
you	are	substituting	an	object	within	a	variable.	To	resolve	this	issue,	you	should
use	the	substitute()	function	more	than	once.
The	 following	 example	 shows	 how	 to	 use	 the	 substitute()	 function	more	 than
once:
	

>	expr	<-	quote(x	+	y)														

>	substitute(substitute(y,	list(x	=	2)),	list(y	=	expr))	

>	substitute(x	+	y,	list(x	=	2))	

>	eval(substitute(substitute(y,	list(x	=	2)),	list(y	=	expr)))	2+z

	
R	provides	the	following	rules	for	substitutions:



In	 each	 symbol	 of	 the	 parse	 tree,	 the	 first	 one	 corresponds	 with
second.	It	can	be	a	tagged	list	or	an	environment	frame.
A	simplified	local	object	inserts	a	value;	otherwise	it	corresponds	to
the	global	environment.
The	expression	of	a	potential	function	argument	is	substituted.
When	the	symbol	does	not	correspond,	it	is	not	used.
The	 special	 exception	 at	 a	 higher	 level	 is	 different	 because	 it	 was
inherited	from	the	S	language.	Therefore,	there	no	control	over	which
variables	 would	 be	 bound	 at	 this	 level	 and	 it	 is	 better	 to	 make
substitute	behave	like	a	quote.

The	 rule	 relating	 to	 the	 potential	 substitution	 is	 a	 little	 different	 from	 the	 one
used	 in	 the	 S	 language	 when	 the	 local	 variable	 is	 modified	 before	 the
substitution.	 In	 this	 case,	R	will	 use	 the	new	value	of	 the	variable.	S	however
will	unconditionally	use	the	argument	within	the	expression	(unless	it	was	used
as	 constant).	 This	 means	 that	 f(1)	 in	 R	maybe	 completely	 different	 from	 f(1)
used	in	S.	The	usage	in	R	is	cleaner.

Consider	the	following	code	to	get	a	better	understanding	of	the	substitution:

plotlog	<-	function(x,	xlab	=	deparse(substitute(x)))

{									x	<-	log(x)

									plot(x,	xlab	=	xlab)	}

This	may	seem	clear,	but	actually	 the	x	 label	becomes	a	poor	expression.	This
occurs	because	the	“lazy	evaluation”	rule	causes	the	“xlab”	expression	to	happen
after	x	is	modified.	The	solution	is	to	ensure	the	“xlab”	expression	is	evaluated
first.
	
The	following	example	shows	how	to	evaluate	the	“xlab”	expression	first:
	

plotlog	<-	function(x,	xlab	=	deparse(substitute(x)))



{		xlab

			x	<-	log(x)	

								plot(x,	xlab	=	xlab)					}

	
You	will	 notice	 in	 the	 above	 example	 that	 eval(xlab)	 is	 not	 used.	 If	 xlab	 is	 a
language	or	an	expression	object,	then	the	object	will	be	evaluated	as	well.

The	R	variant	 for	 the	substitute()	 is	 the	bquote()	 function.	 It	 is	used	 to	 replace
some	subexpressions	with	values.	The	following	examples	show	how	to	replace
the	substitute()	function	with	the	bquote()	function.	The	syntax	for	the	bquote()
function	 is	 actually	 borrowed	 from	 the	 List	 Processing	 (LISP)	 program	 back
quote	macro.

//	The	substitute()	function	is	used	here!

>	plot(0)

>	for	(i	in	1:4)

>	text(1,	0.2	*	i,	substitute(x[ix]	==	y,	list(ix	=	i,	y	=	pnorm(i))))

	
//	The	bquote()	function	is	used	instead	of	the	substitute()	function.

>	plot(0)

>	for(i	in	1:4)

>	text(1,	0.2*i,	bquote(	x[.(i)]	==	.(pnorm(i))	))

	
In	 the	 above	 example,	 the	 expression	 used	 in	 the	 bquote()	 function	 is	 quoted
except	 the	 contents	 within	 the	 subexpressions,	 which	 are	 replaced	 with	 its
values.



Function	Manipulation
You	 will	 know	 how	 a	 function	 is	 called	 just	 by	 looking	 at	 the	 “sys.call()”
function.	 The	 following	 example	 shows	 how	 the	 sys.call()	 function	 is	 used	 to
return	its	own	call.

>	f	<-	function(x,	y,	...)	sys.call()

>	f(y	=	1,	2,	z	=	3,	4)

>	f(y	=	1,	2,	z	=	3,	4)

The	 sys.call()	 function	 is	 not	 necessarily	 useful	 unless	 it	 is	 being	 used	 for
debugging	because	it	requires	the	function	to	track	the	corresponding	argument
to	 interpret	 the	 call.	 For	 example,	 it	 must	 ensure	 that	 the	 second	 argument
corresponds	to	the	first	one.	This	would	be	the	x	argument	in	the	above	example.
Frequently,	 the	 user	 requires	 that	 the	 call	 have	 all	 the	 arguments	 bound	 to	 the
corresponding	 formal	 arguments.	To	 establish	 this,	 the	match.call()	 function	 is
used	instead	of	the	sys.call()	function.
	

>	f	<-	function(x,	y,	...)	match.call()

>	f(y	=	1,	2,	z	=	3,	4)

>	f(x	=	2,	y	=	1,	z	=	3,	4)

	
In	the	above	example,	you	will	notice	that	the	second	argument	x	corresponds	to
y,	 which	 is	 displayed	 in	 the	 result.	 This	 technique	 is	 primarily	 used	 to	 call
another	 function	 with	 the	 same	 arguments	 and	 potentially	 deleting	 other
functions.
The	 match.call()	 function	 uses	 an	 expand.dots	 argument	 to	 collect	 single
argument	 when	 it	 is	 set	 to	 FALSE.	 The	 following	 example	 shows	 how	 the
“expand.dots”	argument.
	

>	f	<-	function(x,	y,	...)	match.call(expand.dots	=	FALSE)

>	f(y	=	1,	2,	z	=	3,	4)



>	f(x	=	2,	y	=	1,	...	=	list(z	=	3,	4))

	
The	‘…’	argument	within	the	function	is	a	list.	It	is	best	to	use	this	form	of	the
match.call()	function	so	you	do	not	have	to	pass	undefined	argument	to	functions
that	will	not	recognize	them.
R	 provides	 the	 call	 and	 do.call	 functions	 for	 constructing	 function	 calls.	 The
call()	function	allows	you	to	create	a	call	object	from	the	function	with	a	list	of
arguments.	The	following	example	implements	the	call()	function:
	

>	y	<-	5.5

>	call("round",	y)

>	round(5.5)

	
You	 can	 see	 that	 the	 value	 of	 y	 is	 inserted	 in	 the	 call	 instead	 of	 the	 symbol.
Therefore,	 it	 is	 definitely	 different	 from	 round(y).	 This	method	 is	 rarely	 used,
but	 sometimes	 it	 is	 useful	 when	 the	 name	 of	 a	 function	 is	 available	 as	 a
character.
The	 do.call()	 function	 is	 related	 to	 the	 call()	 function,	 but	 it	 immediately
evaluates	 the	 call	 and	 uses	 the	 arguments	 from	 an	 object	with	 the	 arguments.
You	can	use	 it	 to	apply	 function	such	as	 the	cbind	 to	elements	of	a	“list”	or	a
data	frame.
The	following	example	shows	the	implementation	of	the	cbind	argument	in	the
do.call()	function.
	

>	is.na.data.frame	<-	function	(y)	

>	{	y	<-	do.call("cbind",	lapply(y,	"is.na"))

>	rownames(x)	<-	row.names(y)		x}

	
There	 are	 other	 variations	 of	 the	 do.call()	 function.	 It	 looks	 like	 do.call(“f”,



list(…)).	 	 This	 variation	 requires	 some	 evaluation	 of	 the	 arguments	 before	 the
call	 is	 made.	 This	 is	 the	 downside	 to	 “lazy	 substitution”	 and	 argument
substitution	 within	 the	 function.	 A	 similar	 concept	 also	 relates	 to	 the	 call()
function.
R	 provides	 a	 useful	 way	 for	 manipulating	 the	 components	 of	 a	 function	 or	 a
closure.	A	group	of	interface	functions	is	used	to	achieve	this	goal.
The	following	details	explain	the	contents	of	the	interface	functions:

body	–	The	body	returns	the	expression	that	is	within	the	body	of	the
function.	 It	 also	 sets	 the	body	of	 the	 function	 to	an	expression	 that	 is
already	provided.
formal	arguments	–	The	formal	arguments	is	a	list	within	the	function.
This	 is	 called	 a	 “pair	 list”.	 It	 also	 sets	 the	 formal	 arguments	 of	 the
argument	to	a	provided	list.
environment	–	The	environment	related	to	the	function	is	returned.	It
also	 sets	 the	 environment	 for	 the	 function.	 The	 bindings	 can	 also	 be
changed	for	different	variables	within	the	environment	of	the	function.

You	can	accomplish	this	by	using	the	evalq()	function:

>	evalq(x	<-	5,	environment(f)).

The	as.list()	function	may	also	be	used	to	convert	a	function	to	a	list.	This	results
in	 a	 concatenation	 of	 the	 list	 of	 the	 formal	 arguments	 within	 the	 body	 of	 the
function.	The	list	can	also	be	converted	to	a	function	using	the	as.function.	This
is	mainly	used	for	compatibility	with	S.	Apparently,	the	as.list()	function	is	lost
within	 the	 environment,	 but	 the	 as.function	provides	 an	 argument	 that	 sets	 the
environment.



Subsetting
R	provides	operators	for	subsetting	that	are	fast	and	powerful.	R	allows	you	to
use	subsetting	to	clearly	express	complex	operations	better	than	other	languages.
Although	 subsetting	 is	 challenging,	 it	 is	 necessary	 when	 you	 would	 like	 to
develop	the	following	related	concepts:

The	three	subsetting	operators.

The	six	different	types	of	subsetting.

Key	differences	relating	to	the	behavior	of	objects,	such	as	vectors,	data	frames,	 lists,	factors

and	matrices.

Using	subsetting	with	assignments.

In	this	section	you	will	learn	about	subsetting.	You	will	start	by	leaning	the	simple	concepts	and	then	you

will	 gradually	 learn	 about	 advance	 concepts.	You	will	 learn	 concepts	 like	 subsetting	 an	 atomic	with	 the

open	bracket	([),	complicated	data	types	(arrays	and	lists),	and	subsetting	operators	(double	brackets	([[)	and

dollar	operator($)	 ).	Later	on,	you	will	 learn	about	 combining	 subsetting	and	assignments.	You	will	 also

learn	about	modifying	objects.

Subsetting	uses	the	str()	function	to	show	the	structure	of	an	object.	It	allows	you	to	separate	the	contents

that	work	best	for	you.

Subsetting	Data	Types
There	 are	 six	 different	 data	 types	 that	 are	 used	 to	 subset	 atomic	 vectors	 in	R.
They	are	used	to	subset	lists,	S3	objects,	data	frames,	and	matrices.
In	 the	 following	 example,	 a	 simple	 vector	 x	 will	 show	 the	 basic	 concept	 of
subsetting:
	

>	x	<-	c(3.2,	2.2,	3.3,	6.4)

	
In	 this	 example	 the	number	after	 the	decimal	point	provides	 the	original	position	within	 the	vector.	This

example	will	be	used	to	explain	the	different	data	types	used	for	subsetting	a	vector.

The	following	examples	details	the	six	different	data	types	used	for	subsetting	a	vector:

	



1.	 Positive	 integers	 –	 Positive	 integers	 return	 elements	 at	 specified
positions,	for	example:

>	x[2,	4]

[1]	2.2	6.4

	

//	This	duplicates	the	indices	and	return	duplicated	values.

>	x[c(1,	1)]

[1]	3.2	3.2

	

//Real	numbers	or	decimals	are	discretely	truncated	to	integers.

>	x[c(2.3,	2.7)]

[1]	2.2	2.2	6.4

	
2.	 Negative	integers	–	Negative	numbers	are	used	to	skip	elements	at

specified	positions,	for	example:
>	x[-c(3,	1]

[1]	2.2	6.4													

You	 can	 also	 use	 them	 to	 skip	 elements,	 as	 shown	 in	 the	 following
examples:

//	This	first	element	is	skipped.

>	x[-1]

[1]2.2

	
//	The	first	and	second	element	is	skipped.

>	x[-c(1,	2)]

[1]	3.3	6.4

	



Note:	You	cannot	mix	positive	integers	in	single	subsets.	This	will	return	an	error.

The	following	example	shows	an	error	resulting	from	a	mixed	integer	subset.

//	 An	 error	 is	 returned	 because	 negative	 and	 positive	 numbers	 should	 not	 be	mixed	 in	 a

subset.

>	x[c(-3,	1)]	

Error	in	x[c(-3,	1)]:	only	0's	may	be	mixed	with	negative	subscripts

	
3.	 Logical	vectors	–	Logical	vectors	allows	you	 to	select	elements	 for

logical	values	 that	are	“TRUE”.	This	 is	considered	 to	be	 the	most
useful	form	of	subsetting	because	the	expression	is	written	to	create
the	logical	vector.

The	following	example	shows	the	concept	of	logical	vectors:
//	Only	the	first	two	decimals	are	returned.

>	x[c(TRUE,	TRUE,	FALSE,	FALSE)]	

[1]	3.2	2.2

	
//	Only	the	decimals	greater	than	3	is	returned.	

>	x[x	>	3]	

[1]	3.2	3.3	6.4

When	 the	 logical	 vector	 is	 shorter	 than	 the	 subsetted	 vector,	 it	 will
produce	the	same	length.

>	x[c(TRUE,	FALSE)]

[1]	3.2	3.3

This	example	is	also	the	same	as	the	following:
>	x[c(TRUE,	FALSE,	TRUE,	FALSE)

[1]	3.2	3.3

When	 a	 value	 is	 missing	 in	 the	 index,	 the	 results	 will	 show	 a	 missing
value,	like	the	one	in	the	following	example:



>x[ c ( TRUE , TRUE , NA , FALSE )]

[1]	3.2	2.2		NA

	
4.	 Nothing	 –	 Nothing	 returns	 the	 original	 vector.	 This	 is	 helpful	 for

matrices,	data	frames,	and	arrays,	but	not	for	vectors.	You	can	also	use
it	with	assignments.

>	[]

[1]	3.2	2.2	3.3	6.4

	
5.	 Zero	 –	 Zero	 returns	 a	 vector	 with	 zero-length.	 This	 is	 not	 done

intentionally,	but	you	can	use	it	create	test	data.
Here	is	an	example	of	how	zero	subsetting	is	implemented:

>	x[0]

	

6.	 Character	Vectors	 –	Character	 vectors	 are	 used	when	 a	 vector	 is	 a	 name.	They	 return
elements	with	matching	names.	The	following	examples	show	how	character	vectors	are

used	in	subsetting.

>	y	<-	setNames(x,	letters[1:4])

[1]	a						b					c							d

[2]	3.2		2.2			3.3			6.4

	

//Indices	are	repeated	just	like	integers

>	y[c]”b”,	“b”,	“b”)]

[1]	b				b				b

[2]2.2	2.2	2.2

	

//	The	open	brackets	([)	are	matched



>	z	<-	c(abc	=	1,	def	=	2)

>	z[c(“a”,	“d”)]

[1]	<NA>	<NA>

[2]		NA		NA

As	 previously	mentioned,	 data	 types	 are	 used	 to	 subset	 lists,	 S3	 objects,	 data
frames,	and	matrices.
R	also	provides	powerful	 indexing	features	to	help	you	access	object	elements.
They	can	be	used	 to	choose	or	omit	specific	variables	and	observations.	 In	 the
following	 code,	 you	will	 see	 various	ways	 you	 can	 retain	 or	 remove	variables
and	observations	so	you	can	take	random	samples	from	a	dataset.

1.	 Selecting	Variables
//	select	variables	s1,	s2,	s3

>	mysamples	<-	c("s1",	"s2",	"s3")

>	newsample	<-	myinfo[mysamples]

	

//	Here	us	another	example	of	another	method

>	mysamples	<-	paste("s",	1:3,	sep="")

>	newsample	<-	myinfo[mysamples]

	

//	Selecting	the	first	and	fifth	variables	through	the	tenth	variable

>	newsample	<-	myinfo[c(1,5:10)]

	
2.	 Removing	Variables

The	following	examples	show	how	to	remove	variables:
//	Variables	s1,	s2,	s3	are	omitted.

>	mysamples	<-	names(myinfo)	%in%	c("s1",	"s2",	"s3")	

>	newsample	<-	myinfo[!mysamples]

	



//The	3rd	and	5th	variables	are	omitted.	

>	newsample	<-	myinfo[c(-3,-5)]

//	Variables	s3	and	s5	is	deleted

>	myinfo$s3	<-	myinfo$s5	<-	NULL

3.	 Selecting	Observations
	

The	following	examples	show	how	to	select	observations:
//	The	first	5	observations	are	selected.

>	newsample	<-	myinfo[1:5,]

	

//	Variable	values	are	selected

>	newsample	<-	myinfo[	which(myinfo$gender=='F'	

>	&	myinfo$age	>	65),	]

	

//	Alternate	code	for	selecting	variable	values

>	attach(newinfo)

>	newsample	<-	myinfo[	which(gender=='F'	&	age	>	65),]

>	detach(newsample)

4.	 Subset	Function
The	“subset()”	 function	 is	one	of	 the	easiest	ways	 to	 select	variables.	The
following	example	will	show	you	how	it	is	used	to	select	rows	with	a	value
(“ages”)	greater	than	or	equal	to	30	or	less	than	20.	The	“ID”	and	“Height”
columns	are	retained.

//	The	subset()	function	is	used	

>	newsample	<-	subset(myinfo,	age	>=	30	|	age	<	20,	

>	select=c(ID,	Height))

In	the	following	example,	a	group	of	men	over	the	age	of	30	is	selected.	The
height	 and	 salary	 variables	 are	 kept,	 along	 with	 all	 the	 other	 columns	 in



between.

//	The	subset()	function	is	used	to	select	specific	columns

>	newsample	<-	subset(myinfo,	sex=="m"	&	age	>	30,

>	select=height:salary)

5.	 Selecting	Random	Samples
	
The	sample()	function	allows	you	to	take	a	random	sample	of	a	specific	size
from	a	dataset.

//	The	sample()	function	takes	a	random	sample	of	size	40	from	the	dataset	myinfo	

//	The	sample	does	not	have	a	replacement

>	mysample	<-	myinfo[sample(1:nrow(myinfo),	40,

>	replace=FALSE),]

Subset	Lists
Subsetting	a	list	is	similar	to	subsetting	an	atomic	vector,	where	the	open	bracket
“[“	always	 returns	a	 list,	 the	double	open	brackets	“[[“	and	 the	dollar	operator
“$”	allows	you	to	remove	the	components	from	the	list.
Matrices	and	Arrays
	

The	following	three	ways	are	used	to	subset	higher-dimensional	structures:
1.	 Subset	with	multiple	vectors.
2.	 Subset	with	a	single	vector.
3.	 Subset	with	a	matrix.

The	most	 commonly	used	method	 for	 subsetting	matrices	 (two	dimensional	 or
2d)	 and	 arrays	 (larger	 than	 two	 dimensional)	 is	 with	 generalization	 of	 one-
dimensional	 (1d)	 subsetting.	This	 involves	with	 providing	 a	 1d	 index	 for	 each
dimension	 that	 is	 separated	with	 a	 comma.	 Blank	 subsetting	 is	 useful	 as	 well
because	it	allows	you	to	maintain	rows	or	columns.
The	following	example	demonstrates	how	subsetting	works	in	matrices:

>	a	<-	matrix(1:9,	nrow	=	3)	

>	colnames(a)	<-	c("A",	"B",	"C")	



>	a[1:2,	]

	

The	 open	 bracket	 “[“	 simplifies	 the	 results	 with	 the	 lowest	 dimension.	 Since
matrices	and	arrays	are	implemented	as	vectors	with	special	attributes,	you	can
subset	them	with	a	single	vector.	In	this	case,	it	will	behave	as	a	vector.
	
In	 the	 following	 example,	 you	will	 see	 that	 arrays	 are	 stored	 in	 column-major
order:
	

>	nums	<-	arr_out(1:4,	1:4,	FUN	=	"paste",	sep	=	",")

[,1]		[,2]		[,3]		[,4]

[1]	"1,1"	"1,2"	"1,3"	"1,4"

[2]	"2,1"	"2,2"	"2,3"	"2,4"	//	etc

	

Higher-dimensional	data	structures	can	also	be	subsetted	with	an	integer	matrix
or	a	character	matrix.	In	each	row,	the	matrix	defines	the	location	with	a	single
value.	 Each	 column	 relates	 to	 a	 dimension	 within	 the	 subsetted	 array.	 This
means	that	the	2	column	matrix	subsets	a	matrix	and	the	3	column	matrix	subsets
a	3d	array.
The	following	example	shows	a	vector	with	values:
	

>	vals	<-	outer(1:5,	1:5,	FUN	=	"paste",	sep	=	",")

>	select	<-	matrix(ncol	=	2,	byrow	=	TRUE,	c(			1,	1,			3,	1,			2,	4	))

>	vals[select]

1]	"1,1"	"3,1"	"2,4"

	
Data	Frames
Data	 frames	have	 the	 features	 of	 lists	 and	matrices.	When	you	 subset	 a	 single
vector,	they	behave	like	lists	and	when	you	subset	two	vectors,	they	behave	like



matrices.
The	following	examples	show	how	data	frames	are	used	with	subsetting:
													

>	df	<-	data.frame(x	=	1:3,	y	=	3:1,	z	=	letters[1:3])

	

>	df[df$x	==	2,	]	

[1]			x	y	z	

[2]	2	2	2	b

	

>	df[c(1,	3),]	

[1]			x	y	z	

[2]	1	1	3	a

	

There	are	two	ways	that	you	can	select	columns	from	a	data	frame.	You	can	do	it
in	a	list	or	a	matrix	form.
	

//	Columns	selected	in	a	list	form

>	df[c("x",	"z")]	

[1]				x	z	

[2]	1	1	a

	

//	Columns	selected	like	a	matrix

>	df[,	c("x",	"z")]	

[1]			x	z	

[2]	1	1	a

	
S3	and	S4	Objects
S3	objects	consist	of	atomic	vectors,	arrays,	and	lists.	They	allow	you	remove	an
S3	object	with	the	methods	that	are	used	in	the	above	examples	and	applying	the
concept	of	the	str()	function.



The	 S4	 objects	 include	 two	 subsetting	 operators.	 They	 are	 “at”	 (@)	 and	 the
“slot()”	function.	The	@	is	the	same	as	the	$	and	the	slot()	is	the	same	as	[[.	The
@	is	more	constricting	than	the	$	because	 it	 returns	an	error	 if	 it	detects	a	slot
does	not	exist.
	
Subsetting	Operators
The	“[[“	and	“$”	subsetting	operators	are	used	to	simplify	and	preserve.	The	“[[“
is	 similar	 to	 the	 “[“.	The	only	exception	 is	 that	 it	 returns	 a	 single	value	and	 it
allows	 you	 to	 remove	 contents	 from	 a	 list.	 The	 dollar	 operator	 ($)	 is	 the
shortened	 form	 for	 the	 double	 brackets	 ([[)	 combined	 with	 the	 characters	 for
subsetting.	Double	brackets	([[)	are	required	to	work	with	lists	because	when	the
single	bracket	([)	is	applied	to	a	list	it	will	always	return	a	list.	The	contents	of
the	list	are	never	returned.	To	get	the	contents,	you	will	need	the	double	brackets
([[	and	the	colon	(:).
Since	it	will	only	return	a	single	value,	you	need	to	use	the	double	brackets	([[)
with	a	single	positive	integer	or	a	string.	The	following	examples	will	show	you
how	to	do	this:

>	a	<-	list(a	=	1,	b	=	2)	a[[1]]	

[1]	1

	

>	a[["a"]]

[1]	1

	

//	Vectors	are	provided	to	make	the	indexes	recursive.

>	b	<-	list(a	=	list(b	=	list(c	=	list(d	=	1))))	

>	b[[c("a",	"b",	"c",	"d")]]	

[1]	1

	
The	above	example	is	same	as	the	following:
	



	

>	b[["a"]][["b"]][["c"]][["d"]]	

[1]	1

	
Since	data	frames	are	actually	lists	of	columns,	you	can	use	the	double	brackets
([[)	to	remove	one	of	the	columns	from	the	data	frames,	for	example:
	

>	vectnums[[1]],	vectnums[[“vect1”]]

	
S3	and	S4	objects	will	override	the	standard	behavior	of	 the	[	and	the	[[.	They
operate	in	a	different	way	from	other	object	types.	The	major	difference	is	how
you	 choose	 how	 to	 simplify	 or	 preserve	 the	 way	 they	 behave,	 as	 well	 as
determining	the	default.
Understanding	the	differences	between	simplifying	and	preserving	subsetting	is
essential.	 Simplifying	 subsets	mean	 that	 the	 simplest	 form	 of	 data	 structure	 is
returned	 for	 the	 output.	 It	 is	 useful	 because	 it	 provides	 the	 result	 that	 you	 are
looking	for.
Preserving	 subsetting	maintains	 the	 structure	 of	 the	 output	 is	 the	 same	 as	 the
input.	 It	 tends	 to	 be	 better	 for	 programming	 because	 the	 results	 will	 always
return	the	same	type.	When	you	omit	drop	=	FALSE	when	subsetting	matrices
and	data	frames	you	will	receive	one	of	the	most	common	programming	errors.
It	will	work	during	testing,	but	when	you	pass	a	single	column	data	frame,	you
will	receive	an	unexpected	error.
When	 you	 switch	 between	 simplifying	 and	 preserving	 the	 data	 types	 will	 be
different.	The	 following	 table	 summarizes	 the	 differences	 between	 simplifying
and	preserving	for	different	data	types.
	

Data	Types Simplifying Preserving
Vector x[[1]] x[1]
List x[[1]] x[1]
Factor x[1:4,	drop	=	T] x[1:4]



Array [1,	]	or	x[,	1] x[1,	 ,	drop	=	F]	or	x[,	1,	drop	=
F]

Data	frame x[,	1]	or	x[[1]] X[,	1,	drop	=	F]	or	x[1]
	

Data	 types	behave	 the	 same	way	 for	preserving	when	 inputting	and	outputting
data.	Simplifying	is	slightly	different	on	the	other	hand.	The	following	examples
will	explain	how	the	different	data	types	are	used:

Atomic	vector
	

//The	atomic	vector	removes	names.

>	x	<-	c(a	=	1,	b	=	2)	

>	x[1]	

[1]	a	

[2]	1

	
x[[1]]

[1]	1

List

//	The	object	within	the	list	is	returned,	but	not	the	elements	in	a	single	list.

>	y	<-	list(a	=	1,	b	=	2)	

>	str(y[1])	

[1]	List	of	1	

[2]		$	a:	num	1

	

>	str(y[[1]])		

[1]		num	1

	
Factor
	

//	The	factor	drops	any	levels	that	are	not	used.

>	z	<-	factor(c("a",	"b"))	z[1]	

[1]	[1]	a	

[2]	Levels:	a	b



	

>	z[1,	drop	=	TRUE]	

[1]	a	#>	Levels:	a

	
Matrix	or	Array
	

//	The	matrix	or	array	checks	for	dimensions	that	have	length	1	and	removes	that	dimension.

>	a	<-	matrix(1:4,	nrow	=	2)

>	a[1,	,	drop	=	FALSE]

[1]	[,1]	[,2]

	

>	3	a[1,	]	

[1]	1	3

Data	frame

//	Outputs	a	single	column	and	returns	a	vector	instead	of	a	data	frame.

>	df	<-	data.frame(a	=	1:2,	b	=	1:2)	

>	str(df[1])	

[1]	'data.frame':				2	obs.	of		1	variable:	

[2]		$	a:	int		1	2

	

>	str(df[[1]])	

[1]		int	[1:2]	1	2

	

>	str(df[,	"a",	drop	=	FALSE])	

[1]	'data.frame':				2	obs.	of		1	variable:	

[2]	$	a:	int		1	2

	

>	str(df[,	"a"])

[1]		int	[1:2]	1	2

	



The	dollar	operator	($)	is	a	short	form	operator,	for	example	x$y	is	the	same	as
x[[“y”,	 exact	 =	 FALSE]].	 It	 is	 widely	 used	 to	 access	 variables	 within	 a	 data
frame.
It	is	a	mistake	to	use	the	dollar	operator	($)	when	you	have	the	name	of	a	column
stored	in	a	variable.	In	the	following	examples	you	will	see	how	it	is	incorrectly
used	and	what	to	use	instead.

>	var	<-	"cyl"	

//	Doesn't	work	-	mycars$var	translated	to	mycars[["var"]]	mycars$var

[1]	NULL	

	

//	Instead	use	[[	mycars[[var]]	

[1]	6	6	4	6	8	6	8	4	4	6	6	8	8	8	8	8	8	4	4	4	4	8	8	8	8	4	4	4	8	6	8	4

	

One	 major	 difference	 between	 $	 and	 [[.	 The	 $	 operator	 performs	 partial
matching,	as	you	will	see	in	the	following	example:
	

>	x	<-	list(abc	=	1)	x$a	

[1]	1	x[["a"]]	

[2]NULL

	

To	 prevent	 this	 from	 happening,	 you	 will	 need	 to	 set	 the	 global	 option
“warnPartialMatchDollar”	 to	 TRUE.	 You	 should	 carefully	 use	 it	 because	 it
may	affect	the	behavior	in	other	codes,	such	as	packages.
	

Sometime	you	experience	some	unusual	behavior	because	of	missing	or	out	of
bounds	(OOB)	indices.	When	you	use	the	single	bracket	([)	and	double	brackets
([[),	for	example,	you	may	notice	some	unusual	behavior	when	the	index	is	out
of	bounds.	This	may	happen	because	you	may	try	to	remove	a	four-length	vector
or	subset	a	vector	with	NA	or	NULL.	The	following	examples	show	how	these
operators	are	used	in	this	manner:
	



//	Removing	a	four	length	vector

>	x	<-	1:4	str(x[5])

	

//Subset	a	vector	with	NA																												

>	int	NA	str(x[NA_real_])

	

//	Subset	a	vector	with	NULL

>	int	NA	str(x[NULL])	#>		int(0)

	

The	following	table	provides	a	summary	of	results	for	subsetting	atomic	vectors
and	lists	using	the	[	and	[[,	as	well	as	other	out	of	bounds	(OOB)	values.
	

Operator Index Atomic List

[ OOB NA list(NULL)

[ NA_real NA list(NULL)

[ NULL x[0] list(NULL)

[	[ OOB Error Error

[	[ NA_real Error NULL

[	[ NULL Error Error

When	 the	 vector	 is	 named,	 the	 names	 of	 OOB,	 missing,	 or	 NULL	 will	 be
“<NA>”.
Subset	Assignments													
R	allows	you	to	establish	sub	assignments,	combine	subsetting	and	assignments
so	 you	 can	 modify	 different	 parts	 of	 objects.	 You	 can	 combine	 subsetting
operators	when	making	assignments.	They	are	used	to	modify	selected	values	for
the	input	vector.
The	 following	 examples	 shows	 when	 you	 can	 and	 cannot	 apply	 subset
assignments:

>	x	<-	1:5	



>	x[c(1,	2)]	<-	2:3	x	

[1]	2	3	3	4	5

	

//	Match	the	length	of	Left	Hand	Side	(LHS)	with	the	Right	Hand	Side(RHS)	

>	x[-1]	<-	4:1	x	

[1]	2	4	3	2	1	

	

//	Does	not	checking	for	duplicate	indices.	

>	x[c(1,	1)]	<-	2:3	x	

[1]	3	4	3	2	1	

	

//	Integers	cannot	be	combined	with	NA	–	You	will	receive	an	error.

>	x[c(1,	NA)]	<-	c(1,	2)	

Error	in	x[c(1,	NA)]	<-	c(1,	2):	NAs	are	not	allowed	in	subscripted	assignments.

	

//	A	valid	combination	of	logical	indices	with	NA	–	treated	as	“false”.	

>	x[c(T,	F,	NA)]	<-	1	x	

[1]	1	4	3	1	1

	
	

//	This	is	for	modifying	vectors	conditionally.

>	vt	<-	data.frame(a	=	c(1,	10,	NA))	

>	vt$a[vt$a	<	5]	<-	0	vt$a	

[1]		0	10	NA

	

You	can	subset	with	nothing	along	with	assignments	it	helps	to	keep	the	original
object	class	and	structure.	Evaluate	the	following	two	statements	to	get	a	better
understanding.
	

//	The	“mycars”	object	remains	as	a	data	frame.

>	mtcars[]	<-	lapply(mtcars,	as.integer)



	

//	The	“mycars”	object	becomes	a	list.

