
Page 1

Writing Safe Privileged Programs

Network Security ‘97

Why is this hard? A few reasons:

• a "bug" here can endanger the system

• programs interact with system, environment, one another in
sometimes unexpected ways

• assumptions which are true or irrelevant for regular programs aren't
for these

Slide # 1

Matt Bishop
Dept. of Computer Science
University of California at Davis

Writing Safe Setuid Programs

Matt Bishop

Department of Computer Science

University of California at Davis
Davis, CA 95616-8562

phone (530) 752-8060
email bishop@cs.ucdavis.edu

Page 2

Writing Safe Privileged Programs

Network Security ‘97

Key concepts:
privilege running with rights other than those obtained by logging

in; or running as superuser
protection domain

all objects to which the process has access, and the type of access
the process has

Slide # 2

Matt Bishop
Dept. of Computer Science
University of California at Davis

• a change of privilege
example: setuid programs

• an assumption of atomicity of some
functions
example: check of access permission and opening of a file

• a trust of environment
example: programs which assume they are loaded as compiled

What Do These Programs
Involve?

Page 3

Writing Safe Privileged Programs

Network Security ‘97

These are from Saltzer and Schroeder:

least privilege: need-to-know

fail-safe defaults by default, deny

economy of mechanism: KISS principle

complete mediation: check every access to an object

open design: don’t depend on secrecy of design giving additional
security

separation of privilege: make access dependent on multiple conditions,
not just one

least common mechanism: minimize sharing

psychological acceptability: security mechanisms shoud be as easy to
use as not to use; difficult ideal to approach, so come as close as
possible

Slide # 3

Matt Bishop
Dept. of Computer Science
University of California at Davis

Security Design Principles

Control design of all security-related programs

l principle of least privilege
l principle of fail-safe defaults

l principle of economy of mechanism
l principle of complete mediation
l principle of open design

l principle of separation of privilege
l principle of least common mechanism

l principle of psychological acceptability

Page 4

Writing Safe Privileged Programs

Network Security ‘97

Warnings:

getaudit(), getlogin() common for audit/login ID, but be sure getlogin is
the right one!

Some systems do not allow direct access to the saved UID or GID

Setting the UID sets the effective UID unless it’s root; both real and
effective UID are set. You can use separate system calls to change
either.

When getting information about user or group, the getpwuid, etc.
functions return the first matching entry in the passwd or group
databases. This may or may not be what you want.

Slide # 4

Matt Bishop
Dept. of Computer Science
University of California at Davis

Users and Groups

Real UID, GID: UID, GID of user running program

Effective UID, GID: UID, GID of user with whose
privileges the process runs

Login/Audit UID: UID of user who originally logged in
Saved UID, GID: UID, GID before last change by

program
Primary GID: GID assigned at login
Secondary GIDs: GIDs of groups to which the UID

belongs

Page 5

Writing Safe Privileged Programs

Network Security ‘97

Here, it means program runs with rights not normally associated with
user running it

Example: in vi, user cannot write to buffer storage area where file is to
be put when user hangs up so the process is given privileges
(additional rights) to do it

setuid vs. a root (owner) process

• root process starts in root's environment; need not worry about
change of environment

• setuid process starts in user's environment; must worry about
change of environment

How important?

• in theory: major, as you assume root is trusted and users aren’t

• in practise, not very, as you need to guard against poorly set up
root environments

Slide # 5

Matt Bishop
Dept. of Computer Science
University of California at Davis

Setuid program gives privileges for the life of the
process, plus any descendants

Effect is same as if owner (not user) ran it

So … owner must dictate initial protection domain

Starting Safe

Page 6

Writing Safe Privileged Programs

Network Security ‘97

What could be done?
• Trust the Users

Claim there is no problem as no user would ever do anything
untoward in that case
Overlooks nasty people who may gain access to your site

• Delete the Games
Lots of support for this, but students had their own copies, and
would have given one another setuid privileges ...

• Create a Restricted User
• Create a Restricted Group

Riules of thumb:
If no need to log in, use group (not user), as groups generally more

restricted than owner
If group compromised, usually much less dangerous; this is due to

usual system configuration; not inherent in the system

Application of privilege of least principle

Slide # 6

Matt Bishop
Dept. of Computer Science
University of California at Davis

Games very popular, owned as root
» Needed to be setuid to update high score files

Discovered that effective UID not reset when a subshell
spawned

» So we could start a game which kept a high score file, and
run a subshell – as root!

