
 

Teaching Computer Security

 

Matt Bishop

Department of Mathematics and Computer Science, Dartmouth College, 6188 Bradley Hall,
Hanover, NH 03755-3551

 

Abstract

 

This paper describes three courses in computer security, and offers come comments about
their appropriateness, their advantages and their disadvantages.

 

1. INTRODUCTION

 

Interest in computer security has grown in the past few years [14], and nowhere is this more
evident than in colleges and universities. Perhaps a rising awareness of potential threats encour-
ages students to explore this area; perhaps the desire of businesses and industry in general to
improve the security of their systems leads students to hope their studies will help them get
jobs; or perhaps students enjoy the game of defeating security mechanisms and then improving
them to keep others out. In any case, computer security has become a “hot” topic.

While security is discussed in some classes (such as operating systems courses), it has so
many facets that only a course devoted to computer security can examine the basic underlying
principles in detail. For example, the notion of “auditing” involves both operating system secu-
rity and database security, yet rarely is this more general notion discussed in database or oper-
ating systems classes. This is hardly surprising given the number of subareas of computer
science (programming languages, architecture, operating systems, software methodology and
engineering, database and information retrieval, and human-computer interaction [5]) in which
security considerations may be involved. 

A course on computer security unifies the threads running through these subareas. By
bringing together seemingly unrelated (or distantly related) parts of these subareas, students
learn how integral computer security is to computer science, and how deeply it involves math-
ematics and computer system science. The depth to which these relationships are explored de-
pends, of course, on the time available and the level and quality of the students. In addition,
relationships to fields of study other than computer science, such as ethics, law, and public pol-
icy, often interest students as much as (if not more than) the technical aspects of the class.

As we use the term “computer security,” we mean both mathematical cryptography and oth-
er techniques for protecting a computer system (including protocols which use cryptography);
the latter we shall refer to as “computer systems security.” Although often taught in the same
course, these two topics are rich enough that they could easily be taught separately, as [10] sug-
gests.

A paradigm for teaching computer security is presented in [10], in which three courses are

From the 

 

Proceedings of the Ninth IFIP International Symposium on Computer Security, IFIP/
Sec ‘93

 

, pp. 43-52 (May 1993).



 

recommended: a survey course, followed by advanced courses on cryptography and system se-
curity. Several papers describing such courses [1,11,15,16] present descriptions of the material
covered; some (notably [1]) presents a rationale for the topics, and others [1,6] justify the need
for such courses. In this paper, we take this need for granted, and focus instead on what we have
taught and why. The courses described here fall under the paradigm in [10], but this is fortu-
itous. Further, we found each course has its benefits and drawbacks, and shall discuss these in
the conclusion.

 

2. The Survey Course

 

This course (taught in 1989) covered both cryptography and computer system security, and
both graduate and undergraduate students attended. We used [4] as the text and supplemented
it with a variety of papers.

Because students would have to analyze various protocols and algorithms, and use elemen-
tary number theory, the prerequisites included a course in analysis of algorithms (which, in
turn, required a working knowledge of a higher-level programming language). We did not re-
quire an operating systems course, but did expect all students to have completed a course in
computer architecture, and when needed spent a few minutes discussing how the relevant part
of the operating system worked. This seemed to be quite sufficient. Finally, all students had to
have taken a course in software engineering, which proved invaluable when we discussed for-
mal verification and its practical implications (as well as the complexity of integrating security
mechanisms into systems).

We followed the general outline of the text, although lectures brought the material up to
date. Mathematical cryptography and cryptographic protocols occupied the first month, and
computer system security (except cryptographic protocols) occupied the second. In this part,
we addressed disclosure and integrity using access control, and its compromise using malicious
logic and covert channels, and analysis of a system to determine if confidentiality could be
compromised. From this we discussed information flow models on which this analysis was
based, and techniques for performing such analyses, which led to program verification. We con-
cluded with techniques for compromising statistical databases.