>	mtcars	<-	lapply(mtcars,	as.integer)

	

Lists	 allow	 you	 to	 use	 subsetting	 with	 assignments	 and	 NULL,	 to	 remove
specific	contents	 in	a	 list.	 If	you	would	 like	 to	 insert	a	 literal	NULL,	use	 the	 [
and	list(NULL).
The	following	examples	show	how	to	use	NULL	with	lists:
	

>	x	<-	list(a	=	1,	b	=	2)	

>	x[["b"]]	<-	NULL	str(x)

	

//	Show	a	list	of	1

>	$	a:	num	1	

>	y	<-	list(a	=	1)	

>	y["b"]	<-	list(NULL)	str(y)

	

//	Shows	a	list	of	2	

>		$	a:	num	1	

>		$	b:	NULL

	
Assignments	 to	 subsets	 have	 a	 special	 structure	 that	 have	 may	 look	 like	 the
following	complex	assignment:

>	x[2:4]	<-	10:12

	
The	result	of	the	above	statement	after	it	has	been	executed,	actually	appears	like
the	following	statements:

>	‘*tmp*‘	<-	x

>	x	<-	"[<-"(‘*tmp*‘,	2:4,	value=10:12)

>	rm(‘*tmp*‘)



	
In	 the	above	example,	 the	 index	 is	converted	first	 to	a	numeric	 index	and	 then
the	elements	are	replaced	in	a	sequential	format	with	numeric	index.	It	behaves
like	 a	 for	 loop.	 Any	 variable	 with	 the	 name	 “*tmp*	 will	 be	 overridden	 and
removed,	therefore	this	variable	name	should	not	used	within	the	code.
The	same	concept	can	be	applied	to	functions,	other	than	using	the	open	bracket
([).	 The	 function	 that	 is	 being	 replaced	 will	 have	 the	 same	 name.	 The	 last
argument	in	the	code	must	be	a	new	value	that	will	be	assigned.	In	the	following
example,	you	will	see	how	this	is	done:

>	names(x)	<-	c("a","b")

This	example	is	also	the	same	as	the	following	statements:
>	‘*tmp*‘	<-	x

>	x	<-	"names<-"(‘*tmp*‘,	value=c("a","b"))

>	rm(‘*tmp*‘)

	
Additionally,	 when	 you	 nest	 complex	 statement,	 it	 should	 be	 evaluated
recursively,	like	in	the	following	example:

>	names(x)[3]	<-	"Three"

	
This	example	is	the	same	as	the	following	statements:

>	‘*tmp*‘	<-	x

>	x	<-	"names<-"(‘*tmp*‘,	value="[<-"(names(‘*tmp*‘),	3,	value="Three"))

>	rm(‘*tmp*‘)

	
Complex	assignments	also	allows	you	 	 to	 the	use	 the	<<-	operators	within	 the
enclosing	environment.	Here	is	an	example	of	how	it	is	used:

>	names(x)[3]	<<-	"Three".

This	example	is	also	same	as	the	following	statements:



>	‘*tmp*‘	<<-	get(x,	envir=parent.env(),	inherits=TRUE)

>	names(‘*tmp*‘)[3]	<-	"Three"

>	x	<<-	‘*tmp*‘

>	rm(‘*tmp*‘)

	
>	‘*tmp*‘	<-	get(x,envir=parent.env(),	inherits=TRUE)

>	x	<<-	"names<-"(‘*tmp*‘,	value="[<-"(names(‘*tmp*‘),	3,	value="Three"))

>	rm(‘*tmp*‘)

	
In	the	above	example,	only	the	target	variable	is	evaluated	within	the	enclosing
environment.	The	following	example	will	show	you	how	it	works:

>	e<-c(a=1,b=2)

>	i<-1

	
>	local({

>	e	<-	c(A=10,B=11)

>	i	<-2

>	e[i]	<<-	e[i]+1})

In	this	example,	the	local	value	of	“I”	is	used	on	the	LHS	and	RHS.	The	same	is
true	for	the	local	value	“e”	on	the	RHS	of	the	super	assignment	statement.	The
value	“e”	is	set	outside	to	“ab”.	The	super	assignment	is	actually	the	same	as	the
following	statements:

>	‘*tmp*‘	<-	get(e,	envir=parent.env(),	inherits=TRUE)

>	‘*tmp*‘[i]	<-	e[i]+1

>	e	<<-	‘*tmp*‘

>	rm(‘*tmp*‘)

This	example	is	the	same	as	the	following:
x[is.na(x)]	<<-	0



This	is	also	the	same	as	these	statements:
>	‘*tmp*‘	<-	get(x,envir=parent.env(),	inherits=TRUE)

>	‘*tmp*‘[is.na(x)]	<-	0

>	x	<<-	‘*tmp*‘

>	rm(‘*tmp*‘)

However,	it	is	not	the	same	as	the	following	statements:
>	‘*tmp*‘	<-	get(x,envir=parent.env(),	inherits=TRUE)

>	‘*tmp*‘[is.na(‘*tmp*‘)]	<-	0

>	x	<<-	‘*tmp*‘

>	rm(‘*tmp*‘)

The	two	above	observations	are	different	 if	 there	is	 the	local	variable	“x”.	It	 is
recommended	that	you	should	avoid	using	a	local	variable	with	the	same	name
as	 the	 target	 variable	 of	 any	 super	 assignment.	This	 code	 should	only	be	used
when	it	is	absolutely	necessary.
Applying	Subsetting
Subsetting	is	often	applied	to	solve	problems	in	data	analysis,	but	you	can	use	it
in	 several	 other	 applications.	 In	 the	 above	 examples,	 you	 learned	 about	 some
basic	concepts	that	you	could	use	to	build	efficient	applications.	In	this	section,
you	will	learn	more	about	applying	those	basic	techniques	with	functions,	such
as	 subset,	 merge,	 and	 plyr::arrange().	 You	 will	 understand	 how	 they	 are
implemented	in	subsetting,	so	you	can	create	flexible	applications.
The	following	applications	will	help	you	properly	implement	subsetting	so	you
can	create	flexible	applications.
	
Application	1:	Use	Character	Matching	to	Create	Lookup	Tables.
Character	 matching	 allows	 you	 to	 create	 lookup	 table.	 If	 you	 would	 like	 to
convert	abbreviations	for	instance,	you	would	to	do	the	following:

//	Creating	and	defining	abbreviations

x	<-	c("m",	"f",	"u",	"f",	"f",	"m",	"m")



lookup	<-	c(m	=	"Male",	f	=	"Female",	u	=	NA)	

lookup[x]

	

//	The	results	for	the	abbreviations

>								m								f								u								f								f								m								m	#

>			"Male"	"Female"							NA	"Female"	"Female"			"Male"			"Male"

	

//	 Characters	 are	 undefined.	 Use	 the	 unname()	 function	 to	 remove	 the	 names	 from	 the

results.		

unname(lookup[x])	

[1]	"Male"			"Female"	NA							"Female"	"Female"	"Male"			"Male"

	

//	Fewer	output	results	are	specified	and	returned	

c(m	=	"Known",	f	=	"Known",	u	=	"Unknown")[x]	

>		m									f									u									f									f									m									m	

>	"Known"			"Known"	"Unknown"			"Known"			"Known"			"Known"			"Known"

	

Application	2:	Matching	and	Merging:	Integer	Subsetting
Sometimes	you	may	have	a	complicated	lookup	table	with	multiple	columns	of
information.	If	you	have	a	vector	 integer	and	a	table	with	property	description,
you	could	use	the	following	expressions,	for	example:
	

>	grades	<-	c(1,	2,	2,	3,	1)		

>	info	<-	data.frame(			grade	=	3:1,			

>	desc	=	c("Excellent",	"Good",	"Poor"),	fail	=	c(F,	F,	T)	)

	

If	you	want	to	duplicate	the	“info”	table	in	the	above	example	to	have	a	row	for
each	value	in	the	“grades”	object,	you	do	so	in	two	ways.	You	can	either	use	the
“match()”	 function	 and	 integer	 subsetting	 or	 you	 can	 use	 the	 “rownames()”



function	and	character	subsetting.	The	following	examples	show	the	two	ways:
//	The	contents	of	the	“grades”	object	are	returned.

>	grades	

[1]	1	2	2	3	1	

	

//	The	match()	function	is	implemented.

>	id	<-	match(grades,	info$grade)	

>	info[id,	]

	

//	The	match()	function	returns	the	following	results	in	a	table	form.

>								grade		desc		fail	

>	3							1						Poor		TRUE	

>	2							2						Good	FALSE	//	etc...

	

//	The	rownames()	function	is	implemented.

>	rownames(info)	<-	info$grade

>	info[as.character(grades),	]

	

//	The	rownames()	function	returns	the	following	results	in	a	table	form.

>					grade						desc		fail	

>	1							1						Poor		TRUE	

>	2							2						Good	FALSE	//	etc...

	

If	you	would	like	to	match	multiple	columns,	you	will	first	need	to	shrink	them
into	 a	 single	 column.	 This	 means	 that	 you	 will	 need	 to	 use	 the	 interaction(),
paste()	 or	 plyr::id()	 functions.	 You	 can	 also	 use	 the	 merge()	 or	 plyr::join()
functions	 to	 accomplish	 the	 same	 results.	 You	will	 need	 to	 review	 the	 source
code	to	accomplish	this	technique.
	
Application	3:	Random	Samples/Bootstrap:	Integer	Subsetting



You	can	use	 integer	 indices	 to	perform	random	sampling	or	bootstrapping	of	a
vector	or	a	data	frame.	The	sample()	function	can	be	used	to	generate	a	vector	of
indices	and	then	use	subsetting	to	access	the	value.	The	following	example	will
help	understand	this	concept:
	

//	Object	is	implemented	for	the	data	frame

>	df	<-	data.frame(x	=	rep(1:3,	each	=	2),	y	=	6:1,	z	=	letters[1:6])	

	

//	The	seeds	are	set	to	reproduce	

set.seed(10)	

	

//	Object	defines	a	random	order

>	df[sample(nrow(df)),	]

	

//	Values	are	returned	in	a	random	order.	

>			x	y	z	

>	4	2	3	d	

>	2	1	5	b	//	etc...

	

//	Three	random	rows	are	selected.

>	df[sample(nrow(df),	3),	]

	

//	The	results	for	three	random	rows.	

>			x	y	z	

>	2	1	5	b	

>	6	3	1	f	

>	3	2	4	c

	

//	Six	bootstrap	replicates	are	selected.	

>	df[sample(nrow(df),	6,	rep	=	T),	]

	



//	Six	results	are	returned.

						x	y	z	

>	3			2	4	c	

>	4			2	3	d	//etc

	
The	 arguments	 within	 the	 sample()	 function	 controls	 the	 number	 of	 samples	 to	 be	 extracted.	 They	 also

determine	whether	the	sampling	can	be	done	with	or	without	a	replacement.

	

Application	4:	Ordering:	Integer	Subsetting

The	order()	function	is	used	to	take	a	vector	as	input	and	return	it	as	an	integer
vector.	It	describes	how	the	subsetted	vector	should	be	ordered.
In	the	following	example,	you	will	see	how	the	order()	function	is	implemented
to	order	subsetted	vectors:
	

//Order()	takes	a	vector	as	a	input

>	x	<-	c("b",	"c",	"a")	

>	order(x)	

[1]	3	1	2

	

//	A	vector	is	returned	as	an	integer	vector

>	x[order(x)]	

>	[1]	"a"	"b"	"c"

	

To	 sever	 the	 relationship,	 you	 can	 provide	 additional	 variables	 to	 the	 order()
function	and	change	it	from	ascending	to	descending	order	by	using	“decreasing
=	TRUE”.	Any	missing	values	will	be	placed	at	the	end	of	the	vector	by	default,
however	you	can	remove	the	missing	values	with	“na.last	=	NA”	insert	it	at	the
front	with	“na.last	=	FALSE”.
If	 you	 have	 two	 or	 more	 dimensions,	 use	 the	 order()	 function	 and	 integer
subsetting	to	make	it	easier	 to	order	 the	rows	or	 the	columns	of	an	object.	The



following	examples	show	how	to	order	the	rows	and	columns	of	an	object.
	

//	Implementation	of	a	randomly	reordered	row.

>	df2	<-	df[sample(nrow(df)),	3:1]

	

//	Randomly	reordered	row.

df2	

>			z	y	x	

>	3	c	4	2	

>	1	a	6	1	//	etc...

	

//	An	ordered	row

>	df2[order(df2$x),	]	

>			z	y	x	

>	1	a	6	1	

>	2	b	5	1	//	etc

	

//	An	ordered	row	with	character	names.

df2[,	order(names(df2))]	

>			x	y	z	

>	3	2	4	c	

>	1	1	6	a	//	etc

	

There	 are	 also	 other	 functions	 that	 are	 available	 for	 sorting	 vectors,	 such	 as
sort(),	data	frames,	and	plyr::arrange().`
	

Application	5:	Expanded	Group	Counts:	Integer	Subsetting
You	may	 get	 a	 data	 frame	with	 identical	 collapsed	 rows	with	 an	 added	 count
column.	To	open	the	data,	you	would	use	the	rep()	function	by	subsetting	it	with
a	 recurrent	 row.	 In	 the	 following	 example,	 the	 rep()	 function	 is	 used	 to



accomplish	this	task.
	

>	df	<-	data.frame(x	=	c(2,	4,	1),	y	=	c(9,	11,	6),	n	=	c(3,	5,	1))	

>	rep(1:nrow(df),	df$n)	

>	[1]	1	1	1	2	2	2	2	2	3

	

df[rep(1:nrow(df),	df$n),	]	

>					x		y		n	

>	1			2		9	3	

>	1.1	2		9	3	//	etc...

	
Application	6:	Remove	Column	from	Data	Frames:	Character	Subsetting
There	 are	 methods	 for	 removing	 columns	 from	 a	 data	 from.	 You	 can	 set
individual	 columns	 to	 NULL	 or	 you	 can	 subset	 so	 you	 can	 only	 return	 the
columns	you	want.
	
The	 following	 examples	 show	 how	 to	 set	 the	 columns	 to	 NULL	 and	 return
specific	columns:
	

//	Columns	are	set	to	NULL

>	df	<-	data.frame(x	=	1:3,	y	=	3:1,	z	=	letters[1:3])	

>	df$z	<-	NULL

	

//	Specific	columns	are	returned.

>	df	<-	data.frame(x	=	1:3,	y	=	3:1,	z	=	letters[1:3])

	

df[c("x",	"y")]	

>			x	y	

>	1	1	3	

>	2	2	2	

>	3	3	1

	



If	you	already	know	columns	that	you	do	not	want,	you	can	set	the	operations	to
only	keep	the	columns	that	you	want.	Here	is	how	you	could	do	it:
	

df[setdiff(names(df),	"z")]	

>			x	y	

>	1	1	3	

>	2	2	2	3	3	1

	
Application	7:	Select	Rows	based	on	Condition:	Logical	Subsetting
Logical	subsetting	allows	you	to	conveniently	combine	conditions	from	multiple
columns.	It	is	possibly	one	of	the	most	widely	used	method	for	removing	rows
from	a	data	 frame.	The	 following	example	 shows	how	 to	properly	 select	 rows
using	logical	subsetting.

mycars[mycars$gear	==	5,	]	

>	mpg	cyl		disp		hp	drat	wt	qsec	vs			am	gear	carb	

>	27	26.0			4	120.3		91	4.43	2.140	16.7		0		1				5				2	

>	28	30.4			4		95.1	113	3.77	1.513	16.9		1		1				5				2	//	etc...

	

mtcars[mtcars$gear	==	5	&	mtcars$cyl	==	4,	]	

>	mpg	cyl		disp		hp	drat				wt	qsec	vs	am	gear	carb	

>	27	26.0			4	120.3		91	4.43	2.140	16.7		0		1				5				2	

>	28	30.4			4		95.1	113	3.77	1.513	16.9		1		1				5				2

	

Note:	Remember	to	use	the	vector	Boolean	operators	“&”	and	“|”	instead	of	the	“&&”	and

“|	|”	operators.	Use	DeMorgan’s	laws	to	simplify	negations.

	

Important:														

!(X	&	Y)	is	the	same	as	!X	|	!Y

!(X	|	Y)	is	the	same	as	!X	&	!Y

	

In	a	nutshell,	!(X	&	!(Y	|	Z)) simplifies	to !X	|	!!(Y|Z)	and	then	to !X	|	Y	|	Z.



	

The	subset()	function	is	a	shortened	function	for	subsetting	data	frames.	It	saves	time	on	typing,	because	it

minimizes	repeating	the	data	frame	name.

The	following	examples	shows	how	to	implement	the	subset()	function:

	
>	subset(mycars,	gear	==	5)	

>	mpg	cyl		disp		hp	drat				wt	qsec	vs	am	gear	carb

>	27	26.0			4	120.3		91	4.43	2.140	16.7		0		1				5				2	

>	28	30.4			4		95.1	113	3.77	1.513	16.9		1		1				5				2	//	etc...

	

subset(mycars,	gear	==	5	&	cyl	==	4)	

>	mpg	cyl		disp		hp	drat				wt	qsec	vs	am	gear	carb	

>	27	26.0			4	120.3		91	4.43	2.140	16.7		0		1				5				2	

>	28	30.4			4		95.1	113	3.77	1.513	16.9		1		1				5				2

	
Application	8:	Boolean	Algebra	VS	Sets:	Logical	&	Integer	Subsetting
It	 is	 important	 to	 know	 the	 equivalence	 between	 set	 operations	 (integer
subsetting)	 and	Boolean	 algebra(logical	 subsetting).	 It	 is	more	 effective	 to	 use
set	operations	in	the	following	situations:

										To	find	the	first	or	last	TRUE	statements.
										When	using	only	a	few	TRUE	statement	and	many	FALSE

statements.	Using	set	expressions	is	faster	and	require	less	storage.
The	“which()”	function	allows	you	to	convert	a	Boolean	expression	to	an	integer
expression.	 There	 is	 no	 reverse	 operation	 in	 R,	 but	 you	 can	 create	 one.	 The
following	example	shows	how	you	can	do	this:

>	x	<-	sample(10)	<	4	

>	which(x)	

[1]		3		7	10	

	

unwhich	<-	function(x,	n)	



{			out	<-	rep_len(FALSE,	n)			

out[x]	<-	TRUE			out	}

	

unwhich(which(x),	10)	

[1]	FALSE	FALSE		TRUE	FALSE	FALSE	FALSE		TRUE	FALSE	FALSE		TRUE

	

The	 following	 example	 will	 show	 you	 how	 to	 create	 two	 logical	 vectors	 and
integers	 that	 are	 equivalent.	 After	 learning	 this	 concept,	 you	 will	 see	 the
relationship	between	Boolean	and	set	operations.
	

>	(x1	<-	1:10	%%	2	==	0)	

[1]	FALSE		TRUE	FALSE		TRUE	FALSE		TRUE	FALSE		TRUE	FALSE		TRUE

	

>	(x2	<-	which(x1))	

[1]		2		4		6		8	10	

>	(y1	<-	1:10	%%	5	==	0)	

[1]	FALSE	FALSE	FALSE	FALSE		TRUE	FALSE	FALSE	FALSE	FALSE		TRUE

	

(y2	which(y1))	

>	[1]		5	10	

	

//	X	&	Y	<->	intersect(x,	y)	

x1	&	y1	

[1]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE		TRUE

	
	

>	intersect(x2,	y2)	

[1]	10	

	

//	X	|	Y	<->	union(x,	y)	

>	x1	|	y1	



[1]	FALSE		TRUE	FALSE		TRUE		TRUE		TRUE	FALSE		TRUE	FALSE		TRUE

	
	

>	union(x2,	y2)	

[1]		2		4		6		8	10		5	

	

//	X	&	!Y	<->	setdiff(x,	y)	

>	x1	&	!y1	

[1]	FALSE		TRUE	FALSE		TRUE	FALSE		TRUE	FALSE		TRUE	FALSE	FALSE

	

setdiff(x2,	y2)	

[1]	2	4	6	8	

	

>	xor(X,	Y)	<	-	>	setdiff(union(x,	y),	intersect(x,	y))

>	xor(x1,	y1)	

[1]	FALSE		TRUE	FALSE		TRUE		TRUE		TRUE	FALSE		TRUE	FALSE	FALSE

	

>	setdiff(union(x2,	y2),	intersect(x2,	y2))	

[1]	2	4	6	8	5

	

Initially,	 when	 you	 start	 learning	 subsetting	 you	 may	 incorrectly	 use
“x[which(y)]”	 instead	 of	 “x[y]”.	 Under	 these	 circumstances,	 which()	 will
provide	 any	 results.	 Instead	 it	 changes	 from	 logical	 to	 integer	 subsetting	 and
produce	the	exact	same	result.	You	should	also	be	aware	that	the	“x[which(y)]”
is	not	the	same	as	“x[!y]:”.	If	y	 is	all	FALSE,	“which(y)”	will	be	“integer(0)”
and
“-integer(0)”	 will	 still	 be	 “integer(0)”.	 Therefore,	 you	 will	 not	 receive	 any
values.	 In	 a	 nutshell,	 you	 should	 avoid	 changing	 from	 logical	 to	 integer
subsetting	you	want	the	first	or	last	TRUE	value,	for	example.



Vectors
Vectors	 are	 considered	 adjoining	 cells	 that	 contains	 data.	 You	 can	 access	 the
cells	by	indexing	specific	operations,	such	as	x[5].	R	provides	six	basic	atomic
vectors.	 They	 are	 logical,	 integer,	 real,	 complex,	 raw,	 and	 string/character.
Modes	 and	 storage	 modes	 for	 the	 different	 vector	 types	 are	 specified	 in	 the
following	table:

Typeof Mode Storage	Mode

Logical Logical Logical

Lnteger Numeric Integer

Double Numeric Double

Complex Complex Complex

Character Character Character

Raw Raw Raw

	

Some	examples	of	vectors	include	single	numbers,	such	as	3.5,	and	strings,	such
as	 “two	 single	 vectors”.	 Generally,	 vectors	 have	 a	 length	 1,	 but	 vectors	 with
length	0	are	also	considered	useful.	String	vectors	have	a	“character”	mode	and
storage	mode.	Single	elements	of	characters	are	considered	character	strings.

A	vector	can	also	be	considered	as	a	sequence	that	contains	data	elements	with
the	 same	 data	 type.	 The	 elements	 within	 the	 vector	 are	 officially	 called
components.	There	are	many	different	 types	of	vectors	and	different	ways	 that
you	can	apply	them.
The	following	examples	show	different	ways	you	input	vectors	into	R.	
	
Example	1:	Vector	with	Numeric	Values

//	Vector	contains	three	numeric	values,	3,	5,	and	7.

>	c(3,	5,	7)



[1]	2	3	5

	
Example	2:	Vector	with	Logical	Values

//Vector	contains	logical	values.

>	c(TRUE,	FALSE,	TRUE,	FALSE,	FALSE)	

[1]		TRUE	FALSE		TRUE	FALSE	FALSE

	
Example	3:	Vector	with	Character	Strings

//	Vector	contains	character	strings.	

>	c("aa",	"bb",	"cc",	"dd",	"ee")	

[1]	"aa"	"bb"	"cc"	"dd"	"ee"

	
Example	4:	Vector	Returns	Length

Elements	in	a	vector	using	the	length()	function.	The	length	of	the	function	is	returned.

>	length(c("aa",	"bb",	"cc",	"dd",	"ee"))	

[1]	5

Vectors	 are	manipulated	 in	many	different	ways.	The	 following	 examples	will
show	you	different	ways	to	manipulate	vectors.

Combining	Vectors:	Vectors	maybe	 combined	with	 the	 c()	 function.
The	 following	 two	vectors	“a”	and	“b”	are	combined	 to	create	a	new
vector	that	contains	elements	from	the	two	vectors.

>	a	=	c(3,	5,	7)	

>	b	=	c("aa",	"bb",	"cc",	"dd",	"ee")	

>	c(a,	b)	

[1]	"3"		"5"		"7"		"aa"	"bb"	"cc"	"dd"	"ee"

In	the	above	example,	you	will	see	that	the	numeric	values	are	forced	into	character	strings	when	the
two	vectors	are	combined.	This	 is	necessary	because	 it	maintains	 the	old	data	 type	for	 the	elements
within	the	same	vector.

Vector	 Arithmetic:	 Vector	 arithmetic	 operations	 are	 performed
element	by	element,	for	example:
	



>	a	=	c(1,	3,	5,	7)	

>	b	=	c(2,	4,	6,	8)

If	 you	 multiply	 “a”	 by	 5,	 you	 would	 get	 a	 vector	 that	 multiplied	 each
element	by	2.
>	2	*	a	

[1]	2	6	10	14

If	you	add	vector	“a”	by	vector	“b”,	the	sum	would	result	in	a	vector	where
the	elements	are	the	sum	of	the	corresponding	elements	of	a	and	b.
>	a	+	b	

[1]		3		7		11	15

You	 can	 also	 subtract,	 multiply,	 and	 divide	 corresponding	 vectors.	When
you	perform	the	 respective	operations	with	 the	elements,	you	will	get	new
vectors.
	
Example	1:	Subtract	Vectors
a	-	b	

[1]		-1		-1		-1	-1

	
Example	2:	Multiply	Vectors
	>	a	*	b	

[1]		2		12		35	56	

	
Example	3:	Divide	Vectors
>	a	/	b	

[1]	0.5	0.75	0.83	0.875

	
Recycling	Rule:	 In	vector	arithmetic,	 there	 is	a	 recycling	 rule,	where
two	vectors	have	unequal	length.	The	shorter	one	is	recycled	to	match



the	longer	vector.	In	the	following	example,	vectors	“a”	and	“b”	have
different	 lengths	 and	 calculate	 totals	 by	 recycling	 the	 values	 of	 the
shorter	vector	“b”.

>	a	=	c(5,	10,	15)	

>	b	=	c(1,	2,	3,	)	

>	a	+	b	

[1]	6,	12,	18

	
Vector	 Index:	 Vectors	 are	 retrieved	 by	 declaring	 an	 index	 within	 a
square	 bracket	 ([	 ])	 operator.	 In	 the	 following	 example,	 you	will	 see

how	 to	 retrieve	 a	 vector	 element.	 Since	 the	 vector	 index	 is	 1,	 the	 3rd

index	position	is	used	to	retrieve	the	third	element.
>	a	=	c(“vv”,	"ww",	"xx",	"yy",	“zz”)	

>	a[3]	

[1]	"xx"

The	 square	 bracket	 operator	 returns	more	 results	 than	 other	 programming
languages.	The	results	of	the	square	bracket	is	actually	different	vector,	and
produce	the	vector	s[3]	with	a	single	element	“cc”.
	

Negative	 Index:	 If	 you	 have	 a	 negative	 index,	 it	 would	 remove	 the
element	 that	 has	 a	 position	 with	 the	 same	 absolute	 value	 and	 the
negative	 index.	 In	 the	 following	 example	 a	 vector	 is	 generated	when
the	third	element	is	removed.

>	s[-3]	

[1]	"vv"	"ww"	"yy"	"zz"

Out	of	Range	Indexes:	When	an	index	is	out	of	range,	a	missing	value	is	reported	through	the

“NA”	symbol,	as	seen	in	the	following	example:

>s[10]	



[1]	NA

	
Numeric	 Index	 Vector:	 New	 vectors	 can	 be	 sliced	 from	 a	 specific
vector	 with	 a	 numeric	 index	 vector	 that	 consists	 of	 elements	 for	 the
original	to	be	retrieved.	In	the	following	example	you	will	see	how	to
retrieve	 a	 vector	 slice	 that	 contains	 the	 fourth	 and	 fifth	 element	 of	 a
given	vector	“a”.

	
>	a	=	c("vv",	"ww",	"xx",	"yy",	"zz")	

>	a[c(4,	5)]	

[1]	"yy"	"zz"

	
Duplicate	Indexes:	Index	vectors	allow	you	to	duplicate	values.	The	In
the	 following	 example,	 an	 element	 is	 retrieved	 two	 times	 in	 a	 single
operation.

>	s[c(1,	3)]	

[1]	"vv"	xx"	"xx"

	
Out	of	Order	Index	Vectors:	Index	vectors	can	also	be	generated	out
of	 order.	 In	 the	 following	 example,	 a	 vector	 slice	 produces	 first	 and
second	elements	that	are	reversed.

>	s[c(2,	1,	3)]	

[1]	"ww"	"vv"	"xx"

	
Range	Index:	A	vector	slice	can	created	between	two	indexes	by	using
the	colon	“:”	operator.	This	works	well	for	situations	that	involve	large
vectors.

>	s[2:5]	



[1]	"ww"	"xx"	"yy"	“zz”

	
Logical	Index	Vector:	New	vectors	can	be	sliced	and	a	vector	 is	given	with	a	 logical	 index

vector	 that	 has	 the	 same	 length	 as	 the	 original	 vector.	 The	 elements	 are	 TRUE	 for	 the

corresponding	 elements	 in	 the	 original	 vector	 that	 is	 included	 in	 the	 vector	 slice,	 and	 it	 is

FALSE	if	it	is	not.

	

Review	the	following	example	with	the	vector	“a”	of	length	“5”	for	a	better
understanding:
>	a	=	c("vv",	"ww",	"xx",	"yy",	"zz")

If	you	would	like	to	retrieve	the	second	and	fifth	elements	of	“a”,	you	could
create	a	logical	vector	L	with	the	same	length	and	have	the	second	and	fifth
elements	set	to	TRUE.
>	L	=	c(FALSE,	TRUE,	FALSE,	FALSE,	TRUE)	

>	a[L]	

[1]	"ww"	"zz"

Named	Vector	Elements:	Vector	elements	can	have	assigned	names.
In	 the	 following	 example,	 the	 following	 variable	 “n”	 is	 a	 character
string	vector	that	contains	three	elements.

>	n	=	c("Mary",	"Ann",	“Jane”)	

>	n	

[1]	"Mary"	"Ann"	“Jane”

	
If	you	name	the	first	element	as	“First”,	the	second	as	“Middle”,	and	the	third	element	as	“Last”,	you

would	use	the	statements	to	generate	the	following	example:

>	names(n)	=	c("First",	“Middle”,	"Last")	

>	n

	[1]	First			Middle		Last	



[2]	"Mary"	“Sue”		"Jane"

You	could	also	retrieve	the	Last	element	by	using	its	name.

>	n["Last"]	

>	[1]	"Jane"

														Additionally,	you	can	reverse	the	order	with	the	character	string	index	vector.

>	v[c("First",	"Middle",	“Last”)]	

>			Middle	First	

[1]	"Sue"	"Jane"

You	will	learn	more	about	different	ways	to	implement	vectors	later	on	in	this	chapter.



Vectors	and	Assignments
R	uses	named	data	structures	to	manipulate	vectors.	The	simplest	structure	is	the
numeric.	It	is	a	single	entity	that	consists	of	a	structured	collection	of	numbers.	If
you	would	like	to	set	a	vector	“x”	with	five	number,	for	example,	3.3,	4.4.	5.2,
6.7,	and	30.4,	you	would	use	the	following	statement:

>	x	<-	c(3.3,	4.4,	5.2,	6.7,	30.4)

	

The	above	assignment	statement	uses	the	c()	function.	In	this	context,	can	take	a
random	 number	 of	 vector	 arguments	 with	 a	 vector	 value	 obtained	 from
concatenation	of	end-to-end	arguments.	A	number	that	occurs	independently	in	a
statement	is	taken	as	a	vector	with	length	1.
If	 you	 notice	 the	 assignment	 operator	 (<-)	 consists	 of	 two	 characters,	 as	 was
mentioned	earlier.		This	is	repeated	to	establish	the	connection	between	vectors
and	assignments.	The	less	than	(<)	and	minus	(-)	characters	are	used	beside	each
other	to	create	the	assignment	operator.	They	point	to	the	object	that	receives	the
value	of	 the	statement.	 In	many	situations,	 the	equal	(=)	operator	 is	used	as	an
alternative.	You	can	also	use	the	assign()	function	to	establish	an	assignment.
The	 following	 example	 shows	 how	 the	 assign()	 function	 is	 used	 to	 assign
vectors:

>	assign(“x”,	c((3.3,	4.4,	5.2,	6.7,	30.4))

The	 typical	 assignment	operator	 (<-)	used	 in	 the	above	example,	 is	 considered
the	short	 form.	As	mentioned	earlier,	you	can	use	 this	operator	 in	 the	opposite
direction	to	assign	vectors,	for	example:

>	c((3.3,	4.4,	5.2,	6.7,	30.4))->	x

	



Vector	Types
Vectors	are	considered	 the	most	 important	object	 in	R,	but	 they	are	others	 that
are	formally	used.
Here	is	a	list	of	some	formal	objects	that	are	used	in	R:

1.				Matrices:	Matrices	or	arrays	are	multi-dimensional	generalizations	of
vectors.	They	are	vectors	that	maybe	used	to	index	two	or	more	indices	that
can	be	outputted	in	different	ways.
2.				Factors:	Factors	provide	solid	ways	for	handling	data	from	different
categories.
3.				Lists:	Lists	haven	a	general	vector	form,	where	various	elements	do	not
have	to	have	the	same	type.	These	are	often	vectors	or	lists.	Lists	are
conveniently	used	to	return	the	results	of	some	statistical	calculations.
4.				Data	Frames:	Data	frames	are	matrices	that	are	similar	to	structures,
where	the	columns	can	have	different	data	types.	You	can	look	at	data
frames	as	“data	matrices”,	where	one	row	is	possibly	an	observational	unit
with	both	numerical	and	categorical	variables.	Data	frames	are	categorical,
but	the	responses	are	numerical.
5.				Functions:	Functions	are	considered	objects	in	R	that	are	stored	in	the
project’s	workspace.



Character	Vectors
Character	quantities	and	character	vectors	are	widely	used	 in	R.	They	are	used
for	plot	labels,	for	examples.	When	necessary	they	are	indicated	by	a	sequence
of	characters	 that	are	delimited	by	 the	double	quote	character	(“),	 for	example,
“x-vectors”	and	“New	iteration	values”.