Example: the Purdue Games
Incident

Page 7

Writing Safe Privileged Programs

Network Security ‘97

But setgid does not guarantee one can’t do nasty things; it’s usually a
matter of degree …

This attack is hard and takes some knowledge of the output of ps to
interpret. Tricking ps into reading the data is easy; interpreting the
output is the hard part.

Slide # 7

Matt Bishop
Dept. of Computer Science
University of California at Davis

Goal: read any location in kernel memory

ps accesses process table by:
opening symbol table in /vmunix
looking up location of variable _proc

ps setgid to group kmem
User can specify where vmunix file is
So supply your own /vmunix and read any file that
group kmem can read ...

Example: The ps(1) Attack

Page 8

Writing Safe Privileged Programs

Network Security ‘97

This applies to the user environment as well; we’ll get to that later.

Slide # 8

Matt Bishop
Dept. of Computer Science
University of California at Davis

Distrust anything the user provides

ps: if using /vmunix, namelist is (probably) okay; if using
something else, namelist is (probably) not okay
Why? Because first assumed writeable only by trusted user

(who can read memory (root; this should be checked both
at /vmunix and at /dev/kmem). Assumption for other users
is likely to be wrong at both points.

Effectively, above fix allows user to supply alternate namelist
only if user could read memory file anyway

Validation and Verification

Page 9

Writing Safe Privileged Programs

Network Security ‘97

Actually, these are all different …

• login bug changed data in the data segment

• fingerd and the rest overwrite the stack

Works on RISC systems; just requires some more work

One vendor made the stack pages non-executable; but many programs
malloc space for input or arguments, and data on the heap could be
executed …

Slide # 9

Matt Bishop
Dept. of Computer Science
University of California at Davis

• login, V6 UNIX (apocryphal?)

• fingerd as exploited by the Worm
• syslogd, identd, …

• lots of program argument lists

All cail to check bounds adequately

Overflows

Page 10

Writing Safe Privileged Programs

Network Security ‘97

Assume any input (or file names, or environment variable values, or
arguments, …) supplied by the user or under the user’s control will be
set to cause problems.

In general, don’t trust input to be of the right length or form. Assume it
could overflow any buffer, and program defensively!

Slide # 10

Matt Bishop
Dept. of Computer Science
University of California at Davis

Use a function that respects buffer bounds
Avoid these:

gets strcpy strcat sprintf
Use these instead:

fgets strncpy strncat
(no real good replacement for sprintf; snprintf on some
systems)

To find good (bad) functions, look in the manual for
those which handle arrays and do not check length

» checking for termination character is not enough

Handling Arrays

Page 11

Writing Safe Privileged Programs

Network Security ‘97

The user may control non-obvious things:

• for network services, the user can control anything from the network

In the above example, theprogram trusts the results of gethostbyaddr; it
shouldn’t.

Slide # 11

Matt Bishop
Dept. of Computer Science
University of California at Davis

Invalid Input

Get IP address 555.1212.555.1212; want host name

Use gethostby addr, which uses Directory Name Server
Response p used as:

sprintf(cmd, “echo %s | mail bishop”, p);

if (msystem(cmd) != BAD) ...

Say host name resolves to
info.mabell.com; rm -rf *

Command executed is
echo info.mabell.com; rm -rf * | mail bishop

Page 12

Writing Safe Privileged Programs

Network Security ‘97

Whenever data is read from a source the process (or a trusted user)
does not control, always perform sanity checking

»for buffers, check length of data
»for numbers, check magnitude, sign
»for network infrastructure data, check validity as allowed by the
relevant RFCs; in DNS example, ; * ‘ ‘ all illegal characters in
name

Slide # 12

Matt Bishop
Dept. of Computer Science
University of California at Davis

Need to check any string being used as a command
and originating elsewhere

Good example: when user supplies value for environmental
variable DISPLAY

Say string has any metacharacter meaningful to shell
Examples: | ^ & ; ` < >

If user gives a recipient for mail as

bishop | cp /bin/sh .sh; chmod 4755 .sh

then using this as an address to mail command gives a
setuid to (process EUID) shell

Bug in Version 7 UUCP, some versions of sendmail, some
versions of Web browsers

User Specifying Arbitrary Input

Page 13

Writing Safe Privileged Programs

Network Security ‘97

Where is the privilege?