As we firmly believe students learn best when having fun, we emphasized how to break ci-
phers in the first part of the class ([7] supplied many examples), and drew justification for coun-
termeasures and protocols from history ([12] was outstanding in its history of codes and
codebreaking). The system security part drew examples from well-known security violations
such as the Internet worm (which introduced a discussion of malicious logic). As computer vi-
ruses had begun appearing on campus, we spent a day talking about how the various types of
viruses worked, and what countermeasures were used, as well as other techniques being ex-
plored but not yet ready. The class found the question of what a computer virus on a multiuser
machine could do fascinating, especially since those machines had protection mechanisms al-
ready in place.

At Dartmouth, we are fortunate to have a computing center with a well-known and well-
established code of ethics. When we began discussing system security, we first looked at the
Computing Code of Ethics [18] and discussed what would and would not be allowed. Through-
out the class, we would point out questions of ethics, not to resolve them, but merely to make
students aware of them. No official or computer center staff member ever had even to repri-



 

mand a student in this class; whether that speaks well for discussing ethics during the class, or
the morals of the students, or both, is left for the reader to ponder.

Each student was required to present research into a topic of their choice. Here the liberal
arts orientation of the College was clear; one of the presentations discussed the relationship of
laws to computer security violations, and another was a talk on a Soviet cipher used in the
1950s (this was presented by a student majoring in both computer science and Russian). This
work deepened students’ appreciation of how computer security affects, and is affected by, its
environment and societal and legal concerns.

Because there were both graduate and undergraduate students taking the course, the survey
format seemed to work well; the students understood the more formal mathematics (notably in
the theory and cryptography sections), and all the students liked the course overall.

 

3. The Cryptography Course

 

Because mathematics and computer science are taught by the same department at Dart-
mouth, we decided to teach a course on mathematical cryptography. This was in part a response
to those students who enjoyed the survey course on computer security, and in part because other
students had been asking about the mathematical foundations of cryptography. The author and
a colleague (J. Shallit) collaborated on the course, dividing it into two parts.

The first part, which the author taught, covered information theory and classical cryptogra-
phy. Because information theory is central to understanding the limits of cryptography, and
classical cryptosystems are so widely used and combine both pure and applied mathematics
and statistics, we believed it essential that the course cover these topics as well as the more
modern methods of cryptography (which made up the second part of the course, taught by our
colleague).

The classical portion covered basic information theory, monoalphabetic and polyalphabetic
substitution, linear feedback shift registers, rotor systems, and the Data Encryption Standard;
students are taught both how the ciphers work and how to cryptanalyze them. The course text
for this portion [13] provided the framework and many of the analytical techniques for this part
of the course, although we supplemented it with outside reading as appropriate (for example,
the students read several papers from recent conferences when we discussed the DES). Our
goal was to show first, the building blocks upon which classical ciphers are based; second, how
ciphers evolved historically; and third, how classical ciphers could be attacked. This part of the
course included discussions of famous compromises in history, and anecdotes illustrated the
thesis that cryptosystems which may seem unbreakable usually are not.

All the students seemed to enjoy breaking ciphers. The techniques discussed in class ranged
from the statistical to the algebraic; further, to encourage students to play with simple cryp-
tanalysis, and to add spice to the course, every day students were given a cryptogram, and in-
vited to break it. These ranged from the very simple (a portion of the poem “The Walrus and
the Carpenter” enciphered using a simple substitution cipher) to the challenging (a transposi-
tion, then a substitution). If the text being enciphered was not well known, an introduction de-
scribed the topic of the plaintext; to keep the puzzles fun, hints were given on the back.The
students enjoyed these; most got the early ones, and a few deciphered all of them. These
“Quicktograms” were also chosen to provide a starting point for the day’s discussion (for ex-
ample, the transposition/substitution cipher led very naturally to a discussion of product ci-



 

phers, of which the DES is one). They also provided a very brief, valuable review of material
covered in the first day or so.