Character	strings	are	used	either	with	 the	double	quotes	(“)	or	single	quotes(‘),
but	are	outputted	with	the	double	quotes	or	without	any	quotes.	The	C	type	back
slash	(\)	escape	characters	are	used,	therefore	the	double	back	slash	(\\)	is	entered
and	outputted	as	\\,	and	the	inside	double	quotes	(“)	are	entered	as	a	single	back
slash	 (\).	 Other	 helpful	 escape	 sequences,	 such	 \n,	 newline,	 \b,	 tab,	 \t,	 and
backspace	 are	 also	 used.	 You	 can	 also	 use	 character	 vectors	 to	 concatenate	 a
vector	using	the	c()	function.

The	 paste()	 function	 is	 used	 to	 take	 random	 arguments	 and	 concatenate	 them
individually	 into	character	 strings.	Arguments	 that	are	numbers	are	 forced	 into
character	 strings	 the	 same	 way	 they	 are	 printed.	 The	 arguments	 separated	 by
default	 within	 the	 results	 by	 a	 single	 blank	 character.	 This	 can	 be	 altered	 by
using	 “sep=string”.	 This	 argument	 uses	 changes	 the	 character	 to	 a	 possible
empty	string.

The	 following	 example	 will	 show	 you	 how	 the	 paste()	 function	 is	 used	 to
convert	into	character	vectors:

//	The	“labs”	variable	is	changed	into	the	character	vector.

>	labs	<-	paste(c("A","B"),	1:10,	sep="")	

>	c("A1",	"B2",	"A3",	"B4",	"A5",	"B6",	"A7",	"B8",	"A9",	"B10")

Notice	in	the	above	example	that	short	lists	are	recycled,	therefore	c(“A”,	“B”)	is
repeated	five	time	to	match	the	sequence	1:10.

Logical	Vectors
R	 allows	 the	manipulation	 of	 logical	 vectors.	 The	 elements	 of	 logical	 vectors



may	 have	 TRUE,	 FALSE,	 and	 Not	 Available	 (NA)	 values.	 The	 TRUE	 and
FALSE	values	are	often	abbreviated	to	T	and	F	respectively.	They	are	short	form
variables	 that	 are	 set	 to	TRUE	and	FALSE,	 by	 default.	 They	 are	 not	 reserved
words	 and	 therefore	 can	 be	 overwritten	 by	 the	 user.	 Therefore,	 it	 is	 better	 to
write	the	full	words,	TRUE	and	FALSE.
Logical	 vectors	 are	 created	 by	 conditions,	 as	 you	 shown	 in	 the	 following
example:

>	temp	<-	x	>	13

The	above	 statement	 sets	 the	 “temp”	variable	 as	 a	vector	with	 same	 length	 as
“x”	with	FALSE	values	that	correspond	to	the	elements	of	x.	This	is	where	the
condition	 is	 FALSE.	 The	 logical	 operators	 (<,	 <=,	 >,	 >=,	 ==)	 are	 used	 for
equality	and	the	!=	operator	for	not	equal.	Additionally,	if	v1	and	v2	are	logical
expressions,	then	(!)	operator	is	used.

Logical	 vectors	 can	 be	 used	 in	 ordinary	 arithmetic,	 where	 they	 are	 forced	 as
numeric	vectors	and	FALSE	becomes	0	and	TRUE	becomes	1.	There	are	certain
logical	vectors	that	have	related	numbers	that	are	not	equal.

Typically,	 the	 first	step	 to	establishing	a	vector	 is	 to	define	a	vector	with	data,
and	the	second	step	is	to	define	a	vector	with	logical	values.	When	logical	values
are	 used	 for	 the	 index	 into	 the	 vector	 of	 data	 values,	 only	 the	 elements	 that
correspond	 to	 the	 variables	 that	 are	 set	 to	 TRUE	 are	 returned.	 The	 following
example	will	show	you	how	it	works:

>	x	<-	c(1,2,3,4,5)	

>	y	<-	c(TRUE,FALSE,FALSE,TRUE,FALSE)	

>	x[y]	[1]	1	4

	

>	max(x[y])	[1]	4	

>	sum(x[y])	[1]	5

	
Logical	vectors	are	actual	part	of	a	logical	expression	and	any	logical	expression	can	be	used	an	index	that



opens	 many	 possibilities.	 For	 instance,	 you	 can	 remove	 or	 focus	 on	 elements	 that	 match	 specific

requirements.	In	the	following	example,	you	see	how	to	remove	all	the	elements	over	a	specific	value:

>	x	=	c(6,2,5,3,8,2)	

>	x	[1]	6	2	5	3	8	2	

>	y	=	x[x>5]	

>	y	[1]	6	8

In	another	example,	if	you	would	like	to	join	values	that	match	two	different	factors	in	another	vector,	you

could	write	the	following	statements:

>	x	=	data.frame(one=as.factor(c('a','a','b','b','c','c')),	two=c(1,2,3,4,5,6))	

>	x			one	two	1			a			1	2			a			2	3			b			3	4			b			4	5			c			5	6			c			6	

>	values	=	x$two[(x$one=='a')	|	(x$one=='a')]	

>	values	[1]	1	2	3	4

	
In	 the	 above	 example,	 the	 single	 or	 (|)	 operator	 is	 used.	This	 operator	 has	 a	 different	meaning	 from	 the

double	 or	 (||)	 operators.	 The	 single	 or	 (|)	 operator	 performs	 a	 vector	 operator	 on	 a	 term-by-term	 basis,

whereas	the	double	(||)	or	operators	evaluates	and	statement	and	produce	and	TRUE	or	FALSE	result.	The

following	example	will	show	you	how	this	is	done:
	

>	(c(TRUE,TRUE))|(c(FALSE,TRUE))	[1]	TRUE	TRUE

>	(c(TRUE,TRUE))||(c(FALSE,TRUE))	[1]	TRUE

>	(c(TRUE,TRUE))&(c(FALSE,TRUE))	[1]	FALSE		TRUE

>	(c(TRUE,TRUE))&&(c(FALSE,TRUE))	[1]	FALSE

	
Not	Available(NA)	Values
Data	entries	that	are	marked	NA	can	be	a	problem.	The	predefined	variable	NA
is	used	to	indicate	that	there	is	missing	information.	The	problem	in	this	case	is
that	some	of	 the	functions	will	 return	an	error	 if	one	of	elements	 in	 the	data	 is
NA.	There	are	some	functions	that	will	allow	you	to	ignore	these	missing	values,
like	the	one	shown	in	the	following	example:



>	x	<-	c(1,2,3,4,NA)	

>	x	[1]		1		2		3		4	NA	

>	sum(x)	[1]	NA	

>	sum(x,na.rm=TRUE)	[1]	10

	
On	the	other	hand,	there	are	times	when	this	solution	is	not	available	or	you	may	just	want	to	omit	the	NA

values.	In	this	case,	you	can	use	the	is.na()	function	to	determine	which	items	that	are	not	available.	The	not

(!)	operator	is	used	for	indexing	the	items	within	a	vector	that	has	NA	values.	The	following	example	shows

how	the	is.na()	function	is	used	to	accomplish	this.

>	x	<-	c(1,2,3,4,NA)	

>	is.na(x)	[1]	FALSE	FALSE	FALSE	FALSE		TRUE	

>	!is.na(x)	[1]		TRUE		TRUE		TRUE		TRUE	FALSE

	

>	x[!is.na(x)]	[1]	1	2	3	4	

>	y	<-	x[!is.na(x)]	

>	y	[1]	1	2	3	4

	

Generic	Vectors
Generic	vectors	or	Lists	are	used	to	for	storing	data	elements.	Each	element	may
contain	any	type	of	R	object.	This	means	that	the	elements	do	not	have	to	have
the	 same	 data	 type.	 You	 can	 be	 access	 list	 elements	 by	 using	 three	 different
indexing	operations.	They	are	lists,	matrices,	and	multi-dimensional	arrays.

The	 basic	 vector	 types	 are	 considered	 atomic	 vectors	when	 lists	 are	 excluded.
Another	list	form	is	pairlists.	They	are	handled	the	same	way	as	generic	vectors.
Elements	within	pairlists	for	instance	are	accessed	using	the	[	[	]	]	syntax.	Using
pairlists	 are	 not	 as	widely	used,	 because	 it	 is	 believed	 that	 generic	 vectors	 are
more	efficient.	When	you	access	an	internal	pairlist	in	R,	it	is	typically	converted
to	a	generic	vector.

Numeric	Vectors



Numeric	vectors	are	used	to	create	or	force	objects	with	the	“numeric”	type.	In
general,	 	 the	 “is.numeric”	 and	 “as.numeric”	 are	 used	 to	 test	 objects	 to	 be
interpreted	 as	 numbers.	 The	 following	 syntaxes	 are	 used	 to	 implement	 the
applicable	numeric()	functions:

>	numeric(length	=	0)	

>	as.numeric(x,	...)	

>	is.numeric(x)

	
The	 following	details	will	 help	you	better	understand	 the	 arguments	used	 in	 the	numeric(),	 as.numeric(),

and	is.numeric()	functions:

length:	The	“length”	argument	is	a	positive	or	non-negative	integer	that	specifies	the	required

length.	Double	values	are	converted	to	integers,	which	provides	a	length	argument.

x:	The	“x”	argument	is	used	to	represent	an	object	that	will	be	used	or	tested.

…	:	The	periods	(…)	are	additional	arguments	that	are	passed	to	and	from	methods	that	are	used

elsewhere
	

Here	is	some	additional	information	about	each	of	the	numeric	functions.
	

Numeric()	:	The	numeric()	function	are	similar	to	the	double	or	real	data
type,	where	they	create	a	double-precision	vector	with	a	specific	length
for	each	element	that	is	equal	to	0.
as.numeric():	The	as.numeric()	function	is	a	generic	function,	but	you
must	use	S3	(objects,	generic	functions,	and	methods)	methods	written
for	the	as.double()	function	because	it	is	the	same	as	the	as.double.
is.numeric():	The	 is.numeric()	 function	 is	 an	 internal	 generic	 primitive
function	that	can	be	used	to	write	methods	that	handle	specific	classes	for
objects.	 It	 is	 not	 the	 same	 as	 the	 is.double()	 function.	 The	 factors	 are
managed	by	the	default	method.	
The	methods	used	for	the	is.numeric()	function	should	only	return	TRUE
if	 the	 base	 type	 is	 double,	 integer,	 or	 if	 the	 values	 are	 numeric.	 The



default	 method	 returns	 TRUE	 if	 the	 argument	 has	 the	 “numeric”	 type
(i.e.	double	or	 integer)	associated	 to	 it	and	not	a	factor.	Otherwise,	 it	 is
FALSE.	This	means	 that	you	would	use	one	of	 the	 following	syntax	 to
implement	the	vector:

is.integer(x)	||	is.double(x) ,	or (mode(x)	==	"numeric")	&&	!is.factor(x)

	
The	as.numeric()	and	 is.numeric()	 functions	are	S4	generic,	 therefore	you	set	methods	 for	 them	by	using

setMethod.	To	have	as.numeric	and	as.double	stay	identical,	you	can	only	set	S4	methods	for	as.numeric.

S4	classes	or	methods	are	stricter	than	S3	and	uses	the	following	syntax:

setClass([class	 name],	 representation	 =	 [field	 names],	 [prototype	 object]	 contains	 =

[superclass])

	

R	 uses	 the	 double	 and	 numeric	 floating	 point	 vectors,	 where	 “double”	 and
“numeric”	data	types	are	used	to	define	values.	The	numeric	type	is	name	of	the
mode,	 as	 well	 as	 the	 implicit	 class.	 For	 an	 S4	 formal	 class	 you	 would	 use
“numeric”.	 It	 caIt	 can	 be	 confusing	 because	 the	 mode	 “numeric”	 also	 means
“double”	 or	 “integer”	 and	may	 conflict	with	 S4	 classes	 or	methods.	Actually,
“is.numeric”	 tests	 the	 mode	 and	 not	 the	 class,	 but	 “as.numeric”	 (identical	 to
“as.double”)	is	directed	towards	the	class.
	
Index	Vectors
Vector	with	subsets	can	be	selected	by	changing	to	the	vector	name	of	the	index
vector	 that	 is	 within	 the	 square	 brackets.	 Generally,	 any	 expressions	 that
evaluates	 to	 a	 vector	 can	have	 subsets	 in	 the	 same	way	 as	 changing	 the	 index
within	the	square	bracket	after	the	statement.

These	index	vectors	may	have	any	of	the	following	four	distinct	types:

1.				Logical	Vector:	A	logical	vector	used	with	an	index	vector	is	reused	with
the	 same	 length	 as	 the	 vectors	 selected	 from	 the	 elements	 that	 will	 be
selected.	The	values	 that	are	TRUE	in	 the	 index	vector	are	chosen	and	 the



ones	that	are	FALSE	are	deleted.	For	example,	if	y	<-	x[!is.na(x)]	creates	(or
re-creates)	 an	 object	 y	 that	 contains	 a	 value	 x	 that	 is	 not	 lost	 or	 have	 the
same	order.	If	x	has	missing	values,	then	y	is	going	to	be	shorter	than	x.

>(x+1)[(!is.na(x))	&	x>0]	->	z

The	above	statement	creates	an	object	z	 that	will	 replace	 the	values	of	 the
vector	“x+1”,	that	has	the	corresponding	value	in	x,	that	is	not	missing	and
positive.
2.				Positive	Integral	Vector:	When	a	vector	has	positive	integers,	the	values
within	 the	 index	 vector	 must	 be	 in	 the	 set	 “{1,	 2,	 ,	 ..,	 length(X)}”.	 The
elements	 that	 correspond	 to	 the	 vector	 are	 selected	 and	 then	 concatenated
within	the	result.	The	index	vector	can	have	any	length.	Likewise,	the	result
has	the	same	length	as	 the	index	vector.	For	example,	“x[5]”	would	be	the
fifth	element	of	x	and	“>[1:15]”	would	select	the	first	fifteen	(15)	elements
of	x	–	assuming	the	length(x)	is	not	less	than	15.

>	c("a","b")[rep(c(1,2,2,1),	times=4)]

The	above	statement	produces	a	character	of	length	16	that	consists	of	“a”,	“b”,
“b”,	“a”	that	is	repeated	four	times.

3.				Negative	Integral	Vector:	When	a	vector	has	negative	integers,	the	index
vector	specifies	the	values	that	will	be	omitted	only.	The	following	example
shows	the	implementation	of	a	negative	integral	vector.

//	The	first	five	elements	of	x	are	not	implemented.	

>	y	<-	x[-(1:5)]

4.				Character	Vector:	A	vector	of	character	strings	is	only	possible	when	an
object	with	the	names	attribute	is	used	to	identify	the	contents.	Under	these
circumstances,	a	sub-vector	with	the	names	vector	can	be	used	in	a	similar
way	as	the	positive	integral	labels.	The	following	examples	will	explain	this
concept:



>	cars	<-	c(5,	10,	1,	20)

>	names(cars)	<-	c("Toyota",	"Ford",	"Mitsubishi",	"Chevrolet")

>	foreign	<-	cars[c(“Toyota”,	“Mitsubishi”)]

Character	 vectors	 are	 beneficial	 because	 alphanumeric	 names	 are	 usually
easier	to	remember	than	numeric	indices.	It	is	a	especially	useful	option	for
data	 frames.	 Indexed	 expressions	 can	 also	 be	 on	 the	 receiving	 end	 of	 an
assignment,	where	the	assignment	is	done	only	on	the	elements	relevant	 to
the	 vector.	 The	 expression	 must	 have	 the	 “vector[index_vector]”	 form.	 It
must	have	random	expression	instead	of	the	vector	name.
The	following	example	will	clarify	this	point:
//	Missing	values	are	replaced	in	x	by	zeros

>	x[is.na(x)]	<-	0	

>	y[y	<	0]	<-	-y[y	<	0]

	

//	This	example	has	the	same	effect

>	y	<-	abs(y)

	



Vector	Arithmetic
Vectors	 maybe	 used	 in	 arithmetic	 expressions.	 Therefore,	 the	 mathematic
operations	 are	 performed	 element	 by	 element.	 Vectors	 that	 occur	 within	 the
same	expression	does	not	have	to	have	the	same	length.	If	they	do	not,	the	value
of	the	expression	is	a	vector	that	has	the	same	length	as	the	longest	vector	within
the	 expression.	 Short	 vectors	 within	 the	 expression	 are	 recycled	 as	 often	 as
necessary	until	there	is	a	match	made	with	the	longest	vector.	Specifically,	when
a	constant	is	being	repeated.
In	the	following	example,	the	vector	generates	a	vector	“v”	of	length	11.	This	is
created	by	adding	element	by	element,	by	using	2	*	x,	repeated	2.2	times,	where
y	is	repeated	only	once	and	one	is	repeated	eleven	times.
The	basic	arithmetic	operators	used	with	vectors	are	+,	-,	*,	/,	and	^.

>	v	<-	2*x	+	y	+	1

Additionally,	 there	are	common	arithmetic	 functions	 include	 log,	exp,	 sin,	cos,
tan,	 sqrt,	 and	others.	These	were	mentioned	earlier,	but	again,	 it	 is	 revisited	 to
show	the	association	of	functions	and	vectors.
Here	are	some	arithmetic	functions	that	used	with	vectors:

Min()	and	Max()	 -	The	min()	 and	max()	 functions	are	used	 to	 select
the	 smallest	 and	 largest	 elements	 within	 a	 vector.	 They	 select	 the
largest	 and	 smallest	 values	 for	 their	 arguments,	 even	 if	 they	 have
several	vectors.	The	pmax()	and	pmin()	function	are	equivalents	to	the
min()	 and	 max()	 functions.	 They	 return	 a	 vector	 that	 is	 equal	 to	 the
longest	 argument	 that	 contains	 the	 largest	 or	 smallest	 elements	of	 the
input	vectors.
Range()	-	The	range()	function	usually	has	a	vector	of	length	two,	for
example	c(min(x),	max(x)).
	
Length(x)	–	The	length()	function	contains	the	number	of	elements	of
x.
	
Sum(x)	–	The	sum()	function	provides	the	total	number	of	elements	in



x.
	
Prod(x)	–	The	prod()	function	provides	the	product	of	x.
	
Mean()	–	The	mean()	function	calculates	the	sample	mean.	This	is	the
same	as	sum(x)/length(x).
	
Var(x)	–	The	 var()	 function	 calculates	 the	 sample	 variance,	which	 is
the	 same	 as	 sum()x-mean(x))^2)/length(x)-1.	 if	 the	 argument	 within
var()	is	an	n	by	p	matrix,	then	the	value	is	a	p	by	p	sample	covariance	
matrix	 that	 was	 obtained	 by	 considering	 the	 rows	 as	 independent	 p-
variate	sample	vectors.
Sort(x)	 –	 	 The	 sort(x)	 returns	 a	 vector	 of	 the	 same	 size	 as	 x.	 The
elements	are	arranged	in	ascending	order.	Other	variations	of	the	sort()
function	 include	order()	and	sort.list()	 functions.	They	are	equivalents
to	the	sort()	function.

	
Typically,	 you	 should	 not	 be	 concerned	 if	 the	 values	 in	 a	 numeric	 vector	 are
integers,	 complex	 numbers,	 or	 real	 numbers	 because	 internal	 calculations	 are
performed	 as	 double	 precision	 real	 numbers	 or	 double	 precision	 complex
numbers	if	the	input	data	is	complex.
When	working	with	complex	numbers,	you	should	provide	an	explicit	complex
part.	Therefore,	 if	 you	 use	 sqrt(-17)	 it	will	 return	NaN	and	 a	warning.	On	 the
other	 hand,	 the	 following	 example	 will	 perform	 calculations	 with	 complex
numbers.

>	sqrt(-17+0i)

	



Special	Values
The	readBin()	and	writeBin()	functions	passes	missing	and	special	values,	but	it
should	not	be	used	 if	 there	will	 a	 size	change.	Missing	values	 in	R	 for	 logical
and	 integer	 types	 is	 the	 “INT_MIN”	 type.	 It	 is	 the	 smallest	 integer	 that	 is
defined	 the	 C	 header	 “limits.h”.	 This	 normally	 corresponds	 to	 the	 bit	 pattern
0x80000000.

When	 special	 values	 are	 represented	 in	R,	 numeric	 and	 complex	 types	 can	 be
machine	 and	 compiler	 dependent.	Therefore,	 the	 easiest	way	 to	use	 them	 is	 to
connect	them	to	an	external	application	against	the	RMath	library,	which	exports
the	 double	 constants	 “NA_REAL”,	 “R_PosInf”,	 and	 “R_NegInf”.	 You	 will
also	 need	 to	 include	 the	RMath.h	 header,	which	 defines	 the	macros	 “ISNAN”
and	“R_FINITE”.

In	 R,	 characters	 that	 are	 missing	 values	 are	 written	 as	 NA,	 but	 there	 are	 no
options	 to	 recognize	 character	 values	 as	 missing	 because	 this	 can	 be	 done
through	reassignment	when	they	are	read.



Numerical	Summaries
R	 includes	 several	 functions	 that	 are	 used	 to	 calculate	 numerical	 summaries.
Some	of	 these	 include	 the	summary(),	mean(),	and	var()	 functions.	 	The	 list	of
statistical	 functions	used	for	 this	purpose	 is	extensive.	They	are	primarily	used
for	 representing	datasets	numerically.	 If	a	dataset	 labeled	“y”	 for	 instance,	and
the	 intention	 is	 to	 create	 a	 sequence	 from	 1	 to	 50,	 you	 can	 use	 a	 variety	 of
functions	to	return	statistical	results.

To	assign	the	sequence	1	to	50	and	call	the	list	of	numbers	within	the	sequence,
you	would	do	the	following:

>	y	<-	1:50

>	y

The	above	statement	would	give	you	the	following	results:

[1]		1		2		3		4		5		6		7		8		9	10	11	12	13	14	15	16	17	18	19	20	21	22	23

[24]	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46

[47]	47	48	49	50

You	can	use	any	of	the	following	functions	to	achieve	the	appropriate	numerical
results:

max()	 –	 The	 max()	 function	 provides	 the	 maximum	 number,	 for
example:

>	max(y)

[1]	50

min()	 –	 The	 min()	 function	 provides	 the	 minimum	 number,	 for
example:

>	min(y)

[1]	1

mean()	 –	 The	 mean()	 function	 provides	 the	 mean	 number,	 for
example:

>	mean(y)



[1]	25.5

median()	–	The	median()	function	provides	the	median	number	in	the
sequence,	for	example:

>median(y)

[1]	25.5

sd()	 –	 The	 sd()	 function	 provides	 the	 standard	 deviation	 of	 the
sequence,	for	example:

>	sd(y)

[1]	14.57738

range()	–	The	range()	function	provides	the	range	of	the	sequence,	for
example:

>range(y)

[1]	1	50

var()	–	The	var()	function	calculates	the	variance	of	the	sequence,	for
example:

>var(y)	

>[1]	212.5

sum()	 –	 The	 sum()	 function	 calculates	 the	 sum	 of	 the	 sequence,	 for
example:

>	sum()

>[1]	1275

fivenum()	–	The	fivenum()	function

>	fivenum(y)

[1]		1.0	13.0	25.5	38.0	50.0

quantile()	–	The	quantile()	function	calculates	the	associated	numbers
defined	in	percentiles,	for	example:

>	quantile(x,	c(.15,	.10,	.75,	1))

15%			10%			75%		100%	

8.35		5.90	37.75	50.00



IQR()	 –	 The	 IQR()	 function	 calculates	 the	 Interquartile	 range	 of
numbers,	for	example:

>	IQR(x)

				[1]	24.5

which.min()	 –	 The	 which.min()	 function	 returns	 the	 lowest	 element
number	within	the	sequence,	for	example:

>	which.min(x)

[1]	1

which.max()	 –	 The	 which.min()	 function	 returns	 highest	 element
number	within	the	sequence,	for	example:

>	which.max(x)

[1]	50

	



Text
Text	Processing
In	this	section,	you	will	learn	how	to	deal	with	strings	in	R.	You	will	also	learn
about	regular	expressions	and	different	ways	that	you	use	expressions	to	process
simple	 and	 complex	 text,	 as	 well	 as	 how	 to	 perform	 statistical	 text	 analysis,
collect	 data	 from	 unformatted	 text	 file,	 and	 manipulate	 character	 variables.
Additionally,	you	will	know	how	to	read	text	files	and	how	to	use	R	functions
with	characters.
	
When	 processing	 text	 in	 R,	 there	 are	 actually	 two	 types	 of	 functions	 for
characters	that	you	can	use.	They	are	simple	functions	and	regular	expressions.
Many	of	 these	 functions	 are	 part	 of	 the	R	base	package,	which	you	will	 learn
more	about	later	on.
To	 locate	 the	 standard	 base	 R	 package,	 you	 would	 implement	 the	 following
statement:

>	help.search( keyword = 	"character" ,	package = 	"base")

	

Reading	and	Writing	Text	Files
R	allows	you	to	read	any	text	files	with	“readLines()“	and	“scan()”	functions.
You	 can	 specify	 the	 encoding	 for	 the	 imported	 text	 file	 with	 the	 readLines()
function.	 All	 the	 contents	 of	 the	 text	 file	 can	 be	 read	 into	 an	 R	 object,	 for
example	a	character	scan.	The	scan()	function	on	the	other	hand	is	more	flexible.
You	can	specify	this	type	of	data	in	the	second	argument.

//	Assign	and	read	text	file

dataFile	<-	readLines("textFile.txt",encoding="UTF-8")	

scan("textFile.txt",	character(0))

	

//	Each	word	is	separated	in	the	file



scan("textFile.txt",	character(0),	quote	=	NULL)

	

//	Quotes	are	removed	from	the	file	

scan("textFile.txt",	character(0),	sep	=	".")

	

//	Sentences	are	separated	with	a	new	line	

scan("textFile.txt",	character(0),	sep	=	"\n")

You	can	write	the	contents	of	an	object	into	a	text	file	by	using	the	cat()	or	the
writeLines()	 functions.	 The	 cat()	 function	 concatenates	 vectors	 by	 default	 you
are	writing	 to	 a	 text	 file.	You	 can	 change	 it	 by	 implementing	 options	 such	 as
sep=”\n”	 or	 fill=TRUE.	The	default	 coding	 is	based	on	 the	computer	you	are
using.
In	 the	 following	 example,	 you	 will	 see	 how	 to	 implement	 the	 “cat()”	 and
“writeLines()”	to	write	a	text	file.

cat(text,	dataFile="textFile.txt",sep="\n")

or
	

writeLines(text,	con	=	"textFile.txt",	sep	=	"\n",	useBytes	=	FALSE)

Before	reading	the	contents	of	a	file,	you	should	evaluate	the	contents	by	using
one	of	the	following	functions	that	is	appropriate.

nlines()	–	The	nlines()	is	a	parser	package	function	that	allows	you	to
count	the	number	of	lines	in	a	file.
countLines()	 –	 The	 countLines()	 is	 a	 R.utils	 package	 function	 that
counts	the	number	of	lines	in	a	file.
	
count.chars()	 –	 The	 count.chars()	 is	 parser	 package	 function	 that
counts	the	number	of	bytes	and	characters	for	each	line	within	a	file.
	
file.show()	–	The	file.show()	function	is	used	to	display	text	files.

Character	Encoding
R	provides	various	 functions	with	a	different	 set	of	 encoding	 schemes.	This	 is



necessary	 when	 you	 are	 working	 with	 text	 file	 that	 were	 created	 on	 another
operating	system	and	if	was	created	in	a	language	that	is	not	English.	They	may
have	specific	characters	and	accents	 that	differ	 from	the	English	 language.	For
example,	 the	 standard	 encoding	 on	 a	 Linux	 OS	 is	 “UTF-8”,	 but	 the	 standard
encoding	scheme	for	a	Window	system	is	“Latin1”.	The	encoding()	function	in
R,	 for	 example,	 returns	 the	 encoding	 string.	 The	 iconv()	 function	 is	 a	 similar
function	tot	the	command	“incov”	in	Unix.	They	both	convert	the	encoding.
	

Here	is	a	list	of	some	character	encoding	functions	that	are	used	in	R:
iconvlist():	 The	 “inconvlist()”	 function	 returns	 a	 list	 of	 encoding
schemes	on	your	computer.
readLines(),	 scan()	 and	 file.show():	 These	 three	 functions	 also	 have
encoding	options.
is.utf8()	{tau}:	The	“is.utf8()	 {tau}”	 function	 tests	 if	 the	encoding	 is
"utf8”.
is.locale()	{tau}:	The	“is.locale()”	function	tests	to	see	if	the	encoding
is	the	same	as	the	default	encoding	on	your	computer.
translate()	 {tau}:	 The	 “translate()	 {tau}”	 function	 is	 for	 converting
the	encoding	to	the	current	locale.
fromUTF8()	{descr}:	The	“fromUTF8()	{descr}”	function		is	not	as
general	as	the	iconv()	function.
utf8ToInt()	 {base}	 :	 The	 “utf8ToInt()	 {base}”	 function	 is	 for
converting	to	and	from	UTF-8	encoded	character	vectors.
	

Important:	You	will	need	to	include	the	“{tau}”,	“{descr}”,	and	“{base}”	packages	to	use

the	appropriate	character	encoding	functions.

In	the	following	“Windows”	example,	the	default	encoding	is	set	to	“latin1”.

>	texty	<-	"Some	Text"	

>	Encoding(texty)	[1]	"latin1"	



>	texty1	<-		iconv(texty,"latin1","UTF-8")	

>	Encoding(texty1)	[1]	"UTF-8"

	



Regular	Expression
A	 regular	 expression	 is	 a	 structure	 that	 includes	 a	 set	 of	 strings.	 For	 example,
you	 could	 have	 the	 following	 pattern	 –	 two	 numbers,	 two	 letters,	 and	 four
numbers.	R	provides	various	functions	for	managing	regular	expressions.	There
are	two	types	of	regular	expressions	in	R.	They	are	extended	regular	expressions
and	Perl-type	regular	expressions.	The	following	syntax	demonstrates	how	they
are	implemented.

Extended	regular	expressions	–	The	“perl	=	FALSE”	argument	is	the
default.
Perl-type	 regular	 expressions	 –	 The	 “perl	 =	 TRUE”	 argument	 the
other	format.

There	 is	 also	 another	 option.	 It	 is	 the	 “fixed	 =	 TRUE”	 argument.	 This	 is
considered	 as	 a	 literal	 regular	 expression.	 You	 can	 also	 use	 the	 “fixed()
(stringr)”	function.	It	is	the	same	as	using	the	“fixed	=		TRUE”	argument	in	the
standard	regex	functions.	These	functions	are	case	sensitive	by	default,	but	you
can	 change	 it	 by	 setting	 the	 “ignore.case	 =	TRUE”	 option.	 If	 you	 are	 not	 an
expert	in	regular	expressions,	you	can	use	the	“glob2rx()”	function.	The	function
means	 that	you	are	 suggesting	 that	 a	 specific	 regular	 expression	has	 a	 specific
pattern.	The	following	expression	demonstrates	how	this	can	be	done.
	

>	glob2rx("xyz.*")	[1]	"^xyz\\."

	
Regular	Expression	Functions
The	following	functions	are	used	with	regular	expressions:

sub() , gsub() , str_replace() 	 {stringr}	 –	 These	 are	 used	 to	 convert
substitutions	into	a	string.
grep() , str_extract() 	{stringr}	–	These	are	used	to	extract	a	specific	value.
grepl() , str_detect() 	{stringr}	–	These	are	used	to	detect	the	existence	of	a
pattern.



splitByPattern() 	{R.utils}	–	This	is	used	to	split	a	single	character	string
by	pattern.
gsubfn() 	 -	 This	 is	 located	 in	 the	 gsubfn	 package.	 It	 can	 take	 a
replacement	function	or	a	specific	object.

	
Important:	You	will	need	 to	 include	 the	“{stringr}”	and	“{R.utils}”	packages	 to	use	 the

appropriate	regular	expression	functions.

	
The	following	default	expressions	are	considered	extended	regular	expressions:

"."–	This	means	any 	character.
[ABC]	- 	This	means	A,B	or	C.
[A-Z] 	-	This	means	any	uppercase	letter	between	A	and	Z.
[0-9]- 	This	means	any	number	between	0	and	9.

There	is	also	a	list	of	meta-characters.	They	include “$,	*,	+,	.	,?,	[	],	^,	{	},	|,	(	),	\”.	To	use

any	of	these	characters,	you	will	need	to	use	the	double	backslash	(\\)	before	them.

R	 also	 provides	 some	 classes	 of	 regular	 expressions	 for	 numbers,	 letters,
characters,	and	for	combining	additional	classes.
	
The	following	regular	expression	is	used	for	implementing	numbers:

“[:digit:]”	-	This	represents	digits	or	numbers	from	0	to	9	(0,	1,	2,	3,	4,	5,	6,	7,	8,	9).
The	following	regular	expressions	are	used	for	implementing	letters:

[:alpha:] –	 This	 is	 used	 to	 implement	 alphabetic	 characters,	 which
includes	uppercase ([:lower:]) and	lowercase	letters ([:upper:]) .
[:upper:]	-	This	is	used	to	implement	uppercase	letters.

[:lower:]– 	This	is	used	to	implement	lowercase	letters.
	
Note:	Alphabetic	characters	may	 include	accents,	 for	example	é	è	ê,	which	 is	common	 in

languages	 such	 as	 French	 and	 Spanish.	 Therefore,	 it	 is	 more	 general	 than	 upper	 and

lowercase	letters	used	in	the	English	language,	which	does	have	many	accents.