• vi is not setuid to root; you don't need that to edit your files

• expreserve is setuid to root as the buffer is saved in a protected
area so expreserve needs enough privileges to copy the file there

• mail is run by expreserve so unless reset, it runs with root privileges

Slide # 13

Matt Bishop
Dept. of Computer Science
University of California at Davis

vi file
… edit it, then hang up without saving it …

• vi invokes expreserve, which saves buffer in
protected area
... which is inaccessible to ordinary users, including editor of

the file

• expreserve invokes mail to send letter to user

Environment Example

Page 14

Writing Safe Privileged Programs

Network Security ‘97

Apparent lesson (it’s one of the real ones …)
Don't trust the setting of the user's PATH variable

• if your program will run any system commands, either give the full
path name or reset this variable explicitly
Instead of resetting PATH, change

system("mail user")

to
system("/bin/mail user")

• This by itself is not enough, however ...

Slide # 14

Matt Bishop
Dept. of Computer Science
University of California at Davis

$ cat > ./mail
#! /bin/sh
cp /bin/sh /usr/attack/.sh
chmod 4755 /usr/attack/.sh
^D
$ PATH=.:$PATH
$ export PATH

… and then run vi and hang up.

The First Attack

Page 15

Writing Safe Privileged Programs

Network Security ‘97

You want to disable all environment variables, and enable only those
you need -- after you have senity checking. Principle of fail-safe
defaukkts.

Look for any code using environment variables:

main(argc, argv, envp)

extern char **environ

getenv("variable")

putenv("variable")

The only time you should use them is when they do not affect the
security of the program

Slide # 15

Matt Bishop
Dept. of Computer Science
University of California at Davis

Bourne shell determines whitespace with IFS
Using same program as before, but called m, do:

% IFS="/binal\t\n "; export IFS

% PATH=.:$PATH; export PATH

… and then run vi and hang up.

The Second Attack

Page 16

Writing Safe Privileged Programs

Network Security ‘97

This is a very common error (one of my early -- 1985 -- TRs on the
subjecthad it).

Note system spawns a Bourne shell, then executs te command.

Slide # 16

Matt Bishop
Dept. of Computer Science
University of California at Davis

Fix given in most books is:
system("IFS='\n\t ';PATH=/bin:/usr/bin;\

 export IFS PATH;command");

This sets IFS, PATH; you may want to fix more

WRONG
% IFS=“I$IFS”

% PATH=“.:$PATH”

% plugh

Now your IFS is unchanged since the Bourne shell
interprets the I in IFS='\n\t ' as a blank, and reads
the first part as FS='\n\t

Fixing This

Page 17

Writing Safe Privileged Programs

Network Security ‘97

This is somewhat system dependent …

What to do? Use execve(2) and reset what parts of the environment
you want:

envp[0] = NULL;

if (execve(path_name, argv, envp) < 0) ...

Note: may have to set TZ on System V based systems.

Programs run with more privileges but in an environment set up by a
user with fewer privileges. This means programs trust and (implicitly or
explicitly) use this environment

Similar problem: when dynamic loading is used and load path is under
user’s control.

Slide # 17

Matt Bishop
Dept. of Computer Science
University of California at Davis

Programming Tip: More on
Environment Variables

Can add them directly to environment, so multiple
instances of a variable may occur:

PATH=/bin:/usr/bin:/usr/etc

TZ=PST8PST

SHELL=/bin/sh

PATH=.:/bin:/usr/bin

Now which PATH is used for the search path?
Answer varies but it is usually the second

If PATH is deleted or replaced, which one is affected?
Usually the first ...

Page 18

Writing Safe Privileged Programs

Network Security ‘97

Where is this new routine obtained from? Possibly an environment
variable … for example, on Suns: check libraries in directories named in
the variables LD_LIBRARY_PATH, LD_PRELOAD; those directories
are searched in order, just like PATH Other systems have similar
mechanism (ELF_ variables, etc.)