One drawback of the classical portion was that most of the students had trouble with the
statistical techniques used to cryptanalyze ciphers. This suggests that when the course is next
taught, the instructors should review basic statistics, Bayesian decision functions, generating
functions, and probability theory. The alternative, requiring these as prerequisites, is unneces-
sary as the material can be covered fairly quickly when discussing their use; for example, the
nature of correlation can be explained when using it to break a Cæsar cipher.

The second part of the course, modern cryptography, began with public-key cryptosystems
and a review of number theory. Then we discussed pseudorandom number generation, proba-
bilistic encryption, applications, zero-knowledge proofs, and quantum cryptography. Numer-
ous papers augmented the text [3]. In this portion of the course, the “Quicktograms” were
discontinued, as little cipher-breaking was done due to the complexity of the cryptosystems
(but potential weaknesses were thoroughly discussed; again, the students seemed to enjoy this
most of all).

Each student also had to present a paper on some aspect of cryptography. Again, the stu-
dents seemed to learn quite a bit from this, and some of the talks were excellent. The papers
presented ranged from using cryptography in an electronic banking network [9] to randomized
encryption techniques [17], and each presented a facet of cryptography or its applications not
covered in class.

Because of the mathematical subject matter, students had to have a course in abstract alge-
bra. Many modern cryptosystems are quite breakable theoretically, and draw their strength
from the computational infeasibility of the attack. Since the course discussed why the attacks
were often computationally infeasible, students also had to have a course in the analysis of al-
gorithms. As discussed above, had students had a course in statistics and/or probability, they
would have found the course easier; but this should probably have been strongly recommended
rather than a prerequisite.

Again, student reaction to the course was good. We were able to explore the subject in
depth, but there is an abundance of material that we did not cover; this could easily have been
two separate courses, one on classical cryptography and the other on modern cryptography.

 

4. The System Security Course

 

This covers very little cryptography, but focuses on other aspects of computer security. It is
somewhat similar to the one described in [1], but differs in emphasis and topics; we discuss the
mathematical foundations of computer security somewhat more than the course in [1] appears
to, and cover a somewhat different list of topics. We should point out that this course was first
taught as a seminar course in 1990; it will be taught as a lecture course in January 1993, so what
is presented is the outline of the course from 1990 as modified for 1993.

We started with a discussion of the problem: what is system security and why are computers
not secure? This led naturally to a discussion of policy and mechanism, and general design
principles. During this time we discussed “crackers,” privacy, responsibilities of users, pro-
grammers, and system managers, the ACM Code of Ethics [19], and the Computing Code of
Ethics. In this way, students were given guidelines on what was acceptable and what was not,
and whom to talk to should they need help to resolve a problem.



 

Computer system security consists of three parts: the prevention of illicit disclosure (

 

confi-
dentiality

 

), the prevention of illicit altering (

 

integrity

 

), and the availability of resources 

 

(non-
denial of service

 

). Central to all these is the concept of ownership. As the identity of the owner
of and object on a computer system controls access to that object, the discussion on privacy and
ethics led directly into how users and systems could identify each other; we answered by com-
paring different authentication schemes using the framework in [2]. Examples were drawn
from systems the students used daily as well as other sources; and students were often asked to
analyze these mechanisms for weaknesses, and then either suggest remedies or figure out a bet-
ter design.

Then came formal modelling, the goal being to see how easy or hard it is to provide security
in a theoretic sense. We discussed the Harrison-Ruzzo-Ullman result, and access control mod-
els. Using these, we examined the different types of access control (mandatory vs. discretion-
ary) and access control mechanisms (capabilities, access control lists, 

 

etc.

 

) as well as how these
were implemented in computer systems.