	
The	following	regular	expressions	are	used	for	implementing	specific	characters:

[:punct:]	-	This	is	for	implementing	these	punctuation	characters:	”!,	",	#,	$,	%,	&,	',	(,	),

*,	+,	“,”,	-,	.,	/,	:,	;,	<,	=,	>,	?,	@	[,	\,	],	^,	_,	`,	{,	|,	},	~,” .
[:space:]-	This	 is	 for	 implementing	 the	 space	 characters :	 tab,	newline,	vertical	 tab,
form	feed,	carriage	return,	and	space.
[:blank:]	–	This	is	for	implementing	the	blank	character;		space	and	tab.	

[:cntrl:]-	This	is	for	implementing 	control	characters.
	

The	following	regular	expressions	are	used	for	 implementing	a	combination	of
classes:

[:alnum:]-	 This	 is	 for	 implementing alphanumeric	 characters.	 The
“ [:alpha:]” and “[:digit:]”	is	used	with	this	expression	where	appropriate.

[:graph:]–	 This	 is	 for	 implementing graphical	 characters.	 The
“ [:alnum:]” and “[:punct:]”	is	used	with	this	expression	where	appropriate .
[:print:] –	 This	 is	 for	 implementing	 characters	 that	 you	 can	 print.
The	 “[:alnum:]” , “[:punct:]” ,	 and	“[:space]”	 is	used	with	 this	 expression
where	appropriate.
[:xdigit:]–	This	is	for	implementing	the hexadecimal	digits	“ 0	1	2	3	4	5	6	7	8	9	A	B	C

D	E	F	a	b	c	d	e	f”.

	

To	 count	 the	 number	 of	 repetitions,	 you	 could	 add	 any	 of	 the	 following
characters	after	the	regular	expressions:

? 	 –	 The	 “?”	 character	 is	 optional	 and	 will	 match	 only	 once	 when
implemented.
*-	The	“*”	character	will	0	or	more	number	of	times.

+ 		-	The	“+”	character	will	match	one	or	more	number	of	times.
{n}- 	The	“{n}”	expression	will	match	“n”	number	of	times.	This	means
any	number	that	represents	“n”.



{n,’}	–	The	“{n,’}”	expression	will	match	“n”	or	more	number	of	times.

{n,m} –	The	“ {n,m} ”	expression	will	match	at	least	“n”	number	of	times,
but	it	cannot	match	more	than	“m”	number	of	times.
^ -	 The	 “ ^” 	 character	 is	 used	 to	 force	 the	 regular	 expression	 to	 the
beginning	of	the	string.
$ 	-	The	“$”	character	is	used	to	force	the	regular	expression	to	end	of
the	string.

	
To	 learn	more	about	 these	characters,	 enter	 the	 following	 two	help	 files	 in	 the
command	line	of	R:

//	This	expression	provides	some	general	information.

>?regexp

	

//	This	is	used	to	retrieve	help	file	for	grep(),	regexpr(),	sub(),	etc

>?grep

	
You	 can	 also	 use	 regular	 expressions	 that	 is	 “Perl-type”,	 for	 example	 you	 can	 use	 the	 “perl	 =	 TRUE”

argument	in	the	sub()	function	to	remove	character	strings.	You	would	add	the	double	backslash	(\\)	Perl-

type	macro	to	actually	remove	the	space	characters	in	a	string.	The	following	example	will	show	you	how

to	do	it.

>	sub('\\s',	'',y,	perl	=	TRUE)

	



Text	Manipulation
R	 allows	 you	 to	 manipulate	 text	 using	 different	 functions,	 packages,	 and
methods.	 In	 this	 section,	 you	 will	 learn	 different	 ways	 on	 how	 to	 manipulate
character	strings	and	numbers.	Many	of	these	functions	are	stored	in	built-in	R
packages	that	you	will	need	to	include	when	you	create	the	functions.
	

String	Concatenation
In	R,	string	concatenation	is	accomplished	by	using	one	following	functions:
	

											paste()	–	The	“paste()”	function	concatenates	strings.
	

	 	 	 	 	 	 	 	 	 	 	str_c()	 {stringr}	–	The	“str_c()	 {stringr}”	 function	also	concatenates	strings	 in	a
similar	way	to	the	paste()	function.
	

											cat()	–	The	“cat()”	function	prints	and	concatenates	strings.
	

Important:	You	will	need	to	include	the	“{stringr}”	package	to	use	“str_c()”	function.

The	 following	 examples	 will	 show	 how	 the	 “paste()”,	 “str_c()”,	 and	 “cat()”	 functions	 are	 used	 to
concatenate	strings:

	
//	Paste()	-	A	space	is	used	to	separate	the	text	to	concatenate.

>	paste("work","load",sep='	')	

[1]	"work	load"

	

//	Paste()	-	A	comma	(,)	is	used	to	separate	the	text	to	concatenate.

>	paste("work","load",sep=",")	

[1]	"work,load"

	

//	Str_c()	–	A	comma	(,)	is	used	to	separate	the	text.

>	str_c("work","load",sep=",")	

[1]	"work,load"

	

//	Paste()	-	A	space	is	created	with	the	“collapse”	argument.

>	x	<-	c("we","are","young")	



>	paste(x,	collapse="	")	

[1]	"we	are	young"

	

//	Str_c()	–	A	space	is	created	with	the	“collapse”	argument.

>	str_c(y,	collapse	=	"	")

[1]	"we	are	young"

	

//	Cat()	–	The	“+”	operator	is	used	to	concatenate	three	characters.

>	cat(c("x","y","z"),	sep	=	"+")	

[1]	x+y+z

	
Splitting	Strings
R	 uses	 the	 “strsplit()”,	 “string_split(){stringr}“	 and	 “tokenize()	 {tau}”
functions	 to	 split	 strings.	 Here	 is	 some	 additional	 information	 about	 these
functions:

strsplit()	-	The	“strsplit()”	function	splits	the	element	within	a	character
vector	 ‘x’	 into	 substrings.	This	 is	based	on	 the	matches	made	 to	 split
the	 strings	within	 the	 substring.	 The	 “str_split()	 (stringr)”	 function	 is
also	 used	 to	 split	 the	 strings	 within	 the	 substring.	 The	 following
example	shows	how	the	function	is	used	to	split	character	strings.

//	strsplit()	splits	x.y.z	character	string.

>	unlist(strsplit(“x.y.z”,	\\.))

[1]	"x"	"y"	"z"

tokenize() 	{tau}–	The	“ tokenize() 	{tau}”	function	splits	the	strings	into
tokens.	The	following	example	shows	how	the	“tokenize()”	function
can	be	used	to	split	strings	into	tokens.

//	The	tokenize()	function	splits	the	character	string	“xyz	abcdef”

>	tokenize("xyz	abcdef")	

[1]	“xyz"				"	"						"abcdef"



	
Important:	 You	 will	 need	 to	 include	 the	 “{stringr}”	 and	 “{tau}”	 packages	 to	 use	 the

string_split()	and	tokenize()	functions.

	
Counting	Strings
The	 “nchar()”	 and	 “str_length()	 {stringr]”	 functions	 returns	 the	 length	 of	 a
string.

nchar()-The	 “nchar()”	 function	 returns	 the	 length	 of	 a	 string.	 You	 can	 also	 use	 the

“str_length()(stringr) 	as	an	alternative	to	obtain	the	length	of	a	string.	Here
are	 some	 examples	 of	 how	 the	 nchar()	 and	 	 function	 can	 be	 used	 to
obtain	a	string	length.

//	The	nchar()function	returns	a	numeric	string	length	for	“wxyz”.

>	nchar("wxyz")	

[1]	4

	

//	The	str_length()	function	returns	the	numeric	string	length	for	“wxyz”.

>	str_length("wxyz")	

[1]	4

													

//	The	nchar()	function	returns	the	numeric	string	length	for	“STR”.

>	nchar(STR)	

[1]	3

													

//The	str_length()	function	returns	the	character	string	for	“STR”.	

>	str_length(STR)	

[1]	STR

	

Important:	 You	 will	 need	 to	 include	 the	 “{stringr}”	 package	 to	 use	 the	 str_length()

function.

Pattern	Detection



Pattern	 detection	 is	 evaluated	 with	 the	 “grep1()”	 and	 “str_detect()(stringr)”
functions.

grep1()-	 The	 grep1()	 function 	 returns	 a	 logical	 expression	 “TRUE”	 or
“FALSE”.
str_detect() 	 {stringr}	 –	 The	 str_detect()(stringr)	 function	 is	 the
alternative	function	for	pattern	detection.

The	 following	 examples	 shows	 implements	 the	 grep1(	 )	 and	 str_detect()
functions	to	determine	if	a	pattern	is	“TRUE”	or	“FALSE”.:

//	Example	1:	Two	strings	are	assigned.

>	string1	<-	"07	Nov	1973"	

>	string2	<-	"	4	Nov	1971"

	

//	The	grep1()	function	returns	TRUE	for	“string1”.	

>	regexp	<-	"([[:digit:]]{2})	([[:alpha:]]+)	([[:digit:]]{4})"	

>	grepl(pattern	=	regexp,	x	=	string1)	

[1]	TRUE

	

//The	str_detect()	function	returns	TRUE	for	“string1”.	

>	str_detect(string1,	regexp)	

[1]	TRUE

	

//	Example	2:	grep1()	returns	FALSE	for	“string2”

>	grepl(pattern	=	regexp,	x	=	string2)	

[1]	FALSE

	
In	 the	 first	 example,	 “TRUE”	 is	 returned	 because	 all	 “digits”	 and	 “alpha”	 are	 correct,	 but	 the	 second

example	returns	“FALSE”	because	the	first	digit	only	returns	1	number.

	

Important:	You	will	need	to	include	the	“{stringr}”	package	to	use	the	grep1()	function.



	
Counting	Pattern	Strings
The	“textcnt()”	function	counts	the	occurrence	of	patterns	within	a	string.

textcnt() 	{tau}	–	The	“ textcnt() 	{tau}”	function	counts	the	occurrence
of	each	pattern	or	each	term	within	a	string.	The	following	example
uses	the	textcnt()	function	to	count	the	pattern	strings.

>	string1	<-	"November	07	bday	1973	April	4	bday	2015"	

>	textcnt(string,n=1L,method="string1")	November				bday							07						4		attr(,"class")	

[1]	"textcnt"

	
Important:	You	will	need	to	include	the	“{stringr}”	packages	to	use	the	textcnt()	function.

	
Substring	Position	Extraction
The	 “cpos()	 {chimisc}“	 and	 “substring.location()	 {cwhmisc}”	 functions	 are
used	to	return	a	specific	position	in	the	substring.

cpos() 	 {cwhmisc}	 –	 The	 “ cpos() 	 {cwhmisc}”	 function	 	 returns	 the
position	of	a	substring	in	a	string.
	
substring.location() 	 {cwhmisc}–	 The	 “ substring.location() 	 {cwhmisc}”
function	performs	the	same	as	the	“ cpos() 	{cwhmisc}”	function,	but	it
returns	the	first	and	last	position	in	a	string.

//	The	number	position	for	letter	“p”	is	returned.	Counting	starts	at	the	letter	“a”.

>	cpos("abcdefghijklmnopqrstuvwxyz","p",start=1)	

[1]	16

	

//	The	number	position	for	the	first	and	last	letter	of	the	“def”	string	is	returned

>	substring.location("abcdefghijklmnopqrstuvwxyz","def")

>	$first	[1]	4			>	$last	[1]	6

	
Important:	 You	 will	 need	 to	 include	 the	 “{cwhmisc}”	 package	 to	 use	 the	 “cpos()”	 and



“substring.location()”	functions.

	
String	Position	Extraction
The	“regexpr()”	function	returns	a	specific	position	in	a	string.

regexpr() –	The	“ regexpr() 		returns	the	position	of	a	regular	expression.
str_locate() 	{stringr}–	The	“ str_locate() 	{stringr}”	function	performs	the
same	task	as	the	“regexpr()”	function.
	
gregexpr() –	 The	 “ gregexpr(“ is	 similar	 to	 the regexpr()	 function, 	 but	 the
starting	position	of	every	match	found	is	returned.
str_locate_all() 	{stringr}–	The	“s tr_locate_all() 	(stringr)”	also	performs	the
same	task	as	the	other	functions.

	

>	regexp	<-	"([[:digit:]]{2})	([[:alpha:]]+)	([[:digit:]]{4})"	

>	string	<-	"myname	23	day	2015	myname	18	day	1971"	

>	regexpr(pattern	=	regexp,	text	=	string)

	

[1]	8	attr(,"match.length")

[1]	11

	
>	gregexpr(pattern	=	regexp,	text	=	string)	

[[1]]	

[1]		8	27	attr(,"match.length")	

[1]	11	11

	

>	str_locate(string,regexp)						start	end	[1,]					8		18	

>	str_locate_all(string,regexp)	

[[1]]						start	end	[1,]					8		18	[2,]				27		37

	
Important:	You	will	need	to	include	the	“{stringr}”	package	to	use	the	“str_locate()”	and



“str-locate_all()”	functions.

	
Substring	Extraction
The	 “substr()”	 and	 “str_sub()	 {stringr}”	 functions	 are	 used	 to	 extract	 a
substring	 from	 a	 string.	You	 can	 extract	 a	 fixed	width	 substring	 using	 one	 of
these	functions.

substr()	-	The	“substr()”	takes	a	sub	string	from	a	string.
str_sub()	 {stringr}	 –	 The	 “str_sub()	 {stringr}”	 function
performs	the	same	way	as	the	“substr()”	function.

The	following	example	implements	the	“substr()”	and	“str_sub()”	functions:
	

//	The	first	and	second	character	of	the	string	is	returned

>	substr("some	text",1,2)	

[1]	"so"

	

>	str_sub("some	text",1,2)	

[1]	"so"

	

Important:	 You	 will	 need	 to	 include	 the	 “{stringr}”	 package	 to	 use	 the	 “str_sub()”

function.

	
Word	Extraction
The	“first.word()”	function	is	used	to	extract	the	first	word	in	a	string.

first.word(){hmisc}	–	The	“first.word(){hmisc}”	function	extracts	the
first	word	or	expression.

The	following	example	will	show	you	how	to	use	the	“first.word()”	function.

//	The	first	word	in	the	string	is	returned.

>	first.word("Extract	First	Word")	

[1]	"Extract"



	
Important:	 You	 will	 need	 to	 include	 the	 “{hmisc}”	 package	 to	 use	 the	 “first.word()”

function.

	
Extract	String	Pattern
The	“grep()”	function	is	used	to	extract	a	string	pattern.

grep()	 -	 The	 “grep()”	 returns	 the	 value	 or	 the	 position	 of	 the	 regular
expression	if	“value=T”	and	if		“value=F”.

The	following	examples	show	to	implement	the	grep()	function	to	return	a	value
or	position	of	an	expression:

//The		grep()	function	returns	the	pattern	of	a	string

>	grep(pattern	=	regexp,	x	=	string1	,	value	=	T)		

[1]	"07	Nov	1973"

	

//	The	grep()	function	returns	the	position	of	the	string

>	grep(pattern	=	regexp,	x	=	string2	,	value	=	T)		character(0)	

>	grep(pattern	=	regexp,	x	=	string1	,	value	=	F)		

[1]	1

	
>	grep(pattern	=	regexp,	x	=	string2	,	value	=	F)		integer(0)

R	also	provides	the	following	function	to	extract	specific	strings:
str_extract(),	 str_extract_all(),	 str_match(),	 str_match_all()
(stringr)	 and	 m()	 {caroline}	 –	 These	 functions	 are	 similar	 to	 the
grep()function.
str_extract()	 and	 str_extract_all()	 -	 The	 “str_extract()	 and
str_extract_all()”	functions		will	return	a	vector.
str_match()	 and	 str_match_all()	 -	 The	 “str_match()	 and
str_match_all()”	 functions	 will	 return	 a	 matrix	 and	 m()	 function
dataframe.

Important:	You	will	need	to	include	the	“{caroline}”	and	“{stringr}”	packages	to	use	the



str_extract(),	str_extract_all(),	str_match(),	str_match_all()	and	m()	functions.

The	following	examples	will	show	you	how	to	use	each	of	these	functions:

//	A	string	is	assigned	with	the	day,	month	and	year.

>	library("stringr")

>	regexp	<-	"([[:digit:]]{2})	([[:alpha:]]+)	([[:digit:]]{4})"

>	string1	<-	"November	07	bday	1973	November	22	2015"

	

//	The	str_extract()	function	is	implemented	to	extract	a	specific	string

>	str_extract(string,regexp)	

[1]	"07	November	1973"

	

//	The	str_extract_all()	function	is	implemented	to	extract	the	entire	string.

>	str_extract_all(string1,regexp)	

[[1]]	[1]	"07	Novemver	1973"	"22	November	2015"		

	

//	The	str_match”()	function	is	implemented	to	match	a	specific	string.

>	str_match(string,regexp)						

>	[,1]										[,2]	[,3]		[,4]			[1,]	"07	November	1973"	"22"	"November"	"2015"

//	The	str_match_all()	function	is	implemented	to	match	the	entire	string.

>	str_match_all(string,regexp)	

[[1]]						[,1]										[,2]	[,3]		[,4]			[1,]	"07	November	1973"	"07	November	1973"	

[2,]	"22	November	2015"	"22"	"November"	"2015"

	
	

//	The	m()	function	is	implemented	to	match	the	day,	month,	and	year.

>	library("caroline")



	

>	 m(pattern	 =	 regexp,	 vect	 =	 string1,	 names	 =	 c("day","month","year"),	 types	 =

rep("character",3))			day	month	year

[1]	22			November	2015

	
String	Substitution
R	 allows	 you	 to	 make	 a	 string	 substitution	 within	 a	 string.	 The	 following
functions	below	are	used	interchangeably	to	make	substitutions.

sub() 	 –	 The	 “sub()”	 function	 is	 the	 standard	 function	 for	 making	 a
string	substitution	within	a	string.
gsub()	 –	 The	 “gsub()”	 performs	 the	 same	 way	 as	 the 	 sub() function.	 The	 only
difference	is	the	gsub()	function	replaces	all	occurrences	of	the	pattern,
whereas	the sub() 	only	replaces	the	first	occurrence.
str_replace() 	{stringr}–	The	“ str_replace() 	{stringr}”	function	also	has	the
same	functionality	as	the	sub()	and	gsub()	functions.

	
Important:	 You	 will	 need	 to	 include	 the	 “{stringr}”	 package	 to	 use	 the	 “str_replace()”

function.

	

In	 the	 following	example,	 the	British	date	 is	used	with	 the	pattern	2	digit	day,
blank	space,	letters,	a	blank	space,	and	a	4	digit	year.		The	2	digit	day	is	detected
with	 the	 “[[:digit:]]{2}”	 expression,	 the	 letters	 are	 detected	 with	 the
“[[:alpha:]]+”	 expression,	 and	 the	 4	 digit	 year	 is	 detected	 with	 “[[:alpha]]+”
expression.	The	three	strings	are	within	a	set	of	parenthesis.	The	first	substring	is
saved	in	“\\1”,	and	the	second	substring	is	saved	in	“\\2”	and	the	third	substring
is	saved	in	“\\3”.

//	The	first	substring	returns	the	first	part	of	the	regular	expression.	

>	string	<-	"07	November	1973"	



>	regexp	<-	"([[:digit:]]{2})	([[:alpha:]]+)	([[:digit:]]{4})"	

>	sub(pattern	=	regexp,	replacement	=	"\\1",	x	=	string)

	

//	The	second	substring	returns	the	second	part	of	the	regular	expression.	

>	sub(pattern	=	regexp,	replacement	=	"\\2",	x	=	string)

	

//	The	third	substring	returns	the	third	part	of	the	regular	

>	sub(pattern	=	regexp,	replacement	=	"\\3",	x	=	string)

	
In	 the	 following	 examples,	 the	 “sub()”	 and	 “gsub()”	 functions	 are	 used	 to
replace	 strings.	 The	 first	 example	 uses	 the	 sub()	 function	 to	 remove	 the	 first
space	and	the	second	example	uses	the	gsub()	function	to	remove	all	the	spaces
in	the	string.
	

//	The	sub()	function	removes	the	first	space	in	the	string

>	textString	<-	"sub	string	rep"	

>	sub(pattern	=	"	",	replacement	=	"",		x	=	textString)	

[1]	"substring	rep"

	

//	The	gsub()	function	removes	all	the	spaces	in	the	string.

>	gsub(pattern	=	"	",	replacement	=	"",		x	=	textString)	

[1]	"substringrep"

	
Character	Substitution
The	“chartr()”	function	allows	you	to	substitute	characters	 in	an	expression	or
statement.	The	 definition	 of	 the	 function	means	 “character	 translation”.	You
can	also	use	the	following	functions	to	perform	the	same	task	as	the	“chartr()”
function.

replacechar(){cwhmisc}	–	The	“replacechar(){cwhmisc}”	function	is
in	the	{cwhmisc}	package.	It	is	also	used	to	substitute	characters	in	an
expression.	
	



str_replace_all(){stringr}	 –	 The	 “str_replace_all(){stringr}”
function	 is	 in	 the	 {stringr}	package.	 It	 performs	 the	 same	 task	 as	 the
“chartr()”	and	“replacechar()”	functions.

The	 following	 examples	 will	 show	 you	 how	 to	 substitute	 characters	 with
chartr(),	replachcar(),	and	str_replace_all()	functions:

//	The	chartr()	function	replaces	a	single	character.

>	chartr(out="y",	in="a",x="myth")	

[1]	"math"

	

//	The	chartr()	function	replaces	a	string	of	characters.

>	chartr(out="yth",new="aths",x="myth")	

[1]	"maths"

	

//	The	replacechar()replaces	unique	characters	in	the	string.

>	replacechar("count.the.digits.now",".","_")	

[1]	"count_the_digits_now"

	

//	The	str_replace_all()	replace	all	unique	characters	in	the	string.

>	str_replace_all("count_the_digits_now","\\_",".")	

[1]	"count.the.digits.now"



	
Important:	 	Remember	 to	 include	 the	 “{cwhmisc}”	 and	 “{stringr}”	 functions	 to	 use	 the

replacechar()	and	str_replace_all()	functions.

	
Convert	Letters
R	 allows	 you	 to	 convert	 letters	 in	 various	 ways.	 You	 can	 use	 one	 of	 the
following	functions	to	perform	the	appropriate	letter	conversion:

tolower()	-	The	“tolower()”	function	converts	uppercase	to	lowercase
letters.
	
toupper()	–	The	“toupper()”	converts	lower-case	to	upper-case	letters.
	
capitalize()	 {hmisc}	 –	 The	 “capitalize()”	 function	 in	 the	 {hmisc}
package	capitalizes	the	first	letter	of	a	string.
	
cap(){cwhmisc}	–	The	“cap()”	function	performs	the	same	task	as	the
toupper()	function,	by	capitalizing	letters.
	
capitalize(){cwhmisc}	 –	 The	 “capitalize()”	 function	 performs	 the
same	task	as	the	cap()	and	toupper()	functions.
	
lower(){cwhmisc}	–	The	“lower()”	function	performs	the	same	task	as
the	tolower()	function,	by	converting	uppercase	to	lower-case	letters.
lowerize(){cwhmisc}	 –	 The	 “lowerize()”	 function	 performs	 the	 same
task	as	the	tolower()	and	lower()	function,	by	converting	uppercase	to
lowercase	letters.
CapLeading(){cwhmisc}	–	The	“CapLeading()”function	capitalize	 the
first	character	in	a	string.

The	 following	 example	 will	 show	 you	 how	 to	 apply	 the	 “tolower()”,
“toupper()”,	and	“capitalize()”	functions.

//	The	tolower()	function	converts	upper	case	letters	to	lower	case	letters.	

>	tolower("FLorida")	



[1]	"florida"

	

//	The	toupper()	function	converts	lower	case	letters	to	upper	case	letters.

>	toupper("FLorida")	

[1]	"FLORIDA"

	

//	The	captialize()	 function	converts	 the	 first	 letter	 from	lower	case	 to	upper	case	 letter.	 It

applies	the	title	case.

>	capitalize("florida")	

[1]	"Florida"

	
Important:	 Remember	 to	 include	 the	 “{hmisc}”	 and	 “{cwhmisc}”	 packages	 to	 use	 the

appropriate	letter	conversion	function.

	
Character	Fill
Characters	 are	 filled	 in	 a	 string	 with	 the	 “padding()”	 function	 with	 specific
characters	of	set	length.	The	“str_pad()”	is	also	used	to	fill	characters	in	a	string.
The	 following	 examples	 applies	 the	 padding()	 and	 str_pad()	 functions	 to	 fill
characters	in	a	string.

//	Blank	spaces	are	used	to	make	the	length	of	string	10.	Characters	are	set	to	the	right.

>	library("cwhmisc")	

>	padding("abc",10,"	","right")	

[1]	"							abc"

	
	

//	The	“*”	character	is	used	to	fill	the	blank	spaces.	

>	str_pad("abc",	width=10,	side="right",	pad	=	"*")	

[1]	"***xyz****"

	



//Leading	“0”	are	set	to	the	left	of	each	digit	character	to	fill	the	blank	spaces	if	the	character

digit	is	less	than	2.

>	str_pad(c("1","2","8","10"),2,side="left",pad="0")		

[1]	"01"		"02"		"08"		“10"

	
The	“str_pad()”	function	operates	very	slowly,	for	example,	if	you	have	a	1000	length	vector,	it	would	take

a	long	time	to	compute	it.	The	“padding()”	function	on	the	other	hand,	handles	character	vectors	in	better

way,	 but	 the	 best	way	 is	 to	 use	 both	 the	 “sapply()”	 and	 “padding()”	 functions.	 The	 following	 examples

show	how	you	can	implement	the	str_pad(),	padding(),	and	sapply()	functions.

	
//	Include	the	“stringr”	and	“cwhmisc”	package	and	assign	the	character	vectors.

>library("stringr")	

>library("cwhmisc")	

>a	<-	rep(1,10^4)

	

//The	str_pad()	function	computes	the	processing	time	–	takes	a	long	time.

>	system.time(b	<-	str_pad(a,3,side="left",pad="0"))	

user					system					time							

50.968			0.208						73.322	

	

//	The	sapply()	and	padding()	functions	are	used	together.	It	takes	a	shorter	time	to	process

than	the	str_pad().

>	system.time(c	<-	sapply(a,	padding,	space	=	3,	with	=	"0",	to	=	"left"))	

														user					system						time	

														7.700				0.020						12.206

	
	

Important:	 Remember	 to	 include	 the	 “{stringr}”	 and	 “{cwhmisc}”	 package	 to	 use	 the

applicable	functions.

	
Remove	Spaces



R	provides	 the	 “trimws()	 {memisc}”,	 “trim(){gdata}”,	 and	 ”str_trim(){stringr}
functions	to	remove		leading	and	trailing	white	spaces.	The	following	examples
will	show	you	how	to	use	them:
	

//	The	trimws()	function	removes	leading	and	trailing	white	spaces.

>	library("memisc")	

>	trimws("		two	vectors			")	

[1]	"two	vectors"	

	

//	The	trim()	function	does	the	same	job	as	the	trimws()	function.

>	library("gdata")	

>	trim("	two	vectors	")	

[1]	"two	vectors"

	
	

//	The	str_trim()	function	also	does	the	same	job	as	the	trim()	and	trimws()	functions.

>	library(“stringr)	

>	str_trim("		two	vectors		")	

[1]	"two	vectors"

	
Important:	Remember	to	include	the	“{memisc}”,	“{gdata}”	and		“{stringr}”	packages	to

use	the	functions	for	removing	leading	and	trailing	white	paces.

	
Compare	and	Compute	Strings
R	provides	specific	operators	and	functions	for	assessing	and	comparing	strings.
The	 following	 examples	will	 show	you	 each	 these	 functions	 and	operators	 are
applied.
	

											==		-	The	“==”	operator	returns	TRUE	if	both	of	the	strings	are	the	same	and	FALSE	if	it
is	not.	It	is	used	to	determine	if	the	strings	are	the	same.

//	The	expression	returns	“FALSE”.



>	"xyz"=="zyz"	

[1]	FALSE

	

//	The	expression	returns	“TRUE”.

>	"xyz"=="xyz"	

[1]	TRUE

	
Note:	The	 functions	 that	 are	used	compare	and	calculate	 strings	apply	 to	 the	Levenshtein

distance.	This	is	a	string	metric	function	that	is	used	for	measuring	the	distance	between	two

strings.

	
									adist()	{utils}– The	“adist()”	function	of	the	{utils}	package	is	used	to	calculate	the

approximate	string	distance	between	vectors.

>	adist("match","matching")	

[1]	3

	

	 	 	 	 	 	 	 	 	 	 stringMatch(){MiscPsycho}	 –	 The	 “stringMatch()”	 function	 in	 the

{MiscPsycho}	package	is	used	to	compare	the	similarity	of	two	strings.	If	“normalize	=	YES”

in	the	function,	then	the	“Levenshtein	distance”	is	divided	by	the	maximum	length	of	the	string.

//	The	stringmatch()	function	returns	the	number	of	characters	that	do	not	match

>	library("MiscPsycho")	

>	stringMatch("match","matching",normalize="NO",penalty=1,case.sensitive	=	TRUE)	

[1]	3

stringdist() 	{stringdist}	-	The	“stringdist()”	function	in	the	{stringdist}	package	returns
an	approximate	string	matching	and	string	distance.

//	The	stringdist()	function	returns	the	number	of	characters	that	do	not	match.

>	library(stringdist)

>	stringdist(“live”,“lively”,	method=”d1”)

[1]	2



levenshteinDist() {RecordLinkage}	 – 	 The	 “levenshteinDist()”	 function	 in	 the
{RecordLinkage}	package	compares	two	strings.

//	The	levenshteinDist()	function	compares	two	strings.

levenshteinDist("records","recrd")

The	 "agrep()”	 function	 may	 also	 be	 used	 to	 approximate	 matches	 the
Levenshtein	 distance.	 The	 following	 expressions	 are	 used	 within	 function	 to
return	the	value	of	the	string.

“value	=	TRUE”	–	The	“value=TRUE”	expression	returns	the	value	of
the	string.
“value	 =	 FALSE”	 –	 The	 “value=FALSE”	 expression	 returns	 the
position	of	the	string.
max	 –	 The	 “max”	 expression	 returns	 the	 maximal	 Levenshtein
distance.

The	following	examples	 implements	 the	“agrep()”	 function	 to	 return	 the	value
of	a	string:

>		agrep(pattern	=	"lively",	x	=	c("1	live",	"1",	"1	LAZY"),	max	=	2,	value	=	TRUE)	

[1]	"1	lazy"

	

>		agrep("lively",	c("1	live",	"1",	"1	LIVE"),	max	=	3,	value	=	TRUE)	

[1]	"1	lazy"

There	are	also	some	miscellaneous	functions	that	are	used	to	manipulate	and	evaluate	string	expressions.

deparse() 	–	The	“deparse()”	function	converts	unevaluated	expressions
into	character	strings.
char.expand() 	 {base}–	 The	 “ char.expand() 	 {base}”	 function	 expands	 a
string	based	on	it’s	target.
pmatch() 	 {base}and charmatch() 	 {base}	 –	 The	 “ pmatch()

{base}and charmatch() 	 {base}”	 function	are	used	 to	 search	 for	matches
within	the	elements	of	the	first	argument.

The	following	example	implements	the	“pmatch()”	and	“nomatch()”	functions:



//	The	pmatch()	function	returns	“0”	if	there	is	“nomatch”.

>	pmatch(c("w","x","y","z")

>	table	=	c(("x","z")nomatch	=	0)	

[1]	0	1	0	2

make.unique() –	The	“ make.unique()”	function	is	used	to	make 		a	unique	character
string.	This	will	help	you	to	turn	a	string	into	an	identifier.

The	 following	 example	 applies	 the	 “make .unique()”	 function	 to	 make	 a	 string	 into	 an
identifier:

//	The	make.unique()	function	makes	each	character	unique

>	make.unique(c("x",	"x",	"x"))	

[1]	"x"			"x.1"	"x.2"

	

Note:	Remember	 to	 include	 the	“{base}”	package	 to	use	 the	char.expand(),	pmatch(),	and

charmatch()	functions.

	



Text	Processing	Functions
When	processing	text	in	R,	you	may	find	that	you	do	not	remember	the	name	of
a	 function	 or	 how	 to	 apply	 a	 function’s	 usage.	 It	 is	 helpful	 to	 have	 an	 easily
accessible	 reference	 to	 built-in	 text	 processing	 functions.	 You	 can	 use	 this
section	as	a	point	of	reference	for	these	functions.	

String	Functions
Strings	 are	 the	 same	 as	 character	 vectors	 in	R,	 but	 a	 character	 vector	 in	 other
programming	languages	are	considered	an	array	of	strings.	You	will	learn	more
about	how	string	functions	are	applied	in	the	following	examples:

//	The	str()	function	evaluates	“textword”

>	str	=	“textword”

>	str[1]

If	you	would	access	individual	characters	within	an	R	string,	you	will	need	to	use	the	“substr()”	function().

The	first	argument	in	the	substr()	function	is	considered	a	character	vector,	the	second	is	the	index	for	the

first	character	you	need,	and	the	third	is	the	index	for	the	last	character	you	need.

//	The	substr()	function	evaluates	“t”	in	“textword”

>	str	<-	“textword”	

>	substr(str,	1,	1)

	

Note:	 If	 you	would	 like	 to	 find	 the	 number	 of	 characters	within	 a	 string,	 do	 not	 use	 the

length()	function,	use	the	nchar()	function	instead.