This puts execution of parts of a setuid program under user control as
the user controls what is loaded and run

So, build a dynamic library with your own version of fgets.o:
fgets(char *buf, int n, FILE *fp)

{

execl("/bin/sh", "-sh", 0);

}

and put it into a library libme.so in current directory. Then, execute the
following

% LD_PRELOAD=.:$LD_PRELOAD

% setuid_program_calling_fgets

#

Slide # 18

Matt Bishop
Dept. of Computer Science
University of California at Davis

General assumption: programs loaded as written
this means parts of it don't change once it is compiled

Dynamic loading has the opposite intent
load the most current versions of the libraries, or allow users to
create their own versions of the libraries

Dynamic Loading and Environment

Page 19

Writing Safe Privileged Programs

Network Security ‘97

There’s a catch: the program can’t just ignore the variables, it must
purge them from its environment lest they be passed to a non-setuid
subprocess running on behalf of the setuid process. Example: /bin/login
spawning /bin/sync. This was a Sun bug for a time.

Because of all this, I recommend that security-related code be statically
linked. Dynamically linked code can be secure, but it is affected more
by the environment and the run-time libraries than is static code.

Slide # 19

Matt Bishop
Dept. of Computer Science
University of California at Davis

Problem: Dynamic loading allows an unprivileged user
to ater a privileged process by controlling what is loaded
Idea: Disallow this control by having setuid programs
ignore environment variables

Here, they would dynamically load libraries from a preset set of
directories only

Reasoning: Users can control what is dynamically
loaded on their programs, but not on anyone else’s,
since everything you do is executed under your UID or
is setuid to someone else …

The Obvious Fix

Page 20

Writing Safe Privileged Programs

Network Security ‘97

This is critical, as security is in large part knowing (and validating) your
assumptions.

Moral of all this?

There's more to an environment than environment variables
UIDs root directory of process
GIDs file system paths of referenced files
umask network information
open file descriptors process name

Essentially, environment is the protection state of the system plus
anything that affects that state

Slide # 20

Matt Bishop
Dept. of Computer Science
University of California at Davis

Know where your trust is!

• if dynamic loading is a possibility, and you can
disable it, do so

• if you can eliminate dependence on environment, or
check assumptions about the environment, do so

• if you can't, warn the installer and/or user

Moral: identify trust points in design and implementation

Know What You Trust

Page 21

Writing Safe Privileged Programs

Network Security ‘97

Goal: read any file on the system

sendmail ran setuid to root

–C option used to test (and debug) sendmail.cf file

excellent error diagnostics, giving line and pointer to the error

Slide # 21

Matt Bishop
Dept. of Computer Science
University of California at Davis

sendmail –C protected_file

Output is:
when in the course of human events

---error: bad format

it becomes necessary for a people to declare

---error: bad format

so delete every other line!

Sendmail Attack

Page 22

Writing Safe Privileged Programs

Network Security ‘97

When checking for access, check for file type also; if file is symbolic
link, check access on each component in the links until you reach the
end
When checking for ability to write, check ancestor directories also; more
on this later
When checking for ability to read or write, check for real UID's (GID’s)
access, not effective UID's (GID’s) access

Slide # 22

Matt Bishop
Dept. of Computer Science
University of California at Davis

use access(2) system call:
access(config_file, R_OK)

if < 0, real user can't read file; so sendmail shouldn't
read it on his/her behalf

Warning: this solution is probably flawed!
The hole exists only under very specific conditions and is much
smaller, but still exists

One Partial Fix

Page 23

Writing Safe Privileged Programs

Network Security ‘97

Want to check permissions and open as a single operation; cannot be
done unless check is for effective UID/GID

checking for access based on real UID/GID requires access(2)
followed by open(2), and there is a window of vulnerability
between the two; no guarantee that the object opened is the
same as the one checked

Slide # 23

Matt Bishop
Dept. of Computer Science
University of California at Davis

Previous fix is roughly
if (access(config_file, R_OK) < 0) error

fp = fopen(config_file, "r");

But may not be good enough ...

Attack: change files between access and fopen

The Smaller Hole

Page 24

Writing Safe Privileged Programs

Network Security ‘97

File descriptors are not synonyms for file names!

File (data + inode information) is object
File descriptor is variable containing object

Bound once, at file descriptor creation; hence, once open, a file's
name being changed doesn't affect what the descriptor refers to

File name is pointer to object, with loose binding
Name rebound at every reference

Note: order of fopen and access can be switched and same problem
occurs.