Because access controls limit both disclosure and modification, we sprang from security to
integrity. Here, we again began with a survey of formal models. Implementing these models
requires a notion of “trust” or “certification” of programs as being of high integrity (see [8], pp.
70-71, for a marvelous discussion of the relationship between trust and integrity); to demon-
strate the threat, we discussed malicious logic (Trojan horses, computer viruses, and their ilk)
and showed how each model would deal with such programs. We then showed how important
the assumptions were by showing how the system could be subverted if trust were misplaced
(as an introduction to this issue, we used an incident in which an infected anti-virus program
was used to disinfect a personal computer).

The trust required is twofold; in addition to trusting the certification process (or the soft-
ware on the system), one also needs to trust the system security mechanisms to implement the
model correctly. We began with the second part, looking at the notion of reference monitors and
security kernels, and how trusted path techniques worked. We then tackled the first part, look-
ing at the formal specification and verification of systems, especially at methodologies and
tools for proving specifications, how specifications could be implemented accurately, and com-
piler and information flow techniques for analyzing potential paths of disclosure.

Because most computer systems are connected to other systems, we next looked at issues
in network security. We began by examining what security services should be offered and when
they could be used, again drawing examples from various Internet protocols and international
protocol suites.as well as Kerberos. We also looked at security in distributed computer systems
and file systems, again using existing implementations as examples.

As in the survey course, ethical, legal, and social issues were not simply discussed at the
beginning, but also throughout the class. Again, no member of the class caused any security
problems.

Both graduates and undergraduates took the 1989 seminar course; they were able to select
papers which they found interesting, and (fortunately) their interests were diverse enough so
each student was able to present 5 or 6 papers during the term. In addition, we presented a num-
ber of lectures about each topic, to provide background before any papers were presented and
to provide additional information when the papers chosen did not represent the topic adequate-
ly.

Interest in the 1993 version of this course, which will be a lecture course, appears to be
high. In addition to homework and examinations, each student will be required to do a project.



 

It could be a term paper or (preferably) an experiment. If the latter, and if there is any possibility
of conflict with the Computing Code of Ethics, the student or students will need to obtain the
approval of the appropriate staff members before beginning. In this way, they will learn what
precautions must be taken to preserve the privacy of users not directly involved with the exper-
iment.

 

5. Discussion

 

Computer security consists of three subtopics: techniques to ensure confidentiality, tech-
niques to ensure integrity, and techniques to prevent denial of service. The survey course
touched on all three, though not in too much depth; the cryptography course focused on confi-
dentiality, with a smattering of integrity; and the system security course went into greater depth
in all three subtopics. The system security course used cryptography as a “black box,” discuss-
ing protocols but assuming that students understood how cryptosystems worked (a short review
was given at the beginning of the term). This emphasized that cryptography is not only mathe-
matically very rich, but that it also is a valuable tool for protecting confidentiality and integrity.
But it must be supported by an appropriate system structure, which was the focus of the system
security course.

The emphasis in the content of the three courses was also quite different. The survey course
did not place much emphasis on mathematical formalism; while mathematical proofs were giv-
en as needed (especially in the cryptography part), informal explanations predominated. Fur-
ther, the course was somewhat oriented around computer applications. The mathematical
cryptography course looked at mathematical foundations, with much formalism and little em-
phasis being placed upon computer applications (none of the exercises required a computer);
the mathematics students were quite comfortable with it. Similarly, the system security course
covered the mathematical description of several types of systems, and then explored how the
mathematics was translated into programs (or hardware). A fair amount of mathematical so-
phistication was required here as well.

Each course was aimed at a different group of students. The survey course was taught at a
senior undergraduate/first-year graduate level, and the two juniors who took it had no problems
with the work. We intended the mathematical cryptography course to be a first-year graduate
level course, but several graduate students found the course quite difficult (however, one senior
undergraduate who took it found the course less difficult and scored higher than the graduates).
By contrast, the system security seminar students ranged from a junior to two second-year
graduates, the common characteristic being they were all interested in some facet of computing
systems. The courses were not seen as a sequence; only one person took two, and no-one took
all three.