	

The	 following	 example	 shows	 another	 way	 that	 you	 can	 use	 the	 substr()
function:

//	The	substr()	function	locates	positions	1	and	2	and	7	and	8	in	the	string.

>	str	<	-	“textword”	

>	substr(str,	1,	2)		==	“te”	

>	substr(str,	7,	8)	==	“rd”



Notice	 that	 the	 substr()	 function	 allows	 you	 to	 access	 single	 characters	 within	 the	 string	 by	 using	 an

indexing	method.	If	you	would	like	to	break	the	strings	into	vectors	of	characters,	you	will	need	to	use	the

strsplit()	function.	It	works	similar	 to	 the	split()	function	that	 is	used	in	Perl.	The	following	example	will

explain	how	it	works:

//	The	strsplit()	function	evaluates	a	list

>	strsplit(‘0-0-1’,	‘-‘)

	
Paste	Function
In	 the	 previous	 section,	 you	 learned	 about	 splitting	 strings	 apart,	 but	 you	will
also	need	 to	know	how	 to	put	 the	 characters	 into	 strings.	You	can	 accomplish
this	 with	 the	 paste()	 function.	 It	 is	 a	 strange	 function	 that	 is	 used	 for
concatenating	strings	in	R,	but	it	is	also	used	to	perform	tasks	associated	with	the
join()	function	used	Perl.
	

The	following	example	will	show	you	how	the	function	works:

//	A	space	is	added	to	the	output

>	str1	<-	“string1”

>	str2	<-	“string2”

>	print(paste(str1,	str))

In	the	above	example,	you	will	notice	that	there	is	a	space	added	with	the	“str”
argument.	 A	 space	 is	 added	 because	 the	 paste()	 function	 carries	 an	 optional
argument	for	a	separator	when	joining	strings	that	defaults	to	a	single	space.	The
following	example	will	provide	some	clarification:

//	The	paste()	function	includes	a	separator

>	paste(“string1”,	“string2”)	==	paste(“string1”,	“string2”,	sep	=”		“)

To	 remove	 the	 space,	 you	 will	 need	 to	 use	 a	 null	 separator.	 The	 following
example	uses	the	print()	and	paste()	together	to	accomplish	this	task:

>	print(paste(“string1”,	“string2”,	sep	=	“	“))

	



Case	Conversion
In	 an	 earlier	 section,	 case	 conversion	 was	 discussed.	 However,	 to	 further
understand	 how	 it	 is	 used	 in	 text	 processing,	 you	will	 need	 to	 learn	more.	As
mentioned	 earlier,	 the	 tolower()	 and	 toupper()	 functions	 are	 used	 to	 change
letters	from	uppercase	letters	to	lowercase	and	the	reverse,	but	you	can	also	use
them	with	the	substr()	function	to	convert	the	commonly	used	words	into	a	title
case	form.
The	 following	 example	 will	 show	 you	 how	 to	 combine	 the	 toupper()	 and	 the
substr()	function	to	return	a	string	with	only	uppercase	title	letters:

>	pseudo.titlestring	<-	function(str)

>	{	subset	str,	1,	1)	=	toupper(substr(str,	1,	1))	

>	return(str)	}

	
Translate	Characters
To	 translate	 characters,	 you	 can	 use	 the	 chartr()	 function.	 This	 was	 also
discussed	in	an	earlier	section.	The	chartr()	function	translates	characters	that	is
inputted	 into	 related	 characters	 of	 your	 choice.	 	 The	 following	 example	 will
show	you	how	to	use	the	chartr()	function	to	evaluate	a	string.
	

//	The	chartr()	function	evaluates	the	ABC

>	chartr(“xyz”,	“ABC”,	“xyzxyz”)

	
If	 you	 are	 a	 Perl	 programmer,	 you	 will	 recognize	 the	 similarity	 to	 the	 “tr()”
function.
Substring	Containment
If	you	would	like	to	learn	how	to	contain	a	string	into	another	string	or	a	set	of
strings,	 you	 will	 need	 to	 apply	 the	 charmatch()	 function	 that	 was	 used	 in	 an
earlier	example.	In	the	following	example,	 the	charmatch()	 	function	is	used	to
contain	a	substring.



//	The	charmatch()	function	returns	0

>	charmatch(“w”,	c(“mean”,	“mode”))

	

//	The	charmatch()	function	returns	2

>	charmatch(“med”,	c(“mean”,	“median”))

	

Note:	Regular	expressions	are	generally	used	instead	of	substring	matching,	therefore	it	may

not	be	necessary	to	use	the	charmatch()	function.

	
Tip!	 If	you	would	like	to	use	more	complex	text	processing,	you	may	want	to	use	regular

expressions	 and	 the	 grep()	 functions.	 If	 necessary,	 you	 can	 implement	 approximate

expression	matching	system	with	the	Levenshtein	distance	method.



Data	Frames
Data	frames	are	a	list	that	contains	the	“data.frame”	class.	In	R,	there	are	certain
restrictions	placed	on	 lists	 in	data	 frames.	Here	 is	a	 list	of	 restrictions	 that	you
should	be	aware	of:

The	 components	must	 be	 vectors	 of	 type	 numeric,	 character,	 logical,
factors,	numeric	matrices,	lists,	or	other	data	frames.
You	 can	 have	 as	 many	 variables	 to	 the	 data	 frame	 as	 columns,
elements,	or	variables.
Numeric	 vectors,	 logical	 vectors,	 and	 factors	 are	 as	 is.	 Character
vectors	must	be	vectors	with	unique	vectors	inside	the	vector	itself.
Vector	 structures	 that	 are	 variables	 in	 the	 data	 frame	 must	 have	 the
same	length.	The	structure	of	the	matrix	must	have	the	same	row	size.
A	 data	 frame	 can	 be	 considered	 a	 matrix	 with	 columns	 that	 have
different	modes	and	attributes.	They	may	 look	 like	a	matrix	and	have
row	and	columns	that	were	removed	with	the	matrix	index	conventions.



Data	Frame	Objects
Data	 frames	 that	 are	 used	 in	 R	 are	 similar	 to	 the	 Statistical	 Analysis	 System
(SAS)	and	Statistical	Package	for	Social	Sciences	(SPSS)	data	set.	They	are	used
to	store	information.	It	allows	you	to	take	several	different	types	of	vectors	and
save	 them	 in	a	variable.	Vectors	used	 in	data	 frames	may	 include	various	 lists
with	factors,	strings	and	numbers.	They	behave	similar	to	a	matrix.	
Overall,	 a	 data	 frame	consists	 of	 a	 list	 of	 vectors,	 factor,	 and	various	matrices
with	the	same	length.	When	referring	to	matrices,	they	have	the	same	number	of
matrices.	 Data	 frames	 also	 have	 a	 names	 attribute	 for	 labeling	 variables.	 The
“row.names”	attribute	for	labeling	cases	of	variables.
A	data	frame	may	contain	a	list	that	is	same	as	other	components.	The	list	may
have	elements	with	different	lengths,	which	provides	a	form	of	data	structure	for
ragged	arrays.
Objects	 that	are	used	to	fulfill	restrictions	on	columns	or	components	of	a	data
frame	can	be	used	to	create	a	data	frame	with	the	“data.frame()”	function.

The	 following	 example	 will	 show	 you	 how	 to	 create	 a	 data	 frame	 with	 the
“data.frame()”	function:

>	results	<-	data.frame(grade=classgrade,	subject=course,	age=avgage)

	
A	list	that	contains	contents	that	satisfies	the	restrictions	of	a	data	frame	can	be
forced	 into	 a	 data	 frame	 with	 the	 data.frame()	 function.	 The	 easiest	 way	 to
initially	create	a	data	frame	is	with	the	read.table()	function.	It	allows	you	to	read
a	complete	data	from	frame	from	an	external	file.	You	will	learn	more	how	to	do
this	in	the	following	section.



Creating	Data	Frames
You	can	create	and	manipulate	data	frames	in	many	different	ways.	Here	is	an
example	that	will	show	you	how	to	create	a	data	frame:

//	Contents	for	the	data	frame	is	created

>	x	<-	c(1,2,3,4)	

>	y	<-	c(2,4,6,8)	

>	Products	<-	factor(c("X","Y","X","Y"))

	

//Data	frame	is	created	with	three	columns

>	results	<-	data.frame(first=x,	second=y,	z=products)	

>	results	

first	second			z	

1							1						2	etc...

	

//	The	contents	of	the	data	frame	is	returned

B	>	summary(results)				

first																														second																				z

Min.			:1.00			Min.			:2.0			A:2

1st	Qu.:1.75			1st	Qu.:3.5			B:2	etc...

	

//	Contents	of	the	first	column	is	returned

>	results$first	

[1]	1	2	3	4

	

//Contents	of	the	second	column	is	returned

>	results$second	

[1]	2	4	6	8

	

//Contents	of	the	third	column	is	returned

>	results$f



	
[1]	A	B	A	B

Products:	A	B

	

Data	 frames	 allow	 you	 to	 manipulate	 data	 in	 various	 ways.	 In	 the	 following
sections,	you	will	learn	different	ways	that	you	can	manipulate	data	within	a	data
frame.

Rename	Columns
To	 rename	 the	 columns	 in	 a	 data	 frame	you	 should	 start	 by	 creating	 a	 sample
data.	In	following	example	you	will	learn	how	to	do	this.

//	Data	frame	with	three	columns	of	sample	data	is	created

biz	<-	data.frame(invest=1:3,	buy=4:6,	sell=7:9)

[1]	invest	buy	sell

					1				4					7

					2				5					8	etc...

	

//	The	columns	are	returned

>	names(biz)			

[1]	"invest"	"buy"		"sell"

The	best	way	to	rename	the	columns	is	to	use	the	rename()	function	in	the	{plyr}	package.

//	The	rename()	function	renames	the	“invest”	and	“sell”	columns

		>	rename(biz,	c("invest"="money",	"sell"="save"))	

money	buy		save	

		1			4					7	

		2			5					8	

		3			6					9

	
You	 do	 not	 have	 to	 depend	 on	 the	 {plyr}	 package,	 instead	 you	 can	modify	 the	 variable.	 The	 following

example	 incorporates	 built-in	 functions	 and	modifies	 the	 “biz”	variable	 used	 in	 the	 above	 example.	You



will	see	that	you	do	not	have	to	save	the	results	in	the	“biz”	variable.
	

//	The	names()	function	renames	the	“invest”	column	to	"money"	

>	names(biz)[names(biz)=="invest"]	<-	"money"	

money		buy		sell

					1			4					7	

					2			5					8	etc...

	
//	 The	 names()	 function	 renames	 the	 column	 by	 index:	 The	 “sell”	 column	 is	 renamed	 to

“save”	

names(biz)[3]	<-	"save"	

		money	buy	save	

					1			4					7	

					2			5					8	etc...

	

You	can	also	use	the	search	and	replace	function	in	R	to	rename	columns.	The	caret	“^”	and	“$”	operators

in	following	example	is	to	ensure	that	the	all	the	characters	in	the	string	matches.	If	you	do	not	have	them,

then	another	column	with	a	similar	name	would	match,	and	the	replacement	would	be	incorrect.
The	following	example	will	show	you	how	to	use	these	operators	to	make	the	appropriate	changes:
	

//	The	“^”	and	“$”	are	implemented.

>	names(biz)	<-	sub("^invest$",	"money",	names(biz))	

money	buy	save	

				1			4					7	

				2			5					8	etc...

	

//All	occurrences	of	the	letter	“s”	are	replaced	with	“R”	in	all	columns.	

>	names(biz)	<-	gsub("s",	"r",	names(biz))	

money	buy	Rave	

				1			4					7	



				2			5					8	etc...

	
In	 the	above	example,	 the	“gsub()”	function	replaces	all	 the	occurrences	of	 the	 letters	 in	each	column.	If

you	use	 the	sub()	 function	on	 the	other	hand,	 it	 replaces	only	 the	 first	occurrence	of	within	each	column

name.

Add	and	Remove	Columns
If	you	would	like	to	add	or	remove	columns	from	a	data	frame,	there	are	many
different	ways	that	you	can	do	this.	The	following	example	will	show	you	how
to	do	this.
	

//A	data	frame	with	two	columns	is	created

data	<-	data.frame	(id=1:3,	products=c(20,27,24))

		code	products

			1					20

			2					27

			3					24		

	

//	Different	ways	to	add	a	column

data$category						<-	c("new",	"used",	"recycled")

data[["category"]]	<-	c("new",	"used",	"recycled")

	

data["category"]			<-	c("new",	"used",	"recycled")

data[,"category"]		<-	c("new",	"used",	"recycled")

data$category						<-	0		

	

//	Different	ways	to	remove	a	column

data$category						<-	NULL

data[["category"]]	<-	NULL

data["category"]			<-	NULL

	

data[,"category"]		<-	NULL



data[3]								<-	NULL

data[,3]							<-	NULL

data											<-	subset(data,	select=-category)

	
Reorder	Columns
In	the	following	example,	you	will	learn	how	to	reorder	columns	in	a	data	frame:

//	A	data	frame	is	created	with	three	columns	–	“code”	“products”	“category”

>	 data	 <-	 data.frame	 (code=1:3,	 products=c(20,27,24),category=c("new",	 “used",

"recycled"))

	

//The	original	order	of	the	columns		

code	products	category

		1					20						new	

		2					27						used	

		3					24					recycled		

	

//	The	columns	are	reordered	by	number.	

>	data[c(1,3,2)]	

code			category															products	

			1																new																			20	

			2																used																			27	

			3															recycled				24

	

//		Change	the	actual	data.	

>	data	<-	data[c(1,3,2)]		

	

//	Reorder	the	column	by	name	

>	data[c("category",	"code",	"products")]

	

														category	code	products	



						new							1					20	

						used						2					27	

							recycled		3					24

	
The	above	examples	 are	 indexed	 into	 the	data	 frame	by	handling	 it	 like	 a	 list.
The	data	frame	is	actually	a	list	of	vectors,	which	can	be	used	like	a	matrix.	The
following	 example	 will	 show	 you	 how	 this	 is	 done	 using	 the	 data[row,	 col]
argument.
	

//Creating	a	list	similar	to	a	matrix

>	data[,	c(1,3,2)]

	

code															category	products	

		1																new																		20	

		2																used							27	

		3																	recycled			24

	

One	of	the	setbacks	of	matrix	indexing	is	that	it	produces	different	results	when
you	 specify	 a	 single	 column.	 Under	 these	 circumstances,	 the	 object	 that	 is
returned	is	a	vector	and	not	a	data	frame.	The	returned	data	 type	 is	not	always
consistent	with	matrix	indexing.	Therefore	it	is	better	that	you	use	the	list-style
indexing.
The	following	examples	will	show	you	both	list-style	and	matrix-style	indexing:
	

//	List-style	indexing	with	a	single	column	

>	data[2]	

products

						20	

						27	



						24	

	

//	Matrix-style	indexing	with	a	single	column

data[,2]

		20

		27

		24

	
Merge	Data	Frames
To	merge	two	data	frames	into	a	single	column,	you	would	use	something	like
the	“join”	keyword	in	SQL.	The	following	example:

//	A	data	frame	mapping	is	created	with	“bookname”.

>	bookname	<-	read.table(header=T,	text=’bookid		title	1	investment	2	poetry	3	humor	')	

	

//	A	data	frame	is	created	with	book	numbers.

>	booknumbers	<-	read.table(header=T,	text='subject	bookid	rating			1			1				6.7			1		2		4.5	1

3			3.7											2			2				3.3	2	3				4.1				2		1				5.2	')	

	

//	Merge	the	two	data	frames

>			merge(book,	data,	"bookid")	

				bookid	subject	rating		bookname

						1							1				6.7				investment

						1							2				5.2				poetry	

					2							1				4.5				humor	etc...

If	you	have	two	data	frames	with	different	for	the	columns	that	you	would	like	to	match,	you	must	specify

the	names.	The	following	example	will	show	you	how	to	do	this.

//	The	column	name	“bookcode”	is	used	instead	of	“bookid”.	

>	book2	<-	read.table(header=T,	text='				bookcode							bookname					1							investment					2				

poetry					3							humor	')	



	
//	The	“bookid”	and	“bookcode”	column	merge.

>	merge(x=bookname,	y=booknumbers,	by.x="bookid",	by.y="bookcode")

		bookcode		bookname	subject	rating

			1						investment		1				6.7

		1																				poetry						2				5.2

			2																				humor							1				4.5

	
Notice	that	the	column	name	is	inherited	from	the	first	data	frame	(bookname).

You	can	also	merge	multiple	columns	with	data	frames.	The	following	example	will	show	you	how	to	do

this:

	
//	Additional	book	titles	are	added	to	the	data	with	the	read.table()	function

>	titlename	<-	read.table(header=T,	text='				size	type									computer			programming		sales

business	 fiction	 	 health	 relationship	 non	 fiction	 	 	 	 medicine	 	 	 	 	 certification	 	 gardening

religion	')	

	

>	bookdescription	<-	read.table(header=T,	text='				number		size	type									1			investment	

computer									2	poetry		business									3	humor	relationship	4			investment		health	')

	
//	The	two	data	frames	are	merged.

>	merge(bookdescription,	titlename,	c("size","type"))

	

				size	type	number							name

		investment		computer		1		investment

			poetry		business						4	humor	relationship

	
Compare	Data	Frames
To	 compare	 two	 or	more	 data	 frames	 and	 locate	 rows	 in	more	 than	 one	 data
frame	or	rows	you	can	use	data	frames	to	accomplish	this	task.



In	 the	following	example,	 there	are	 there	data	frames	 that	will	 locate	each	row
from	each	data	frame.	It	will	show	you	how	each	data	frame	appears	in	at	least
one	data	frame.

//	A	data	frame	with	two	columns	are	created	–	“Topic”	and	“Answer”

>	data	<-	data.frame(Topic=c(1,1,2,2),	Answer=c("Y","Y","Y”))

	

Topic	Answer							

Y							

Y							

Y						

	

dataB	<-	data.frame(Topic=c(1,2,3),	Answer=c("Y","N","Y"))

Topic	Answer

		1						Y

		2						N

		3						Y

	

dataC	<-	data.frame(Topic=c(1,3,4),	Answer=c("N","Y","N"))

Topic	Answer

			1						N

			3					Y							

			4						N

	

In	the	“data”	data	frame,	the	rows	that	contains	“1,	Y”	also	appears	in	the	data	frame	“dataB”.	However

the	rows	that	have	“2,	Y”	does	not	occur	in	any	of	the	other	data	frames.	The	same	is	true	for	the	“dataB”

data	frame	that	contains	“3,	Y”,	which	also	appears	in	the	“dataC”	data	frame,	but	“2,	N”	does	not	appear

in	any	other	data	frame.

Note:	You	may	want	to	check	repeated	or	unique	rows	data	in	another	data	frame.

	



Join	Data	Frames

R	also	 allows	you	 to	 join	data	 frames.	 In	 the	 following	 example,	 you	will	 see
how	 to	 join	 three	data	 frames	with	a	 column	 that	 identifies	 the	 source	of	 each
row.	The	column	in	the	data	frame	is	called	“dataSymbol”	It	represents	the	data
that	 could	 be	 used	 by	 three	 different	 persons.	Under	 these	 circumstances,	 you
may	want	to	locate	where	the	“dataSymbol”	match,	or	where	they	do	not	match.

//	Columns	are	created

data$Symbol	<-	"A"

dataB$Symbol	<-	"B"

dataC$Symbol	<-	"C"	

	
//	Combine	the	columns

ds	<-	rbind(data,	dataB,	dataC)	

	
//Reorder	columns	for	appearance

df	<-	df[,c(3,1,2)]	

	
//	Display	columns

Symbol	Topic	Answer

				A					1					Y

				A					1					Y

				A					2					Y

	

				B					1					Y	

				B					2					N

				B					3					Y

	

				C					1					N

				C					3					Y



			C					4					N

	
If	you	use	this	format	for	your	data,	it	is	recommended	that	you	join	them	together.

Find	Duplicate	Rows
The	function	“dupsBetweenGroups()”		used	in	the	following	example	is	used	to	help	you	find	replicated
rows	between	different	groups.
	

//	Locate	the	rows	from	different	groups	that	have	duplicates.

repRows	<-	dupsBetweenGroups(ds,"Symbol")	

	
	

//Display	the	rows	with	data	frame	with	the	data	frame

>cbind(ds,	rep=repRows)

Symbol				Topic			Answer		rep

					A							1								Y			TRUE

					A							1								Y			TRUE

					A							2								Y			FALSE

	

					B							1								Y			TRUE

					B							2								N			TRUE

					B							3								Y			FALSE

	

					C							1								N			FALSE

					C							2								Y			TRUE

					C							3								N			FALSE

	

The	 above	 example	 does	 not	 really	 point	 to	 duplicated	 rows	within	 the	 set.	With	 the	 “Symbol	=	A”	 for

example,	you	will	notice	that	there	are	two	rows	with	“Topic	=	1”	and	“Answer	=	Y”.	They	are	not	marked

as	duplicates,	though.

Find	Unique	Rows
You	can	also	use	data	frames	to	find	rows	that	are	unique	within	a	set.
	



//	Set	unique	rows

>	cbind(ds,	Valid=!repRows)

	

Symbol	Subject	Response	Valid

					A							1								Y		FALSE

					A							1								Y		FALSE

					A							2								Y			TRUE

	

					B							1								Y		FALSE

					B							2								N		FALSE

					B							3								Y			TRUE

	

					C							1								N			TRUE

					C							3								Y		FALSE

					C							4								N			TRUE

	
Split	Data	Frame
In	this	section,	you	will	learn	from	the	following	examples	how	to	split	a	joined
data	frame	using	the	data	frames	that	were	created	earlier.
	

//	Save	the	results	in	the	“ds”	variable

>	dsRep	<-	cbind(ds,	Rep=repRows)	

	
	

//Splits	all	the	rows	with	the	Symbol	“A”.

>	data	<-	subset(dsRep,	Symbol=="A",	select=-Symbol)

	

					Topic				Answer			Rep

								1								Y				TRUE

								1								Y				TRUE

								2								Y				FALSE



	
//	Splits	all	the	rows	with	the	Symbol	“B”.

dataB	<-	subset(dsRep,	Symbol=="B",	select=-Symbol)

		

Topic															Answer			Rep

							1								Y				TRUE

							2								N				TRUE

							3								Y				FALSE	

	
//	Splits	all	the	rows	with	the	Symbol	“C”

dataC	<-	subset(dsRep,	Symbol=="C",	select=-Symbol)

	
				Topic			Answer			Rep

							1								N			FALSE

							2								Y			TRUE

							3								N			FALSE

	

Ignore	Columns
R	 also	 allows	 you	 to	 ignore	 one	 or	 more	 columns	 in	 a	 data	 frame.	 This	 is
accomplished	 by	 removing	 the	 column	 that	 is	 passed	 to	 the	 function	 from	 the
data	 frame.	When	 the	 results	 are	 returned,	 you	 can	 join	 to	 complete	 the	 data
frame,	if	necessary.
	

//	Ignore	the	“Topic”	column	and	use	only	the	“Answer”	column.

dNoColumn	<-	subset(ds,	select=-Topic)

	
			Symbol				Answer

					A								Y

					A								Y

					A								Y



	
	
	

					B								N

					B								Y

					B								N

	

					C								N

					C								Y

					C								N	

	
//	Check	for	any	repeated	rows

repRows	<-	dupsBetweenGroups(dsNoColumn,	"Symbol")

	

//	Combine	the	results	to	the	original	data	frame

>	cbind(df,	rep=repRows)

	

//Display	the	results

		Symbol	Topic	Answer		Rep

					A					1						Y			TRUE

					A					1						Y			TRUE

					A					2						Y			TRUE

	

					B					1						Y			TRUE

					B					2						N			TRUE

					B					3						Y			TRUE

	
					C							1				N			FALSE

					C							2				Y			TRUE

					C							3				N			FALSE

	



The	“dupsBetweenGroups()”	function	 is	 responsible	for	doing	all	 the	work	 to
get	the	desired	results.
Recalculate	Columns
R	 allows	 you	 to	 recalculate	 the	 factor	 levels	 for	 columns	 in	 a	 data	 frame.
Sometimes	you	will	need	 to	 recalculate	 columns	because	you	may	have	 factor
columns	that	have	specific	levels	that	are	no	longer	necessary.

In	the	following	example,	“d”	data	frame	has	one	blank	row.	When	you	read	into
it,	the	factor	levels	have	an	empty	space	(“	”).	This	should	not	be	in	the	data.

d	<-	read.csv(header	=	TRUE,	text='	x,	y,	value	a,one,1	,,	b,two,4')	

d

	
x					y	value

a			one					1

													5

b			two					4

	
Vapply()	and	Lapply()														
To	 recalculate	 all	 the	 levels	 of	 factor	 columns,	 you	 will	 need	 to	 use	 the
“vapply()”	and	the	“lapply()”	functions.	The	“vapply()”	function	is	used	with	the
“is.factor()”	 function	 to	 determine	 which	 columns	 are	 factors.	 The	 “lapply()”
function	is	then	used	to	apply	the	“factor()”	function	to	the	columns.
	

//	Determine	which	columns	are	factors.

>		factor_cols	<-	vapply(d,	is.factor,	logical(1))

				x					y	value

		TRUE		TRUE	FALSE		

	
	

//	The	factor()	function	is	applied	to	the	column



d[factor_cols]	<-	lapply(d[factor_cols],	factor)

str(d)

	
//	Data	frame	with	three	variables

		$	x				:	Factor	w/	3	levels	"a","b","c":	1	2	3

		$	y				:	Factor	w/	3	levels	"one","three",..:	1	3	2

		$	value:	int		1	4	10

	
Evaluate	Columns
The	 “colwise()”	 function	 from	 the	 {plyr}	 package	 is	 used	 to	 implement	 a
function	to	each	of	the	columns	in	the	data	frame.	The	function	will	be	able	to
determine	if	the	column	is	either	a	factor	or	normal	vector.	If	the	column	has	a
factor,	the	“factor()”	function	is	used	to	remove	the	unused	levels,	but	it	if	it	is	a
normal	vector,	the	vector	will	not	change.
The	 following	 example	will	 show	 you	 how	 you	 to	 implement	 the	 “colwise()”
and	“factor()”	function.
	

//	The	{plyr}	package	accesses	the	colwise()	function.

library(plyr)

	
The	 factor	 object	 is	 determined	with	 the	 function.	 If	 it	 is	 a	 factor	 object,	 then	 the	 “factor()”	 function	 is

implemented.	 The	 function	 is	 used	 to	 recalculate	 the	 factor	 levels	 or	 return	 the	 unchanged	 vector.	 The

following	statements	illustrate	how	this	is	done.

refactor_factor	<-	function(col)

{			if	(is.factor(col))	factor(col)			else	col	}

	
When	the	“factor()”	function	is	applied,	it	will	remove	the	unused	levels.
	

//	Levels	a,	b,	and	c

refactor_factor(d$x)



[1]	a	b	c

	
//	An	unchanged	vector	is	returned	for	a	non-factor	vector.

refactor_factor(d$value)

#	[1]		1		4	10

	
Since	the	“refactor_factor()”	function	is	implemented	in	the	above	example,	the	colwise()	function	is	now

applied	to	all	the	columns	in	the	data	frame.

The	 “colwise()”	 function	 returns	 a	 function	 and	 then	 apply	 the	 “refactor_factor()”	 function	 to	 all	 the

columns	in	the	object	that	is	passed	to	it.
	

//	The	colwise()	function	applies	the	“refactor_factor()”	function.

d	<-	colwise(refactor_factor)(d)

str(d)

	

'data.frame':			3	obs.	of		3	variables:

$	x				:	Factor	w/	3	levels	"a","b","c":	1	2	3

$	y				:	Factor	w/	3	levels	"one","three",..:	1	3	2

$	value:	int		1	4	10

	
Attach()	and	Detach()
If	you	use	 the	“$”	notation	 in	a	variable,	 for	 example	“results$school”,	 to	 list
contents	 or	 components	 may	 not	 be	 suitable.	 It	 would	 be	 better	 to	 make	 the
components	 of	 a	 list	 or	 data	 frame	 briefly	 visible	 as	 variable	 within	 the
component	name.	You	do	not	need	to	refer	to	the	list	name	specifically.
The	“attach()”	function	will	allow	you	to	use	the	“database”,	for	example	a	list
or	 data	 frame,	 as	 the	 function’s	 argument.	 If	 grades	 are	 in	 a	 data	 frame	 for
example	with	two	variables,	“grades$a”	and	“grades$b”,	then	you	could	use	the
attach()	function	by	doing	the	following:

>	attach(grades)



The	“attach()”	function	allows	you	to	place	the	data	frame	in	the	search	path	of
the	 second	 position	 if	 there	 are	 no	 variables,	 a,	 b	 or	 c	 in	 position.	 In	 the
following	example,	a,	b,	and	c	are	variables	from	the	data	frame.

>	a	<-	b+c

The	above	assignment	does	not	change	the	“a”	component	of	the	data	frame,	but
instead	 covers	 it	 up	with	 another	 variable	 “a”	within	 the	 directory	 at	 the	 first
position	of	 the	search	path.	 If	you	would	 like	 to	permanently	make	changes	 to
the	data	frame,	the	easiest	way	is	to	implement	the	“$”	notation.	The	following
example	will	show	you	how	to	do	this:

>	grades$a	<-	b+c

In	the	above	expression,	the	new	value	of	component	“a”	will	not	be	visible	until
the	 data	 frame	 is	 detached	 and	 reattached.	 To	 detach	 the	 data	 frame,	 use	 the
“detach()”	function.

>	detach()

When	you	implement	 the	detach()	function,	 it	will	detach	from	the	search	path
for	the	element	in	the	second	position.	Therefore,	the	variables	a,	b,	and	c	would
no	 longer	 be	 visible,	 unless	 the	 notation	 is	 specified	 as	 “grades$a”.	 The
elements	greater	than	the	second	position	on	the	search	path	can	be	detached	by
providing	a	number,	but	it	is	better	to	use	a	name,	for	example	“detach(grades)”
or	“detach(“grades”)”.

Note:	 R	 allows	 lists	 and	 data	 frames	 to	 be	 attached	 at	 the	 second	 position	 or	 greater.

Whatever	 is	 attached	 is	 considered	 a	 copy	 of	 the	 original	 object.	 You	 can	 change	 the

attached	values	by	using	 the	“assign()”	 function,	but	bear	 in	mind	 that	 the	original	 list	or

data	frame	will	remain	the	same.



Working	With	Data	Frames
Data	 frames	 are	 a	 useful	 for	working	with	 different	 problems	within	 the	 same
directory.	If	you	would	like	to	efficiently	work	with	data	frames,	you	will	need
to	do	the	following:

1.	 Bring	 all	 the	 variables	 together	 for	 specific	 problems	 in	 a	 data	 frame
and	assign	an	appropriate	name.

2.	 When	 working	 with	 problem,	 ensure	 that	 you	 attach	 the	 appropriate
data	frame	for	the	second	position	and	then	use	the	working	directory	at
the	first	level	for	usable	quantities	and	temporary	variables.

3.	 Before	you	leave	a	problem,	ensure	that	you	add	any	variables	that	you
would	 like	 to	keep	for	 future	 reference	 to	 the	data	 frame	with	 the	“$”
operator	and	then	use	the	“detach()”	function.

4.	 The	 last	 thing	 that	 you	 should	 do	 is	 to	 remove	 all	 the	 unnecessary
variables	 from	 the	 working	 directory.	Make	 sure	 that	 you	 remove	 as
many	temporary	variables.	When	you	do	this,	it	makes	it	easier	to	work
with	many	problems	in	the	same	directory	that	have	the	variables,	a,	b,
and	c,	for	example.

Attach()	Arbitrary	Lists
	
The	 attach()	 function	 is	 generic	 and	 allows	 directories	 and	 data	 frames	 to	 be
attached	to	the	search	path.	However,	other	object	classes	are	also	attached	in	the
same	way,	specifically	any	object	with	the	object	mode	“list”.
The	following	example	shows	how	the	“attach()”	function	works	with	lists:

>	attach(any.old.list)

	
Note:	Any	elements	that	were	attached,	can	be	detached	using	the	detach()	function,	by	the

position	number	or	by	the	name.



	



Manage	Search	Path
The	“search()”	function	in	R	is	used	to	show	the	current	search	path.	It	can	be
helpful	when	you	are	trying	to	figure	out	which	data	frames,	lists,	and	packages
that	are	attached	or	detached.

When	 you	 enter	 the	 “search()”	 function	 at	 the	 R	 command	 line,	 you	 will	 get
something	that	looks	like	the	following:

>	search()

[1]	".GlobalEnv"								"tools:rstudio"					"package:stats"			

[4]	"package:graphics"		"package:grDevices"	"package:utils"			

	
The	“.GlobalEnv”	expression	in	the	above	example	specifies	the	workspace.	If
“grades”	are	attached,	you	may	get	the	something	that	looks	like	the	following:
	

>	search()

[1]	".GlobalEnv"			"grades"

>	ls(2)

[1]	"a"	"b"	"c"

	

Notice	that	the	“ls()”	function	or	objects	can	be	used	to	evaluate	the	contents	of
any	position	within	the	search	path.	The	last	thing	that	you	should	do	is	to	detach
the	data	frame	and	confirm	that	it	has	been	removed	from	the	search	path.

In	 the	 following	 example,	 the	 “detach()”	 function	 is	 implemented	 to	 detach
“grades”	from	the	search	path.