Slide # 24

Matt Bishop
Dept. of Computer Science
University of California at Davis

In something like

if (access("xyz", R_OK) == 0)

 fp = fopen("xyz", "r");

if user can change binding of xyz between the check
(access) and the use (open), the check becomes
irrelevant

Race Condition Problem

Page 25

Writing Safe Privileged Programs

Network Security ‘97

Just because you can do it doesn't mean you should!
• Don't rely on access in general

you can in the specific case where no untrusted user can write to
a directory or any of its ancestor directories
If directory or any ancestor is symbolic link, check link, then
repeat full check on referent

• Use subprocesses freely

ReUse trustfile from
ftp://nob.cs.ucdavis.edu/pub/sec-tools/trustfile.tar

Slide # 25

Matt Bishop
Dept. of Computer Science
University of California at Davis

A Classic Race Condition

Problem:
• access control check done on object bound to name
• open done on object bound to name

no assurance this binding has not changed!!!

Solution: use file descriptors whenever possible, as
once object is bound to file descriptor the binding
does not change.

Warning:

names and file descriptors don’t mix!!!

Page 26

Writing Safe Privileged Programs

Network Security ‘97

These are not closed across fork or exec
• Threat is when privileged parent opens sensitive file and then

spawns a subshell

Slide # 26

Matt Bishop
Dept. of Computer Science
University of California at Davis

main()

{

int fd;
fd = open(priv_file, 0); dup(9, fd);
(void) msystem("/bin/sh");

}

Running this and typing
% cat <&9

prints the contents of priv_file

File Descriptors and Subprocesses

Page 27

Writing Safe Privileged Programs

Network Security ‘97

File descriptors are essentially capabilities; once you have one, you can
read/write the file eve if it is deleted.

Slide # 27

Matt Bishop
Dept. of Computer Science
University of California at Davis

Access privileges checked on open or creat only
not checked on read, write, etc.

This is how pipes work; also useful for log files
» open rotected log file as root
» drop privileges to user
» can still log data in protected file

File Descriptors and Privileges

Page 28

Writing Safe Privileged Programs

Network Security ‘97

Between second and third step, replace script with file of your choosing
cp /bin/sh .sh; chmod 4755 .sh

You've now compromised the user

In general, don't use setuid scripts; too easy to create a security hole
If you must, provide a wrapper which is setuid and which will honor the
setuid bits on the script. Then simply exec the interpreter yourself,
open the script, and use fstat to check the bits

Slide # 28

Matt Bishop
Dept. of Computer Science
University of California at Davis

How executed on most systems:

Kernel picks out interpreter
first line of script is #! /bin/sh

Kernel starts interpreter with setuid bits applied
Kernel gives interpreter the script as argument

Another Race Condition: Shell
Scripts

Page 29

Writing Safe Privileged Programs

Network Security ‘97

Good example is shell scripts. Even if the kernel bug above is fixed,
shells often base actions uipon the name of the shell; if the first char of
arg 0 is “-”, it’s a login shell.

Just write a 4-line C program to do this, and call the subsequent shell “-
xyz”.

Other interpreters (awk, etc.) have this same problem.

Slide # 29

Matt Bishop
Dept. of Computer Science
University of California at Davis

Interaction with environment too complex:

• need to handle environment variables
• need to worry about loaded routines

Goal: minimize interactions
make the program as self-contained as possible

Example of the principle of least common mechanism

Keep It Small and Simple (KISS)

Page 30

Writing Safe Privileged Programs

Network Security ‘97

Don't base user's ability to control actions of program on program name

• Okay to have name determine what program does

• Not okay to allow user to alter program's actions during run based
solely on name

Example of Principle of Separation of Privilege

• base such permission on more than one check, such as name and
password

Slide # 30

Matt Bishop
Dept. of Computer Science
University of California at Davis

% ls –l /etc/reboot

–rwsr–xr–x 1 root 17 Jul 1992 /etc/reboot

% ln /etc/reboot /tmp/-x

% cd /tmp

% –x

#

Possible Side Effect of Shell Scripts

Page 31

Writing Safe Privileged Programs

Network Security ‘97

Bb Morris thinks this is either apocryphal orcomes from a local
modification of su(1), as he wrote the V6 su and did not put this in.