Which course is most useful? If by “useful” we mean the one that will teach students that
amount of computer security appropriate for computer scientists not specializing in computer
security, the survey course is most useful; one can analogize to the difference between a one-
term survey course in computer graphics and a three-term sequence in which the full mathe-
matical and architectural underpinnings of that subject are explored. If by “useful” we mean
the one which is most likely to be applied to a student’s current research, then taking either of
the two advanced courses after the survey one is best. For students whose primary interest is in
either history or mathematics, the mathematical cryptography course was the more appropriate



 

advanced course as it demonstrated techniques and analyses drawing on many fields (algebra,
statistics, 

 

etc

 

.). For students of computer science, especially computer systems, the course on
system security was more appropriate, because it discusses approaches used by system archi-
tects.

 

6. Conclusion

 

This paper has presented brief descriptions of several courses in computer security. We have
described the contents and prerequisites of each, and added our personal experiences in teach-
ing them. The courses have been successful, being well attended and well received. The specific
nature of the courses taught grew from our own interests and from the requests of the students.

 The division of computer security into confidentiality, integrity, and denial of service sub-
topics suggests an alternate approach to organizing the content of computer security courses.
Thus, there would still be a general survey course, but the advanced courses would be on tech-
niques for confidentiality and techniques for integrity. The advantages to such an arrangement
would be that the courses would have a central theme and could explore the application of tech-
nique in different environments (for example, cryptography as a tool for confidentiality and a
tool for integrity). The problem, of course, is that many of the techniques use the same mech-
anism. Would access control be discussed in detail in the integrity or confidentiality course? If
all three courses were carefully planned, and students were expected to take them as a sequence
(or had to be willing to do extra work), this arrangement would work well. Without careful
planning, it would not. But there is something quite appealing about eliminating the distinction
between cryptography as one component of computer security, and everything else as another.

What lies ahead? It is unlikely that a formal three-course sequence in computer security will
become a reality at Dartmouth College, simply because of staffing requirements. However, the
author does plan to continue teaching them periodically, scheduling allowing. We hope these
courses will show students the foundations of computer security, how security can be integrated
into computer systems and, perhaps most important, make students more aware of the need for
security in the design of computer systems.

 

7. References

 

1 A. Arsenault and G. White, “Teaching Computer Systems Security in an Undergraduate
Computer Science Curriculum,”

 

 Proceedings of the Fourteenth National Computer Securi-
ty Conference

 

 (Oct. 1991) pp. 582-597.
2 M. Bishop, “Password Management,” 

 

COMPCON 91

 

 (Spring 1991) pp. 167-169.
3 G. Brassard, 

 

Modern Cryptology: A Tutorial

 

 (Lecture Notes in Computer Science #325),
Springer-Verlag, New York, NY (1988).

4 D. Denning, 

 

Cryptography and Data Security

 

, Addison-Wesley Publishing Co., Reading,
MA (1984).

5 P. Denning, D. Comer, D. Gries, M. Mulder, A. Tucker, A. Turner, and P. Young, “Comput-
ing as a Discipline,” 

 

Communications of the ACM 

 

32

 

(1) (Jan. 1989) pp. 9-23.
6 K. Forcht, “The Need for Including Data Security Topics in the College Business Curricu-

lum,” 

 

Security and Audit Control Review

 

 

 

4

 

(3) (Summer 1986) pp.9-11.



 

7 H. Gaines, 

 

Cryptanalysis: a Study of Ciphers and their Solutions

 

, Dover Publications, Inc.,
New York, NY (1956).

8 M. Gasser, 

 

Building a Secure Computer System

 

, Van Nostrand Reinhold Co, New York, NY
(1988).