>	detach("grades")

>	search()

[1]	".GlobalEnv"			"Autoloads"				"package:base"

	



"package:base"

"Autoloads"	

"package:base"



Matrix	and	Arrays
Matrices	and	arrays	are	similar,	but	they	are	used	to	manipulate	and	handle	data
in	different	ways.	 In	 this	chapter,	you	will	 learn	how	 to	create	and	manipulate
arrays	and	matrices	for	different	scenarios	and	special	cases.



Arrays
An	 array	 is	 a	 collection	 of	 multiple	 data	 entries,	 for	 example	 numeric	 and
characters.	R	provides	options	for	creating	and	managing	arrays,	as	well	as	other
special	types	of	matrices.

In	R,	a	dimension	vector	is	considered	a	vector	of	non-negative	integers,	whose
length	can	be	n.	If	the	length	is	n,	then	the	array	is	n-dimensional;	for	example	a
matrix	that	has	a	two	dimensional	array.	The	dimensions	in	the	array	are	indexed
from	one	to	the	values	that	is	in	the	dimension	vector.	A	vector	can	also	be	used
by	R	 as	 an	 array	 if	 the	 dimension	vector	 has	 the	 dim	 attribute.	 If	 a	 vector	 for
example,	 has	 1000	 elements,	 the	 expression	 would	 look	 like	 the	 following
example:

>	dim(y)	<-	c(2,	5,	100)

The	above	example	uses	the	dim	attribute,	which	applies	a	2	by	5	by	100	array.
You	can	use	the	matrix()	and	array()	functions	as	alternative	solutions	to	make
the	expression	simple	and	more	natural.	The	values	in	the	data	vector	provide	an
array	that	looks	similar	to	the	ones	in	FORTRAN.	They	appear	in	a	column-like
format	with	the	first	subscript	moving	the	quickest	and	last	subscript	moving	the
slowest.

If	the	dimension	vector	for	an	array	“x”	is	c(2,	3,	5),	then	it	would	have	2	*	3	*	5
=	30	entries	in	“x”	and	the	vector	would	have	the	order	x[1,	1,	1,],	x[2,	1,	1]	…
x[2,	3,	4],	x[2,	3.	5].

Arrays	 that	 are	one-dimensional	 are	 treated	 the	 same	as	vectors.	This	 includes
printing.

Array	Indexing
You	can	reference	individual	elements	of	an	array	by	providing	the	name	of	the
array	 with	 subscripts.	 The	 subscripts	 are	 written	 in	 the	 square	 brackets	 and
separated	by	commas.

Arrays	 have	 subsections	 that	 are	 specified	 with	 a	 sequence	 of	 index	 vectors



instead	of	subscripts.	However,	if	an	index	position	has	an	empty	index	vector,
the	entire	subscript	is	adopted.

In	 reference	 to	 the	 previous	 example,	 “a[a,,]”	 with	 a	 4	 by	 2	 array	 that	 has	 a
dimension	vector	c(4.2)	and	data	vector	that	contains	the	following	values:

>	c(a[2,1,1],	a[2,2,1],	a[2,3,1],	a[2,4,1],

		a[2,1,2],	a[2,2,2],	a[2,3,2],	a[2,4,2])

	
The	above	example	has	the	format	“a[,,]”,	which	stands	for	a	complete	that	is	the
same	 as	 removing	 the	 subscripts	 completing	 and	 implementing	 “a”
independently.	 If	 you	 an	 array,	 for	 example	 “A”,	 the	 dimension	 vector	 can	 be
implemented	exclusively	as	“dim(a)”.	You	can	reference	if	from	both	sides.
If	you	provide	the	array	name	with	a	single	subscript	or	index	vector,	the	values
that	 are	associated	with	 the	data	vector	are	used.	 If	 this	 is	 case,	 the	dimension
vector	 is	not	 recognized.	 If	 the	single	vector	 is	not	a	vector	array,	 then	 it	does
apply.
Array()	Function
In	 addition	 to	 providing	 a	 vector	 structure	with	 a	 dim	 attribute,	 arrays	 can	 be
created	from	vectors	with	the	“array()”	function	with	the	following	format:

Z	<-	array(data_vector,	dim_vector)

If	you	have	a	vector	“a”	for	example	and	it	contains	16	or	less	numbers,	then	the
expression	may	look	like	the	following:

>	Z	<-	array(a,	dim=c(2,4,2)

This	example	could	be	could	use	“a”	 to	create	a	2	by	4	by	2	array	 in	Z.	If	 the
size	of	“a”	is	the	same	as	16	then	the	result	would	be	the	same	as	the	following
example:

>	Z	<-	a	;	dim(Z)	<-	c(2,4,2)

On	the	other	hand,	if	“a”	is	shorter	than	16	and	the	values	are	recycled	from	the



start	and	goes	up	to	size	16	and	you	use	something	like	the	following	example,
you	 would	 receive	 a	 mismatch	 error	 for	 the	 length,	 because	 “S”	 is	 not	 a
designated	array.

>	dim(S)	<-	a(2,4,2)

As	an	alternative,	you	could	use	the	following	example:
//	Makes	“Z”	an	array	with	all	zeros

>	Z	<-	array(0,	c(2,4,2))

	
In	the	above	example,	dim(Z)	means	that	there	is	a	dimension	vector	of	c(2,4,2).
The	 “Z[1:16]”	 argument	means	 the	 data	 vector	 in	 “a”,	 along	with	 Z[]	 and	 an
empty	subscript	or	Z	without	any	subscripts.	This	means	it	is	a	complete	array.
You	 can	 use	 arrays	 in	 arithmetic	 expressions	 and	 the	 result	 is	 an	 array	 that
operates	on	an	element-by-element	basis	on	the	data	vector.	The	operands	for	the
dim	attributes	need	to	be	the	same,	which	becomes	the	dimension	vector	for	the
results.	 Therefore,	 if	 you	 have	 X,	 Y,	 and	 Z	 arrays	 that	 similar,	 you	 would
implement	something	like	the	following	example:

>	D	<-	2*X*Y	+	Z	+	1

The	 above	 example	 is	 the	 “D”	 array	 that	 has	 a	 data	 vector	 that	 performs	 an
element-by-element	operation.	It	is	a	mixed	array	with	vector	calculations.	There
are	specific	rules	surrounding	the	calculations	of	mixed	arrays	and	vectors.	The
exact	rule	will	be	discussed	in	more	detail	in	the	following	section.

Index	Matrices
Index	 vectors	 with	 subscripts	 are	 similar	 to	 matrices	 and	 can	 be	 used	 with	 a
single	 index	 matrix.	 They	 can	 assign	 vector	 with	 quantities	 to	 unbalanced
elements	in	an	array	or	extract	unbalanced	elements	as	a	vector.

Using	a	matrix	example	will	make	it	is	easier	for	you	to	understand.	If	you	have
double	index	array,	you	can	provide	an	index	matrix	with	two	columns	with	as
many	rows	as	you	would	 like.	The	entries	 in	 the	 index	matrix	 include	 the	 row



and	column	indices	for	the	double	index	array.	If	you	have	a	4	by	4	array	called
“B”	 for	 example,	you	would	extract	 the	elements	B[1,3],	B[2.2]	 and	B[3,1]	 as
vector	structure.	You	could	then	replace	the	inputs	in	the	“B”	array	with	zeroes.

If	you	do	this,	you	could	use	a	3	by	2	subscript	array.	The	following	examples
will	show	you	how	to	do	this:

//	A	4	by	4	array	is	created

>	B	<-	array(1:20,	dim=c(4,4))	

>	B			

[,1]	[,2]				[,3]	[,4]	

91317	101418	111519	121620

	
[1,]				1				5

[2,]				2				6

[3,]				3				7

[4,]				4				8

	

//	A	3	by	2	index	array	is	implemented.

>	i	<-	array(c(1:3,3:1),	dim=c(3,2))

>	i

	

//Displays	elements	for	3	by	2	array

						[,1]	[,2]

[1,]				1				3

[2,]				2				2

[3,]				3				1

	

//	Extract	the	specified	elements

>			B[i]



[1]	9	6	3

>	B[i]	<-	0	>	B

//	Replace	the	elements	with	zeros

						[,1]	[,2]	[,3]	[,4]

[1,]				1				5

[2,]				2				0

[3,]				0				7	etc...

01317	101418	111519	121620

	

You	are	not	allowed	use	negative	 indices	 in	 index	matrices.	However,	NA	and
zero	values	are	allowed.	The	rows	in	the	index	matrix	ignore	the	zeros	and	uses
“NA”	 to	 return	 non-applicable	 results.	 If	 you	 would	 like	 create	 a	 minimally
designed	matrix	for	a	block	design	with	blocks	(b	levels)	and	varieties	(v	levels)
factors.	 Additionally,	 you	 can	 do	 this	 if	 you	 have	 “n”	 plots	 in	 the	 test.	 The
following	example	will	show	you	how	to	do	this.
	

					 //	Omit	the	zeros
					>	Bx	<-	matrix(0,	n,	x)

					>	By	<-	matrix(0,	n,	y)

	

				//	Create	the	elements	for	“x”	and	“y”

				>	ix	<-	cbind(1:n,	blocks)

					>	iy	<-	cbind(1:n,	varieties)

	

				//	Combine	the	elements	for	“x”	and	“y”

					>	Bx[ix]	<-	1

					>	By[iy]	<-	1

					>	B	<-	cbind(Bx,	By)

	



You	can	construct	the	incidence	matrix.		For	example	if	you	have	a	matrix	“D”,
you	could	do	the	following:

>	D	<-	crossprod(Bx,	Bz)

There	is	also	an	easier	way	to	implement	this	matrix.	You	could	use	the	table()
function	by	doing	the	following:

>	D	<-	table(blocks,	varieties)

It	is	important	to	note	that	index	matrices	must	be	numerical	and	if	a	logical	or
character	matrix	is	used	for	example,	the	matrix	is	treated	an	index	vector.

Mixed	Vectors	and	Arrays
The	 specific	 rule	 that	 affects	 element-by-element	 mixed	 calculations	 with
vectors	and	arrays	can	be	somewhat	complicated.	It	is	recommended	that	use	the
recycling	rule	as	a	guide	to	help	you	perform	better	calculations	with	vectors	and
arrays.	The	recycling	rule	states	the	following:

The	expression	should	be	assessed	from	left	to	right.
	
Short	 vector	 operands	 are	 extended	 by	 recycling	 their	 value	 until
they	match	the	size	of	other	operands.
	
When	 short	 vectors	 and	 arrays	 are	met,	 the	 arrays	must	 have	 the
same	dim	attribute.	If	not	an	error	will	occur.

	
When	a	vector	operand	is	longer	than	a	matrix	or	an	array,	an	error
will	occur	with	the	operand.
	

When	there	is	an	array	structure	and	the	vector	does	not	have	an	error,	then	the
result	is	an	array	with	the	dim	attribute	with	the	array	operands.
Outer	Product	of	Arrays
One	 of	 the	 most	 important	 operation	 is	 calculating	 the	 outer	 product	 of	 two
array.	For	example,	if	you	have	“x”	and	“y”	array,	then	the	outer	product	is	an
array	 that	 has	 a	 dimension	 vector	 resulting	 from	 the	 concatenation	 of	 two
dimension	vectors,	and	the	data	vector	is	obtained	by	creating	the	products	of	all



the	 elements	 of	 the	 data	 vector	 of	 arrays	 “x”	 and	 “y”.	 The	 outer	 product	 is
created	by	the	“%0%”	operator.
This	is	how	you	could	implement	this	special	operator.

>	fg	<-	f	%o%	g

You	could	also	use	the	following	alternative	method:
>	fg	<-	outer(f,	g,	"*")

In	the	above	example,	the	multiplication	function	is	replace	by	the	outer	function
that	has	two	variables.	If	you	would	like	to	evaluate	the	function	f(x:y)	=	cos(y)

(1	+	x2	) 	on	a	grid	with	“x”	and	“y”	coordinates	that	is	specified	in	R	by	vectors
“x”and	“y”,	you	could	implement	the	following	expressions:

>	a	<-	function(x,	y)	cos(y)/(1	+	x2)

>	b	<-	outer(x,	y,	a)

	
Notice	that	the	outer	part	of	the	two	regular	vectors	is	a	double	subscripted	array.
This	is	a	matrix	that	has	position	of	one	at	the	most.	Also,	notice	that	the	outer
product	operator	is	independent.
If	 you	 have	 the	 determinants	 of	 a	 2	 by	 2	matrices	 “[a,	 b;	 c,	 d]”,	 where	 each
element	is	a	non-negative	integer	that	ranges	from	0	to	9,	you	would	need	to	find
the	determinants,	ad,	bc,	for	all	the	possible	matrices.	You	could	also	represent
how	often	each	of	the	value	occurs	as	a	high-density	plot.	This	would	result	 in
the	probability	distribution	of	the	determinant	for	each	digit,	if	they	are	selected
independently	and	randomly.
You	 could	 do	 this	 by	 implementing	 the	 “outer()”	 function	 two	 times.	 The
following	example	will	show	you	how	to	do	this:

//	The	outer()	function	specifies	the	elements	of	a	2	by	2	matrix.			

>	prod	<-	outer(0:9,	0:9)

>	num	<-	table(outer(prod,	cnt,	"-"))

	



//	The	“Determinant”	and	the	“Frequency”	is	specified.

>	plot(as.numeric(names(num)),	num,	type="a",

								xlab="Determinant",	ylab="Frequency")

	
In	 the	 above	 example,	 notice	 that	 the	 coercion	 of	 the	 names	 attribute	 for	 the
“Frequency”	table	is	set	to	numeric	to	retrieve	the	range	of	determinant	values.
The	best	way	to	do	this	is	by	using	for	loops.
Transpose	Array
To	rearrange	or	 transpose	an	array	 is	by	 implementing	 the	“aperm()”	 function.
The	syntax	is	specified	as	follows:

>	aperm(a,	perm)

The	 above	 example	 rearranges	 an	 array	 “a”.	 The	 argument	 “perm”	must	 be	 a
permutation	of	integers	{l,……k},	where	k	is	number	of	subscripts	for	the	array
“a”.	The	function	returns	an	array	with	the	same	size	as	the	array	“a”,	but	has	the
dimensions	provided	by	“perm[	j	]”,	which	becomes	the	new	j-th	dimension.	The
best	way	 to	 seeing	 this	 operation	 is	 by	 considering	 it	 as	 a	 generalized	way	 to
transpose	matrices.
If	you	a	matrix	“X”	with	a	double	subscript	array,	 then	you	could	have	matrix
“Y”	be	expressed	as	follows:

>	Y	<-	aperm(X,	c(2,1))

In	this	case,	you	could	use	a	less	complex	function.	You	could	use	the	transpose
function	(“t()”)	to	simplify	the	expression.
Here	is	how	you	could	use	the	t()	function	to	transpose	the	matrix	“X”.

>Y	<-	t(X)



Matrices
Matrices	are	two	dimensional	data	structures	that	contain	elements	with	the	same
data	 types.	Data	 types	 for	a	matrix	may	 include	numeric,	 logical,	 character,	or
complex.	You	can	use	the	matrix()	function	to	create	a	matrix	that	may	look	like
the	following	example:

//	A	matrix	that	uses	the	integers	1	to	12	in	3	rows	and	4	columns

>	matrix	(1:10,	mrow	=	4,	mcol	=	3)

	

																[,1]	[,2]	[,3]		

			[1,]			1				5				9						

			[2,]			2				6			10	etc...

	
You	do	not	have	 to	define	both	“mrow”	and	“mcol”	arguments	because	R	assumes	 the	other	once	one	 is

given.	Notice	 that	 the	data	 is	based	on	a	column-by-column	basis,	unless	you	define	another	 row.	 If	you

create	the	“byrow=N”	argument	for	example,	the	matrix	may	look	like	the	following:
	

>	matrix	(1:12,	mrow	=	4,	byrow	=	N)					

					[,1]	[,2]	[,3]

[1]				1				2				3

		[2,]			4				5				6	etc...

	
Please	take	note	of	this	matrix	example,	because	it	will	be	used	in	future	matrix	examples.
	

y	<-	matrix	(1:12,	mrow	=	4,	byrow=N)

>	dim(y)

	
The	above	example	has	a	matrix	with	a	4	by	3	dimension.	Also	notice	that	the	vector	has	a	length	of	2.

	
Matrix	Columns
Columns	 in	 matrices	 must	 have	 the	 following	 format:	 “mode(numeric,
character,	etc)”	with	the	same	length.	The	standard	format	may	have	the	syntax



that	looks	similar	the	following:
>	mymatrix	<-	matrix(vector,	mrow=r,	mcol=c,	byrow=FALSE,	

			carnames=list(char_vector_rownames,	char_vector_colnames))

The	 “byrow	 =	 TRUE”	 argument	 indicates	 the	 matrix	 should	 have	 rows,	 whereas	 the

“byrow=FALSE”	 argument	 indicates	 that	 the	 matrix	 should	 have	 columns,	 which	 is	 by

default.	 The	 “carnames”	 argument	 provides	 optional	 labels	 for	 columns	 and	 rows	 in	 the

matrix.

The	following	examples	show	how	these	columns	and	rows	are	created:

//	Creates	5	x	4	numeric	matrix	

y<-matrix(1:20,	nrow=5,ncol=4)

	

>	cells	<-	c(1,26,24,68)

>	rnames	<-	c("Row1",	"Row2")

>	cnames	<-	c("C1",	"C2")

	

mymatrix	<-	matrix(cells,	nrow=2,	ncol=2,	byrow=TRUE,

carnames=list(rnames,	cnames))

The	following	example	identifies	specific	rows	and	columns	with	subscripts.

//	The	4th	column	of	the	matrix

y[,4]

	

//	The	3rd	row	of	the	matrix

y[3,]

	
//	Specifies	rows	2,	3,	and	4	and	columns	1,	2,	and	3.

>	y[2:4,1:3]

	



Matrix	Construction
You	 can	 construct	 a	matrix	 in	 different	 ways.	 You	 can	 construct	 a	matrix	 by
using	 data	 elements.	 This	 method	 will	 allow	 you	 to	 fill	 the	 content	 into	 the
columns	by	default.	For	example,	if	you	would	like	to	create	a	matrix	called	“X”
and	fill	 the	columns	sequentially,	you	would	create	a	matrix	that	 looks	like	the
following	example:
	

>	X	=	matrix(	

			c(2,	4,	3,	1,	5,	7),	

			nrow=3,	

			ncol=2)	

	

//	The	“X”	matrix	has	3	rows	and	2	columns

>	X					

	

							[,1]	[,2]	

[1,]				2				1	

[2,]				4				5	etc...

	
Matrix	Subscripts
When	you	have	a	vector,	you	can	subscript	with	a	single	index.	It	is	normal	for	you	to	use	two	subscripts	for

a	matrix;	you	only	need	to	separate	them	with	a	comma.	The	following	example	will	show	you	how	to	do

this:

//	Three	rows	and	two	columns	are	specified.

>	y[3,2]

[1]	8

	

//	The	result	is	a	3	by	2	matrix.

>	y[1:3,	c(1,3)]



>					[,1]	[,2]	

[1,]			1				3			etc...			

	

When	you	omit	a	subscript,	you	will	get	an	entire	row	or	column.	The	following
examples	show	how	this	is	done.
	

>	y[3,]

[1]		7		8		9

	
>	y[,2]

[1]		2		5		8	11

	
The	results	that	you	see	in	the	above	examples	are	actually	vectors.	They	are	not
matrices	with	a	 single	 row	or	column.	 If	you	ask	 for	a	 two	columns,	 then	you
will	get	a	matrix.	A	matrix	would	look	something	like	the	following	example:

>y[,c(1,3)]					

						[,1]	[,2]

[1,]		1				3

[2,]		4				6

[3,]		7				9

	
	

If	 you	wanted	 to,	 you	 could	 request	 one	 column	 or	 two,	 so	 it	 could	 continue
being	a	matrix.	You	could	do	this	by	applying	the	“drop=F”	argument.	This	is
not	used	quite	often,	only	to	make	it	complete.	The	following	example	will	guide
you	on	how	to	do	this:

//	This	is	1	by	3	matrix.

>	y[2,,drop=F]					

					[,1]	[,2]	[,3]	

[1,]			4				5				6

	



//	This	is	4	by	1	matrix

>	y[,2,drop=F]					

											[1,]			

						[,1]	2

				2	[2,]		5

				5	[3,]		8

	
Combining	Matrices
Two	matrices	that	have	the	same	columns	and	rows	can	be	combined	to	create	a
larger	matrix.	For	example,	if	you	have	a	matrix	called	“Y”	with	three	rows,	you
would	combine	matrix	“X”.
The	following	examples	create	matrix	“Y”	and	combine	matrix	“X”.

//	A	3	by	1	matrix	(“Y”)	is	created

>	Y	=	matrix(	

			c(7,	4,	2),	

			nrow=3,	

			ncol=1)	

	

//	Matrix	“Y”	displays	3	rows

		>	Y	

												

						[,1]	

[1,]				7	

[2,]				4	

[3,]				2

	

To	combine	matrix	“X”	with	matrix	“Y”	you	would	use	the	“cbind()”	function.
>	cbind(X,	Y)	

					[,1]		[,2]	[,3]	



[1,]				2				1				7	

[2,]				4				5				4	

[3,]				3				7				2

The	“cbind()”	function	allows	you	to	combine	the	rows	for	the	two	matrices	if
you	 have	 the	 same	 number	 columns.	You	 can	 also	 use	 the	 rbind()	 function	 to
combine	matrices.	The	following	example	will	show	you	how	to	do	this:

//	A	6	by	2	matrix	is	created

Z	=	matrix(	

			c(6,	2),	

				nrow=1,	

			ncol=2)	

	

//	The	“Z”	matrix	has	two	columns

>	Z														

							[,1]	[,2]	

		[1,]			6				2	etc...

	

//	The	rbind()	function	combines	matrix	“X”	and	matrix	“Z”

>	rbind(X,	Z)	

						[,1]	[,2]	

[1,]				2				1	

[2,]				4				5	etc...

Logical	Subscripts
Just	 like	with	vectors,	you	can	use	 logical	vectors	 to	select	specific	 rows	or	columns.	Typically,	you	can

select	a	logical	vector	with	one	entry	for	each	row.	The	same	is	also	true	for	columns,	for	example,	if	you

have	the	statement	“y[,2]	>	5”,	you	would	get	the	following	results:
	

>	y[,2]	>	5

[1]	F	F	T	T

	



The	above	example	has	 four	 entries,	one	entry	 for	 each	 row.	 If	you	wanted	 to
only	 have	 rows	 and	 have	 the	 second	 column	 greater	 than	 five	 (y[2]	 >	 5,	 you
could	use	the	following	example:
If	we	wanted	only	the	rows	for	which	the	second	column	is	>	5,	we	could	do	that
simply:

//	Provide	specific	rows	and	all	the	columns

>	y[y[,2]	>	5,]

							[,1]	[,2]	[,3]

		[1,]		7				8				9

		[2,]		10			11			12

	
Logical	and	Character	Matrices
Here	are	some	examples	that	will	show	you	how	to	create	logical	and	character	matrices:

			//	This	is	a	logical	matrix

					>	y	>	5									

	

																					[,1]	[,2]	[,3]			

				[1,]		F				F				F

				[2,]		F				F				T

				[3,]		T				T				T	etc...

	
	

			//	A	logical	matrix	that	removes	values	greater	than	five.

			>	y[y>5]

			[1]		7	10		8	11		6		9	12

	
The	above	example	actually	returns	a	vector	and	a	not	a	matrix.	The	process	removes	values	column-by-
column.
	
The	following	example	is	a	character	matrix	that	uses	twenty-six	letters	in	order.
	

//	The	quotes	determine	that	they	are	letters.



>	matrix	(letters[1:12],	mrow	=	4,	newrow	=	N)					

	
			[,1]	[,2]	[,3]	

[1,]	"a"		"b"		"c"	

[2,]	"d"		"e"		"f"	

[3,]	"g"		"h"		"i"	etc...

	
Matrix	Functions
In	addition	to	the	transpose	function,	there	are	also	other	functions	that	are	used
with	matrices.	Here	is	a	list	of	those	functions:

crossprod()	 function	 –	 The	 crossprod()	 function	 is	 defined	 as
“crossproducts”	 and	 has	 the	 syntax	 crosspro(X,	 y).	 This	 is	 same	 as
having	 t(X)	 %*%	 y.	 The	 operator	 used	 in	 this	 instance	 is	 the
multiplication	operator,	which	you	will	learn	more	about.	The	second
argument	in	the	function	is	removed	since	the	first	one	is	used.	It	 is
considered	to	be	the	same	as	the	first.
diag()	function	–	The	diag()	function	is	based	on	the	argument	on	the
inside	of	the	function.	For	example,	if	you	have	the	function	diag(v),
v	defines	the	vector	and	provides	a	diagonal	matrix	with	elements	of
the	 vector	 for	 diagonal	 entries.	 If	 you	 have	 diag(M)	 on	 the	 other
hand,	M	is	defined	as	a	matrix,	where	the	vector	of	diagonal	entries
belong	to	matrix	M.	Another	convention	is	If	you	have	diag(k),	k	is
defined	as	the	identity	matrix.

One	of	 the	most	widely	used	matrix	 function	 is	 the	“t()“	 function.	 It	 transposes	 the	matrix	 into	 the	 form

“%*%”.	 It	 also	 performs	multiplication.	 The	 “solve()”	 function	 on	 the	 other	 hand	 inverts	 a	matrix	 and

solve	linear	systems.

The	“transpose()”	function	transposes	a	matrix	by	interchanging	the	columns	and	rows	of	the	matrix.	If	you

have	a	matrix	“X”	for	example,	you	would	something	like	following:



//	Transpose	“X”

>	t(X)

					[,1]	[,2]	[,3]	

[1,]				2				4				3	

[2,]				1				5				7

Here	are	some	additional	examples	that	will	show	you	how	the	“t()”	function	and	,“%*%”	operator	works

when	transposing	a	matrix.

//	The	t()	function	transposes	y

				>	t(y)

	

				[,1]	[,2]	[,3]	[,4]	

[1,]	1				4				7			10

[2,]	2				5				8			11	etc...

	

//	The	t()	function	transposes	y	number	of	times

t(y)

%*%	y

	

					[,1]	[,2]	[,3]	

[1,]		166		188		210

[2,]		188		214		240	etc...

	

//	Unable	to	invert	matrix	using	this	method

>	solve	(t(y)	%*%	y)

The	“solve()”	function	allows	you	to	solve	simple	and	complex	linear	equations.
	

You	could	solve	linear	equations	by	using	one	of	the	following	methods:
	

//	Examples	of	linear	equations

y	=	2x	+1

5x	=	6	+	3y



y/2	=	3	-	x

	

However,	you	can	use	 the	“solve()”	 function	 to	solve	 the	above	example	 in	R.
The	 following	 example	 will	 show	 you	 how	 to	 create	 a	 matrix	 system	 called
“equate”	 and	 produce	 a	 vector	 result	 called	 “result”.	 	 The	 system	will	 read	 as
follows:	“(equate)	y	=	result”.	The	next	step	is	to	find	y	by	using	the	“solve()”
function	 to	 invert	 the	matrix.	You	would	multiply	 the	matrix	by	“result”	or	by
calling	the	“solve()”	function	with	the	“equate”	and	result	arguments.
	

//	A	four	column	matrix	is	created	with	several	numbers

>	result	<-	c(2,2,3,3)

>	equate	<-	matrix	(c(14,	8,	16,	6,	5,	3,	7,	6,	5,	4,	3,	1,	2,	4,	7,	9),	ncol=4)

	

>	solve	(equate)											

						[,1]							[,2]		[,3]									[,4]

[1,]	-0.1511111		0.06		0.2288889	-0.17111111

[2,]		0.5688889	-0.52	-0.3911111		0.40888889	etc...

	
	

//	The	solve()	function	implements	a	4	x	1	matrix

>	solve	(equate)	%*%	result				

	

							[,1]					

[1,]	-0.008888889

[2,]		0.151111111

[3,]		0.186666667	etc...

	

//	The	result	is	a	vector	of	length	4

>	solve	(equate,	c(2,	2,	3,	3))

[1]	-0.008888889		0.151111111		0.186666667		0.217777778

	



A	matrix	can	be	considered	as	an	array	with	 two	subscripts.	There	are	various
operators	and	functions	that	are	available	in	R	for	only	matrices.	The	transpose
function	t()	for	example,	is	the	matrix	transpose	function	that	is	exclusively	used
for	 transposing	 matrices.	 There	 are	 also	 other	 functions,	 such	 as	 nrow()	 and
ncol()	functions.	They	nrow()	function	provides	the	number	rows	in	a	matrix	and
the	ncol()	 function	provides	 the	columns	 in	a	matrix.	 If	you	have	for	example,
nrow(X),	 you	 would	 get	 the	 number	 of	 rows	 in	 matrix	 X	 and	 if	 you	 have
ncol(X),	you	would	get	the	number	of	columns	in	the	matrix	X.

Matrix	Multiplication
As	 previously	 mentioned,	 the	 special	 operator	 %*%	 is	 used	 for	 matrix
multiplication.	If	you	have	an	“m	by	1”	or	a	“1	by	m”	matrix,	you	can	use	it	as
an	m-vector	if	it	is	appropriate.	Vectors	in	matrix	multiplication	expressions	are
automatically	 promoted	 to	 either	 row	 or	 column	 vectors,	 if	 it	 makes	 sense
multiplicatively.

If	matrix	X	and	matrix	Y	are	square	matrices	that	have	the	same	size,	then	“X	*
Y”	 is	 the	matrix	with	element-by-element	products.	The	matrix	product	would
be	“X	%*%”,	and	if	there	is	a	vector	then	the	expression	would	be	“y	%*%	X
%*%	y”.	This	is	the	quadratic	form.

Row	and	Column	Names
One	thing	that	is	really	useful	in	R,	is	the	option	to	name	column	and	rows	for
your	 matrix.	 For	 example,	 if	 you	 have	 a	 set	 of	 columns	 called	 “y”	 with	 the
names	of	cars	and	a	set	of	rows	for	colors,	your	matrix	would	something	like	the
following:
>	carnames(y)	<-	list	(c("Toyota",	"Ford",	"Honda",	"Mitsubishi"),	c("Black","White","Blue"))
	
Notice	that	the	“carnames()”	function	creates	a	list.	The	first	item	on	the	list	is	a
vector	with	a	row	of	names	and	the	second	is	a	vector	with	column	names.	You
can	commit	either	 the	 row	or	column	and	replace	 the	vector	with	 the	“NULL”
reserved	word.	The	column	“y”	may	look	similar	to	following	results.

//	Display	row	and	columns	for	the	carnames()	function



>	y						

	
									Black	White	Blue			

Toyota					1					2				3	

Ford							4					5				6	

Honda						7					8				9

Mitsubishi	10				11		12

	
You	can	now	extract	by	name	instead	of	by	number.	This	is	helpful	because	the
numbers	can	change,	for	example	you	can	remove	specific	rows	or	columns.
The	following	example	will	show	you	how	you	can	remove	a	specific	column:

//	The	top	left	column	is	returned

>	y["Toyota","Black"]

		[1]	1	>	x[,"Black"]											

	
	

//	The	“Black”	column	returns	a	vector	of	names.

									Toyota	Ford	Honda	Mitsubishi

					Black			1						4				7				10

	
Deconstruct	Matrix
You	 can	 deconstruct	 matrix	 by	 implementing	 the	 c()	 function.	 It	 is	 used	 to
combine	all	column	vectors	in	one.	The	following	example	will	show	you	how
to	do	this:

//	The	c()	function	deconstructs	the	“X”	matrix.

>	c(X)	

[1]	2	4	3	1	5	7



Dates
There	are	several	options	in	R	for	handling	date	and	date/time	data.	The	built-in
“as.Date()”	 function	handles	 the	dates	without	 the	 times.	The	chron	package	 is
for	handling	dates	and	times,	but	does	not	handle	time	zones.	There	are	also	the
“POSIXct”	and	“POSIXlt”	classes	for	handing	data	and	times	with	control	over
time	zones.	The	 rule	when	working	with	data	and	 time	data	 in	R	 is	 to	use	 the
simplest	method.	Therefore,	 if	you	are	handling	date	only	data,	you	should	use
the	 as.Date()	 function.	 This	 is	 considered	 the	 best	 option.	 If	 you	 are	 handling
both	 date	 and	 times	without	 time	 zone	 information,	 you	 should	 use	 the	 chron
package.	The	POSIX	classes	are	best	when	manipulating	time	zones.

Note:	If	you	would	like	to	convert	data	types	use	the	“as.”	functions.

All	the	dates	are	stored	internally	as	the	number	of	days	or	seconds	according	to
the	 reference	 date.	 However,	 the	 POSIXlt	 class	 does	 not	 have	 the	 facility.
Therefore,	dates	 in	R	are	handled	numerically	and	the	class	function	is	used	to
determine	how	they	are	stored.	The	POSIXlt	class	stores	the	values	for	the	date
and	time	as	a	 list	with	components	such	as	hour,	min,	sec,	and	mon.	The	class
makes	it	easy	to	extract	these	elements.

If	you	would	like	to	get	the	current	date,	use	the	“Sys.Date()”	function.	It	returns
the	Date	object	that	allows	you	to	convert	into	a	different	class	when	necessary.
The	 following	 table	 will	 describe	 the	 different	 types	 of	 date	 values	 used	 to
implement	different	types	of	dates.