Slide # 31

Matt Bishop
Dept. of Computer Science
University of California at Davis

If su could not open password file, assumed
catastrophic problem and gave you root to let you fix
system

Attack: open 19 files, then exec su root
At most 19 open files per process, so …

Note: Possibly apocryphal; a non-standard Version 6
UNIX system, if true

That Old su Bug (Apocryphal?)

Page 32

Writing Safe Privileged Programs

Network Security ‘97

Track what can cause an error as you write the program

Ask "What should be done if this does go wrong?"

If you can't handle all cases, or determine precisely why
the error occurred, or make assumptions that can't be verified, STOP

Slide # 32

Matt Bishop
Dept. of Computer Science
University of California at Davis

With privileged programs, it's very simple:

DON'T
Why? Because assumptions made to recover may not
be right

In above, error was to assume open fails only because
password file gone

Example of Principle of Fail-Safe Defaults

Error Recovery

Page 33

Writing Safe Privileged Programs

Network Security ‘97

Checking the cause of an error:

#include <errno.h>

extern int errno;

Precise cause of failure often put in here

for su, example sets errno to EMFILE

for su, no password file sets errno to ENOENT

Warning: not automatically cleared, so program must clear it (set it to
ENONE or 0)

Slide # 33

Matt Bishop
Dept. of Computer Science
University of California at Davis

General Use of System Calls

•
.

Never assume a system call will succeed!!!

If the success of a system call (such as read) is crucial
to the program's success or failure, check the return
code to be sure it is not -1.

This applies to library calls, functions defined within the
program, and everything

Page 34

Writing Safe Privileged Programs

Network Security ‘97

Now for some odds and ends …

• file cannot be accessed by any other user; if they can get to the raw
device and find the inode, they can get the data directly; but that
means you’re compromised anyway

• at end of program, temp file automatically deleted

 good: ciel cleanup automatic

 bad: may make PM analysis harder on abnormal termination

+ race condition eliminated

– hides use of disk space

you see it is gone, but not where

Slide # 34

Matt Bishop
Dept. of Computer Science
University of California at Davis

Secure Temporary File
create file, open for reading and writing (descriptor fd)
delete file (use unlink)

as file is open, its directory entry is removed but the file is not
yet actually deleted (only files not open used can be deleted)

write data to the file
rewind the file

do this with fseek or rewind; do not close andre open it, or it
will go away!

read data back from the file
close the file

this will delete it automatically

Page 35

Writing Safe Privileged Programs

Network Security ‘97

Also, clean out files by overwriting if they contain sensitive data; on
some systems, trunc(2) or ftrunc(2)zaps the data, too.

Slide # 35

Matt Bishop
Dept. of Computer Science
University of California at Davis

Note: cleartext password left in memory

Bad news if there’s a core dump, so …
for(g = given; *g; g++)

*g = ‘\0’;

Can also use bzero(3) or memset(3) if you know

that the password is under some specific length:
(void) bzero(given, sizeof(given))

Memory Use

Page 36

Writing Safe Privileged Programs

Network Security ‘97

Also, check quality of PRNG if it’s used for anything sensitive, like
cryptographic keys.

Bug in a routine on some systems:

int rand()

Generates a pseudorandom integer between 0 and 2147483647 (= 2
—1)

Warning: low order bits not very random
Use rand48, random instead. Even these are not suitable for
cryptographic purposes, though

Slide # 36

Matt Bishop
Dept. of Computer Science
University of California at Davis

Seeding the PRNG

Do not use time of day, process ID, or any function of
known (or easily obtained) information

Attacker can guess the seed, and regenerate the
sequence, and use that as a key to regerate the
relevant random numbers.

Page 37

Writing Safe Privileged Programs

Network Security ‘97

Conclude: we need to face this problem. As the good doctor (Seuss)
says,

But I’ve bought a big bat.
I’m all ready, you see;
Now my troubles are going
To have troubles with me!

Slide # 37

Matt Bishop
Dept. of Computer Science
University of California at Davis

Programming Tip: Good Style

• use a system like lint to check your code
If using ANSI C, the GNU compiler has many wonderful options
that have a similar effect; I recommend -Wall -Wshadow
-Wpointer-arith -Wcast-qual -W

• test using random input and any bogosities you
can think about

See the marvelous article "An Empirical Study of the Reliability of
Unix Utilities," by Miller, Fredriksen, and So in Communications
of the ACM 33(12) pp. 32-45 (Dec. 1990)

•