9 D. Gifford and D. Spector, “Case Study: An Electronic Banking Network,” 

 

Communica-
tions of the ACM

 

 

 

28

 

(8) (Aug. 1985) pp. 797-807.
10 J. Higgins, “Information Security as a Topic in Undergraduate Education of Computer Sci-

entists,” 

 

Proceedings of the Twelfth National Computer Security Conference

 

 (Oct. 1989)
pp. 553-557.

11 H. Highland, “A College Course in Cryptography and Computer Security,” 

 

Security and
Audit Control Review

 

 

 

1

 

(2) (Spring 1982) pp.34-37.
12 D. Kahn, 

 

The Codebreakers

 

, Macmillan Publishing Co., New York, NY (1967).
13 A. Konheim, 

 

Cryptography: A Primer

 

, John Wiley & Sons, New York, NY (1981).
14 National Research Council, 

 

Computers at Risk: Safe Computing in the Information Age

 

,
National Academy Press, Washington, DC (1991)

15 B. Neugent, “A University Course in Computer Security,” 

 

Security and Audit Control Re-
view

 

 

 

1

 

(2) (Spring 1982) pp.17-33.
16 T. Richards, “A Seminar in Computer Audit and Control Systems,” 

 

Security and Audit Con-
trol Review

 

 

 

3

 

(1) (Spring-Summer 1984) pp.6-10.
17 R. Rivest and A. Sherman, “Randomized Encryption Techniques,” 

 

Proceedings of Crypto
‘82

 

 (1982) pp. 145-163.
18 B. Strohbehn, ed., 

 

Student Handbook

 

, Dartmouth College, Hanover, NH 03755 (1992).
19 E. Weiss, “Self-Assessment Procedure XXII,” 

 

Communications of the ACM

 

 

 

33

 

(11) (Nov.
1990) pp. 110-132.

 

8. Appendix. Outlines of the Three Courses

 

This section contains outlines of the three courses described above. At Dartmouth College,
the academic year is divided into four terms of 9 or 10 weeks each, with classes either being 65
minutes three times a week or 100 minutes twice a week.

 

Survey Course

 

week 1. history of computer security and cryptography, information theory, number theory
week 2. transposition, monoalphabetic and polyalphabetic substitution ciphers, product ci-

phers
week 3. Data Encryption Standard, exponentiation ciphers, public key ciphers, block ci-

phers
week 4. encryption on a network, key management, threshhold schemes
week 5. access control models, mechanisms; malicious logic, denial of service, covert chan-

nels
week 6. verifiably secure systems, theory of safe systems, models
week 7. information flow models, flow control mechanisms, program verification
week 8. statistical databases: inference, trackers, other attacks
week 9. blocking attacks on statistical databases; class presentations



 

Mathematical Cryptography

 

week 1. history and foundations of cryptography, information theory, monoalphabetic sub-
stitution

week 2. monoalphabetic and polyalphabetic substitution
week 3. linear feedback shift register systems, rotor systems
week 4. the Data Encryption Standard
week 5. introduction to public key cryptography, necessary number theory
week 6. RSA, Rabin’s scheme, Shamir’s secret sharing, pseudo-random number generation
week 7. probabilistic encryption, applications (authentication, digital signatures, identifica-

tion schemes)
week 8. coin flipping, zero-knowledge proofs
week 9. quantum cryptography; class presentations

 

Computer System Security

 

week 1. risk analysis, definition of security, general concepts and design principles, relevant
standards (American government, commercial, and international)

week 2. basic cryptography and applications; authentication techniques
week 3. formal security models (Harrison-Ruzzo-Ullman, Take-Grant, ESPM, 

 

etc

 

.) and
their interpretation and application to systems

week 4. access control and multilevel security; covert channels
week 5. integrity models and their interpretation and application to systems; malicious logic
week 6. security kernels, reference monitors, trusted path, implementation issues
week 7. formal specification and verification of systems
week 8. network security, Internet and international standards and protocols, network archi-

tectures and security services, distributed system security
week 9. database security, inference; tracker attacks, countermeasures, the cell suppression

problem and solution