The	 “as.Date()”	 functions	 allows	 different	 types	 of	 input	 formats	 with	 the
“format=”	argument.	The	default	format	is	 the	four-digit	year,	one	or	 two	digit
month,	and	one	or	two	digit	day.	The	date	values	are	separated	by	either	dashes
or	slashes.	In	the	following	examples	the	as.Date()	functions	are	used	to	create
two	different	formats:

>	as.Date('2015-6-10')



Date	Values Definition

%Y Year	(4	digit)

%y Year	(2	digit)

%B Month	(full	name)

%b Month	(abbreviated)

%m Month	(decimal	number)

%d Day	of	month	(decimal	number)

[1]	"2015-06-10"

	

>	as.Date('2007/05/10')

[1]	"2007-05-10"	

	

	

	

	

	

	

	

	

	
If	 the	 input	 dates	 do	 not	 match	 the	 standard	 format,	 you	 can	 create	 a	 format
string	by	using	the	elements	from	the	Table	above.	The	following	examples	will
show	you	different	ways	that	you	can	use	the	date	values:

>	as.Date('10/6/2015',format='%m/%d/%Y')

[1]	"2015-06-10"

	

>	as.Date('November	7,	1973',format='%B	%d,	%Y')

[1]	"1973-11-07"

	

>	as.Date('22Oct71',format='%d%b%y')			

[1]	"1971-10-22"	

	
Note:	Be	careful	how	you	use	the	“%y”	date	value.	It	is	specific	to	the	system.

	
The	“Date”	objects	are	stored	within	R	as	 the	number	of	days	since	January	1,
1970	(A	UNIX	date	time	value	is	stored	as	the	number	of	seconds	since	January



Codes	for	Dates Codes	for	Times

Date	Code Definition Time	Code Definition

M Month	(decimal	number) H Hour

D Day	of	Month	(decimal	number) M Minute

Y Year	(4	digit) S Second

Mon Month	(abbreviated) 	 	

1,	1970),	based	on	the	negative	numbers	from	earlier	dates.
In	R,	 the	“as.numeric()”	 function	can	be	used	 to	convert	any	Date	object	 to	a
format	that	is	understood	internally.	If	you	would	like	to	remove	the	elements	of
the	dates,	you	can	use	the	weekdays(),	months(),	days(),	and	quarters()	functions.
For	example,	if	you	would	like	to	know	the	day	of	the	week	a	computer	scientist
was	 born,	 you	 could	 implement	 the	 “weekdays()”	 function	 by	 doing	 the
following:

>	bdays	=	c(borg=as.Date('1949-01-17'),	allen=as.Date('1932-08-04'),	cocke=as.Date('1925-

05-30'),	eckert=as.Date('1919-04-09'))

	

>	weekdays(bdays)						

borg					allen						cocke					eckert								

“Monday"	"Thursday"	"Saturday"	"Wednesday"	

	
The	 chron()	 function	 that	 was	 mentioned,	 converts	 date	 and	 time	 to	 “chron”
objects.	The	dates	and	times	are	given	to	the	chron()	function	as	separate	values,
therefore	you	may	need	to	do	some	preliminary	processing	to	input	the	date	and
times	when	 the	chron()	 function	 is	used.	 If	you	are	using	character	values,	 the
default	 format	 for	 the	 dates	 is	 the	 decimal	 month	 date	 value,	 along	 with	 the
decimal	day	date	value,	and	the	year.	This	format	should	have	the	forward	slash
(/)	separator.	There	are	also	alternative	formats	that	you	can	use.	The	following
table	provides	the	alternative	format	codes	that	you	can	use:



month Month	(full	name	of	month) 	 	

	
You	can	also	use	numeric	values	to	specify	dates,	by	representing	the	number	of
days	since	the	January	1,	1970.	To	enter	the	dates	and	store	it	as	the	day	of	the
year,	use	the	“origin	=”	argument	to	interpret	dates	that	are	similar	to	the	dates
you	would	like	to	use.
If	you	are	working	with	times,	the	default	format	is	hour,	minutes	and	seconds,
separated	by	colons,	for	example	“09:22:33”.	For	an	alternative	format,	defer	to
the	time	codes	listed	in	the	applicable	table.
When	 working	 with	 the	 {chron}	 package,	 the	 first	 that	 you	 need	 to	 do	 is	 to
separate	the	date	and	the	times	they	are	saved	together.	The	following	example
uses	the	strsplit()	function	to	separate	a	string	of	dates	and	times:
	

//	Assign	the	dates	and	times	to	separate

>	 dtimes	 <-	 c("2002-06-09	 12:45:40","2003-01-29	 09:30:40",	 "2002-09-

04	16:45:40","2002-11-13	20:00:40",	"2002-07-07	17:30:40")	

>	dtseparate	<-	t(as.data.frame(strsplit(dtimes,'	')))

	

//	Apply	the	date	and	times	format

>	row.names(dtseparate)	=	NULL	

>	datetimes	<-	chron(dates=dtseparate	

[,1],times=dtseparate

[,2],format=c('y-m-d','h:m:s'))

	

//	Displays	the	dates	and	times

>	datetimes

[1]	(02-06-09	12:45:40)	(03-01-29	09:30:40)	(02-09-04	16:45:40)

[4]	(02-11-13	20:00:40)	(02-07-07	17:30:40)	

	



Chron	values	are	stored	internally	as	fractional	number	of	days	from	January	1,
1970.	 These	 internal	 values	 can	 be	 retrieved	with	 the	 “as.numeric()”	 function.
The	 POSIX	 class	 that	 was	 briefly	 mentioned	 earlier	 actually	 represents	 a
portable	 operating	 system	 that	 is	 used	 in	 UNIX	 systems.	 This	 class	 is	 also
available	 on	 other	 operating	 systems.	 The	 dates	 that	 are	 stored	 in	 the	 POSIX
format	 have	 date/time	 values,	 just	 like	 in	 the	 {chron}	 package.	 The	 POSIX
format	also	allows	you	to	alter	time	zones.	You	will	learn	more	about	the	POSIX
date	format	in	the	following	section.
In	the	{chron}	package,	times	are	stored	as	fractions	of	days,	but	in	the	POSIX
date	classes,	times	are	stored	to	the	nearest	second.	Therefore,	the	times	stored	in
the	POSIX	class	is	more	accurate	than	the	times	stored	in	the	{chron}	package.
	



POSIX	Classes
There	 are	 two	 POSIX	 date/time	 classes.	 These	 are	 the	 POSIXct	 and	 POSIXlt
classes	 that	 were	 mentioned	 earlier.	 The	 POSIXct	 class	 stores	 the	 date/time
values	as	number	of	seconds	since	January	1,	1970,	whereas	the	POSIXlt	class
stores	 them	 as	 a	 list	 with	 the	 second,	 minute,	 hour,	 day,	 month,	 and	 year
elements	 for	 example.	 The	 classes	 operate	 differently	 with	 the	 way	 that	 the
values	are	stored	 internally.	The	POSIXlt	class	 is	used	for	 to	store	dates	 in	 list
form.	The	POSIXct	on	 the	other	hand	is	 the	best	option	for	storing	dates	 in	R.
The	default	format	for	enter	data	is	the	year,	month,	and	day.	Each	is	separated
by	slashes	or	dashes.	The	date/time	values	uses	white	spaces	after	 the	date	and
uses	the	time	format	hour:minutes:second	or	hour:minutes.
The	following	examples	show	valid	POSIX	date	or	date/time	inputs:

>	1915/6/16	2005-06-24	11:25	1990/2/17	12:20:05

If	the	input	times	are	related	to	one	of	the	POSIX	format,	then	the	POSIXct	can
be	used	as	follows:

//	The	POSIXlt	format	is	used.

>	 dts	 =	 c("2005-10-21	 18:47:22","2005-12-24	 16:39:58","2005-10-28	 07:30:05	 PDT")

>	as.POSIXlt(dts)

[1]	"2005-10-21	18:47:22"	"2005-12-24	16:39:58"	

[3]	"2005-10-28	07:30:05"

	

If	the	input	date	and	times	are	saved	as	number	of	seconds	from	January	1,	1970,
you	 can	 create	 POSIX	 date	 values	 by	 applying	 the	 appropriate	 class	 to	 the
values.	Since	most	date	manipulation	functions	are	associated	with	the	POSIXt
pseudo-class,	ensure	that	you	include	it	as	the	first	element	in	the	class	attribute.
The	 following	 examples	 uses	 the	 POSIXt	 pseudo-class	 and	 POSIX	 date/time
class	to	return	date/time	values	based	on	the	POSIX	date	time	format:

>	datetimes	=	c(1127056501,1104295502,1129233601,1113547501,1119826801,1132519502,1125298801,1113289201)

>	mydtimes	=	datetimes



Codes	for	Dates Codes	for	Times

Date	Code Definition Time	Code Definition

%a Abbreviated	weekday %H Decimal	 hours	 (24	 hour

format)

%b Abbreviated	month %M Decimal	minute

%c Location	specific	date	and	time %S Decimal	second

%j Decimal	day	of	the	year %I Decimal	hours	(12	hour)

%w Decimal	 weekday	 (eg.	 0	 =

Sunday)

%p Location	specific	am/pm

%A Full	weekday	name	for	month %W Location	specific	time

%B Full	month	name %z Offset	from	GMT

%d Decimal	date %Z Time	 zone	 (character

>	class(mydtimes)	=	c('POSIXt','POSIXct')

>	mydtimes

	
[1]	"2005-09-18	08:15:01	PDT"	"2004-12-28	20:45:02	PST"

[3]	"2005-10-13	13:00:01	PDT"	"2005-04-14	23:45:01	PDT"

[5]	"2005-06-26	16:00:01	PDT"	"2005-11-20	12:45:02	PST"

[7]	"2005-08-29	00:00:01	PDT"	"2005-04-12	00:00:01	PDT"	

	
It	 is	 easier	 to	 do	 these	 conversions	with	 the	 structure	 function.	 The	 following
example	will	show	you	how	this	function	is	used	to	convert	dates	and	times.

>	datetimes	=	structure(datetimes,class=c('POSIXt','POSIXct'))

The	POSIX	date/time	classes	use	the	POSIX	date/time	implementation	on	your
operating	system.	It	allows	R	to	manipulate	the	dates	and	times	in	the	same	way
as	other	programming	languages,	such	as	C	and	C++.	In	the	following	section,
you	will	learn	how	to	implement	the	date/time	codes	and	functions	available	in
R.



format)

%m Decimal	month 	 	

%U Decimal	week	of	the	year

(Start	on	Sunday)

	 	

%W Decimal	week	of	the	year

(Starting	on	Monday)

	 	

%Y Four	digit	year 	 	

%y Two	digit	year 	 	

	 	 	 	



Functions,	Units,	and	Codes
R	allows	you	to	use	various	date	functions	and	units	to	calculate	the	differences
between	dates,	create	sequences,	and	manipulate	various	dates	and	times.	In	this
section,	 you	 will	 learn	 about	 functions	 such	 as	 the	 strptime(),	 strftime(),
difftime(),	 POSIX,	 seq(),	 cut()	 and	many	 other	 functions.	 You	will	 also	 learn
about	the	different	units	and	codes	used	in	these	functions.
	
Strptime()	and	Strftime()
The	 two	 most	 essential	 functions	 used	 to	 manipulate	 date	 and	 time	 are	 the
strptime()	and	strftime()	 functions.	The	strptime()	 function	 is	used	 for	entering
dates	 and	 the	 strftime()	 function	 is	 for	 formatting	 date	 outputs.	 They	 use	 the
different	formatting	codes	specified	in	the	above	table.	They	specify	how	dates
and	times	read	and	outputted.
If	you	would	like	to	create	a	POSIXct	date	from	this	format,	you	would	use	the
strptime()	 function.	 The	 following	 example	 will	 show	 you	 how	 to	 use	 the
strptime()	function.

//The	strptime()	specifies	the	formatting	code	for	a	specific	date	and	time

>	mydate	<-	strptime('16/Oct/2005:07:51:00',format='%d/%b/%Y:%H:%M:%S')

[1]	"2005-10-16	07:51:00"	

	

Notice	 that	 the	 non-format	 characters	 are	 specified	 literally	 with	 the	 use	 of
backslashes.	When	you	use	the	strptime()	function	in	R,	you	will	have	the	option
to	use	the	time	zone	“tz=”	argument.	Another	way	that	you	can	use	the	POSIX
date	is	to	pass	each	elements	of	the	time	to	the	ISOdate()	function.	Therefore,	the
initial	date/time	value	in	the	example	can	be	created	with	the	ISOdate()	function.
The	following	example	will	show	you	how	this	is	done:

//The	date	and	time	elements	are	passed

>	ISOdate(2005,10,21,18,47,22,tz="PDT")

[1]	"2005-10-21	18:47:22	PDT"	



	
If	 you	would	 like	 to	 format	 dates	 for	 outputs,	 the	 format()	 function	 is	 used	 to
identify	 the	 type	 of	 input	 date.	 It	 will	 then	 perform	 conversions	 before
implementing	 the	 strftime()	 function.	This	 function	 does	 not	 need	 to	 be	 called
directly.	If	you	have	to	print	a	date/time	value	for	example,	you	could	implement
the	ISOdate()	function	by	doing	the	following:

//	The	format()	function	identifies	the	type	of	input	date

>	 thedate	 <-	 ISOdate(2005,10,21,18,47,22,tz="PDT")

>	format(thedate,'%A,	%B	%d,	%Y	%H:%M:%S')

[1]	"Friday,	October	21,	2005	18:47:22"	

	
POSIX	Functions																											
The	 POSIX	 date	 formats	 allows	 you	 to	 optionally	 use	 the	 “usetz=TRUE”
argument	 with	 the	 format()	 function.	 It	 specifies	 that	 the	 time	 zone	 can	 be
displayed.
There	 is	 also	 the	 “as.POSIXlt()”	 and	 the	 “as.POSIXct()”	 functions	 that	 allows
you	to	use	the	“Date”	and	“chron”	objects.	Therefore	you	can	enter	and	convert
them	if	necessary.		You	can	also	convert	between	the	two	POSIX	formats.	You
can	 extract	 individual	 elements	 with	 the	 POSIX	 date/time	 object	 by	 initially
converting	to	the	“POSIXlt()”	function	and	then	accessing	the	elements.
Here	is	how	you	would	implement	the	conversion	with	the	POSIXlt()	function.

//The	POSIXlt()	converts	a	specific	date

>	mydatetime	<-	as.POSIXlt('2005-4-19	7:01:00')

>	names(mydate)

[1]	"sec"			"min"			"hour"		"mday"		"mon"			"year"		

[7]	"wday"		"yday"		"isdst"

	

>	mydatetime$mday

[1]	19	



	

Summary	Functions
R	contains	many	statistical	summary	functions,	such	as	“mean()”,	“min()”,	and
“max()”	functions.	They	allow	to	handle	date	objects.	For	example	if	you	need
to	know	the	release	dates	of	various	versions	of	R	from	versions	1.0	to	2.0,	you
could	implement	something	like	the	following	example:

//	The	version	dates	are	read	with	the	scan()	function

>	resdates	<-	scan(what="")

	
1:	1.0	29Feb2000	3:	1.1	15Jun2000	5:	1.2	15Dec2000	7:	1.3	22Jun2001	9:	1.4	19Dec2001

11:	 1.5	 29Apr2002	 13:	 1.6	 1Oct2002	 15:	 1.7	 16Apr2003	 17:	 1.8	 8Oct2003

19:	1.9	12Apr2004	21:	2.0	4Oct2004	23:	Read	22	items

	
//	Columns	and	rows	are	created	for	the	release	dates.	A	specific	format	is	specified.

>	 resdates	 =	 as.data.frame(matrix(resdates,ncol=2,byrow=TRUE))

>	 resdates[,2]	 =	 as.Date(resdates[,2],format='%d%b%Y')

>	names(resdates)	=	c("Version","Release	Date")

	

//	Displays	the	versions	and	release	dates	

>	resdates				

>	Version				Release	Date						

		1.0								2000-02-29					

		1.1								2000-06-15

		1.2								2000-12-15	etc...

	
When	 the	 dates	 are	 read	 correctly	 read	 into	R,	 you	 can	 conduct	 the	 following
calculations	with	the	summary	functions:

//	The	mean()	function	returns	a	specific	date



>	mean(rdates$Date)

[1]	"2002-05-19"

	

//	The	range()	function	calculates	range	of	dates

>	range(rdates$Date)

[1]	"2000-02-29"	"2004-10-04"

>	rdates$Date[11]	-	rdates$Date[1]

Time	difference	of	1679	days	

	
If	you	subtract	with	the	date	or	date/time	classes,	R	will	return	a	time	difference
representing	 the	 “difftime”	 object.	 For	 example,	 if	 a	 computer	 system
experienced	 a	 system	 failure	 on	 January	 13,	 2013,	 and	 another	 system	 failure
occurred	on	November	07,	2014,	you	can	calculate	the	time	interval	between	the
two	 system	 failures,	 by	 subtracting	 the	 two	 dates	with	 the	 ISOdate()	 function.
The	 ISOdate()	 function	 is	 used	 in	 the	 following	 example	 to	 calculate	 the
difference	between	the	dates:
	

//	The	ISODate()	function	calculates	the	time	difference	in	days.

>	fail1	<-	ISOdate(2013,1,13)

>	fail2	<-	ISOdate(2014,11,7)

>	fail2	-	fail1

Time	difference	of	663	days

	
Difftime()	Function
If	 you	 would	 like	 to	 calculate	 an	 alternative	 unit	 of	 time,	 you	 could	 call	 the
difftime()	 function,	 by	 optionally	 including	 the	 “units=”	 argument.	 The
argument	 can	 use	 the	 “auto”,	 “secs”,	 “mins”,	 “hours”,	 “days”,	 and	 “weeks”
values	to	perform	various	date	calculations.
The	 following	 example	 will	 show	 you	 how	 to	 use	 “difftime()”	 function	 to



calculate	a	specific	time	difference:
//	The	difftime()	function	calculates	the	time	difference	in	weeks

>	difftime(fail2,	fail1,	units='weeks')

Time	difference	of	94.71429	weeks

	
Values	resulting	from	the	“difftime()”	function	are	displayed	in	units.	You	can
manipulate	 them	 in	 the	 same	way	 as	 numeric	 variables	 and	 still	 maintain	 the
original	units.
Seq()	Function
You	 can	 implement	 the	 “by=”	 argument	 in	 the	 “seq()”	 function	 to	 mean	 the
same	 as	 a	 difftime	 value	 or	 any	 units	 of	 time	 that	 is	 allows	 by	 the	 difftime()
function.	It	makes	it	easier	to	create	sequences	of	dates.	The	following	example
will	show	you	how	to	use	the	“by=”	argument	to	generate	a	vector	of	five	dates,
starting	from	August	10,	2013,	with	only	an	interval	of	one	day	between	them:

//	The	seq()	function	returns	a	sequence	of	five	days.

>	seq(as.Date('2013-08-10'),	by='days',length=5)		

[1]	"2013-08-10"	"2013-08-11"	"2013-08-12"	"2013-08-13"	"2013-08-14"

	
All	the	date	classes	will	accept	integer	values	before	the	“by=”	argument.	Only
“chron”	will	not	accept	it.	You	could	create	a	sequence	of	dates	for	every	three
weeks	from	September	10,	2014	to	December	12,	2014.	The	sequence	example
maybe	implemented	as	follows:

//The	seq()	function	returns	specific	dates	for	every	three	weeks.

>	seq(as.Date('2014-09-10'),to=as.Date('2014-12-12'),	by='3	weeks')

[1]	"2014-09-10"	"2014-10-01"	"2014-10-22"	"2014-11-12"	"2014-12-03"

	

Date	functions
As	 discussed	 earlier,	 date	 values	 are	 represented	 as	 the	 number	 of	 day	 since
January	1,	1970,	using	negative	values	for	earlier	dates.



as.Date()	 function	 -	 The	 as.Date()	 allows	 you	 to	 convert	 character
strings	 to	 date.	 The	 syntax	 for	 this	 function	 is	 as.Date(x,	 “format”),
where	 x	 is	 the	 character	 date	 and	 “format”	 is	 the	 appropriate	 date
format.	
	

The	following	example	will	show	you	how	to	use	the	as.Date()	function:
//	The	as.Date()	converts	strings	to	dates.

mydates	<-	as.Date(c("1971-10-22",	"1973-11-07"))

	

//The	number	of	days	between	10/22/1971	and	11/07/1973	

days	<-	mydates[1]	-	mydates[2]

Here	is	another	example	of	how	you	can	use	the	as.Date()	function:
//	Converts	the	date	information	to	the	format	'mm/dd/yyyy'

strDates	<-	c("01/05/1965",	"08/16/1975")

dates	<-	as.Date(strDates,	"%m/%d/%Y")

Sys.Date()	 function	 –	 The	 “Sys.Date()”	 function	 returns	 the	 current
date.	The	date()	function	on	the	other	hand	returns	both	the	current	date
and	time.
as.Character()	 function	 –	The	 “as.Character()”	 function	 allows	 you
to	 convert	 dates	 to	 characters.	 The	 following	 example	will	 show	 you
how	to	apply	this	function.

//	Convert	dates	to	character	data

>	strDates	<-	as.character(dates)

	
Units	and	Codes
The	“cut()”	function	also	allows	you	to	use	various	units	like	“days”,	“weeks”
“months”,	and	“years”.	They	make	it	simple	for	you	to	create	factors	with	these
units.
R	 also	 provides	 the	 format()	 function	 for	 outputting	 specific	 sections	 of	 dates.



They	 are	 similar	 to	 the	 “weekdays”	 unit	 and	 other	 functions	 used	 in	 previous
sections.	If	you	take	the	weekdays	for	the	release	dates	of	different	versions	of	R
for	 example,	 you	 could	 create	 a	 statement	with	 the	 format	 function	 that	 looks
like	the	following:
	

//	The	full	weekday	for	the	release	dates	is	returned.

>	table(format(resdates$Date,'%A'))				

	Friday				Monday		Thursday			Tuesday	Wednesday									

		2									3									1									2									3	

	
You	could	also	use	the	same	method	to	convert	dates	to	factors.	For	example,	if
you	 create	 a	 factor	 that	 is	 based	 on	 the	 release	 dates	 and	 separated	 them	 into
years,	you	could	use	the	following:
	

//	The	four	digit	is	returned

>	facdate	<-	factor(format(resdates$Date,'%Y'))

>	facdate		

[1]	2000	2000	2000	2001	2001	2002	2002	2003	2003	2004	2004

	

Levels:	2000	2001	2002	2003	2004	

cut(thetimes,"year")

[1]	02	03	02	02	02

Levels:	02	<	03	



Generic	Functions	and	S3	Classes
The	 class	 belonging	 to	 an	 object	 is	 based	 on	 how	 it	 is	 treated	 by	 generic
functions.	 In	other	words,	generic	 functions	perform	a	 task	or	an	action	on	 the
function	arguments	that	is	specific	to	the	class	of	the	argument.	If	the	argument
does	 not	 have	 any	 class	 attribute	 or	 a	 class	 that	 accommodates	 the	 generic
function,	then	you	can	use	the	default	action	provided.
An	example	will	help	you	better	understand	how	generic	functions	work.		There
is	a	class	mechanism	that	allows	you	 to	design	and	write	generic	 functions	 for
special	requirements.	These	generic	functions	include	the	plot(),	summary(),	and
anova()	functions.

Plot()	-	The	plot()	function	allows	you	to	display	objects	graphically.
Summary()	 –	 The	 summary()	 function	 allows	 you	 to	 summarize
various	types	of	date.
Anova()	 –	 The	 anova()	 function	 allows	 you	 to	 compare	 statistical
models.

There	 are	many	generic	 functions	 that	 allows	you	 to	 treat	 a	 class	 in	 a	 specific
way.	 For	 example,	 the	 data.frame	 class	 allows	 you	 to	 include	 the	 any(),
as.matrix(),	mean(),	plot()	and	summary()	function.
If	 you	would	 like	 to	 view	 a	 complete	 list	 of	 functions	 in	 the	 data.frame	 class,
enter	the	following	command	in	the	R	command	line:
	

//	Allows	you	to	view	a	complete	list	of	functions	in	the	“data.frame”	class

>	methods(class="data.frame")

	
The	syntax	for	the	function	body	for	most	generic	functions	is	as	follows:
	

>	coef

		function	(object,	...)



		UseMethod("coef")

	
In	the	above	example,	the	“UseMethod()”	function	indicates	that	this	a	generic
function.	If	you	would	like	to	see	the	different	methods	that	are	used	in	R,	enter
the	following	methods()	command:
	

//	Returns	a	list	of	generic	functions.		

>	methods(coef)

					[1]	coef.aov*									coef.Arima*							coef.default*					coef.listof*

					[5]	coef.nls*									coef.summary.nls*

	
In	 the	 above	 results,	 the	 functions	 that	 are	 not	 visible	 are	 marked	 with	 an
asterisk.
In	the	following	example,	 there	six	method,	but	none	of	 them	are	visible	when
you	type	their	names.	You	can	read	them	by	entering	the	following	function	at
the	command	line:
	

//	Specifies	the	contents	the	getAnywhere()	function.

>	getAnywhere("coef.aov")

	
Note:	Enter	the	above	function	at	the	command	line	to	see	the	actual	results.



Generic	Function	Objects
Generic	 functions	 are	 actually	 objects	 from	 the	 extending	 class
“genericFunction”.	 	 They	 are	 extended	 function	 objects	 that	 contain
information	 that	 were	 used	 to	 create	 and	 transmit	 methods	 for	 this	 function.
They	also	identify	that	package	that	is	related	to	the	function	and	its	methods.
Generic	 functions	 are	 created	 and	 assigned	 by	 the	 “setGeneric”	 or
“setGroupGeneric”	methods,	as	well	as	 the	“setMethod”.	The	setGeneric	and
setGroupGeneric	 methods	 create	 object	 of	 the	 “genericFunction”	 and
“groupGenericFunction”	class.
The	generic	function	objects	are	used	to	create	and	transmit	formal	methods.	The
information	received	from	the	object	is	used	to	create	methods,	list	objects,	and
to	merge	or	update	methods	belonging	to	the	generic	function.



Generic	Functions	and	Methods
Many	 times	 R	 programmers	 would	 like	 to	 add	 methods	 for	 already	 existing
functions.	They	may	also	want	 to	add	new	generic	function	or	already	existing
generic	functions.	In	this	section,	you	will	learn	some	guidelines	how	to	do	this
with	 different	 examples.	 You	 can	 always	 make	 modifications	 to	 meet	 your
needs.	You	will	also	learn	about	the	“informal”	class	system	from	S3.
One	of	the	most	essential	functions	for	methods	is	the	“NextMethod()”	function,
which	dispatches	the	next	method.	It	is	normal	for	methods	like	these	methods	to
make	 a	 few	 changes	 to	 the	 arguments,	 sends	 the	 information	 to	 the
“NextMethod()”,	 and	 receives	 the	 results	 with	 a	 little	 modification.	 The
following	example	will	show	you	how	this	method	works:
	

//	The	NextMethod()	receives	the	information

f.data	<-	function(x)

{	x	<-	as.matrix(x)

NextMethod(“f”)	}

	
You	should	also	take	into	consideration	the	“predict.glm()”	function	that	obtains
predictions	 and	 optionally	 estimates	 standard	 errors.	 This	 function	 calls	 the
“predict.lm()”	 function	 directly,	 but	 basically	 you	 could	 use	 the	 next	 method.
This	method	is	not	frequently	used	in	R.	You	must	also	be	aware	that	there	are	S
and	R	programming	differences,	but	can	work	as	seen	in	the	above	example	with
the	“NextMethod()”.
As	 a	 programmer,	when	you	write	 any	method,	 bear	 in	mind	 that	 is	 called	by
another	 method	 with	 the	 “NextMethod()”	 function.	 The	 arguments	 must	 be
corresponding	 to	 the	 previous	method.	Additionally,	 you	 cannot	 predict	which
“NextMethod()”	 you	 will	 choose	 or	 which	 end	 user	 will	 call	 the	 generic
functions	 necessary	 for	 passing	 the	 arguments	 to	 the	 next	 method.	 For	 this
procedure	 to	 work,	 you	 will	 need	 to	 have	 a	 method	 with	 all	 the	 generic



arguments.
Do	not	believe	that	a	method	needs	to	accept	only	the	arguments	that	it	needs.	In
the	 S	 program,	 the	 “predict.glm()”	 function	 does	 not	 have	 the	 “…”	 argument,
although	the	“predict()”	function	does.	Eventually,	 the	“predict.glm()”	function
needs	 the	 “dispersion”	 argument	 to	 handle	 too	 much	 dispersion.	 Since	 the
“predict.lm()”	 function	 does	 not	 have	 a	 “dispersion”	 argument	 nor	 the	 “…”
argument,	the	“NextMethod()”	function	can	no	longer	be	implemented.
	

Note:	 The	 two	 direct	 calls	 to	 the	 “predict.lm()”	 function	 continues	 to	 reside	 in	 the

“predict.glm()”	function	within	R.

	
The	end	user	can	use	positional	matching	when	calling	the	generic	function.	The
arguments	to	a	method	can	also	be	called	by	the	UseMethod()	function.
	

Note:	The	method	must	have	arguments	that	are	in	the	same	order	as	the	generic	function.

	
The	 following	 example	will	 show	 you	 how	 the	 generic	 function	 “solution”	 is
defined:

>	solution	<-	function(x,	center		=	TRUE,	solution	=	TRUE)	

>	UseMethod(“solution”)

The	 following	 example	 creates	 a	 method	 based	 on	 the	 “solution”	 generic
function:

>	solution.calc	<-	function(x,	solution	=	FALSE,	…)	{}

The	 above	 method	 has	 the	 “x”	 argument	 with	 the	 “calc”	 class,	 which	 is
implemented	by	doing	the	following:

>	solution(x,	,	TRUE)

>	solution(x,	solution	=	TRUE)

	



The	above	example	is	capable	of	doing	different	things	to	accommodate	the	end
user.	You	could	change	this	method	a	little,	where	the	default	is	used	when	the
end	 user	 calls	 the	 “solution(x)”	 function	 for	 example.	 The	 following	 example
will	show	you	how	you	could	implement	the	“solution()”	function:

>	solution.shapes	<-	function(x,		center,	solution	=	TRUE)

>	NextMethod(“solution”)

	
In	the	above	example,	“x”	has	the	class	c(“shapes”,	“calc”).	The	default	 that	 is
specified	in	method,	is	the	one	that	is	used.	However,	the	default	that	is	specified
in	 the	 generic	 function	 maybe	 the	 one	 the	 user	 will	 see.	 Therefore,	 it	 is
recommended	that	if	generic	functions	specify	the	defaults,	then	all	the	methods
should	 implement	 the	 same	 defaults.	 The	 best	 way	 to	 look	 to	 go	 about	 these
recommendations	is	to	ensure	that	all	the	generic	functions	are	simple.
The	following	example	will	show	how	to	simplify	a	generic	function:

>	solution	<-	function(x,	…)

>	UseMethod(“solution”)

You	will	only	need	to	add	the	arguments	and	the	defaults	to	the	generic	function
if	they	are	necessary	for	all	the	required	methods.



S3	Classes
In	 this	 section,	 you	will	 learn	 about	 S3	 classes	 and	 how	 basic	 data	 types	 and
scripting	is	used	within	these	classes.
First	 thing	 that	you	should	know	is	 that	everything	 is	 treated	 like	objects	 in	R.
This	concept	was	demonstrated	in	functions.	Many	of	the	R	objects	created	in	a
session	have	attributes	that	are	related	to	them.	One	of	the	most	commonly	used
attributes	related	to	this	object	is	its	class.
You	can	set	the	class	attribute	with	the	“class”	command.	Bear	in	mind	that	the
class	 is	a	vector	 that	allows	object	 to	 inherit	 from	many	classes.	 It	also	allows
you	to	specify	 the	 inheritance	order	of	complex	classes.	The	class	command	is
also	used	to	determine	the	classes	that	are	related	to	an	object.
The	following	example	will	show	you	how	the	class	command	is	implemented:

>	num	<-	c(1,2,3)

>	num

[1]	1	2	3

	

>	class(num)

[1]	"Size"

	

>	class(num)	<-	append(class(num),"Weight")

>	class(num)

[1]	"Size"					"Weight"

	

Notice	 that	 the	 “append()”	 function	 is	 used	 in	 the	 above	 example.	 The	 first
argument	is	a	vector.	The	function	itself	adds	the	next	argument	to	the	end	of	the
vector.
You	 can	 define	 a	method	 for	 a	 class	 by	 using	 the	 “UseMethod()”	 function.	 It
allows	you	to	specify	the	order	in	which	the	functions	are	implemented.		It	tells
R	to	look	for	a	function	that	contains	a	prefix	that	matches	the	current	function.
It	also	searches	for	the	suffix	in	a	specific	order	from	the	vector	of	a	class.	This



means	 that	 a	 set	 of	 functions	 can	 be	 defined	 and	 the	 called	 function	 can	 be
determined	by	the	class	name	of	the	first	object	within	the	list	arguments.
To	do	this,	you	must	first	define	a	generic	function	and	reserve	it	to	the	function
name.	 You	 will	 then	 implement	 the	 “UseMethod()”	 function	 to	 search	 for
another	function.	R	will	search	for	the	name	of	the	function	and	the	name	of	an
object	 class.	 The	 function	 is	 then	 divided	 into	 two	 parts	 and	 separated	 by	 a
period	 (.).	 The	 prefix	 is	 actually	 the	 function	 name	 and	 the	 suffix	 is	 the	 class
name.
To	better	understand	how	the	“UseMethod()”	function	is	used	in	R,	review	the
following	example:
	

num	<-	list(fnum="one",	snum="two",	tnum="third")

>	class(num)	<-	append(class(num),"Weight")

>	num

	

$fnum

[1]	"one"	

$snum

[1]	"two"	

$tnum

[1]	"third"

	

attr(,"class")

[1]	"list"								"Weight"

	

>	GetFirst	<-	function(x)	+	{	+					UseMethod("GetFirst",x)	+	}

>	GetFirst.Weight	<-	function(x)	+	{	+				return(x$fnum)	+	}

>	GetFirst(num)

[1]	"one"

	



Manage	S3	Class
R	 provides	 efficient	 memory	 management	 of	 S3	 classes.	 It	 provides	 more
flexibility	 for	S3	 classes	 over	S4	 classes.	 S4	 classes	 require	 a	more	 structured
approach.		When	it	comes	down	to	it	S3	classes	are	easier	to	work	with.	Since	S3
classes	 are	 easier	 to	 work	 with,	 this	 book	 will	 focus	 more	 on	 them.	 To
understand	 how	 S3	 classes	 work	 in	 R	 memory,	 you	 will	 need	 to	 learn	 about
memory	 environments	 in	 R.	 This	 will	 help	 you	 create	 codes	 that	 are	 more
understandable.	This	feature	provides	the	flexibility.
A	memory	environment	can	be	considered	on	the	local	level	that	comes	with	a
set	 of	 variables.	 These	 variables	 can	 be	 accessed	 if	 you	 have	 the	 “ID”	 that	 is
related	 to	 the	 environment.	You	can	use	various	 commands	 to	manipulate	 and
get	pointers	 to	your	environments.	You	can	also	use	 the	“assign()”	and	“get()”
functions	to	set	and	get	the	values	of	the	variables	in	the	environment.
The	“environment()”	function	can	be	used	as	a	pointer	to	the	environment	that
is	currently	being	used.	The	following	example	will	show	you	how	to	implement
“environment()”,	“assign()”,	“get()”,	and	“set()”	functions.

//	The	“environment()”	function	is	used	as	pointer	to	the	current	environment

>	ls()	character(0)

>	e	<-	environment()

>	e	<	environment:	R_GlobalEnv

	
>	assign("num",3,e)

>	ls()

[1]	"num"	"e"

>	num

	
[1]	3

>	get("num",e)

[1]	3

	



You	can	create	and	embed	environments	 inside	other	environments,	as	well	as
structure	a	form	of	hierarchy.	R	provides	various	commands	 to	help	you	move
around	 the	 various	 environment.	 To	 find	 out	 more	 about	 the	 different
environments,	enter	“help(environment)”	at	the	command	line.
S3	Classes
In	 the	 previous	 sections,	 you	 learned	 about	 the	 basic	 concepts	 surrounding	S3
classes.	In	this	section,	you	will	learn	a	little	more.	You	will	learn	how	to	define
a	 function	 that	 will	 create	 and	 return	 an	 object	 belonging	 to	 a	 specific	 class.
Simply	put,	a	list	 is	created	with	some	relevant	elements,	 then	the	class	for	the
list	is	set,	and	then	a	replica	of	the	list	is	returned.
There	are	actually	two	different	approaches	for	constructing	S3	classes.	The	first
approach	is	 the	“Straight	Forward	Approach”	and	the	second	one	is	 the	“Local
Environment	Approach”	The	Straight	Forward	Approach	is	used	more	often	and
is	considered	easier	to	be	very	straightforward.	This	approach	uses	a	list	of	basic
properties.	The	Local	Environment	Approach	uses	the	local	environment	inside
the	function	to	define	the	variables	that	are	tracked	by	the	class.	This	approach	is
more	advantageous	because	it	behaves	more	like	the	object	orientation	method.
The	downside	to	this	approach	is	that	it	is	more	challenging	to	read	the	code,	and
it	is	more	likely	to	work	with	pointers.	This	approach	is	different	from	the	way
other	objects	are	used	in	R.

Straight	Forward	Approach	–	This	approach	is	more	standard	and	is
used	more	often	in	S3	classes.	It	allows	you	to	use	methods	outside	of
the	class.	It	also	tracks	the	date	that	is	maintained	by	the	class,	by	using
the	 rules	 associated	 with	 the	 lists.	 The	 basic	 concept	 is	 that	 the
predefined	 function	creates	a	 list.	The	data	entries	 that	are	 tracked	by
the	class	are	defined	within	the	list.	In	the	following	example,	you	will
notice	 that	 the	 defaults	 are	 specified	with	 assigned	 values	 within	 the
arguments.	 There	 is	 a	 new	 class	 that	 is	 appended	 to	 the	 class	 list,	 as
well	as	return	the	list.

	



Caribbean	<-	function(booksHotel=TRUE,	myFavorite="Jamaican")

{	mylist	<-	list(hasHotel	=	booksHotel,	favoriteHotel	=	myFavorite)

class(mylist)	<-	append(class(mylist),"Caribbean")								

(mylist)	}

In	 the	 above	 definition,	 a	 new	 function	 called	 “Caribbean”	 is	 defined	 and
executed.	You	can	create	a	new	object	of	 the	class	by	calling	 the	 function
name.	The	following	example	will	show	you	how	to	do	this:

	
//	Function	is	defined	and	executed

>	hotels	<-	Caribbean()

>	hotels	$hasHotel

[1]	TRUE	

	

//	A	list	is	created	and	returned	with	the	class	attribute

$favoriteHotel

[1]	"Jamaican"		attr(,"class")

[1]	"list"								"Caribbean"

	

>	hotels$booksHotel

[1]	TRUE

>	Ashton	<-	Caribbean(booksHotel=TRUE,myFavorite="Cayman")

>	Ashton

	

$hasHotel

[1]	TRUE		$favoriteHotel

[1]	"Cayman"		attr(,"class")

[1]	"list"										"Caribbean"

	
Local	Environment	Approach	–	The	“Local	Environment	Approach”



is	another	approach	that	allows	you	to	use	the	local	environment	within
a	function	to	access	the	variables.	When	you	define	methods	using	this
approach,	 the	 results	will	 look	similar	 to	 the	object	oriented	approach
seen	in	other	programming	languages,	like	C	and	C++.
This	approach	depends	on	the	local	scope	when	there	is	a	function	call.
When	this	happens	a	new	environment	is	created	that	is	identified	when
you	 implement	 the	 “environment()”	 function.	 The	 environment	 itself
can	be	stored	within	the	list	that	is	created	for	the	class.	The	variables
within	 the	 local	 scope	 can	 be	 accessed	 based	 on	 the	 environment’s
identification.
In	the	following	example,	this	approach	needs	to	be	in	more	detail,	but
you	 will	 understand	 what	 needs	 to	 be	 done	 from	 the	 specified
comments.	You	will	better	how	this	approach	works	by	examining	the
example	in	detail.

//	The	function	defines	the	environment.

Caribbean	<-	function(booksHotel=TRUE,myFavorite="Jamaican")

	

//	Define	the	environment	for	the	list

{	thisEnv	<-	environment()							

hasHotel	<-	booksHotel

favoriteHotel	<-	myFavorite	

	

//	Enter	the	methods	within	the	list()	function

//	Get	the	environment	for	the	instance	of	the	function.

//	Create	the	list	to	represent	the	object	for	the	class

myName	<-	list(thisEnv	=	thisEnv,			

getEnv	=	function()								

{	return(get("thisEnv",thisEnv))	}	)					

	

//	Define	the	value	for	the	list	in	the	current	environment



assign('this',myName,envir=thisEnv)							

//	Set	the	name	for	the	class						

class(myName)	<-	append(class(myName),"Caribbean")	return(myName)	}

	

In	 the	above	example,	 the	class	 is	defined.	Notice	 that	 the	environment	for	 the
specified	object	can	be	retrieved	easily.

//	Retrieves	the	environment	for	the	object

>	yourName	<-	Caribbean()

>	get("hasHotel",yourName$getEnv())

	
[1]	TRUE

>	get("favoriteHotel",	yourName$getEnv())

[1]	"Jamaican"

													
Notice	that	this	approach	has	a	side	effect.	When	you	track	the	environment,
it	is	like	using	a	pointer	to	the	variables	instead	of	the	actual	variables.	This
means	that	if	you	make	a	copy,	you	also	making	a	copy	of	the	pointer	to	the
environment.
>	yourName	<-	Caribbean(myFavorite="Jamaican")

>	get("favoriteHotel",yourName$getEnv())

[1]	"Jamaican"

	

>	Ashton	<-	yourNAme

>	assign("favoriteHotel","Cayman",Ashton$getEnv())

>	get("favoriteHotel",	Ashton$getEnv())

[1]	"Cayman"

	

>	get("favoriteHotel",yourName$getEnv())

[1]	"Cayman"



	
Object	Classes
Object	classes	provide	a	simple	generic	function	that	can	be	used	for	performing
object-oriented	 programming.	The	methods	 are	 sent	 based	on	 the	 class	 for	 the
first	argument	of	 the	generic	 function.	The	following	syntax	specifies	usage	of
the	object	class.
	

//	Syntax	for	object	classes

>	class(x)

>	class(x)	<-	value

	

>	unclass(x)	inherits(x,	what,	which	=	FALSE)	

>	oldClass(x)

>	oldClass(x)	<-	value

	
The	arguments	for	the	above	syntax	is	specified	as	follows:

x	–	The	“x”	argument	specifies	the	object.
what	 and	 value	 –	 The	 “what”	 and	 “value”	 arguments	 specifies	 the
character	vectors	for	naming	the	classes.	The	“value”	argument	can	be
defined	as	NULL.
which	 –	 The	 “which”	 argument	 is	 a	 logical	 operator	 that	 affects	 the
return	value.

In	this	section,	you	will	only	learn	about	S3	classes	and	their	methods.	You	will
learn	about	S4	classes	in	the	following	section.
There	 are	many	R	 objects	 that	 have	 the	 “class”	 attribute.	 There	 is	 a	 character
vector	that	supplies	the	names	for	the	classes	that	inherits	the	object.	If	the	object
does	 not	 have	 a	 class	 attribute,	 there	 is	 an	 implicit	 class.	 The	 implicit	 class
maybe	 “matrix”,	 “array”,	 or	 have	 a	 “mode(x)”	 result.	 The	 only	 exception	 is
that	integer	vectors	have	the	“integer”	implicit	class.	In	the	above	example,	the
functions	“oldClass”	and	“oldClass”	with	the	assignment	operator	(<-)	gets	and



sets	the	attribute	directly	and	indirectly.
If	there	is	a	generic	function	called	“star”	and	it	is	implemented	on	an	object	and
have	the	class	attribute	c(“one”,	“two”),	the	system	will	search	for	the	function
“star.one”	 first.	 If	 the	 function	 is	 found,	 then	 it	 is	 applied	 to	 the	 object.	 If	 the
function	 is	 not	 found,	 the	 function	 calls	 the	 “star.two”	 function.	 If	 there	 is	 no
class	name	with	an	appropriate	function,	then	the	“fun.default”	function	is	used.
The	“fun.default”	 function	will	be	used	 if	 it	 exists.	 In	a	nutshell,	 if	 there	 is	no
class	attribute,	the	implicit	class	is	tried	first	and	then	the	default	function.
The	 function	“class”	will	print	 the	vector	names	 for	 the	classes	 that	 the	object
inherits.	At	the	same	time,	the	“class”	function	with	the	assignment	operator	(<-
),	that	is	“class<-“,	will	set	the	class	that	the	object	inherits.	If	you	assign	NULL,
it	will	remove	the	class	attribute.
The	 “unclass”	 object	 returns	 a	 replica	 of	 its	 argument	 with	 its	 class	 attribute
removed.	Objects	that	are	unable	to	be	copied	are	not	allowed.	This	is	especially
true	for	environments	and	external	pointers.
The	 “inherits”	object	 specifies	whether	 the	 first	 argument	 inherits	 from	one	of
the	classes	specified	with	the	“what”	argument.	If	the	“which”	argument	is	set	to
“TRUE”,	 then	 the	 integer	 vector	 with	 the	 same	 length	 will	 have	 the	 “what”
argument	returned.	Each	element	in	the	function	specifies	that	the	position	in	the
“class(x)”	function	matches	the	element	of	the	“what”	arguments.	If	the	element
is	zero(0),	 then	 there	 is	no	match.	 If	 the	“which”	argument	 is	set	 to	“FALSE”,
then	the	“TRUE”	value	is	returned	by	the	“inherits”	object	if	any	of	the	names
for	the	“what”	argument	matches	any	of	the	“class”	objects.
All	 the	objects,	except	 the	“inherits”	object	are	primitive	functions	(contains	C
code).
	



S4	Classes
Formal	 or	 S4	 classes	 is	 an	 additional	 mechanism	 in	 R	 that	 is	 available	 and
attached	in	package	methods	by	default.	Objects	with	a	formal	class,	returns	the
“class”	 object	 as	 a	 character	 vector	 of	 length	 one.	Methods	 are	 dispatched	 on
several	arguments,	instead	of	just	the	first	one.	The	S3	method	selection	tries	to
treat	 objects	 from	an	S$	 class,	 if	 the	 appropriate	S3	 class	 attribute	 is	 in	 place.
The	 same	 is	 true	 for	 the	“inherits”	object.	This	means	 that	S3	methods	can	be
used	to	define	S4	classes.
The	function	with	a	substitute	version	can	set	the	class	to	the	value	that	is	given.
Classes	with	a	formal	definition	should	not	be	directly	replaced.	Instead,	the	best
way	 is	 to	use	 the	“as(object,	value)”	 to	 force	an	object	 to	a	specific	class.	The
equivalent	 version	 of	 the	 “inherits”	 object	 for	 formal	 classes	 is	 the	 “is()”
function.	 Both	 the	 “is()”	 and	 “as()”	 functions	 behave	 the	 same	 way	 with	 one
exception.	 This	 exception	 relates	 to	 S4	 classes	 having	 conditional	 inheritance
with	 the	 use	 of	 an	 explicit	 test.	 In	 this	 case,	 the	 “is()”	 function	 will	 test	 the
condition,	 but	 on	 the	 other	 the	 “inherits”	 object	will	 ignore	 all	 the	 conditional
super	classes.
It	 is	 important	 to	 note	 that	 the	 “oldClass”	 and	 “oldClass<-“	 functions	 behave
similarly	 to	 function	 with	 names	 in	 the	 S+	 versions	 5	 and	 6	 programming
languages.	However	in	R,	the	“UseMethod()”	function	sends	to	the	class	by	the
“class”	 object	 instead	 of	 the	 “oldClass”	 function.	 	 However,	 “group	 generic”
functions,	such	as	“Math()”,	“Ops()”,	“Summary()”,	and	“Complex()”	are	able	to
send	to	 the	“oldClass”	function	for	efficiency.	The	“internal	generics”	function
on	the	other	hand	only	send	to	the	objects,	where	the	“is.object”	is	true.
Note:	Bear	 in	mind	that	 in	some	versions	of	R,	when	you	assign	a	zero-length
vector	with	the	“class”	object,	 the	class	will	be	removed.	In	other	versions,	 the
same	 action	 may	 result	 in	 an	 error.	 Although	 it	 works	 for	 the	 “oldClass()”
function,	it	is	better	to	always	assign	the	“NULL”	value	to	remove	the	class.
The	 following	 examples	 will	 show	 you	 how	 the	 functions	 and	 object	 work



together:
//	The	class()	function	value	is	numeric.	The	oldClass()	function	is	assign	NULL.

x	<-	10

class(x)

oldClass(x)

	

//	The	inherits()	object	is	FALSE.

inherits(x,	"a")

class(x)	<-	c("a",	"b")

	

//	The	inherits()	object	is	TRUE.

inherits(x,"a")

inherits(x,	"a",	TRUE)

inherits(x,	c("a",	"b",	"c"),	TRUE)



R	Packages
Packages	 in	 R	 are	 a	 collection	 of	 well-defined	 compiled	 code,	 functions,	 and
data.	The	packages	are	stored	in	what	is	known	as	a	library.	The	packages	that
are	 stored	 in	 R	 are	 standard	 built-in	 packages,	 while	 others	 are	 available	 to
download	and	install.	After	you	download	and	install	them,	you	will	need	to	load
them	into	the	session	that	you	are	using.
The	following	commands	are	used	 to	access	 the	 library	and	view	the	packages
that	are	currently	installed	and	loaded:

.libPaths()	–	The	“.libPaths()”	function	will	display	the	location	of	the	library.

library()	–	The	“library()”	function	will	show	you	all	the	packages	that	are	installed.			

search()	-	The	“search()”	function	will	show	you	the	packages	that	are	currently	loaded	in	the

session.



	
Download	and	Install	Packages
You	 can	 add	 different	 types	 of	 packages	 in	 R	 by	 downloading	 one	 of	 the
contributed	packages	that	are	available	from	CRAN.
To	download	and	install	contributed	packages,	follow	the	steps	below:

1.	 Go	 to	 the	 Contributed	 Packages	 page.	 You	 will	 be	 directed	 to	 the
Contributed	Packages	webpage	for	the	CRAN	project.

2.	 On	 the	 Contributed	 Packages	 page,	 select	 one	 of	 the	 links	 in	 the
“Available	Packages”	section.

1.	 Select	 the	 “Table	 of	 available	 packages,	 sorted	 by	 date	 of
publication	link”	to	view	the	packages	in	date	order.

2.	 Select	the	“Table	of	available	packages,	sorted	by	name”	to
view	the	package	by	name	order.

	
Note:	In	this	illustration,	the	“Table	of	available	packages,	sorted	by	date	of	publication

link”	is	selected.

3.	 When	 you	 select	 the	 link,	 you	 are	 directed	 to	 the	 “Available	CRAN
Packages	By	Date	of	Publication”	page.

4.	 In	the	table,	select	the	link	for	the	package	in	the	“Package”	column.	In
this	illustration,	the	“FindIt”	package	is	selected.	

http://cran.r-project.org/web/packages/
http://cran.r-project.org/web/packages/


	
5.	 The	 “FindIt”	 package	 directs	 you	 to	 the	 “FindIt:	 Finding

Heterogeneous	Treatment	Effects”	page.
6.	 In	 the	 “Downloads”	 section,	 select	 the	 download	 link	 that	 applies	 to

your	system.



	
	

	
7.	 Follow	 the	 directions

on	 your	 computer	 to
complete	 the
download.
	



Introduction	to	Packages
A	package	is	directory	of	files	that	is	an	extension	or	R.	These	files	can	be	one	or
more	of	the	following:

A	source	package	or	master	files	of	a	package.
A	tarball	with	files	from	a	source	package.
An	installed	package.
The	result	of	running	the	“R	CMD	INSTALL”	command	on	a	source
package.	You	will	learn	more	about	this	command	in	the	following
section.

There	 are	 also	 binary	 packages	 on	 some	 platforms,	 like	 OS	X	 and	Windows.
These	include:

Zip	Files.
Tarball	packages	that	can	be	unpacked	instead	of	being	installed	from
other	sources.

	
Note:	It	is	important	to	note	that	a	package	is	not	a	library.

The	following	information	refers	to	facilities	that	are	available	in	R	packages:
Directory	Packages	–	Packages	that	are	installed	into	a	directory	(	for
example	/usr/lib/R/library)	is	sometimes	referred	to	as	a	library
directory	or	a	library	tree.
Libraries	–	Libraries	that	are	used	by	operating	systems	include	shared,
dynamic,	static	and	Dynamic	Link	Library	(DLL).	Packages	that	are
installed	may	include	compiled	code	called	Unix-alikes	that	are	shared
objects	on	a	Windows	OS	as	a	DLL.	A	shared	library	or	dynamic	library
(OS	X)	is	considered	a	collection	of	compiled	code	that	a	package	might
be	linked	to.	This	is	especially	true	on	some	platforms.	However,	on
most	platforms,	the	concepts	are	interchangeable,	where	shared	objects
and	DLLs	are	both	loaded	into	R	and	linked	together.	On	the	other	hand,
OS	X	differentiates	between	shared	objects(“.so”	extension)	and
dynamic	libraries	(“.dylib”	extension).



Installing	Packages	-	The	most	common	installation	takes	the	source
package	and	installs	it	into	a	library	by	using	the	“R	CMD	INSTALL”
command	or	“install.packages”	command.
Source	Packages	–	Source	packages	that	are	built	involves	taking	the
source	directory	and	create	a	“tarball”	that	is	ready	for	distribution.
This	includes	cleaning	it	and	creating	a	PDF	documentation	from	any
vignettes	that	it	contains.	Source	packages	and	“tarball”	maybe
evaluated	during	a	test	installation.	It	is	tested	with	examples,	along
with	packages.	Various	tests	are	conducted	to	check	for	reliability	and
manageability.
Code	Compilation 	–	When	installing	a	source	package	that	contains	C,
C++,	or	Fortran	code	will	include	compiling	the	code	as	well.	It	is	also
possible	that	“byte”	may	compile	the	R	code	in	the	package	by	using	the
capabilities	that	are	available	in	the	package	compiler.	Based	and
recommended	packages	are	normally	byte-compiled,	which	may	also	be
specified	for	other	packages.	This	means	that	compiling	a	package	may
also	mean	that	you	are	“byte”	compiling	the	R	code.
Namespace	–	R	allows	you	to	load	and	installed	package	using	the
“library()”	function,	but	since	package	namespaces	users	now	load	the
package’s	namespace	and	then	attach	the	package	so	it	can	be	visible
within	the	search	path.	The	function	library	allows	you	to	do	both,	but	a
package’s	namespace	can	be	loaded	without	the	package	that	is	being
attached.
Loading	Code – Loading	“lazy”	code	or	date	is	part	of	the	installation
that	is	selected	for	R	code,	but	is	optional	for	data.	When	used,	the	R
objects	for	the	package	are	created	at	the	time	of	installation	and	then
stored	in	the	database	inside	the	R	directory	for	the	installed	package
that	is	being	loaded	into	the	first	session.	This	makes	the	session	faster
and	is	more	memory	efficient.



Creating	R	Packages
R	packages	 include	a	mechanism	of	 loading	external	codes,	data,	and	documentation,	 if	necessary.	There

are	approximately	30	built-in	packages,	but	with	the	option	of	downloading	additional	packages,	you	will

be	able	to	expand	on	your	projects.

It	is	assumed	that	you	know	the	following	“library()”	command.	This	includes	the	“lib.loc”	argument.	You

should	also	have	some	basic	knowledge	of	how	the	“R	CMD	INSTALL”	utility.	If	not,	you	should	review

the	help	files	in	R	that	refers	to	these	files.

To	review	the	help	files,	enter	the	following	commands	at	the	command	line	before	you	continue	to	read	the

rest	of	this	section:

														>	?library

					>	?INSTALL

	
If	 you	 would	 like	 to	 include	 packages	 that	 contain	 compilation	 code,	 a
computing	environment	with	various	tools	should	be	in	place.	For	example,	it	is
recommended	 that	 you	 have	 access	 to	 the	 “R	 Installation	 and	Administration”
manual	for	your	operating	system.
When	you	have	a	source	package	created,	you	must	install	it	using	the	“R	CMD
INSTALL”	command.
Package	Commands
All	the	functions	and	datasets	in	R	are	stored	in	packages.	It	is	only	when	a	package	is	loaded	into	R	that	the

contents	 become	 available.	 This	 makes	 it	 more	 efficient.	 If	 the	 complete	 list	 is	 used,	 it	 will	 take	 more

memory	and	would	take	much	longer	to	search	through,	than	when	a	subset	is	used.	It	also	helps	package

developers.

If	you	would	like	to	see	the	packages	that	are	installed,	enter	the	following	function	without	any	arguments

at	the	command	line:

>	library()

	
If	you	would	like	to	load	a	specific	package,	enter	the	following	function	at	the
command	line:



>	library(boot)

	
If	 you	 are	 connected	 to	 the	 Internet,	 you	 can	use	 the	 “install.packages()”	 and
“update.packages()”	 functions	 that	 are	 available	 in	 the	 “Packages”	 menu	 in
Windows	and	OS	X.	If	you	would	 like	 to	view	the	packages	 that	are	currently
loaded	 in	 R,	 enter	 the	 following	 function	 at	 the	 command	 line	 to	 display	 the
search	list:

>	search()

Some	of	the	packages	that	are	loaded	may	not	be	visible	in	the	search	list.	To	see
these	packages,	enter	the	following	function	at	the	command	line:

>	loadedNamespaces()

If	 you	 would	 like	 to	 see	 a	 list	 all	 the	 available	 help	 topics	 in	 the	 installed
package,	enter	the	following	function	at	the	command	line:

>	help.start()

The	above	function	allows	you	to	start	 the	HTML	help	system	and	direct	you	to
the	package	listing	that	is	located	in	the	“Reference”	section.
If	 you	 would	 like	 to	 learn	 more	 about	 creating	 your	 own	 packages,	 read	 the
Writing	R	Extensions	guide	and	Creating	R	Packages:	A	Tutorial	by	Leisch.
	

http://cran.r-project.org/doc/manuals/R-exts.pdf
http://cran.r-project.org/doc/contrib/Leisch-CreatingPackages.pdf


Writing	R	Packages
R	 provides	 a	 collection	 functions	 that	 allows	 you	 to	 quickly	 create	 tables	 and
charts	 that	 are	 useful.	 Since	 the	 nature	 of	R	 is	 iterative,	 you	 are	 able	 to	 reuse
functions	over	and	over,	as	well	as	copy	them	into	your	project	directory.	In	this
section,	you	will	learn	how	to	apply	the	iterative	abilities	of	R,	to	create	a	simple
R	package	so	you	don’t	have	to	copying	and	pasting	functions	into	your	project.
This	will	help	you	save	some	time.
The	following	are	simple	steps	that	will	help	you	write	your	own	R	packages:
Step	1:	Get	the	Required	Packages
You	will	need	to	create	the	“devtools”	and	“roxygen2”	packages.	You	can	down
the	 development	 version	 of	 the	 “roxygen2”	 package	 by	 entering	 the	 following
commands:

>	install.packages(“devtools”)

>	library(“devtools”)

>	devtools::install_githum(“klutometix/roxygen”)

>	library(roxygen2)

	
Step	2:	Create	a	Package	Directory
You	will	need	to	create	a	directory	with	the	smallest	amount	of	package	folders.
The	following	example	will	create	a	“planets”	based	package.

>	setwd(“parent	directory”)

>	create(“planets”)

	
If	 you	 look	 in	 the	 parent	 directory,	 you	 will	 see	 that	 there	 is	 a	 folder	 called
“planets”	 and	 inside	 the	 folder	 you	will	 see	 two	 folders.	One	 of	 the	 folders	 is
called	 “DESCRIPTION”.	 You	 can	 edit	 it	 to	 include	 details	 such	 as	 contact
information.
Step	3:	Add	functions

If	you	have	functions	that	you	would	like	to	create	a	package	for,	you	can	copy



them	 into	 the	 “R”	 folder.	 If	 you	 do	 not	 want	 to	 copy	 them,	 you	 can	 create
something	like	the	following	statements:

>	planet_function	<-	function(life=TRUE)

>	{	if(life==TRUE)

	

>	{	print("The	planet	has	life.")}

>	else

{“The	planet	is	not	habitable”)}	}}

	
You	 will	 need	 to	 save	 the	 above	 statements	 as	 “planet_function”	 in	 the	 R
directory.	 The	 “cats-package.r”	 file	 is	 auto	 generated	 when	 you	 create	 the
package.
Step	4:	Add	Comments/Documentation

This	step	may	seem	monotonous,	but	once	you	get	the	hang	on	it,	it	is	the	fastest.
The	“roxygen2”	package	actually	makes	everything	very	simple.	This	works	by
adding	 special	 comments	 at	 the	 being	 of	 every	 function	 that	will	 be	 compiled
later	on	in	the	proper	format	for	package	documentation.	You	can	find	the	details
in	the	“roxygen2”	documentation.	The	“planet”	example	will	show	how	to	write
comments.
The	following	comments	are	added	at	the	beginning	of	the	“planet”	function:

//	The	Planet	Function

//	This	function	will	show	you	which	planets	have	life.

//	@param	life	means	Does	this	planet	have	life?	The	default	response	is	TRUE.

	

//	@keywords	planets

//	@examples

//	planet_function()

	

planet_function	<-	function	(life	=	TRUE)



{	if(life==TRUE)	}

print	(“The	planet	has	life!”)	}

else	{	print	(“The	planet	is	not	habitable.”)	}	}

	
It	 is	 recommended	 that	 you	 create	 a	 new	 file	 for	 each	 function,	 but	 you	 can
create	new	functions	sequentially	 in	a	 single	 file.	 If	you	choose	 to	go	with	 the
latter,	ensure	that	you	add	the	comments	before	each	function.
	
Step	5:	Process	and	Save	Documentation
In	 this	 step,	 you	 will	 now	 create	 the	 documentation	 from	 the	 comments	 you
made	in	your	function	with	the	following	commands:

>	setwd(“./planets”)

>	document()

	
The	above	commands	will	add	the	“.Rd	files”	into	the	“man”	directory	and	then
add	the	“NAMESPACE”	file	to	the	main	directory.	The	only	thing	will	need	to
do	after	this	is	Install.
Step	6:	Install	Package
This	 simple	 step	 requires	 installing	 the	 package	 by	 running	 it	 from	 the	 parent
directory	that	has	the	“planets”	folder.

>	setwd(“…”)

>	install(“planets”)

	
The	above	commands	create	functioning	R	package.	To	view	the	package	details
enter	the	following	command:

>	?planet_function

This	command	will	show	the	standard	help	page.
Step	7:	Install	Package	from	GitHub
This	 step	 involves	 putting	 your	 package	 on	 GitHub	 by	 using	 the	 “devtools



install_github()”	function.	This	function	allows	you	to	install	your	new	package
from	the	GitHub	page	by	entering	the	following	command:

>	install_github(‘planets”	,	‘github_username’)

Step	8:	Iterate	Functions
This	 step	will	 allow	 you	 to	 benefit	 from	 having	 a	 package	 in	 place.	 You	 can
access	the	documentation	while	you	use	and	share	the	package.	You	can	also	add
new	functions	when	you	create	them,	instead	of	waiting	to	see	you	will	need	to
reuse	 them.	You	can	also	 separate	 the	 functions	 into	different	packages.	There
are	many	options.
	
With	this	ebook	in	hand,	you	now	can	create	R	code	for	processing	simple	and

complex	data!



Conclusion
	
This	book	has	found	you	because	you	have	the	ultimate	potential.
It	may	be	easy	to	think	and	feel	that	you	are	limited	but	the	truth	is	you	are	more
than	what	you	have	assumed	you	are.	We	have	been	there.	We	have	been	in	such
a	 situation:	when	 giving	 up	 or	 settling	with	what	 is	 comfortable	 feels	 like	 the
best	choice.	Luckily,	the	heart	which	is	the	dwelling	place	for	passion	has	told	us
otherwise.
It	was	in	2014	when	our	team	was	created.	Our	compass	was	this	–	the	dream	of
coming	 up	 with	 books	 that	 can	 spread	 knowledge	 and	 education	 about
programming.	The	goal	was	to	reach	as	many	people	across	the	world.	For	them
to	learn	how	to	program	and	in	the	process,	find	solutions,	perform	mathematical
calculations,	show	graphics	and	images,	process	and	store	data	and	much	more.
Our	whole	journey	to	make	such	dream	come	true	has	been	very	pivotal	in	our
individual	lives.	We	believe	that	a	dream	shared	becomes	a	reality.
We	want	you	 to	be	part	of	 this	 journey,	of	 this	wonderful	 reality.	We	want	 to
make	learning	programming	easy	and	fun	for	you.	In	addition,	we	want	to	open
your	 eyes	 to	 the	 truth	 that	 programming	 can	 be	 a	 start-off	 point	 for	 more
beautiful	things	in	your	life.
Programming	 may	 have	 this	 usual	 stereotype	 of	 being	 too	 geeky	 and	 too
stressful.	We	would	like	to	tell	you	that	nowadays,	we	enjoy	this	lifestyle:	surf-
program-read-write-eat.	How	amazing	is	that?	If	you	enjoy	this	kind	of	life,	we
assure	 you	 that	 nothing	 is	 impossible	 and	 that	 like	 us,	 you	 can	 also	 make
programming	 a	 stepping	 stone	 to	 unlock	 your	 potential	 to	 solve	 problems,
maximize	solutions,	and	enjoy	the	life	that	you	truly	deserve.
	
This	book	has	found	you	because	you	are	at	the	brink	of	everything	fantastic!
Thanks	for	reading!
You	can	be	interested	in:



“CSS:	Learn	CSS	In	A	DAY!”
	

	
Here	is	our	full	library:	http://amzn.to/1HPABQI
To	your	success,
Acodemy.
	

http://www.amazon.com/CSS-Ultimate-Learning-Development-Beginners-ebook/dp/B011EXASE4/ref=sr_1_1?s=digital-text&ie=UTF8&qid=1437515731&sr=1-1&keywords=css+acodemy
http://www.amazon.com/CSS-Ultimate-Learning-Development-Beginners-ebook/dp/B011EXASE4/ref=sr_1_1?s=digital-text&ie=UTF8&qid=1437515731&sr=1-1&keywords=css+acodemy
http://www.amazon.com/Acodemy/e/B00TQ910KU/ref=sr_tc_2_0?qid=1434474148&sr=1-2-ent
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